x86_32.ad revision 113:ba764ed4b6f2
1219019Sgabor//
2219019Sgabor// Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3219019Sgabor// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4219019Sgabor//
5219019Sgabor// This code is free software; you can redistribute it and/or modify it
6219019Sgabor// under the terms of the GNU General Public License version 2 only, as
7219019Sgabor// published by the Free Software Foundation.
8219019Sgabor//
9219019Sgabor// This code is distributed in the hope that it will be useful, but WITHOUT
10219019Sgabor// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11219019Sgabor// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12219019Sgabor// version 2 for more details (a copy is included in the LICENSE file that
13219019Sgabor// accompanied this code).
14219019Sgabor//
15219019Sgabor// You should have received a copy of the GNU General Public License version
16219019Sgabor// 2 along with this work; if not, write to the Free Software Foundation,
17219019Sgabor// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18219019Sgabor//
19219019Sgabor// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20219019Sgabor// CA 95054 USA or visit www.sun.com if you need additional information or
21219019Sgabor// have any questions.
22219019Sgabor//
23219019Sgabor//
24219019Sgabor
25219019Sgabor// X86 Architecture Description File
26219019Sgabor
27219019Sgabor//----------REGISTER DEFINITION BLOCK------------------------------------------
28219019Sgabor// This information is used by the matcher and the register allocator to
29219019Sgabor// describe individual registers and classes of registers within the target
30219019Sgabor// archtecture.
31219019Sgabor
32219019Sgaborregister %{
33219019Sgabor//----------Architecture Description Register Definitions----------------------
34219019Sgabor// General Registers
35219019Sgabor// "reg_def"  name ( register save type, C convention save type,
36219019Sgabor//                   ideal register type, encoding );
37219019Sgabor// Register Save Types:
38219019Sgabor//
39219019Sgabor// NS  = No-Save:       The register allocator assumes that these registers
40219019Sgabor//                      can be used without saving upon entry to the method, &
41219019Sgabor//                      that they do not need to be saved at call sites.
42219019Sgabor//
43219019Sgabor// SOC = Save-On-Call:  The register allocator assumes that these registers
44219019Sgabor//                      can be used without saving upon entry to the method,
45219019Sgabor//                      but that they must be saved at call sites.
46219019Sgabor//
47219019Sgabor// SOE = Save-On-Entry: The register allocator assumes that these registers
48219019Sgabor//                      must be saved before using them upon entry to the
49219019Sgabor//                      method, but they do not need to be saved at call
50219019Sgabor//                      sites.
51219019Sgabor//
52219019Sgabor// AS  = Always-Save:   The register allocator assumes that these registers
53219019Sgabor//                      must be saved before using them upon entry to the
54219019Sgabor//                      method, & that they must be saved at call sites.
55219019Sgabor//
56219019Sgabor// Ideal Register Type is used to determine how to save & restore a
57219019Sgabor// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58219019Sgabor// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
59219019Sgabor//
60219019Sgabor// The encoding number is the actual bit-pattern placed into the opcodes.
61219019Sgabor
62219019Sgabor// General Registers
63219019Sgabor// Previously set EBX, ESI, and EDI as save-on-entry for java code
64219019Sgabor// Turn off SOE in java-code due to frequent use of uncommon-traps.
65219019Sgabor// Now that allocator is better, turn on ESI and EDI as SOE registers.
66219019Sgabor
67219019Sgaborreg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
68219019Sgaborreg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
69219019Sgaborreg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
70219019Sgaborreg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
71219019Sgabor// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
72219019Sgaborreg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
73219019Sgaborreg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
74219019Sgaborreg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
75219019Sgaborreg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
76219019Sgabor
77219019Sgabor// Special Registers
78219019Sgaborreg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
79219019Sgabor
80219019Sgabor// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
81219019Sgabor// allocator, and only shows up in the encodings.
82219019Sgaborreg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
83219019Sgaborreg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
84219019Sgabor// Ok so here's the trick FPR1 is really st(0) except in the midst
85219019Sgabor// of emission of assembly for a machnode. During the emission the fpu stack
86219019Sgabor// is pushed making FPR1 == st(1) temporarily. However at any safepoint
87219019Sgabor// the stack will not have this element so FPR1 == st(0) from the
88219019Sgabor// oopMap viewpoint. This same weirdness with numbering causes
89219019Sgabor// instruction encoding to have to play games with the register
90219019Sgabor// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
91219019Sgabor// where it does flt->flt moves to see an example
92219019Sgabor//
93219019Sgaborreg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
94219019Sgaborreg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
95219019Sgaborreg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
96219019Sgaborreg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
97219019Sgaborreg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
98219019Sgaborreg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
99219019Sgaborreg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
100219019Sgaborreg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
101219019Sgaborreg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
102219019Sgaborreg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
103219019Sgaborreg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
104219019Sgaborreg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
105219019Sgaborreg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
106219019Sgaborreg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
107219019Sgabor
108219019Sgabor// XMM registers.  128-bit registers or 4 words each, labeled a-d.
109219019Sgabor// Word a in each register holds a Float, words ab hold a Double.
110219019Sgabor// We currently do not use the SIMD capabilities, so registers cd
111219019Sgabor// are unused at the moment.
112219019Sgaborreg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
113219019Sgaborreg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
114219019Sgaborreg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
115219019Sgaborreg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
116219019Sgaborreg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
117219019Sgaborreg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
118219019Sgaborreg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
119219019Sgaborreg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
120219019Sgaborreg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
121219019Sgaborreg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
122219019Sgaborreg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
123219019Sgaborreg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
124219019Sgaborreg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
125219019Sgaborreg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
126219019Sgaborreg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
127219019Sgaborreg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
128219019Sgabor
129219019Sgabor// Specify priority of register selection within phases of register
130219019Sgabor// allocation.  Highest priority is first.  A useful heuristic is to
131219019Sgabor// give registers a low priority when they are required by machine
132219019Sgabor// instructions, like EAX and EDX.  Registers which are used as
133219019Sgabor// pairs must fall on an even boundry (witness the FPR#L's in this list).
134219019Sgabor// For the Intel integer registers, the equivalent Long pairs are
135219019Sgabor// EDX:EAX, EBX:ECX, and EDI:EBP.
136219019Sgaboralloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
137219019Sgabor                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
138219019Sgabor                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
139219019Sgabor                    FPR6L, FPR6H, FPR7L, FPR7H );
140219019Sgabor
141219019Sgaboralloc_class chunk1( XMM0a, XMM0b,
142219019Sgabor                    XMM1a, XMM1b,
143219019Sgabor                    XMM2a, XMM2b,
144219019Sgabor                    XMM3a, XMM3b,
145219019Sgabor                    XMM4a, XMM4b,
146219019Sgabor                    XMM5a, XMM5b,
147219019Sgabor                    XMM6a, XMM6b,
148219019Sgabor                    XMM7a, XMM7b, EFLAGS);
149219019Sgabor
150219019Sgabor
151219019Sgabor//----------Architecture Description Register Classes--------------------------
152219019Sgabor// Several register classes are automatically defined based upon information in
153219019Sgabor// this architecture description.
154219019Sgabor// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
155219019Sgabor// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
156219019Sgabor// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
157219019Sgabor// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
158219019Sgabor//
159219019Sgabor// Class for all registers
160219019Sgaborreg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
161219019Sgabor// Class for general registers
162219019Sgaborreg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
163219019Sgabor// Class for general registers which may be used for implicit null checks on win95
164219019Sgabor// Also safe for use by tailjump. We don't want to allocate in rbp,
165219019Sgaborreg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
166219019Sgabor// Class of "X" registers
167219019Sgaborreg_class x_reg(EBX, ECX, EDX, EAX);
168219019Sgabor// Class of registers that can appear in an address with no offset.
169219019Sgabor// EBP and ESP require an extra instruction byte for zero offset.
170219019Sgabor// Used in fast-unlock
171219019Sgaborreg_class p_reg(EDX, EDI, ESI, EBX);
172219019Sgabor// Class for general registers not including ECX
173219019Sgaborreg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
174219019Sgabor// Class for general registers not including EAX
175219019Sgaborreg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
176219019Sgabor// Class for general registers not including EAX or EBX.
177219019Sgaborreg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
178219019Sgabor// Class of EAX (for multiply and divide operations)
179219019Sgaborreg_class eax_reg(EAX);
180219019Sgabor// Class of EBX (for atomic add)
181219019Sgaborreg_class ebx_reg(EBX);
182219019Sgabor// Class of ECX (for shift and JCXZ operations and cmpLTMask)
183219019Sgaborreg_class ecx_reg(ECX);
184219019Sgabor// Class of EDX (for multiply and divide operations)
185219019Sgaborreg_class edx_reg(EDX);
186219019Sgabor// Class of EDI (for synchronization)
187219019Sgaborreg_class edi_reg(EDI);
188219019Sgabor// Class of ESI (for synchronization)
189219019Sgaborreg_class esi_reg(ESI);
190219019Sgabor// Singleton class for interpreter's stack pointer
191219019Sgaborreg_class ebp_reg(EBP);
192219019Sgabor// Singleton class for stack pointer
193219019Sgaborreg_class sp_reg(ESP);
194219019Sgabor// Singleton class for instruction pointer
195219019Sgabor// reg_class ip_reg(EIP);
196219019Sgabor// Singleton class for condition codes
197219019Sgaborreg_class int_flags(EFLAGS);
198219019Sgabor// Class of integer register pairs
199219019Sgaborreg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
200219019Sgabor// Class of integer register pairs that aligns with calling convention
201219019Sgaborreg_class eadx_reg( EAX,EDX );
202219019Sgaborreg_class ebcx_reg( ECX,EBX );
203219019Sgabor// Not AX or DX, used in divides
204219019Sgaborreg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
205219019Sgabor
206219019Sgabor// Floating point registers.  Notice FPR0 is not a choice.
207219019Sgabor// FPR0 is not ever allocated; we use clever encodings to fake
208219019Sgabor// a 2-address instructions out of Intels FP stack.
209219019Sgaborreg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
210219019Sgabor
211219019Sgabor// make a register class for SSE registers
212219019Sgaborreg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
213219019Sgabor
214219019Sgabor// make a double register class for SSE2 registers
215219019Sgaborreg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
216219019Sgabor                  XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
217219019Sgabor
218219019Sgaborreg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
219219019Sgabor                   FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
220219019Sgabor                   FPR7L,FPR7H );
221219019Sgabor
222219019Sgaborreg_class flt_reg0( FPR1L );
223219019Sgaborreg_class dbl_reg0( FPR1L,FPR1H );
224219019Sgaborreg_class dbl_reg1( FPR2L,FPR2H );
225219019Sgaborreg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
226219019Sgabor                       FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
227219019Sgabor
228219019Sgabor// XMM6 and XMM7 could be used as temporary registers for long, float and
229219019Sgabor// double values for SSE2.
230219019Sgaborreg_class xdb_reg6( XMM6a,XMM6b );
231219019Sgaborreg_class xdb_reg7( XMM7a,XMM7b );
232219019Sgabor%}
233219019Sgabor
234219019Sgabor
235219019Sgabor//----------SOURCE BLOCK-------------------------------------------------------
236219019Sgabor// This is a block of C++ code which provides values, functions, and
237219019Sgabor// definitions necessary in the rest of the architecture description
238219019Sgaborsource %{
239219019Sgabor#define   RELOC_IMM32    Assembler::imm32_operand
240219019Sgabor#define   RELOC_DISP32   Assembler::disp32_operand
241219019Sgabor
242219019Sgabor#define __ _masm.
243219019Sgabor
244219019Sgabor// How to find the high register of a Long pair, given the low register
245219019Sgabor#define   HIGH_FROM_LOW(x) ((x)+2)
246219019Sgabor
247219019Sgabor// These masks are used to provide 128-bit aligned bitmasks to the XMM
248219019Sgabor// instructions, to allow sign-masking or sign-bit flipping.  They allow
249219019Sgabor// fast versions of NegF/NegD and AbsF/AbsD.
250219019Sgabor
251219019Sgabor// Note: 'double' and 'long long' have 32-bits alignment on x86.
252219019Sgaborstatic jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
253219019Sgabor  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
254219019Sgabor  // of 128-bits operands for SSE instructions.
255219019Sgabor  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
256219019Sgabor  // Store the value to a 128-bits operand.
257219019Sgabor  operand[0] = lo;
258219019Sgabor  operand[1] = hi;
259219019Sgabor  return operand;
260219019Sgabor}
261219019Sgabor
262219019Sgabor// Buffer for 128-bits masks used by SSE instructions.
263219019Sgaborstatic jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
264219019Sgabor
265219019Sgabor// Static initialization during VM startup.
266219019Sgaborstatic jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
267219019Sgaborstatic jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
268219019Sgaborstatic jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
269219019Sgaborstatic jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
270219019Sgabor
271219019Sgabor// !!!!! Special hack to get all type of calls to specify the byte offset
272219019Sgabor//       from the start of the call to the point where the return address
273219019Sgabor//       will point.
274219019Sgaborint MachCallStaticJavaNode::ret_addr_offset() {
275219019Sgabor  return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 5 bytes from start of call to where return address points
276219019Sgabor}
277219019Sgabor
278219019Sgaborint MachCallDynamicJavaNode::ret_addr_offset() {
279219019Sgabor  return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 10 bytes from start of call to where return address points
280219019Sgabor}
281219019Sgabor
282219019Sgaborstatic int sizeof_FFree_Float_Stack_All = -1;
283219019Sgabor
284219019Sgaborint MachCallRuntimeNode::ret_addr_offset() {
285219019Sgabor  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
286219019Sgabor  return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
287219019Sgabor}
288219019Sgabor
289219019Sgabor// Indicate if the safepoint node needs the polling page as an input.
290219019Sgabor// Since x86 does have absolute addressing, it doesn't.
291219019Sgaborbool SafePointNode::needs_polling_address_input() {
292219019Sgabor  return false;
293219019Sgabor}
294219019Sgabor
295219019Sgabor//
296219019Sgabor// Compute padding required for nodes which need alignment
297219019Sgabor//
298219019Sgabor
299219019Sgabor// The address of the call instruction needs to be 4-byte aligned to
300219019Sgabor// ensure that it does not span a cache line so that it can be patched.
301219019Sgaborint CallStaticJavaDirectNode::compute_padding(int current_offset) const {
302219019Sgabor  if (Compile::current()->in_24_bit_fp_mode())
303219019Sgabor    current_offset += 6;    // skip fldcw in pre_call_FPU, if any
304219019Sgabor  current_offset += 1;      // skip call opcode byte
305219019Sgabor  return round_to(current_offset, alignment_required()) - current_offset;
306219019Sgabor}
307219019Sgabor
308219019Sgabor// The address of the call instruction needs to be 4-byte aligned to
309219019Sgabor// ensure that it does not span a cache line so that it can be patched.
310219019Sgaborint CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
311219019Sgabor  if (Compile::current()->in_24_bit_fp_mode())
312219019Sgabor    current_offset += 6;    // skip fldcw in pre_call_FPU, if any
313219019Sgabor  current_offset += 5;      // skip MOV instruction
314219019Sgabor  current_offset += 1;      // skip call opcode byte
315219019Sgabor  return round_to(current_offset, alignment_required()) - current_offset;
316219019Sgabor}
317219019Sgabor
318219019Sgabor#ifndef PRODUCT
319219019Sgaborvoid MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
320219019Sgabor  st->print("INT3");
321219019Sgabor}
322219019Sgabor#endif
323219019Sgabor
324219019Sgabor// EMIT_RM()
325219019Sgaborvoid emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
326219019Sgabor  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
327219019Sgabor  *(cbuf.code_end()) = c;
328219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 1);
329219019Sgabor}
330219019Sgabor
331219019Sgabor// EMIT_CC()
332219019Sgaborvoid emit_cc(CodeBuffer &cbuf, int f1, int f2) {
333219019Sgabor  unsigned char c = (unsigned char)( f1 | f2 );
334219019Sgabor  *(cbuf.code_end()) = c;
335219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 1);
336219019Sgabor}
337219019Sgabor
338219019Sgabor// EMIT_OPCODE()
339219019Sgaborvoid emit_opcode(CodeBuffer &cbuf, int code) {
340219019Sgabor  *(cbuf.code_end()) = (unsigned char)code;
341219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 1);
342219019Sgabor}
343219019Sgabor
344219019Sgabor// EMIT_OPCODE() w/ relocation information
345219019Sgaborvoid emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
346219019Sgabor  cbuf.relocate(cbuf.inst_mark() + offset, reloc);
347219019Sgabor  emit_opcode(cbuf, code);
348219019Sgabor}
349219019Sgabor
350219019Sgabor// EMIT_D8()
351219019Sgaborvoid emit_d8(CodeBuffer &cbuf, int d8) {
352219019Sgabor  *(cbuf.code_end()) = (unsigned char)d8;
353219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 1);
354219019Sgabor}
355219019Sgabor
356219019Sgabor// EMIT_D16()
357219019Sgaborvoid emit_d16(CodeBuffer &cbuf, int d16) {
358219019Sgabor  *((short *)(cbuf.code_end())) = d16;
359219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 2);
360219019Sgabor}
361219019Sgabor
362219019Sgabor// EMIT_D32()
363219019Sgaborvoid emit_d32(CodeBuffer &cbuf, int d32) {
364219019Sgabor  *((int *)(cbuf.code_end())) = d32;
365219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 4);
366219019Sgabor}
367219019Sgabor
368219019Sgabor// emit 32 bit value and construct relocation entry from relocInfo::relocType
369219019Sgaborvoid emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
370219019Sgabor        int format) {
371219019Sgabor  cbuf.relocate(cbuf.inst_mark(), reloc, format);
372219019Sgabor
373219019Sgabor  *((int *)(cbuf.code_end())) = d32;
374219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 4);
375219019Sgabor}
376219019Sgabor
377219019Sgabor// emit 32 bit value and construct relocation entry from RelocationHolder
378219019Sgaborvoid emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
379219019Sgabor        int format) {
380219019Sgabor#ifdef ASSERT
381219019Sgabor  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
382219019Sgabor    assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code");
383219019Sgabor  }
384219019Sgabor#endif
385219019Sgabor  cbuf.relocate(cbuf.inst_mark(), rspec, format);
386219019Sgabor
387219019Sgabor  *((int *)(cbuf.code_end())) = d32;
388219019Sgabor  cbuf.set_code_end(cbuf.code_end() + 4);
389219019Sgabor}
390219019Sgabor
391219019Sgabor// Access stack slot for load or store
392219019Sgaborvoid store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
393219019Sgabor  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
394219019Sgabor  if( -128 <= disp && disp <= 127 ) {
395219019Sgabor    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
396219019Sgabor    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
397219019Sgabor    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
398219019Sgabor  } else {
399219019Sgabor    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
400219019Sgabor    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
401219019Sgabor    emit_d32(cbuf, disp);     // Displacement  // R/M byte
402219019Sgabor  }
403219019Sgabor}
404219019Sgabor
405219019Sgabor   // eRegI ereg, memory mem) %{    // emit_reg_mem
406219019Sgaborvoid encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
407219019Sgabor  // There is no index & no scale, use form without SIB byte
408219019Sgabor  if ((index == 0x4) &&
409219019Sgabor      (scale == 0) && (base != ESP_enc)) {
410219019Sgabor    // If no displacement, mode is 0x0; unless base is [EBP]
411219019Sgabor    if ( (displace == 0) && (base != EBP_enc) ) {
412219019Sgabor      emit_rm(cbuf, 0x0, reg_encoding, base);
413219019Sgabor    }
414219019Sgabor    else {                    // If 8-bit displacement, mode 0x1
415219019Sgabor      if ((displace >= -128) && (displace <= 127)
416219019Sgabor          && !(displace_is_oop) ) {
417219019Sgabor        emit_rm(cbuf, 0x1, reg_encoding, base);
418219019Sgabor        emit_d8(cbuf, displace);
419219019Sgabor      }
420219019Sgabor      else {                  // If 32-bit displacement
421219019Sgabor        if (base == -1) { // Special flag for absolute address
422219019Sgabor          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
423219019Sgabor          // (manual lies; no SIB needed here)
424219019Sgabor          if ( displace_is_oop ) {
425219019Sgabor            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
426219019Sgabor          } else {
427219019Sgabor            emit_d32      (cbuf, displace);
428219019Sgabor          }
429219019Sgabor        }
430219019Sgabor        else {                // Normal base + offset
431219019Sgabor          emit_rm(cbuf, 0x2, reg_encoding, base);
432219019Sgabor          if ( displace_is_oop ) {
433219019Sgabor            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
434219019Sgabor          } else {
435219019Sgabor            emit_d32      (cbuf, displace);
436219019Sgabor          }
437219019Sgabor        }
438219019Sgabor      }
439219019Sgabor    }
440219019Sgabor  }
441219019Sgabor  else {                      // Else, encode with the SIB byte
442219019Sgabor    // If no displacement, mode is 0x0; unless base is [EBP]
443219019Sgabor    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
444219019Sgabor      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
445219019Sgabor      emit_rm(cbuf, scale, index, base);
446219019Sgabor    }
447219019Sgabor    else {                    // If 8-bit displacement, mode 0x1
448219019Sgabor      if ((displace >= -128) && (displace <= 127)
449219019Sgabor          && !(displace_is_oop) ) {
450219019Sgabor        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
451219019Sgabor        emit_rm(cbuf, scale, index, base);
452219019Sgabor        emit_d8(cbuf, displace);
453219019Sgabor      }
454219019Sgabor      else {                  // If 32-bit displacement
455219019Sgabor        if (base == 0x04 ) {
456219019Sgabor          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
457219019Sgabor          emit_rm(cbuf, scale, index, 0x04);
458219019Sgabor        } else {
459219019Sgabor          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
460219019Sgabor          emit_rm(cbuf, scale, index, base);
461219019Sgabor        }
462219019Sgabor        if ( displace_is_oop ) {
463219019Sgabor          emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
464219019Sgabor        } else {
465219019Sgabor          emit_d32      (cbuf, displace);
466219019Sgabor        }
467219019Sgabor      }
468219019Sgabor    }
469219019Sgabor  }
470219019Sgabor}
471219019Sgabor
472219019Sgabor
473219019Sgaborvoid encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
474219019Sgabor  if( dst_encoding == src_encoding ) {
475219019Sgabor    // reg-reg copy, use an empty encoding
476219019Sgabor  } else {
477219019Sgabor    emit_opcode( cbuf, 0x8B );
478219019Sgabor    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
479219019Sgabor  }
480219019Sgabor}
481219019Sgabor
482219019Sgaborvoid encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
483219019Sgabor  if( dst_encoding == src_encoding ) {
484219019Sgabor    // reg-reg copy, use an empty encoding
485219019Sgabor  } else {
486219019Sgabor    MacroAssembler _masm(&cbuf);
487219019Sgabor
488219019Sgabor    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
489219019Sgabor  }
490219019Sgabor}
491219019Sgabor
492219019Sgabor
493219019Sgabor//=============================================================================
494219019Sgabor#ifndef PRODUCT
495219019Sgaborvoid MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
496219019Sgabor  Compile* C = ra_->C;
497219019Sgabor  if( C->in_24_bit_fp_mode() ) {
498219019Sgabor    tty->print("FLDCW  24 bit fpu control word");
499219019Sgabor    tty->print_cr(""); tty->print("\t");
500219019Sgabor  }
501219019Sgabor
502219019Sgabor  int framesize = C->frame_slots() << LogBytesPerInt;
503219019Sgabor  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
504219019Sgabor  // Remove two words for return addr and rbp,
505219019Sgabor  framesize -= 2*wordSize;
506219019Sgabor
507219019Sgabor  // Calls to C2R adapters often do not accept exceptional returns.
508219019Sgabor  // We require that their callers must bang for them.  But be careful, because
509219019Sgabor  // some VM calls (such as call site linkage) can use several kilobytes of
510219019Sgabor  // stack.  But the stack safety zone should account for that.
511219019Sgabor  // See bugs 4446381, 4468289, 4497237.
512219019Sgabor  if (C->need_stack_bang(framesize)) {
513219019Sgabor    tty->print_cr("# stack bang"); tty->print("\t");
514219019Sgabor  }
515219019Sgabor  tty->print_cr("PUSHL  EBP"); tty->print("\t");
516219019Sgabor
517219019Sgabor  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
518219019Sgabor    tty->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
519219019Sgabor    tty->print_cr(""); tty->print("\t");
520219019Sgabor    framesize -= wordSize;
521219019Sgabor  }
522219019Sgabor
523219019Sgabor  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
524219019Sgabor    if (framesize) {
525219019Sgabor      tty->print("SUB    ESP,%d\t# Create frame",framesize);
526219019Sgabor    }
527219019Sgabor  } else {
528219019Sgabor    tty->print("SUB    ESP,%d\t# Create frame",framesize);
529219019Sgabor  }
530219019Sgabor}
531219019Sgabor#endif
532219019Sgabor
533219019Sgabor
534219019Sgaborvoid MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
535219019Sgabor  Compile* C = ra_->C;
536219019Sgabor
537219019Sgabor  if (UseSSE >= 2 && VerifyFPU) {
538219019Sgabor    MacroAssembler masm(&cbuf);
539219019Sgabor    masm.verify_FPU(0, "FPU stack must be clean on entry");
540219019Sgabor  }
541219019Sgabor
542219019Sgabor  // WARNING: Initial instruction MUST be 5 bytes or longer so that
543219019Sgabor  // NativeJump::patch_verified_entry will be able to patch out the entry
544219019Sgabor  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
545219019Sgabor  // depth is ok at 5 bytes, the frame allocation can be either 3 or
546219019Sgabor  // 6 bytes. So if we don't do the fldcw or the push then we must
547219019Sgabor  // use the 6 byte frame allocation even if we have no frame. :-(
548219019Sgabor  // If method sets FPU control word do it now
549219019Sgabor  if( C->in_24_bit_fp_mode() ) {
550219019Sgabor    MacroAssembler masm(&cbuf);
551219019Sgabor    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
552219019Sgabor  }
553219019Sgabor
554219019Sgabor  int framesize = C->frame_slots() << LogBytesPerInt;
555219019Sgabor  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
556219019Sgabor  // Remove two words for return addr and rbp,
557219019Sgabor  framesize -= 2*wordSize;
558219019Sgabor
559219019Sgabor  // Calls to C2R adapters often do not accept exceptional returns.
560219019Sgabor  // We require that their callers must bang for them.  But be careful, because
561219019Sgabor  // some VM calls (such as call site linkage) can use several kilobytes of
562219019Sgabor  // stack.  But the stack safety zone should account for that.
563219019Sgabor  // See bugs 4446381, 4468289, 4497237.
564219019Sgabor  if (C->need_stack_bang(framesize)) {
565219019Sgabor    MacroAssembler masm(&cbuf);
566219019Sgabor    masm.generate_stack_overflow_check(framesize);
567219019Sgabor  }
568219019Sgabor
569219019Sgabor  // We always push rbp, so that on return to interpreter rbp, will be
570219019Sgabor  // restored correctly and we can correct the stack.
571219019Sgabor  emit_opcode(cbuf, 0x50 | EBP_enc);
572219019Sgabor
573219019Sgabor  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
574219019Sgabor    emit_opcode(cbuf, 0x68); // push 0xbadb100d
575219019Sgabor    emit_d32(cbuf, 0xbadb100d);
576219019Sgabor    framesize -= wordSize;
577219019Sgabor  }
578219019Sgabor
579219019Sgabor  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
580219019Sgabor    if (framesize) {
581219019Sgabor      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
582219019Sgabor      emit_rm(cbuf, 0x3, 0x05, ESP_enc);
583219019Sgabor      emit_d8(cbuf, framesize);
584219019Sgabor    }
585219019Sgabor  } else {
586219019Sgabor    emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
587219019Sgabor    emit_rm(cbuf, 0x3, 0x05, ESP_enc);
588219019Sgabor    emit_d32(cbuf, framesize);
589219019Sgabor  }
590219019Sgabor  C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
591219019Sgabor
592219019Sgabor#ifdef ASSERT
593219019Sgabor  if (VerifyStackAtCalls) {
594219019Sgabor    Label L;
595219019Sgabor    MacroAssembler masm(&cbuf);
596219019Sgabor    masm.pushl(rax);
597219019Sgabor    masm.movl(rax, rsp);
598219019Sgabor    masm.andl(rax, StackAlignmentInBytes-1);
599219019Sgabor    masm.cmpl(rax, StackAlignmentInBytes-wordSize);
600219019Sgabor    masm.popl(rax);
601219019Sgabor    masm.jcc(Assembler::equal, L);
602219019Sgabor    masm.stop("Stack is not properly aligned!");
603219019Sgabor    masm.bind(L);
604219019Sgabor  }
605219019Sgabor#endif
606219019Sgabor
607219019Sgabor}
608219019Sgabor
609219019Sgaboruint MachPrologNode::size(PhaseRegAlloc *ra_) const {
610219019Sgabor  return MachNode::size(ra_); // too many variables; just compute it the hard way
611219019Sgabor}
612219019Sgabor
613219019Sgaborint MachPrologNode::reloc() const {
614219019Sgabor  return 0; // a large enough number
615219019Sgabor}
616219019Sgabor
617219019Sgabor//=============================================================================
618219019Sgabor#ifndef PRODUCT
619219019Sgaborvoid MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
620219019Sgabor  Compile *C = ra_->C;
621219019Sgabor  int framesize = C->frame_slots() << LogBytesPerInt;
622219019Sgabor  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
623219019Sgabor  // Remove two words for return addr and rbp,
624219019Sgabor  framesize -= 2*wordSize;
625219019Sgabor
626219019Sgabor  if( C->in_24_bit_fp_mode() ) {
627219019Sgabor    st->print("FLDCW  standard control word");
628219019Sgabor    st->cr(); st->print("\t");
629219019Sgabor  }
630219019Sgabor  if( framesize ) {
631219019Sgabor    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
632219019Sgabor    st->cr(); st->print("\t");
633219019Sgabor  }
634219019Sgabor  st->print_cr("POPL   EBP"); st->print("\t");
635219019Sgabor  if( do_polling() && C->is_method_compilation() ) {
636219019Sgabor    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
637219019Sgabor    st->cr(); st->print("\t");
638219019Sgabor  }
639219019Sgabor}
640219019Sgabor#endif
641219019Sgabor
642219019Sgaborvoid MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
643219019Sgabor  Compile *C = ra_->C;
644219019Sgabor
645219019Sgabor  // If method set FPU control word, restore to standard control word
646219019Sgabor  if( C->in_24_bit_fp_mode() ) {
647219019Sgabor    MacroAssembler masm(&cbuf);
648219019Sgabor    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
649219019Sgabor  }
650219019Sgabor
651219019Sgabor  int framesize = C->frame_slots() << LogBytesPerInt;
652219019Sgabor  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
653219019Sgabor  // Remove two words for return addr and rbp,
654219019Sgabor  framesize -= 2*wordSize;
655219019Sgabor
656219019Sgabor  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
657219019Sgabor
658219019Sgabor  if( framesize >= 128 ) {
659219019Sgabor    emit_opcode(cbuf, 0x81); // add  SP, #framesize
660219019Sgabor    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
661219019Sgabor    emit_d32(cbuf, framesize);
662219019Sgabor  }
663219019Sgabor  else if( framesize ) {
664219019Sgabor    emit_opcode(cbuf, 0x83); // add  SP, #framesize
665219019Sgabor    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
666219019Sgabor    emit_d8(cbuf, framesize);
667219019Sgabor  }
668219019Sgabor
669219019Sgabor  emit_opcode(cbuf, 0x58 | EBP_enc);
670219019Sgabor
671219019Sgabor  if( do_polling() && C->is_method_compilation() ) {
672219019Sgabor    cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
673219019Sgabor    emit_opcode(cbuf,0x85);
674219019Sgabor    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
675219019Sgabor    emit_d32(cbuf, (intptr_t)os::get_polling_page());
676219019Sgabor  }
677219019Sgabor}
678219019Sgabor
679219019Sgaboruint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
680219019Sgabor  Compile *C = ra_->C;
681219019Sgabor  // If method set FPU control word, restore to standard control word
682219019Sgabor  int size = C->in_24_bit_fp_mode() ? 6 : 0;
683219019Sgabor  if( do_polling() && C->is_method_compilation() ) size += 6;
684219019Sgabor
685219019Sgabor  int framesize = C->frame_slots() << LogBytesPerInt;
686219019Sgabor  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
687219019Sgabor  // Remove two words for return addr and rbp,
688219019Sgabor  framesize -= 2*wordSize;
689219019Sgabor
690219019Sgabor  size++; // popl rbp,
691219019Sgabor
692219019Sgabor  if( framesize >= 128 ) {
693219019Sgabor    size += 6;
694219019Sgabor  } else {
695219019Sgabor    size += framesize ? 3 : 0;
696219019Sgabor  }
697219019Sgabor  return size;
698219019Sgabor}
699219019Sgabor
700219019Sgaborint MachEpilogNode::reloc() const {
701219019Sgabor  return 0; // a large enough number
702219019Sgabor}
703219019Sgabor
704219019Sgaborconst Pipeline * MachEpilogNode::pipeline() const {
705219019Sgabor  return MachNode::pipeline_class();
706219019Sgabor}
707219019Sgabor
708219019Sgaborint MachEpilogNode::safepoint_offset() const { return 0; }
709219019Sgabor
710219019Sgabor//=============================================================================
711219019Sgabor
712219019Sgaborenum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
713219019Sgaborstatic enum RC rc_class( OptoReg::Name reg ) {
714219019Sgabor
715219019Sgabor  if( !OptoReg::is_valid(reg)  ) return rc_bad;
716219019Sgabor  if (OptoReg::is_stack(reg)) return rc_stack;
717219019Sgabor
718219019Sgabor  VMReg r = OptoReg::as_VMReg(reg);
719219019Sgabor  if (r->is_Register()) return rc_int;
720219019Sgabor  if (r->is_FloatRegister()) {
721219019Sgabor    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
722219019Sgabor    return rc_float;
723219019Sgabor  }
724219019Sgabor  assert(r->is_XMMRegister(), "must be");
725219019Sgabor  return rc_xmm;
726219019Sgabor}
727219019Sgabor
728219019Sgaborstatic int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size ) {
729219019Sgabor  if( cbuf ) {
730219019Sgabor    emit_opcode  (*cbuf, opcode );
731219019Sgabor    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
732219019Sgabor#ifndef PRODUCT
733219019Sgabor  } else if( !do_size ) {
734219019Sgabor    if( size != 0 ) tty->print("\n\t");
735219019Sgabor    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
736219019Sgabor      if( is_load ) tty->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
737219019Sgabor      else          tty->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
738219019Sgabor    } else { // FLD, FST, PUSH, POP
739219019Sgabor      tty->print("%s [ESP + #%d]",op_str,offset);
740219019Sgabor    }
741219019Sgabor#endif
742219019Sgabor  }
743219019Sgabor  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
744219019Sgabor  return size+3+offset_size;
745219019Sgabor}
746219019Sgabor
747219019Sgabor// Helper for XMM registers.  Extra opcode bits, limited syntax.
748219019Sgaborstatic int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
749219019Sgabor                         int offset, int reg_lo, int reg_hi, int size ) {
750219019Sgabor  if( cbuf ) {
751219019Sgabor    if( reg_lo+1 == reg_hi ) { // double move?
752219019Sgabor      if( is_load && !UseXmmLoadAndClearUpper )
753219019Sgabor        emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
754219019Sgabor      else
755219019Sgabor        emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
756219019Sgabor    } else {
757219019Sgabor      emit_opcode(*cbuf, 0xF3 );
758219019Sgabor    }
759219019Sgabor    emit_opcode(*cbuf, 0x0F );
760219019Sgabor    if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
761219019Sgabor      emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
762219019Sgabor    else
763219019Sgabor      emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
764219019Sgabor    encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
765219019Sgabor#ifndef PRODUCT
766219019Sgabor  } else if( !do_size ) {
767219019Sgabor    if( size != 0 ) tty->print("\n\t");
768219019Sgabor    if( reg_lo+1 == reg_hi ) { // double move?
769219019Sgabor      if( is_load ) tty->print("%s %s,[ESP + #%d]",
770219019Sgabor                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
771219019Sgabor                               Matcher::regName[reg_lo], offset);
772219019Sgabor      else          tty->print("MOVSD  [ESP + #%d],%s",
773219019Sgabor                               offset, Matcher::regName[reg_lo]);
774219019Sgabor    } else {
775219019Sgabor      if( is_load ) tty->print("MOVSS  %s,[ESP + #%d]",
776219019Sgabor                               Matcher::regName[reg_lo], offset);
777219019Sgabor      else          tty->print("MOVSS  [ESP + #%d],%s",
778219019Sgabor                               offset, Matcher::regName[reg_lo]);
779219019Sgabor    }
780219019Sgabor#endif
781219019Sgabor  }
782219019Sgabor  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
783219019Sgabor  return size+5+offset_size;
784219019Sgabor}
785219019Sgabor
786219019Sgabor
787219019Sgaborstatic int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
788219019Sgabor                            int src_hi, int dst_hi, int size ) {
789219019Sgabor  if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
790219019Sgabor    if( cbuf ) {
791219019Sgabor      if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
792219019Sgabor        emit_opcode(*cbuf, 0x66 );
793219019Sgabor      }
794219019Sgabor      emit_opcode(*cbuf, 0x0F );
795219019Sgabor      emit_opcode(*cbuf, 0x28 );
796219019Sgabor      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
797219019Sgabor#ifndef PRODUCT
798219019Sgabor    } else if( !do_size ) {
799219019Sgabor      if( size != 0 ) tty->print("\n\t");
800219019Sgabor      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
801219019Sgabor        tty->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
802219019Sgabor      } else {
803219019Sgabor        tty->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
804219019Sgabor      }
805219019Sgabor#endif
806219019Sgabor    }
807219019Sgabor    return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
808219019Sgabor  } else {
809219019Sgabor    if( cbuf ) {
810219019Sgabor      emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
811219019Sgabor      emit_opcode(*cbuf, 0x0F );
812219019Sgabor      emit_opcode(*cbuf, 0x10 );
813219019Sgabor      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
814219019Sgabor#ifndef PRODUCT
815219019Sgabor    } else if( !do_size ) {
816219019Sgabor      if( size != 0 ) tty->print("\n\t");
817219019Sgabor      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
818219019Sgabor        tty->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
819219019Sgabor      } else {
820219019Sgabor        tty->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
821219019Sgabor      }
822219019Sgabor#endif
823219019Sgabor    }
824219019Sgabor    return size+4;
825219019Sgabor  }
826219019Sgabor}
827219019Sgabor
828219019Sgaborstatic int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size ) {
829219019Sgabor  if( cbuf ) {
830219019Sgabor    emit_opcode(*cbuf, 0x8B );
831219019Sgabor    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
832219019Sgabor#ifndef PRODUCT
833219019Sgabor  } else if( !do_size ) {
834219019Sgabor    if( size != 0 ) tty->print("\n\t");
835219019Sgabor    tty->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
836219019Sgabor#endif
837219019Sgabor  }
838219019Sgabor  return size+2;
839219019Sgabor}
840219019Sgabor
841219019Sgaborstatic int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi, int offset, int size ) {
842219019Sgabor  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
843219019Sgabor    if( cbuf ) {
844219019Sgabor      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
845219019Sgabor      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
846219019Sgabor#ifndef PRODUCT
847219019Sgabor    } else if( !do_size ) {
848219019Sgabor      if( size != 0 ) tty->print("\n\t");
849219019Sgabor      tty->print("FLD    %s",Matcher::regName[src_lo]);
850219019Sgabor#endif
851219019Sgabor    }
852219019Sgabor    size += 2;
853219019Sgabor  }
854219019Sgabor
855219019Sgabor  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
856219019Sgabor  const char *op_str;
857219019Sgabor  int op;
858219019Sgabor  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
859219019Sgabor    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
860219019Sgabor    op = 0xDD;
861219019Sgabor  } else {                   // 32-bit store
862219019Sgabor    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
863219019Sgabor    op = 0xD9;
864219019Sgabor    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
865219019Sgabor  }
866219019Sgabor
867219019Sgabor  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size);
868219019Sgabor}
869219019Sgabor
870219019Sgaboruint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
871219019Sgabor  // Get registers to move
872219019Sgabor  OptoReg::Name src_second = ra_->get_reg_second(in(1));
873219019Sgabor  OptoReg::Name src_first = ra_->get_reg_first(in(1));
874219019Sgabor  OptoReg::Name dst_second = ra_->get_reg_second(this );
875219019Sgabor  OptoReg::Name dst_first = ra_->get_reg_first(this );
876219019Sgabor
877219019Sgabor  enum RC src_second_rc = rc_class(src_second);
878219019Sgabor  enum RC src_first_rc = rc_class(src_first);
879219019Sgabor  enum RC dst_second_rc = rc_class(dst_second);
880219019Sgabor  enum RC dst_first_rc = rc_class(dst_first);
881219019Sgabor
882219019Sgabor  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
883219019Sgabor
884219019Sgabor  // Generate spill code!
885219019Sgabor  int size = 0;
886219019Sgabor
887219019Sgabor  if( src_first == dst_first && src_second == dst_second )
888219019Sgabor    return size;            // Self copy, no move
889219019Sgabor
890219019Sgabor  // --------------------------------------
891219019Sgabor  // Check for mem-mem move.  push/pop to move.
892219019Sgabor  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
893219019Sgabor    if( src_second == dst_first ) { // overlapping stack copy ranges
894219019Sgabor      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
895219019Sgabor      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size);
896219019Sgabor      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size);
897219019Sgabor      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
898219019Sgabor    }
899219019Sgabor    // move low bits
900219019Sgabor    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size);
901219019Sgabor    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size);
902219019Sgabor    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
903219019Sgabor      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size);
904219019Sgabor      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size);
905219019Sgabor    }
906219019Sgabor    return size;
907219019Sgabor  }
908219019Sgabor
909219019Sgabor  // --------------------------------------
910219019Sgabor  // Check for integer reg-reg copy
911219019Sgabor  if( src_first_rc == rc_int && dst_first_rc == rc_int )
912219019Sgabor    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size);
913219019Sgabor
914219019Sgabor  // Check for integer store
915219019Sgabor  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
916219019Sgabor    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size);
917219019Sgabor
918219019Sgabor  // Check for integer load
919219019Sgabor  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
920219019Sgabor    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size);
921219019Sgabor
922219019Sgabor  // --------------------------------------
923219019Sgabor  // Check for float reg-reg copy
924219019Sgabor  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
925219019Sgabor    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
926219019Sgabor            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
927219019Sgabor    if( cbuf ) {
928219019Sgabor
929219019Sgabor      // Note the mucking with the register encode to compensate for the 0/1
930219019Sgabor      // indexing issue mentioned in a comment in the reg_def sections
931219019Sgabor      // for FPR registers many lines above here.
932219019Sgabor
933219019Sgabor      if( src_first != FPR1L_num ) {
934219019Sgabor        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
935219019Sgabor        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
936219019Sgabor        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
937219019Sgabor        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
938219019Sgabor     } else {
939219019Sgabor        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
940219019Sgabor        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
941219019Sgabor     }
942219019Sgabor#ifndef PRODUCT
943219019Sgabor    } else if( !do_size ) {
944219019Sgabor      if( size != 0 ) st->print("\n\t");
945219019Sgabor      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
946219019Sgabor      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
947219019Sgabor#endif
948219019Sgabor    }
949219019Sgabor    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
950219019Sgabor  }
951219019Sgabor
952219019Sgabor  // Check for float store
953219019Sgabor  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
954219019Sgabor    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size);
955219019Sgabor  }
956219019Sgabor
957219019Sgabor  // Check for float load
958219019Sgabor  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
959219019Sgabor    int offset = ra_->reg2offset(src_first);
960219019Sgabor    const char *op_str;
961219019Sgabor    int op;
962219019Sgabor    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
963219019Sgabor      op_str = "FLD_D";
964219019Sgabor      op = 0xDD;
965219019Sgabor    } else {                   // 32-bit load
966219019Sgabor      op_str = "FLD_S";
967219019Sgabor      op = 0xD9;
968219019Sgabor      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
969219019Sgabor    }
970219019Sgabor    if( cbuf ) {
971219019Sgabor      emit_opcode  (*cbuf, op );
972219019Sgabor      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
973219019Sgabor      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
974219019Sgabor      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
975219019Sgabor#ifndef PRODUCT
976219019Sgabor    } else if( !do_size ) {
977219019Sgabor      if( size != 0 ) st->print("\n\t");
978219019Sgabor      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
979219019Sgabor#endif
980219019Sgabor    }
981219019Sgabor    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
982219019Sgabor    return size + 3+offset_size+2;
983219019Sgabor  }
984219019Sgabor
985219019Sgabor  // Check for xmm reg-reg copy
986219019Sgabor  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
987219019Sgabor    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
988219019Sgabor            (src_first+1 == src_second && dst_first+1 == dst_second),
989219019Sgabor            "no non-adjacent float-moves" );
990219019Sgabor    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size);
991219019Sgabor  }
992219019Sgabor
993219019Sgabor  // Check for xmm store
994219019Sgabor  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
995219019Sgabor    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size);
996219019Sgabor  }
997219019Sgabor
998219019Sgabor  // Check for float xmm load
999219019Sgabor  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1000219019Sgabor    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size);
1001219019Sgabor  }
1002219019Sgabor
1003219019Sgabor  // Copy from float reg to xmm reg
1004219019Sgabor  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1005219019Sgabor    // copy to the top of stack from floating point reg
1006219019Sgabor    // and use LEA to preserve flags
1007219019Sgabor    if( cbuf ) {
1008219019Sgabor      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1009219019Sgabor      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1010      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1011      emit_d8(*cbuf,0xF8);
1012#ifndef PRODUCT
1013    } else if( !do_size ) {
1014      if( size != 0 ) st->print("\n\t");
1015      st->print("LEA    ESP,[ESP-8]");
1016#endif
1017    }
1018    size += 4;
1019
1020    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size);
1021
1022    // Copy from the temp memory to the xmm reg.
1023    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size);
1024
1025    if( cbuf ) {
1026      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1027      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1028      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1029      emit_d8(*cbuf,0x08);
1030#ifndef PRODUCT
1031    } else if( !do_size ) {
1032      if( size != 0 ) st->print("\n\t");
1033      st->print("LEA    ESP,[ESP+8]");
1034#endif
1035    }
1036    size += 4;
1037    return size;
1038  }
1039
1040  assert( size > 0, "missed a case" );
1041
1042  // --------------------------------------------------------------------
1043  // Check for second bits still needing moving.
1044  if( src_second == dst_second )
1045    return size;               // Self copy; no move
1046  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1047
1048  // Check for second word int-int move
1049  if( src_second_rc == rc_int && dst_second_rc == rc_int )
1050    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size);
1051
1052  // Check for second word integer store
1053  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1054    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size);
1055
1056  // Check for second word integer load
1057  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1058    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size);
1059
1060
1061  Unimplemented();
1062}
1063
1064#ifndef PRODUCT
1065void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1066  implementation( NULL, ra_, false, st );
1067}
1068#endif
1069
1070void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1071  implementation( &cbuf, ra_, false, NULL );
1072}
1073
1074uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1075  return implementation( NULL, ra_, true, NULL );
1076}
1077
1078//=============================================================================
1079#ifndef PRODUCT
1080void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1081  st->print("NOP \t# %d bytes pad for loops and calls", _count);
1082}
1083#endif
1084
1085void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1086  MacroAssembler _masm(&cbuf);
1087  __ nop(_count);
1088}
1089
1090uint MachNopNode::size(PhaseRegAlloc *) const {
1091  return _count;
1092}
1093
1094
1095//=============================================================================
1096#ifndef PRODUCT
1097void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1098  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1099  int reg = ra_->get_reg_first(this);
1100  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1101}
1102#endif
1103
1104void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1105  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1106  int reg = ra_->get_encode(this);
1107  if( offset >= 128 ) {
1108    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1109    emit_rm(cbuf, 0x2, reg, 0x04);
1110    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1111    emit_d32(cbuf, offset);
1112  }
1113  else {
1114    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1115    emit_rm(cbuf, 0x1, reg, 0x04);
1116    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1117    emit_d8(cbuf, offset);
1118  }
1119}
1120
1121uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1122  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1123  if( offset >= 128 ) {
1124    return 7;
1125  }
1126  else {
1127    return 4;
1128  }
1129}
1130
1131//=============================================================================
1132
1133// emit call stub, compiled java to interpreter
1134void emit_java_to_interp(CodeBuffer &cbuf ) {
1135  // Stub is fixed up when the corresponding call is converted from calling
1136  // compiled code to calling interpreted code.
1137  // mov rbx,0
1138  // jmp -1
1139
1140  address mark = cbuf.inst_mark();  // get mark within main instrs section
1141
1142  // Note that the code buffer's inst_mark is always relative to insts.
1143  // That's why we must use the macroassembler to generate a stub.
1144  MacroAssembler _masm(&cbuf);
1145
1146  address base =
1147  __ start_a_stub(Compile::MAX_stubs_size);
1148  if (base == NULL)  return;  // CodeBuffer::expand failed
1149  // static stub relocation stores the instruction address of the call
1150  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1151  // static stub relocation also tags the methodOop in the code-stream.
1152  __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1153  __ jump(RuntimeAddress((address)-1));
1154
1155  __ end_a_stub();
1156  // Update current stubs pointer and restore code_end.
1157}
1158// size of call stub, compiled java to interpretor
1159uint size_java_to_interp() {
1160  return 10;  // movl; jmp
1161}
1162// relocation entries for call stub, compiled java to interpretor
1163uint reloc_java_to_interp() {
1164  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1165}
1166
1167//=============================================================================
1168#ifndef PRODUCT
1169void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1170  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1171  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1172  st->print_cr("\tNOP");
1173  st->print_cr("\tNOP");
1174  if( !OptoBreakpoint )
1175    st->print_cr("\tNOP");
1176}
1177#endif
1178
1179void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1180  MacroAssembler masm(&cbuf);
1181#ifdef ASSERT
1182  uint code_size = cbuf.code_size();
1183#endif
1184  masm.cmpl(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1185  masm.jump_cc(Assembler::notEqual,
1186               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1187  /* WARNING these NOPs are critical so that verified entry point is properly
1188     aligned for patching by NativeJump::patch_verified_entry() */
1189  int nops_cnt = 2;
1190  if( !OptoBreakpoint ) // Leave space for int3
1191     nops_cnt += 1;
1192  masm.nop(nops_cnt);
1193
1194  assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
1195}
1196
1197uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1198  return OptoBreakpoint ? 11 : 12;
1199}
1200
1201
1202//=============================================================================
1203uint size_exception_handler() {
1204  // NativeCall instruction size is the same as NativeJump.
1205  // exception handler starts out as jump and can be patched to
1206  // a call be deoptimization.  (4932387)
1207  // Note that this value is also credited (in output.cpp) to
1208  // the size of the code section.
1209  return NativeJump::instruction_size;
1210}
1211
1212// Emit exception handler code.  Stuff framesize into a register
1213// and call a VM stub routine.
1214int emit_exception_handler(CodeBuffer& cbuf) {
1215
1216  // Note that the code buffer's inst_mark is always relative to insts.
1217  // That's why we must use the macroassembler to generate a handler.
1218  MacroAssembler _masm(&cbuf);
1219  address base =
1220  __ start_a_stub(size_exception_handler());
1221  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1222  int offset = __ offset();
1223  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
1224  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1225  __ end_a_stub();
1226  return offset;
1227}
1228
1229uint size_deopt_handler() {
1230  // NativeCall instruction size is the same as NativeJump.
1231  // exception handler starts out as jump and can be patched to
1232  // a call be deoptimization.  (4932387)
1233  // Note that this value is also credited (in output.cpp) to
1234  // the size of the code section.
1235  return 5 + NativeJump::instruction_size; // pushl(); jmp;
1236}
1237
1238// Emit deopt handler code.
1239int emit_deopt_handler(CodeBuffer& cbuf) {
1240
1241  // Note that the code buffer's inst_mark is always relative to insts.
1242  // That's why we must use the macroassembler to generate a handler.
1243  MacroAssembler _masm(&cbuf);
1244  address base =
1245  __ start_a_stub(size_exception_handler());
1246  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1247  int offset = __ offset();
1248  InternalAddress here(__ pc());
1249  __ pushptr(here.addr());
1250
1251  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1252  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1253  __ end_a_stub();
1254  return offset;
1255}
1256
1257
1258static void emit_double_constant(CodeBuffer& cbuf, double x) {
1259  int mark = cbuf.insts()->mark_off();
1260  MacroAssembler _masm(&cbuf);
1261  address double_address = __ double_constant(x);
1262  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1263  emit_d32_reloc(cbuf,
1264                 (int)double_address,
1265                 internal_word_Relocation::spec(double_address),
1266                 RELOC_DISP32);
1267}
1268
1269static void emit_float_constant(CodeBuffer& cbuf, float x) {
1270  int mark = cbuf.insts()->mark_off();
1271  MacroAssembler _masm(&cbuf);
1272  address float_address = __ float_constant(x);
1273  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1274  emit_d32_reloc(cbuf,
1275                 (int)float_address,
1276                 internal_word_Relocation::spec(float_address),
1277                 RELOC_DISP32);
1278}
1279
1280
1281int Matcher::regnum_to_fpu_offset(int regnum) {
1282  return regnum - 32; // The FP registers are in the second chunk
1283}
1284
1285bool is_positive_zero_float(jfloat f) {
1286  return jint_cast(f) == jint_cast(0.0F);
1287}
1288
1289bool is_positive_one_float(jfloat f) {
1290  return jint_cast(f) == jint_cast(1.0F);
1291}
1292
1293bool is_positive_zero_double(jdouble d) {
1294  return jlong_cast(d) == jlong_cast(0.0);
1295}
1296
1297bool is_positive_one_double(jdouble d) {
1298  return jlong_cast(d) == jlong_cast(1.0);
1299}
1300
1301// This is UltraSparc specific, true just means we have fast l2f conversion
1302const bool Matcher::convL2FSupported(void) {
1303  return true;
1304}
1305
1306// Vector width in bytes
1307const uint Matcher::vector_width_in_bytes(void) {
1308  return UseSSE >= 2 ? 8 : 0;
1309}
1310
1311// Vector ideal reg
1312const uint Matcher::vector_ideal_reg(void) {
1313  return Op_RegD;
1314}
1315
1316// Is this branch offset short enough that a short branch can be used?
1317//
1318// NOTE: If the platform does not provide any short branch variants, then
1319//       this method should return false for offset 0.
1320bool Matcher::is_short_branch_offset(int offset) {
1321  return (-128 <= offset && offset <= 127);
1322}
1323
1324const bool Matcher::isSimpleConstant64(jlong value) {
1325  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1326  return false;
1327}
1328
1329// The ecx parameter to rep stos for the ClearArray node is in dwords.
1330const bool Matcher::init_array_count_is_in_bytes = false;
1331
1332// Threshold size for cleararray.
1333const int Matcher::init_array_short_size = 8 * BytesPerLong;
1334
1335// Should the Matcher clone shifts on addressing modes, expecting them to
1336// be subsumed into complex addressing expressions or compute them into
1337// registers?  True for Intel but false for most RISCs
1338const bool Matcher::clone_shift_expressions = true;
1339
1340// Is it better to copy float constants, or load them directly from memory?
1341// Intel can load a float constant from a direct address, requiring no
1342// extra registers.  Most RISCs will have to materialize an address into a
1343// register first, so they would do better to copy the constant from stack.
1344const bool Matcher::rematerialize_float_constants = true;
1345
1346// If CPU can load and store mis-aligned doubles directly then no fixup is
1347// needed.  Else we split the double into 2 integer pieces and move it
1348// piece-by-piece.  Only happens when passing doubles into C code as the
1349// Java calling convention forces doubles to be aligned.
1350const bool Matcher::misaligned_doubles_ok = true;
1351
1352
1353void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1354  // Get the memory operand from the node
1355  uint numopnds = node->num_opnds();        // Virtual call for number of operands
1356  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1357  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1358  uint opcnt     = 1;                 // First operand
1359  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1360  while( idx >= skipped+num_edges ) {
1361    skipped += num_edges;
1362    opcnt++;                          // Bump operand count
1363    assert( opcnt < numopnds, "Accessing non-existent operand" );
1364    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1365  }
1366
1367  MachOper *memory = node->_opnds[opcnt];
1368  MachOper *new_memory = NULL;
1369  switch (memory->opcode()) {
1370  case DIRECT:
1371  case INDOFFSET32X:
1372    // No transformation necessary.
1373    return;
1374  case INDIRECT:
1375    new_memory = new (C) indirect_win95_safeOper( );
1376    break;
1377  case INDOFFSET8:
1378    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1379    break;
1380  case INDOFFSET32:
1381    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1382    break;
1383  case INDINDEXOFFSET:
1384    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1385    break;
1386  case INDINDEXSCALE:
1387    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1388    break;
1389  case INDINDEXSCALEOFFSET:
1390    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1391    break;
1392  case LOAD_LONG_INDIRECT:
1393  case LOAD_LONG_INDOFFSET32:
1394    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1395    return;
1396  default:
1397    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1398    return;
1399  }
1400  node->_opnds[opcnt] = new_memory;
1401}
1402
1403// Advertise here if the CPU requires explicit rounding operations
1404// to implement the UseStrictFP mode.
1405const bool Matcher::strict_fp_requires_explicit_rounding = true;
1406
1407// Do floats take an entire double register or just half?
1408const bool Matcher::float_in_double = true;
1409// Do ints take an entire long register or just half?
1410const bool Matcher::int_in_long = false;
1411
1412// Return whether or not this register is ever used as an argument.  This
1413// function is used on startup to build the trampoline stubs in generateOptoStub.
1414// Registers not mentioned will be killed by the VM call in the trampoline, and
1415// arguments in those registers not be available to the callee.
1416bool Matcher::can_be_java_arg( int reg ) {
1417  if(  reg == ECX_num   || reg == EDX_num   ) return true;
1418  if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1419  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1420  return false;
1421}
1422
1423bool Matcher::is_spillable_arg( int reg ) {
1424  return can_be_java_arg(reg);
1425}
1426
1427// Register for DIVI projection of divmodI
1428RegMask Matcher::divI_proj_mask() {
1429  return EAX_REG_mask;
1430}
1431
1432// Register for MODI projection of divmodI
1433RegMask Matcher::modI_proj_mask() {
1434  return EDX_REG_mask;
1435}
1436
1437// Register for DIVL projection of divmodL
1438RegMask Matcher::divL_proj_mask() {
1439  ShouldNotReachHere();
1440  return RegMask();
1441}
1442
1443// Register for MODL projection of divmodL
1444RegMask Matcher::modL_proj_mask() {
1445  ShouldNotReachHere();
1446  return RegMask();
1447}
1448
1449%}
1450
1451//----------ENCODING BLOCK-----------------------------------------------------
1452// This block specifies the encoding classes used by the compiler to output
1453// byte streams.  Encoding classes generate functions which are called by
1454// Machine Instruction Nodes in order to generate the bit encoding of the
1455// instruction.  Operands specify their base encoding interface with the
1456// interface keyword.  There are currently supported four interfaces,
1457// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1458// operand to generate a function which returns its register number when
1459// queried.   CONST_INTER causes an operand to generate a function which
1460// returns the value of the constant when queried.  MEMORY_INTER causes an
1461// operand to generate four functions which return the Base Register, the
1462// Index Register, the Scale Value, and the Offset Value of the operand when
1463// queried.  COND_INTER causes an operand to generate six functions which
1464// return the encoding code (ie - encoding bits for the instruction)
1465// associated with each basic boolean condition for a conditional instruction.
1466// Instructions specify two basic values for encoding.  They use the
1467// ins_encode keyword to specify their encoding class (which must be one of
1468// the class names specified in the encoding block), and they use the
1469// opcode keyword to specify, in order, their primary, secondary, and
1470// tertiary opcode.  Only the opcode sections which a particular instruction
1471// needs for encoding need to be specified.
1472encode %{
1473  // Build emit functions for each basic byte or larger field in the intel
1474  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1475  // code in the enc_class source block.  Emit functions will live in the
1476  // main source block for now.  In future, we can generalize this by
1477  // adding a syntax that specifies the sizes of fields in an order,
1478  // so that the adlc can build the emit functions automagically
1479  enc_class OpcP %{             // Emit opcode
1480    emit_opcode(cbuf,$primary);
1481  %}
1482
1483  enc_class OpcS %{             // Emit opcode
1484    emit_opcode(cbuf,$secondary);
1485  %}
1486
1487  enc_class Opcode(immI d8 ) %{ // Emit opcode
1488    emit_opcode(cbuf,$d8$$constant);
1489  %}
1490
1491  enc_class SizePrefix %{
1492    emit_opcode(cbuf,0x66);
1493  %}
1494
1495  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1496    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1497  %}
1498
1499  enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1500    emit_opcode(cbuf,$opcode$$constant);
1501    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1502  %}
1503
1504  enc_class mov_r32_imm0( eRegI dst ) %{
1505    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1506    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1507  %}
1508
1509  enc_class cdq_enc %{
1510    // Full implementation of Java idiv and irem; checks for
1511    // special case as described in JVM spec., p.243 & p.271.
1512    //
1513    //         normal case                           special case
1514    //
1515    // input : rax,: dividend                         min_int
1516    //         reg: divisor                          -1
1517    //
1518    // output: rax,: quotient  (= rax, idiv reg)       min_int
1519    //         rdx: remainder (= rax, irem reg)       0
1520    //
1521    //  Code sequnce:
1522    //
1523    //  81 F8 00 00 00 80    cmp         rax,80000000h
1524    //  0F 85 0B 00 00 00    jne         normal_case
1525    //  33 D2                xor         rdx,edx
1526    //  83 F9 FF             cmp         rcx,0FFh
1527    //  0F 84 03 00 00 00    je          done
1528    //                  normal_case:
1529    //  99                   cdq
1530    //  F7 F9                idiv        rax,ecx
1531    //                  done:
1532    //
1533    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1534    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1535    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1536    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1537    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1538    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1539    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1540    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1541    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1542    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1543    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1544    // normal_case:
1545    emit_opcode(cbuf,0x99);                                         // cdq
1546    // idiv (note: must be emitted by the user of this rule)
1547    // normal:
1548  %}
1549
1550  // Dense encoding for older common ops
1551  enc_class Opc_plus(immI opcode, eRegI reg) %{
1552    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1553  %}
1554
1555
1556  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1557  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1558    // Check for 8-bit immediate, and set sign extend bit in opcode
1559    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1560      emit_opcode(cbuf, $primary | 0x02);
1561    }
1562    else {                          // If 32-bit immediate
1563      emit_opcode(cbuf, $primary);
1564    }
1565  %}
1566
1567  enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1568    // Emit primary opcode and set sign-extend bit
1569    // Check for 8-bit immediate, and set sign extend bit in opcode
1570    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1571      emit_opcode(cbuf, $primary | 0x02);    }
1572    else {                          // If 32-bit immediate
1573      emit_opcode(cbuf, $primary);
1574    }
1575    // Emit r/m byte with secondary opcode, after primary opcode.
1576    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1577  %}
1578
1579  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1580    // Check for 8-bit immediate, and set sign extend bit in opcode
1581    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1582      $$$emit8$imm$$constant;
1583    }
1584    else {                          // If 32-bit immediate
1585      // Output immediate
1586      $$$emit32$imm$$constant;
1587    }
1588  %}
1589
1590  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1591    // Emit primary opcode and set sign-extend bit
1592    // Check for 8-bit immediate, and set sign extend bit in opcode
1593    int con = (int)$imm$$constant; // Throw away top bits
1594    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1595    // Emit r/m byte with secondary opcode, after primary opcode.
1596    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1597    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1598    else                               emit_d32(cbuf,con);
1599  %}
1600
1601  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1602    // Emit primary opcode and set sign-extend bit
1603    // Check for 8-bit immediate, and set sign extend bit in opcode
1604    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1605    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1606    // Emit r/m byte with tertiary opcode, after primary opcode.
1607    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1608    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1609    else                               emit_d32(cbuf,con);
1610  %}
1611
1612  enc_class Lbl (label labl) %{ // JMP, CALL
1613    Label *l = $labl$$label;
1614    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1615  %}
1616
1617  enc_class LblShort (label labl) %{ // JMP, CALL
1618    Label *l = $labl$$label;
1619    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1620    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1621    emit_d8(cbuf, disp);
1622  %}
1623
1624  enc_class OpcSReg (eRegI dst) %{    // BSWAP
1625    emit_cc(cbuf, $secondary, $dst$$reg );
1626  %}
1627
1628  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1629    int destlo = $dst$$reg;
1630    int desthi = HIGH_FROM_LOW(destlo);
1631    // bswap lo
1632    emit_opcode(cbuf, 0x0F);
1633    emit_cc(cbuf, 0xC8, destlo);
1634    // bswap hi
1635    emit_opcode(cbuf, 0x0F);
1636    emit_cc(cbuf, 0xC8, desthi);
1637    // xchg lo and hi
1638    emit_opcode(cbuf, 0x87);
1639    emit_rm(cbuf, 0x3, destlo, desthi);
1640  %}
1641
1642  enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1643    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1644  %}
1645
1646  enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1647    Label *l = $labl$$label;
1648    $$$emit8$primary;
1649    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1650    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1651  %}
1652
1653  enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1654    Label *l = $labl$$label;
1655    emit_cc(cbuf, $primary, $cop$$cmpcode);
1656    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1657    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1658    emit_d8(cbuf, disp);
1659  %}
1660
1661  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1662    $$$emit8$primary;
1663    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1664  %}
1665
1666  enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1667    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1668    emit_d8(cbuf, op >> 8 );
1669    emit_d8(cbuf, op & 255);
1670  %}
1671
1672  // emulate a CMOV with a conditional branch around a MOV
1673  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1674    // Invert sense of branch from sense of CMOV
1675    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1676    emit_d8( cbuf, $brOffs$$constant );
1677  %}
1678
1679  enc_class enc_PartialSubtypeCheck( ) %{
1680    Register Redi = as_Register(EDI_enc); // result register
1681    Register Reax = as_Register(EAX_enc); // super class
1682    Register Recx = as_Register(ECX_enc); // killed
1683    Register Resi = as_Register(ESI_enc); // sub class
1684    Label hit, miss;
1685
1686    MacroAssembler _masm(&cbuf);
1687    // Compare super with sub directly, since super is not in its own SSA.
1688    // The compiler used to emit this test, but we fold it in here,
1689    // to allow platform-specific tweaking on sparc.
1690    __ cmpl(Reax, Resi);
1691    __ jcc(Assembler::equal, hit);
1692#ifndef PRODUCT
1693    __ increment(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
1694#endif //PRODUCT
1695    __ movl(Redi,Address(Resi,sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()));
1696    __ movl(Recx,Address(Redi,arrayOopDesc::length_offset_in_bytes()));
1697    __ addl(Redi,arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1698    __ repne_scan();
1699    __ jcc(Assembler::notEqual, miss);
1700    __ movl(Address(Resi,sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()),Reax);
1701    __ bind(hit);
1702    if( $primary )
1703      __ xorl(Redi,Redi);
1704    __ bind(miss);
1705  %}
1706
1707  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1708    MacroAssembler masm(&cbuf);
1709    int start = masm.offset();
1710    if (UseSSE >= 2) {
1711      if (VerifyFPU) {
1712        masm.verify_FPU(0, "must be empty in SSE2+ mode");
1713      }
1714    } else {
1715      // External c_calling_convention expects the FPU stack to be 'clean'.
1716      // Compiled code leaves it dirty.  Do cleanup now.
1717      masm.empty_FPU_stack();
1718    }
1719    if (sizeof_FFree_Float_Stack_All == -1) {
1720      sizeof_FFree_Float_Stack_All = masm.offset() - start;
1721    } else {
1722      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1723    }
1724  %}
1725
1726  enc_class Verify_FPU_For_Leaf %{
1727    if( VerifyFPU ) {
1728      MacroAssembler masm(&cbuf);
1729      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1730    }
1731  %}
1732
1733  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1734    // This is the instruction starting address for relocation info.
1735    cbuf.set_inst_mark();
1736    $$$emit8$primary;
1737    // CALL directly to the runtime
1738    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1739                runtime_call_Relocation::spec(), RELOC_IMM32 );
1740
1741    if (UseSSE >= 2) {
1742      MacroAssembler _masm(&cbuf);
1743      BasicType rt = tf()->return_type();
1744
1745      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1746        // A C runtime call where the return value is unused.  In SSE2+
1747        // mode the result needs to be removed from the FPU stack.  It's
1748        // likely that this function call could be removed by the
1749        // optimizer if the C function is a pure function.
1750        __ ffree(0);
1751      } else if (rt == T_FLOAT) {
1752        __ leal(rsp, Address(rsp, -4));
1753        __ fstp_s(Address(rsp, 0));
1754        __ movflt(xmm0, Address(rsp, 0));
1755        __ leal(rsp, Address(rsp,  4));
1756      } else if (rt == T_DOUBLE) {
1757        __ leal(rsp, Address(rsp, -8));
1758        __ fstp_d(Address(rsp, 0));
1759        __ movdbl(xmm0, Address(rsp, 0));
1760        __ leal(rsp, Address(rsp,  8));
1761      }
1762    }
1763  %}
1764
1765
1766  enc_class pre_call_FPU %{
1767    // If method sets FPU control word restore it here
1768    if( Compile::current()->in_24_bit_fp_mode() ) {
1769      MacroAssembler masm(&cbuf);
1770      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1771    }
1772  %}
1773
1774  enc_class post_call_FPU %{
1775    // If method sets FPU control word do it here also
1776    if( Compile::current()->in_24_bit_fp_mode() ) {
1777      MacroAssembler masm(&cbuf);
1778      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1779    }
1780  %}
1781
1782  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1783    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1784    // who we intended to call.
1785    cbuf.set_inst_mark();
1786    $$$emit8$primary;
1787    if ( !_method ) {
1788      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1789                     runtime_call_Relocation::spec(), RELOC_IMM32 );
1790    } else if(_optimized_virtual) {
1791      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1792                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1793    } else {
1794      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1795                     static_call_Relocation::spec(), RELOC_IMM32 );
1796    }
1797    if( _method ) {  // Emit stub for static call
1798      emit_java_to_interp(cbuf);
1799    }
1800  %}
1801
1802  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1803    // !!!!!
1804    // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1805    // emit_call_dynamic_prologue( cbuf );
1806    cbuf.set_inst_mark();
1807    emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1808    emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1809    address  virtual_call_oop_addr = cbuf.inst_mark();
1810    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1811    // who we intended to call.
1812    cbuf.set_inst_mark();
1813    $$$emit8$primary;
1814    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1815                virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1816  %}
1817
1818  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1819    int disp = in_bytes(methodOopDesc::from_compiled_offset());
1820    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1821
1822    // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1823    cbuf.set_inst_mark();
1824    $$$emit8$primary;
1825    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1826    emit_d8(cbuf, disp);             // Displacement
1827
1828  %}
1829
1830  enc_class Xor_Reg (eRegI dst) %{
1831    emit_opcode(cbuf, 0x33);
1832    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1833  %}
1834
1835//   Following encoding is no longer used, but may be restored if calling
1836//   convention changes significantly.
1837//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1838//
1839//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1840//     // int ic_reg     = Matcher::inline_cache_reg();
1841//     // int ic_encode  = Matcher::_regEncode[ic_reg];
1842//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1843//     // int imo_encode = Matcher::_regEncode[imo_reg];
1844//
1845//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1846//     // // so we load it immediately before the call
1847//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1848//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1849//
1850//     // xor rbp,ebp
1851//     emit_opcode(cbuf, 0x33);
1852//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1853//
1854//     // CALL to interpreter.
1855//     cbuf.set_inst_mark();
1856//     $$$emit8$primary;
1857//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
1858//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1859//   %}
1860
1861  enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1862    $$$emit8$primary;
1863    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1864    $$$emit8$shift$$constant;
1865  %}
1866
1867  enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1868    // Load immediate does not have a zero or sign extended version
1869    // for 8-bit immediates
1870    emit_opcode(cbuf, 0xB8 + $dst$$reg);
1871    $$$emit32$src$$constant;
1872  %}
1873
1874  enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1875    // Load immediate does not have a zero or sign extended version
1876    // for 8-bit immediates
1877    emit_opcode(cbuf, $primary + $dst$$reg);
1878    $$$emit32$src$$constant;
1879  %}
1880
1881  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1882    // Load immediate does not have a zero or sign extended version
1883    // for 8-bit immediates
1884    int dst_enc = $dst$$reg;
1885    int src_con = $src$$constant & 0x0FFFFFFFFL;
1886    if (src_con == 0) {
1887      // xor dst, dst
1888      emit_opcode(cbuf, 0x33);
1889      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1890    } else {
1891      emit_opcode(cbuf, $primary + dst_enc);
1892      emit_d32(cbuf, src_con);
1893    }
1894  %}
1895
1896  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1897    // Load immediate does not have a zero or sign extended version
1898    // for 8-bit immediates
1899    int dst_enc = $dst$$reg + 2;
1900    int src_con = ((julong)($src$$constant)) >> 32;
1901    if (src_con == 0) {
1902      // xor dst, dst
1903      emit_opcode(cbuf, 0x33);
1904      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1905    } else {
1906      emit_opcode(cbuf, $primary + dst_enc);
1907      emit_d32(cbuf, src_con);
1908    }
1909  %}
1910
1911
1912  enc_class LdImmD (immD src) %{    // Load Immediate
1913    if( is_positive_zero_double($src$$constant)) {
1914      // FLDZ
1915      emit_opcode(cbuf,0xD9);
1916      emit_opcode(cbuf,0xEE);
1917    } else if( is_positive_one_double($src$$constant)) {
1918      // FLD1
1919      emit_opcode(cbuf,0xD9);
1920      emit_opcode(cbuf,0xE8);
1921    } else {
1922      emit_opcode(cbuf,0xDD);
1923      emit_rm(cbuf, 0x0, 0x0, 0x5);
1924      emit_double_constant(cbuf, $src$$constant);
1925    }
1926  %}
1927
1928
1929  enc_class LdImmF (immF src) %{    // Load Immediate
1930    if( is_positive_zero_float($src$$constant)) {
1931      emit_opcode(cbuf,0xD9);
1932      emit_opcode(cbuf,0xEE);
1933    } else if( is_positive_one_float($src$$constant)) {
1934      emit_opcode(cbuf,0xD9);
1935      emit_opcode(cbuf,0xE8);
1936    } else {
1937      $$$emit8$primary;
1938      // Load immediate does not have a zero or sign extended version
1939      // for 8-bit immediates
1940      // First load to TOS, then move to dst
1941      emit_rm(cbuf, 0x0, 0x0, 0x5);
1942      emit_float_constant(cbuf, $src$$constant);
1943    }
1944  %}
1945
1946  enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
1947    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1948    emit_float_constant(cbuf, $con$$constant);
1949  %}
1950
1951  enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
1952    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1953    emit_double_constant(cbuf, $con$$constant);
1954  %}
1955
1956  enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
1957    // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
1958    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
1959    emit_opcode(cbuf, 0x0F);
1960    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
1961    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1962    emit_double_constant(cbuf, $con$$constant);
1963  %}
1964
1965  enc_class Opc_MemImm_F(immF src) %{
1966    cbuf.set_inst_mark();
1967    $$$emit8$primary;
1968    emit_rm(cbuf, 0x0, $secondary, 0x5);
1969    emit_float_constant(cbuf, $src$$constant);
1970  %}
1971
1972
1973  enc_class MovI2X_reg(regX dst, eRegI src) %{
1974    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1975    emit_opcode(cbuf, 0x0F );
1976    emit_opcode(cbuf, 0x6E );
1977    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1978  %}
1979
1980  enc_class MovX2I_reg(eRegI dst, regX src) %{
1981    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1982    emit_opcode(cbuf, 0x0F );
1983    emit_opcode(cbuf, 0x7E );
1984    emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
1985  %}
1986
1987  enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
1988    { // MOVD $dst,$src.lo
1989      emit_opcode(cbuf,0x66);
1990      emit_opcode(cbuf,0x0F);
1991      emit_opcode(cbuf,0x6E);
1992      emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1993    }
1994    { // MOVD $tmp,$src.hi
1995      emit_opcode(cbuf,0x66);
1996      emit_opcode(cbuf,0x0F);
1997      emit_opcode(cbuf,0x6E);
1998      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
1999    }
2000    { // PUNPCKLDQ $dst,$tmp
2001      emit_opcode(cbuf,0x66);
2002      emit_opcode(cbuf,0x0F);
2003      emit_opcode(cbuf,0x62);
2004      emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2005     }
2006  %}
2007
2008  enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2009    { // MOVD $dst.lo,$src
2010      emit_opcode(cbuf,0x66);
2011      emit_opcode(cbuf,0x0F);
2012      emit_opcode(cbuf,0x7E);
2013      emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2014    }
2015    { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2016      emit_opcode(cbuf,0xF2);
2017      emit_opcode(cbuf,0x0F);
2018      emit_opcode(cbuf,0x70);
2019      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2020      emit_d8(cbuf, 0x4E);
2021    }
2022    { // MOVD $dst.hi,$tmp
2023      emit_opcode(cbuf,0x66);
2024      emit_opcode(cbuf,0x0F);
2025      emit_opcode(cbuf,0x7E);
2026      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2027    }
2028  %}
2029
2030
2031  // Encode a reg-reg copy.  If it is useless, then empty encoding.
2032  enc_class enc_Copy( eRegI dst, eRegI src ) %{
2033    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2034  %}
2035
2036  enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2037    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2038  %}
2039
2040  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2041  enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2042    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2043  %}
2044
2045  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2046    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2047  %}
2048
2049  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2050    $$$emit8$primary;
2051    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2052  %}
2053
2054  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2055    $$$emit8$secondary;
2056    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2057  %}
2058
2059  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2060    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2061  %}
2062
2063  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2064    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2065  %}
2066
2067  enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2068    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2069  %}
2070
2071  enc_class Con32 (immI src) %{    // Con32(storeImmI)
2072    // Output immediate
2073    $$$emit32$src$$constant;
2074  %}
2075
2076  enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2077    // Output Float immediate bits
2078    jfloat jf = $src$$constant;
2079    int    jf_as_bits = jint_cast( jf );
2080    emit_d32(cbuf, jf_as_bits);
2081  %}
2082
2083  enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2084    // Output Float immediate bits
2085    jfloat jf = $src$$constant;
2086    int    jf_as_bits = jint_cast( jf );
2087    emit_d32(cbuf, jf_as_bits);
2088  %}
2089
2090  enc_class Con16 (immI src) %{    // Con16(storeImmI)
2091    // Output immediate
2092    $$$emit16$src$$constant;
2093  %}
2094
2095  enc_class Con_d32(immI src) %{
2096    emit_d32(cbuf,$src$$constant);
2097  %}
2098
2099  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2100    // Output immediate memory reference
2101    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2102    emit_d32(cbuf, 0x00);
2103  %}
2104
2105  enc_class lock_prefix( ) %{
2106    if( os::is_MP() )
2107      emit_opcode(cbuf,0xF0);         // [Lock]
2108  %}
2109
2110  // Cmp-xchg long value.
2111  // Note: we need to swap rbx, and rcx before and after the
2112  //       cmpxchg8 instruction because the instruction uses
2113  //       rcx as the high order word of the new value to store but
2114  //       our register encoding uses rbx,.
2115  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2116
2117    // XCHG  rbx,ecx
2118    emit_opcode(cbuf,0x87);
2119    emit_opcode(cbuf,0xD9);
2120    // [Lock]
2121    if( os::is_MP() )
2122      emit_opcode(cbuf,0xF0);
2123    // CMPXCHG8 [Eptr]
2124    emit_opcode(cbuf,0x0F);
2125    emit_opcode(cbuf,0xC7);
2126    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2127    // XCHG  rbx,ecx
2128    emit_opcode(cbuf,0x87);
2129    emit_opcode(cbuf,0xD9);
2130  %}
2131
2132  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2133    // [Lock]
2134    if( os::is_MP() )
2135      emit_opcode(cbuf,0xF0);
2136
2137    // CMPXCHG [Eptr]
2138    emit_opcode(cbuf,0x0F);
2139    emit_opcode(cbuf,0xB1);
2140    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2141  %}
2142
2143  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2144    int res_encoding = $res$$reg;
2145
2146    // MOV  res,0
2147    emit_opcode( cbuf, 0xB8 + res_encoding);
2148    emit_d32( cbuf, 0 );
2149    // JNE,s  fail
2150    emit_opcode(cbuf,0x75);
2151    emit_d8(cbuf, 5 );
2152    // MOV  res,1
2153    emit_opcode( cbuf, 0xB8 + res_encoding);
2154    emit_d32( cbuf, 1 );
2155    // fail:
2156  %}
2157
2158  enc_class set_instruction_start( ) %{
2159    cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
2160  %}
2161
2162  enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2163    int reg_encoding = $ereg$$reg;
2164    int base  = $mem$$base;
2165    int index = $mem$$index;
2166    int scale = $mem$$scale;
2167    int displace = $mem$$disp;
2168    bool disp_is_oop = $mem->disp_is_oop();
2169    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2170  %}
2171
2172  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2173    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2174    int base  = $mem$$base;
2175    int index = $mem$$index;
2176    int scale = $mem$$scale;
2177    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2178    assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2179    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2180  %}
2181
2182  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2183    int r1, r2;
2184    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2185    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2186    emit_opcode(cbuf,0x0F);
2187    emit_opcode(cbuf,$tertiary);
2188    emit_rm(cbuf, 0x3, r1, r2);
2189    emit_d8(cbuf,$cnt$$constant);
2190    emit_d8(cbuf,$primary);
2191    emit_rm(cbuf, 0x3, $secondary, r1);
2192    emit_d8(cbuf,$cnt$$constant);
2193  %}
2194
2195  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2196    emit_opcode( cbuf, 0x8B ); // Move
2197    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2198    emit_d8(cbuf,$primary);
2199    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2200    emit_d8(cbuf,$cnt$$constant-32);
2201    emit_d8(cbuf,$primary);
2202    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2203    emit_d8(cbuf,31);
2204  %}
2205
2206  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2207    int r1, r2;
2208    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2209    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2210
2211    emit_opcode( cbuf, 0x8B ); // Move r1,r2
2212    emit_rm(cbuf, 0x3, r1, r2);
2213    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2214      emit_opcode(cbuf,$primary);
2215      emit_rm(cbuf, 0x3, $secondary, r1);
2216      emit_d8(cbuf,$cnt$$constant-32);
2217    }
2218    emit_opcode(cbuf,0x33);  // XOR r2,r2
2219    emit_rm(cbuf, 0x3, r2, r2);
2220  %}
2221
2222  // Clone of RegMem but accepts an extra parameter to access each
2223  // half of a double in memory; it never needs relocation info.
2224  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2225    emit_opcode(cbuf,$opcode$$constant);
2226    int reg_encoding = $rm_reg$$reg;
2227    int base     = $mem$$base;
2228    int index    = $mem$$index;
2229    int scale    = $mem$$scale;
2230    int displace = $mem$$disp + $disp_for_half$$constant;
2231    bool disp_is_oop = false;
2232    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2233  %}
2234
2235  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2236  //
2237  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2238  // and it never needs relocation information.
2239  // Frequently used to move data between FPU's Stack Top and memory.
2240  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2241    int rm_byte_opcode = $rm_opcode$$constant;
2242    int base     = $mem$$base;
2243    int index    = $mem$$index;
2244    int scale    = $mem$$scale;
2245    int displace = $mem$$disp;
2246    assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2247    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2248  %}
2249
2250  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2251    int rm_byte_opcode = $rm_opcode$$constant;
2252    int base     = $mem$$base;
2253    int index    = $mem$$index;
2254    int scale    = $mem$$scale;
2255    int displace = $mem$$disp;
2256    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2257    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2258  %}
2259
2260  enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2261    int reg_encoding = $dst$$reg;
2262    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2263    int index        = 0x04;            // 0x04 indicates no index
2264    int scale        = 0x00;            // 0x00 indicates no scale
2265    int displace     = $src1$$constant; // 0x00 indicates no displacement
2266    bool disp_is_oop = false;
2267    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2268  %}
2269
2270  enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2271    // Compare dst,src
2272    emit_opcode(cbuf,0x3B);
2273    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2274    // jmp dst < src around move
2275    emit_opcode(cbuf,0x7C);
2276    emit_d8(cbuf,2);
2277    // move dst,src
2278    emit_opcode(cbuf,0x8B);
2279    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2280  %}
2281
2282  enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2283    // Compare dst,src
2284    emit_opcode(cbuf,0x3B);
2285    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2286    // jmp dst > src around move
2287    emit_opcode(cbuf,0x7F);
2288    emit_d8(cbuf,2);
2289    // move dst,src
2290    emit_opcode(cbuf,0x8B);
2291    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2292  %}
2293
2294  enc_class enc_FP_store(memory mem, regD src) %{
2295    // If src is FPR1, we can just FST to store it.
2296    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2297    int reg_encoding = 0x2; // Just store
2298    int base  = $mem$$base;
2299    int index = $mem$$index;
2300    int scale = $mem$$scale;
2301    int displace = $mem$$disp;
2302    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2303    if( $src$$reg != FPR1L_enc ) {
2304      reg_encoding = 0x3;  // Store & pop
2305      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2306      emit_d8( cbuf, 0xC0-1+$src$$reg );
2307    }
2308    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2309    emit_opcode(cbuf,$primary);
2310    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2311  %}
2312
2313  enc_class neg_reg(eRegI dst) %{
2314    // NEG $dst
2315    emit_opcode(cbuf,0xF7);
2316    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2317  %}
2318
2319  enc_class setLT_reg(eCXRegI dst) %{
2320    // SETLT $dst
2321    emit_opcode(cbuf,0x0F);
2322    emit_opcode(cbuf,0x9C);
2323    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2324  %}
2325
2326  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2327    int tmpReg = $tmp$$reg;
2328
2329    // SUB $p,$q
2330    emit_opcode(cbuf,0x2B);
2331    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2332    // SBB $tmp,$tmp
2333    emit_opcode(cbuf,0x1B);
2334    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2335    // AND $tmp,$y
2336    emit_opcode(cbuf,0x23);
2337    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2338    // ADD $p,$tmp
2339    emit_opcode(cbuf,0x03);
2340    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2341  %}
2342
2343  enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2344    int tmpReg = $tmp$$reg;
2345
2346    // SUB $p,$q
2347    emit_opcode(cbuf,0x2B);
2348    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2349    // SBB $tmp,$tmp
2350    emit_opcode(cbuf,0x1B);
2351    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2352    // AND $tmp,$y
2353    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2354    emit_opcode(cbuf,0x23);
2355    int reg_encoding = tmpReg;
2356    int base  = $mem$$base;
2357    int index = $mem$$index;
2358    int scale = $mem$$scale;
2359    int displace = $mem$$disp;
2360    bool disp_is_oop = $mem->disp_is_oop();
2361    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2362    // ADD $p,$tmp
2363    emit_opcode(cbuf,0x03);
2364    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2365  %}
2366
2367  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2368    // TEST shift,32
2369    emit_opcode(cbuf,0xF7);
2370    emit_rm(cbuf, 0x3, 0, ECX_enc);
2371    emit_d32(cbuf,0x20);
2372    // JEQ,s small
2373    emit_opcode(cbuf, 0x74);
2374    emit_d8(cbuf, 0x04);
2375    // MOV    $dst.hi,$dst.lo
2376    emit_opcode( cbuf, 0x8B );
2377    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2378    // CLR    $dst.lo
2379    emit_opcode(cbuf, 0x33);
2380    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2381// small:
2382    // SHLD   $dst.hi,$dst.lo,$shift
2383    emit_opcode(cbuf,0x0F);
2384    emit_opcode(cbuf,0xA5);
2385    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2386    // SHL    $dst.lo,$shift"
2387    emit_opcode(cbuf,0xD3);
2388    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2389  %}
2390
2391  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2392    // TEST shift,32
2393    emit_opcode(cbuf,0xF7);
2394    emit_rm(cbuf, 0x3, 0, ECX_enc);
2395    emit_d32(cbuf,0x20);
2396    // JEQ,s small
2397    emit_opcode(cbuf, 0x74);
2398    emit_d8(cbuf, 0x04);
2399    // MOV    $dst.lo,$dst.hi
2400    emit_opcode( cbuf, 0x8B );
2401    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2402    // CLR    $dst.hi
2403    emit_opcode(cbuf, 0x33);
2404    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2405// small:
2406    // SHRD   $dst.lo,$dst.hi,$shift
2407    emit_opcode(cbuf,0x0F);
2408    emit_opcode(cbuf,0xAD);
2409    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2410    // SHR    $dst.hi,$shift"
2411    emit_opcode(cbuf,0xD3);
2412    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2413  %}
2414
2415  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2416    // TEST shift,32
2417    emit_opcode(cbuf,0xF7);
2418    emit_rm(cbuf, 0x3, 0, ECX_enc);
2419    emit_d32(cbuf,0x20);
2420    // JEQ,s small
2421    emit_opcode(cbuf, 0x74);
2422    emit_d8(cbuf, 0x05);
2423    // MOV    $dst.lo,$dst.hi
2424    emit_opcode( cbuf, 0x8B );
2425    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2426    // SAR    $dst.hi,31
2427    emit_opcode(cbuf, 0xC1);
2428    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2429    emit_d8(cbuf, 0x1F );
2430// small:
2431    // SHRD   $dst.lo,$dst.hi,$shift
2432    emit_opcode(cbuf,0x0F);
2433    emit_opcode(cbuf,0xAD);
2434    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2435    // SAR    $dst.hi,$shift"
2436    emit_opcode(cbuf,0xD3);
2437    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2438  %}
2439
2440
2441  // ----------------- Encodings for floating point unit -----------------
2442  // May leave result in FPU-TOS or FPU reg depending on opcodes
2443  enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2444    $$$emit8$primary;
2445    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2446  %}
2447
2448  // Pop argument in FPR0 with FSTP ST(0)
2449  enc_class PopFPU() %{
2450    emit_opcode( cbuf, 0xDD );
2451    emit_d8( cbuf, 0xD8 );
2452  %}
2453
2454  // !!!!! equivalent to Pop_Reg_F
2455  enc_class Pop_Reg_D( regD dst ) %{
2456    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2457    emit_d8( cbuf, 0xD8+$dst$$reg );
2458  %}
2459
2460  enc_class Push_Reg_D( regD dst ) %{
2461    emit_opcode( cbuf, 0xD9 );
2462    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2463  %}
2464
2465  enc_class strictfp_bias1( regD dst ) %{
2466    emit_opcode( cbuf, 0xDB );           // FLD m80real
2467    emit_opcode( cbuf, 0x2D );
2468    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2469    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2470    emit_opcode( cbuf, 0xC8+$dst$$reg );
2471  %}
2472
2473  enc_class strictfp_bias2( regD dst ) %{
2474    emit_opcode( cbuf, 0xDB );           // FLD m80real
2475    emit_opcode( cbuf, 0x2D );
2476    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2477    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2478    emit_opcode( cbuf, 0xC8+$dst$$reg );
2479  %}
2480
2481  // Special case for moving an integer register to a stack slot.
2482  enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2483    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2484  %}
2485
2486  // Special case for moving a register to a stack slot.
2487  enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2488    // Opcode already emitted
2489    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2490    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2491    emit_d32(cbuf, $dst$$disp);   // Displacement
2492  %}
2493
2494  // Push the integer in stackSlot 'src' onto FP-stack
2495  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2496    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2497  %}
2498
2499  // Push the float in stackSlot 'src' onto FP-stack
2500  enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2501    store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2502  %}
2503
2504  // Push the double in stackSlot 'src' onto FP-stack
2505  enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2506    store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2507  %}
2508
2509  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2510  enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2511    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2512  %}
2513
2514  // Same as Pop_Mem_F except for opcode
2515  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2516  enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2517    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2518  %}
2519
2520  enc_class Pop_Reg_F( regF dst ) %{
2521    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2522    emit_d8( cbuf, 0xD8+$dst$$reg );
2523  %}
2524
2525  enc_class Push_Reg_F( regF dst ) %{
2526    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2527    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2528  %}
2529
2530  // Push FPU's float to a stack-slot, and pop FPU-stack
2531  enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2532    int pop = 0x02;
2533    if ($src$$reg != FPR1L_enc) {
2534      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2535      emit_d8( cbuf, 0xC0-1+$src$$reg );
2536      pop = 0x03;
2537    }
2538    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2539  %}
2540
2541  // Push FPU's double to a stack-slot, and pop FPU-stack
2542  enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2543    int pop = 0x02;
2544    if ($src$$reg != FPR1L_enc) {
2545      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2546      emit_d8( cbuf, 0xC0-1+$src$$reg );
2547      pop = 0x03;
2548    }
2549    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2550  %}
2551
2552  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2553  enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2554    int pop = 0xD0 - 1; // -1 since we skip FLD
2555    if ($src$$reg != FPR1L_enc) {
2556      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2557      emit_d8( cbuf, 0xC0-1+$src$$reg );
2558      pop = 0xD8;
2559    }
2560    emit_opcode( cbuf, 0xDD );
2561    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2562  %}
2563
2564
2565  enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2566    MacroAssembler masm(&cbuf);
2567    masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2568    masm.fmul(   $src2$$reg+0);   // value at TOS
2569    masm.fadd(   $src$$reg+0);    // value at TOS
2570    masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2571  %}
2572
2573
2574  enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2575    // load dst in FPR0
2576    emit_opcode( cbuf, 0xD9 );
2577    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2578    if ($src$$reg != FPR1L_enc) {
2579      // fincstp
2580      emit_opcode (cbuf, 0xD9);
2581      emit_opcode (cbuf, 0xF7);
2582      // swap src with FPR1:
2583      // FXCH FPR1 with src
2584      emit_opcode(cbuf, 0xD9);
2585      emit_d8(cbuf, 0xC8-1+$src$$reg );
2586      // fdecstp
2587      emit_opcode (cbuf, 0xD9);
2588      emit_opcode (cbuf, 0xF6);
2589    }
2590  %}
2591
2592  enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2593    // Allocate a word
2594    emit_opcode(cbuf,0x83);            // SUB ESP,8
2595    emit_opcode(cbuf,0xEC);
2596    emit_d8(cbuf,0x08);
2597
2598    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2599    emit_opcode  (cbuf, 0x0F );
2600    emit_opcode  (cbuf, 0x11 );
2601    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2602
2603    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2604    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2605
2606    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2607    emit_opcode  (cbuf, 0x0F );
2608    emit_opcode  (cbuf, 0x11 );
2609    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2610
2611    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2612    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2613
2614  %}
2615
2616  enc_class Push_ModX_encoding( regX src0, regX src1) %{
2617    // Allocate a word
2618    emit_opcode(cbuf,0x83);            // SUB ESP,4
2619    emit_opcode(cbuf,0xEC);
2620    emit_d8(cbuf,0x04);
2621
2622    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2623    emit_opcode  (cbuf, 0x0F );
2624    emit_opcode  (cbuf, 0x11 );
2625    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2626
2627    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2628    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2629
2630    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2631    emit_opcode  (cbuf, 0x0F );
2632    emit_opcode  (cbuf, 0x11 );
2633    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2634
2635    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2636    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2637
2638  %}
2639
2640  enc_class Push_ResultXD(regXD dst) %{
2641    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2642
2643    // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2644    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2645    emit_opcode  (cbuf, 0x0F );
2646    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2647    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2648
2649    emit_opcode(cbuf,0x83);    // ADD ESP,8
2650    emit_opcode(cbuf,0xC4);
2651    emit_d8(cbuf,0x08);
2652  %}
2653
2654  enc_class Push_ResultX(regX dst, immI d8) %{
2655    store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2656
2657    emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2658    emit_opcode  (cbuf, 0x0F );
2659    emit_opcode  (cbuf, 0x10 );
2660    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2661
2662    emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2663    emit_opcode(cbuf,0xC4);
2664    emit_d8(cbuf,$d8$$constant);
2665  %}
2666
2667  enc_class Push_SrcXD(regXD src) %{
2668    // Allocate a word
2669    emit_opcode(cbuf,0x83);            // SUB ESP,8
2670    emit_opcode(cbuf,0xEC);
2671    emit_d8(cbuf,0x08);
2672
2673    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2674    emit_opcode  (cbuf, 0x0F );
2675    emit_opcode  (cbuf, 0x11 );
2676    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2677
2678    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2679    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2680  %}
2681
2682  enc_class push_stack_temp_qword() %{
2683    emit_opcode(cbuf,0x83);     // SUB ESP,8
2684    emit_opcode(cbuf,0xEC);
2685    emit_d8    (cbuf,0x08);
2686  %}
2687
2688  enc_class pop_stack_temp_qword() %{
2689    emit_opcode(cbuf,0x83);     // ADD ESP,8
2690    emit_opcode(cbuf,0xC4);
2691    emit_d8    (cbuf,0x08);
2692  %}
2693
2694  enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2695    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2696    emit_opcode  (cbuf, 0x0F );
2697    emit_opcode  (cbuf, 0x11 );
2698    encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2699
2700    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2701    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2702  %}
2703
2704  // Compute X^Y using Intel's fast hardware instructions, if possible.
2705  // Otherwise return a NaN.
2706  enc_class pow_exp_core_encoding %{
2707    // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2708    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2709    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2710    emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2711    emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2712    emit_opcode(cbuf,0x1C);
2713    emit_d8(cbuf,0x24);
2714    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2715    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2716    emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2717    emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2718    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2719    emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2720    emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2721    emit_d32(cbuf,0xFFFFF800);
2722    emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2723    emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2724    emit_d32(cbuf,1023);
2725    emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2726    emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2727    emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2728    emit_rm(cbuf,0x3,0x4,EAX_enc);
2729    emit_d8(cbuf,20);
2730    emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2731    emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2732    emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2733    emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2734    emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2735    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2736    emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2737    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2738    emit_d32(cbuf,0);
2739    emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2740    encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2741  %}
2742
2743//   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2744//   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2745
2746  enc_class Push_Result_Mod_D( regD src) %{
2747    if ($src$$reg != FPR1L_enc) {
2748      // fincstp
2749      emit_opcode (cbuf, 0xD9);
2750      emit_opcode (cbuf, 0xF7);
2751      // FXCH FPR1 with src
2752      emit_opcode(cbuf, 0xD9);
2753      emit_d8(cbuf, 0xC8-1+$src$$reg );
2754      // fdecstp
2755      emit_opcode (cbuf, 0xD9);
2756      emit_opcode (cbuf, 0xF6);
2757    }
2758    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2759    // // FSTP   FPR$dst$$reg
2760    // emit_opcode( cbuf, 0xDD );
2761    // emit_d8( cbuf, 0xD8+$dst$$reg );
2762  %}
2763
2764  enc_class fnstsw_sahf_skip_parity() %{
2765    // fnstsw ax
2766    emit_opcode( cbuf, 0xDF );
2767    emit_opcode( cbuf, 0xE0 );
2768    // sahf
2769    emit_opcode( cbuf, 0x9E );
2770    // jnp  ::skip
2771    emit_opcode( cbuf, 0x7B );
2772    emit_opcode( cbuf, 0x05 );
2773  %}
2774
2775  enc_class emitModD() %{
2776    // fprem must be iterative
2777    // :: loop
2778    // fprem
2779    emit_opcode( cbuf, 0xD9 );
2780    emit_opcode( cbuf, 0xF8 );
2781    // wait
2782    emit_opcode( cbuf, 0x9b );
2783    // fnstsw ax
2784    emit_opcode( cbuf, 0xDF );
2785    emit_opcode( cbuf, 0xE0 );
2786    // sahf
2787    emit_opcode( cbuf, 0x9E );
2788    // jp  ::loop
2789    emit_opcode( cbuf, 0x0F );
2790    emit_opcode( cbuf, 0x8A );
2791    emit_opcode( cbuf, 0xF4 );
2792    emit_opcode( cbuf, 0xFF );
2793    emit_opcode( cbuf, 0xFF );
2794    emit_opcode( cbuf, 0xFF );
2795  %}
2796
2797  enc_class fpu_flags() %{
2798    // fnstsw_ax
2799    emit_opcode( cbuf, 0xDF);
2800    emit_opcode( cbuf, 0xE0);
2801    // test ax,0x0400
2802    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2803    emit_opcode( cbuf, 0xA9 );
2804    emit_d16   ( cbuf, 0x0400 );
2805    // // // This sequence works, but stalls for 12-16 cycles on PPro
2806    // // test rax,0x0400
2807    // emit_opcode( cbuf, 0xA9 );
2808    // emit_d32   ( cbuf, 0x00000400 );
2809    //
2810    // jz exit (no unordered comparison)
2811    emit_opcode( cbuf, 0x74 );
2812    emit_d8    ( cbuf, 0x02 );
2813    // mov ah,1 - treat as LT case (set carry flag)
2814    emit_opcode( cbuf, 0xB4 );
2815    emit_d8    ( cbuf, 0x01 );
2816    // sahf
2817    emit_opcode( cbuf, 0x9E);
2818  %}
2819
2820  enc_class cmpF_P6_fixup() %{
2821    // Fixup the integer flags in case comparison involved a NaN
2822    //
2823    // JNP exit (no unordered comparison, P-flag is set by NaN)
2824    emit_opcode( cbuf, 0x7B );
2825    emit_d8    ( cbuf, 0x03 );
2826    // MOV AH,1 - treat as LT case (set carry flag)
2827    emit_opcode( cbuf, 0xB4 );
2828    emit_d8    ( cbuf, 0x01 );
2829    // SAHF
2830    emit_opcode( cbuf, 0x9E);
2831    // NOP     // target for branch to avoid branch to branch
2832    emit_opcode( cbuf, 0x90);
2833  %}
2834
2835//     fnstsw_ax();
2836//     sahf();
2837//     movl(dst, nan_result);
2838//     jcc(Assembler::parity, exit);
2839//     movl(dst, less_result);
2840//     jcc(Assembler::below, exit);
2841//     movl(dst, equal_result);
2842//     jcc(Assembler::equal, exit);
2843//     movl(dst, greater_result);
2844
2845// less_result     =  1;
2846// greater_result  = -1;
2847// equal_result    = 0;
2848// nan_result      = -1;
2849
2850  enc_class CmpF_Result(eRegI dst) %{
2851    // fnstsw_ax();
2852    emit_opcode( cbuf, 0xDF);
2853    emit_opcode( cbuf, 0xE0);
2854    // sahf
2855    emit_opcode( cbuf, 0x9E);
2856    // movl(dst, nan_result);
2857    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2858    emit_d32( cbuf, -1 );
2859    // jcc(Assembler::parity, exit);
2860    emit_opcode( cbuf, 0x7A );
2861    emit_d8    ( cbuf, 0x13 );
2862    // movl(dst, less_result);
2863    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2864    emit_d32( cbuf, -1 );
2865    // jcc(Assembler::below, exit);
2866    emit_opcode( cbuf, 0x72 );
2867    emit_d8    ( cbuf, 0x0C );
2868    // movl(dst, equal_result);
2869    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2870    emit_d32( cbuf, 0 );
2871    // jcc(Assembler::equal, exit);
2872    emit_opcode( cbuf, 0x74 );
2873    emit_d8    ( cbuf, 0x05 );
2874    // movl(dst, greater_result);
2875    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2876    emit_d32( cbuf, 1 );
2877  %}
2878
2879
2880  // XMM version of CmpF_Result. Because the XMM compare
2881  // instructions set the EFLAGS directly. It becomes simpler than
2882  // the float version above.
2883  enc_class CmpX_Result(eRegI dst) %{
2884    MacroAssembler _masm(&cbuf);
2885    Label nan, inc, done;
2886
2887    __ jccb(Assembler::parity, nan);
2888    __ jccb(Assembler::equal,  done);
2889    __ jccb(Assembler::above,  inc);
2890    __ bind(nan);
2891    __ decrement(as_Register($dst$$reg));
2892    __ jmpb(done);
2893    __ bind(inc);
2894    __ increment(as_Register($dst$$reg));
2895    __ bind(done);
2896  %}
2897
2898  // Compare the longs and set flags
2899  // BROKEN!  Do Not use as-is
2900  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2901    // CMP    $src1.hi,$src2.hi
2902    emit_opcode( cbuf, 0x3B );
2903    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2904    // JNE,s  done
2905    emit_opcode(cbuf,0x75);
2906    emit_d8(cbuf, 2 );
2907    // CMP    $src1.lo,$src2.lo
2908    emit_opcode( cbuf, 0x3B );
2909    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2910// done:
2911  %}
2912
2913  enc_class convert_int_long( regL dst, eRegI src ) %{
2914    // mov $dst.lo,$src
2915    int dst_encoding = $dst$$reg;
2916    int src_encoding = $src$$reg;
2917    encode_Copy( cbuf, dst_encoding  , src_encoding );
2918    // mov $dst.hi,$src
2919    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2920    // sar $dst.hi,31
2921    emit_opcode( cbuf, 0xC1 );
2922    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2923    emit_d8(cbuf, 0x1F );
2924  %}
2925
2926  enc_class convert_long_double( eRegL src ) %{
2927    // push $src.hi
2928    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2929    // push $src.lo
2930    emit_opcode(cbuf, 0x50+$src$$reg  );
2931    // fild 64-bits at [SP]
2932    emit_opcode(cbuf,0xdf);
2933    emit_d8(cbuf, 0x6C);
2934    emit_d8(cbuf, 0x24);
2935    emit_d8(cbuf, 0x00);
2936    // pop stack
2937    emit_opcode(cbuf, 0x83); // add  SP, #8
2938    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2939    emit_d8(cbuf, 0x8);
2940  %}
2941
2942  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2943    // IMUL   EDX:EAX,$src1
2944    emit_opcode( cbuf, 0xF7 );
2945    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2946    // SAR    EDX,$cnt-32
2947    int shift_count = ((int)$cnt$$constant) - 32;
2948    if (shift_count > 0) {
2949      emit_opcode(cbuf, 0xC1);
2950      emit_rm(cbuf, 0x3, 7, $dst$$reg );
2951      emit_d8(cbuf, shift_count);
2952    }
2953  %}
2954
2955  // this version doesn't have add sp, 8
2956  enc_class convert_long_double2( eRegL src ) %{
2957    // push $src.hi
2958    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2959    // push $src.lo
2960    emit_opcode(cbuf, 0x50+$src$$reg  );
2961    // fild 64-bits at [SP]
2962    emit_opcode(cbuf,0xdf);
2963    emit_d8(cbuf, 0x6C);
2964    emit_d8(cbuf, 0x24);
2965    emit_d8(cbuf, 0x00);
2966  %}
2967
2968  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2969    // Basic idea: long = (long)int * (long)int
2970    // IMUL EDX:EAX, src
2971    emit_opcode( cbuf, 0xF7 );
2972    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2973  %}
2974
2975  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2976    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2977    // MUL EDX:EAX, src
2978    emit_opcode( cbuf, 0xF7 );
2979    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2980  %}
2981
2982  enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
2983    // Basic idea: lo(result) = lo(x_lo * y_lo)
2984    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2985    // MOV    $tmp,$src.lo
2986    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2987    // IMUL   $tmp,EDX
2988    emit_opcode( cbuf, 0x0F );
2989    emit_opcode( cbuf, 0xAF );
2990    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2991    // MOV    EDX,$src.hi
2992    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2993    // IMUL   EDX,EAX
2994    emit_opcode( cbuf, 0x0F );
2995    emit_opcode( cbuf, 0xAF );
2996    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2997    // ADD    $tmp,EDX
2998    emit_opcode( cbuf, 0x03 );
2999    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3000    // MUL   EDX:EAX,$src.lo
3001    emit_opcode( cbuf, 0xF7 );
3002    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3003    // ADD    EDX,ESI
3004    emit_opcode( cbuf, 0x03 );
3005    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3006  %}
3007
3008  enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3009    // Basic idea: lo(result) = lo(src * y_lo)
3010    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3011    // IMUL   $tmp,EDX,$src
3012    emit_opcode( cbuf, 0x6B );
3013    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3014    emit_d8( cbuf, (int)$src$$constant );
3015    // MOV    EDX,$src
3016    emit_opcode(cbuf, 0xB8 + EDX_enc);
3017    emit_d32( cbuf, (int)$src$$constant );
3018    // MUL   EDX:EAX,EDX
3019    emit_opcode( cbuf, 0xF7 );
3020    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3021    // ADD    EDX,ESI
3022    emit_opcode( cbuf, 0x03 );
3023    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3024  %}
3025
3026  enc_class long_div( eRegL src1, eRegL src2 ) %{
3027    // PUSH src1.hi
3028    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3029    // PUSH src1.lo
3030    emit_opcode(cbuf,               0x50+$src1$$reg  );
3031    // PUSH src2.hi
3032    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3033    // PUSH src2.lo
3034    emit_opcode(cbuf,               0x50+$src2$$reg  );
3035    // CALL directly to the runtime
3036    cbuf.set_inst_mark();
3037    emit_opcode(cbuf,0xE8);       // Call into runtime
3038    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3039    // Restore stack
3040    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3041    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3042    emit_d8(cbuf, 4*4);
3043  %}
3044
3045  enc_class long_mod( eRegL src1, eRegL src2 ) %{
3046    // PUSH src1.hi
3047    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3048    // PUSH src1.lo
3049    emit_opcode(cbuf,               0x50+$src1$$reg  );
3050    // PUSH src2.hi
3051    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3052    // PUSH src2.lo
3053    emit_opcode(cbuf,               0x50+$src2$$reg  );
3054    // CALL directly to the runtime
3055    cbuf.set_inst_mark();
3056    emit_opcode(cbuf,0xE8);       // Call into runtime
3057    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3058    // Restore stack
3059    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3060    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3061    emit_d8(cbuf, 4*4);
3062  %}
3063
3064  enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3065    // MOV   $tmp,$src.lo
3066    emit_opcode(cbuf, 0x8B);
3067    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3068    // OR    $tmp,$src.hi
3069    emit_opcode(cbuf, 0x0B);
3070    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3071  %}
3072
3073  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3074    // CMP    $src1.lo,$src2.lo
3075    emit_opcode( cbuf, 0x3B );
3076    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3077    // JNE,s  skip
3078    emit_cc(cbuf, 0x70, 0x5);
3079    emit_d8(cbuf,2);
3080    // CMP    $src1.hi,$src2.hi
3081    emit_opcode( cbuf, 0x3B );
3082    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3083  %}
3084
3085  enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3086    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3087    emit_opcode( cbuf, 0x3B );
3088    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3089    // MOV    $tmp,$src1.hi
3090    emit_opcode( cbuf, 0x8B );
3091    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3092    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3093    emit_opcode( cbuf, 0x1B );
3094    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3095  %}
3096
3097  enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3098    // XOR    $tmp,$tmp
3099    emit_opcode(cbuf,0x33);  // XOR
3100    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3101    // CMP    $tmp,$src.lo
3102    emit_opcode( cbuf, 0x3B );
3103    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3104    // SBB    $tmp,$src.hi
3105    emit_opcode( cbuf, 0x1B );
3106    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3107  %}
3108
3109 // Sniff, sniff... smells like Gnu Superoptimizer
3110  enc_class neg_long( eRegL dst ) %{
3111    emit_opcode(cbuf,0xF7);    // NEG hi
3112    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3113    emit_opcode(cbuf,0xF7);    // NEG lo
3114    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3115    emit_opcode(cbuf,0x83);    // SBB hi,0
3116    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3117    emit_d8    (cbuf,0 );
3118  %}
3119
3120  enc_class movq_ld(regXD dst, memory mem) %{
3121    MacroAssembler _masm(&cbuf);
3122    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3123    __ movq(as_XMMRegister($dst$$reg), madr);
3124  %}
3125
3126  enc_class movq_st(memory mem, regXD src) %{
3127    MacroAssembler _masm(&cbuf);
3128    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3129    __ movq(madr, as_XMMRegister($src$$reg));
3130  %}
3131
3132  enc_class pshufd_8x8(regX dst, regX src) %{
3133    MacroAssembler _masm(&cbuf);
3134
3135    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3136    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3137    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3138  %}
3139
3140  enc_class pshufd_4x16(regX dst, regX src) %{
3141    MacroAssembler _masm(&cbuf);
3142
3143    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3144  %}
3145
3146  enc_class pshufd(regXD dst, regXD src, int mode) %{
3147    MacroAssembler _masm(&cbuf);
3148
3149    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3150  %}
3151
3152  enc_class pxor(regXD dst, regXD src) %{
3153    MacroAssembler _masm(&cbuf);
3154
3155    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3156  %}
3157
3158  enc_class mov_i2x(regXD dst, eRegI src) %{
3159    MacroAssembler _masm(&cbuf);
3160
3161    __ movd(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3162  %}
3163
3164
3165  // Because the transitions from emitted code to the runtime
3166  // monitorenter/exit helper stubs are so slow it's critical that
3167  // we inline both the stack-locking fast-path and the inflated fast path.
3168  //
3169  // See also: cmpFastLock and cmpFastUnlock.
3170  //
3171  // What follows is a specialized inline transliteration of the code
3172  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3173  // another option would be to emit TrySlowEnter and TrySlowExit methods
3174  // at startup-time.  These methods would accept arguments as
3175  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3176  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3177  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3178  // In practice, however, the # of lock sites is bounded and is usually small.
3179  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3180  // if the processor uses simple bimodal branch predictors keyed by EIP
3181  // Since the helper routines would be called from multiple synchronization
3182  // sites.
3183  //
3184  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3185  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3186  // to those specialized methods.  That'd give us a mostly platform-independent
3187  // implementation that the JITs could optimize and inline at their pleasure.
3188  // Done correctly, the only time we'd need to cross to native could would be
3189  // to park() or unpark() threads.  We'd also need a few more unsafe operators
3190  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3191  // (b) explicit barriers or fence operations.
3192  //
3193  // TODO:
3194  //
3195  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3196  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3197  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3198  //    the lock operators would typically be faster than reifying Self.
3199  //
3200  // *  Ideally I'd define the primitives as:
3201  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3202  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3203  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3204  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3205  //    Furthermore the register assignments are overconstrained, possibly resulting in
3206  //    sub-optimal code near the synchronization site.
3207  //
3208  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3209  //    Alternately, use a better sp-proximity test.
3210  //
3211  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3212  //    Either one is sufficient to uniquely identify a thread.
3213  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3214  //
3215  // *  Intrinsify notify() and notifyAll() for the common cases where the
3216  //    object is locked by the calling thread but the waitlist is empty.
3217  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3218  //
3219  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3220  //    But beware of excessive branch density on AMD Opterons.
3221  //
3222  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3223  //    or failure of the fast-path.  If the fast-path fails then we pass
3224  //    control to the slow-path, typically in C.  In Fast_Lock and
3225  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3226  //    will emit a conditional branch immediately after the node.
3227  //    So we have branches to branches and lots of ICC.ZF games.
3228  //    Instead, it might be better to have C2 pass a "FailureLabel"
3229  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3230  //    will drop through the node.  ICC.ZF is undefined at exit.
3231  //    In the case of failure, the node will branch directly to the
3232  //    FailureLabel
3233
3234
3235  // obj: object to lock
3236  // box: on-stack box address (displaced header location) - KILLED
3237  // rax,: tmp -- KILLED
3238  // scr: tmp -- KILLED
3239  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3240
3241    Register objReg = as_Register($obj$$reg);
3242    Register boxReg = as_Register($box$$reg);
3243    Register tmpReg = as_Register($tmp$$reg);
3244    Register scrReg = as_Register($scr$$reg);
3245
3246    // Ensure the register assignents are disjoint
3247    guarantee (objReg != boxReg, "") ;
3248    guarantee (objReg != tmpReg, "") ;
3249    guarantee (objReg != scrReg, "") ;
3250    guarantee (boxReg != tmpReg, "") ;
3251    guarantee (boxReg != scrReg, "") ;
3252    guarantee (tmpReg == as_Register(EAX_enc), "") ;
3253
3254    MacroAssembler masm(&cbuf);
3255
3256    if (_counters != NULL) {
3257      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3258    }
3259    if (EmitSync & 1) {
3260        // set box->dhw = unused_mark (3)
3261        // Force all sync thru slow-path: slow_enter() and slow_exit()
3262        masm.movl (Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
3263        masm.cmpl (rsp, 0) ;
3264    } else
3265    if (EmitSync & 2) {
3266        Label DONE_LABEL ;
3267        if (UseBiasedLocking) {
3268           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3269           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3270        }
3271
3272        masm.movl  (tmpReg, Address(objReg, 0)) ;          // fetch markword
3273        masm.orl   (tmpReg, 0x1);
3274        masm.movl  (Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
3275        if (os::is_MP()) { masm.lock();  }
3276        masm.cmpxchg(boxReg, Address(objReg, 0));          // Updates tmpReg
3277        masm.jcc(Assembler::equal, DONE_LABEL);
3278        // Recursive locking
3279        masm.subl(tmpReg, rsp);
3280        masm.andl(tmpReg, 0xFFFFF003 );
3281        masm.movl(Address(boxReg, 0), tmpReg);
3282        masm.bind(DONE_LABEL) ;
3283    } else {
3284      // Possible cases that we'll encounter in fast_lock
3285      // ------------------------------------------------
3286      // * Inflated
3287      //    -- unlocked
3288      //    -- Locked
3289      //       = by self
3290      //       = by other
3291      // * biased
3292      //    -- by Self
3293      //    -- by other
3294      // * neutral
3295      // * stack-locked
3296      //    -- by self
3297      //       = sp-proximity test hits
3298      //       = sp-proximity test generates false-negative
3299      //    -- by other
3300      //
3301
3302      Label IsInflated, DONE_LABEL, PopDone ;
3303
3304      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3305      // order to reduce the number of conditional branches in the most common cases.
3306      // Beware -- there's a subtle invariant that fetch of the markword
3307      // at [FETCH], below, will never observe a biased encoding (*101b).
3308      // If this invariant is not held we risk exclusion (safety) failure.
3309      if (UseBiasedLocking) {
3310        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3311      }
3312
3313      masm.movl  (tmpReg, Address(objReg, 0)) ;        // [FETCH]
3314      masm.testl (tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3315      masm.jccb  (Assembler::notZero, IsInflated) ;
3316
3317      // Attempt stack-locking ...
3318      masm.orl   (tmpReg, 0x1);
3319      masm.movl  (Address(boxReg, 0), tmpReg);            // Anticipate successful CAS
3320      if (os::is_MP()) { masm.lock();  }
3321      masm.cmpxchg(boxReg, Address(objReg, 0));           // Updates tmpReg
3322      if (_counters != NULL) {
3323        masm.cond_inc32(Assembler::equal,
3324                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3325      }
3326      masm.jccb (Assembler::equal, DONE_LABEL);
3327
3328      // Recursive locking
3329      masm.subl(tmpReg, rsp);
3330      masm.andl(tmpReg, 0xFFFFF003 );
3331      masm.movl(Address(boxReg, 0), tmpReg);
3332      if (_counters != NULL) {
3333        masm.cond_inc32(Assembler::equal,
3334                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3335      }
3336      masm.jmp  (DONE_LABEL) ;
3337
3338      masm.bind (IsInflated) ;
3339
3340      // The object is inflated.
3341      //
3342      // TODO-FIXME: eliminate the ugly use of manifest constants:
3343      //   Use markOopDesc::monitor_value instead of "2".
3344      //   use markOop::unused_mark() instead of "3".
3345      // The tmpReg value is an objectMonitor reference ORed with
3346      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3347      // objectmonitor pointer by masking off the "2" bit or we can just
3348      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3349      // field offsets with "-2" to compensate for and annul the low-order tag bit.
3350      //
3351      // I use the latter as it avoids AGI stalls.
3352      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3353      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3354      //
3355      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3356
3357      // boxReg refers to the on-stack BasicLock in the current frame.
3358      // We'd like to write:
3359      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3360      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3361      // additional latency as we have another ST in the store buffer that must drain.
3362
3363      if (EmitSync & 8192) {
3364         masm.movl  (Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3365         masm.get_thread (scrReg) ;
3366         masm.movl  (boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
3367         masm.movl  (tmpReg, 0);                         // consider: xor vs mov
3368         if (os::is_MP()) { masm.lock(); }
3369         masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3370      } else
3371      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3372         masm.movl (scrReg, boxReg) ;
3373         masm.movl (boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
3374
3375         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3376         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3377            // prefetchw [eax + Offset(_owner)-2]
3378            masm.emit_raw (0x0F) ;
3379            masm.emit_raw (0x0D) ;
3380            masm.emit_raw (0x48) ;
3381            masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ;
3382         }
3383
3384         if ((EmitSync & 64) == 0) {
3385           // Optimistic form: consider XORL tmpReg,tmpReg
3386           masm.movl  (tmpReg, 0 ) ;
3387         } else {
3388           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3389           // Test-And-CAS instead of CAS
3390           masm.movl  (tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3391           masm.testl (tmpReg, tmpReg) ;                   // Locked ?
3392           masm.jccb  (Assembler::notZero, DONE_LABEL) ;
3393         }
3394
3395         // Appears unlocked - try to swing _owner from null to non-null.
3396         // Ideally, I'd manifest "Self" with get_thread and then attempt
3397         // to CAS the register containing Self into m->Owner.
3398         // But we don't have enough registers, so instead we can either try to CAS
3399         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3400         // we later store "Self" into m->Owner.  Transiently storing a stack address
3401         // (rsp or the address of the box) into  m->owner is harmless.
3402         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3403         if (os::is_MP()) { masm.lock();  }
3404         masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3405         masm.movl  (Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3406         masm.jccb  (Assembler::notZero, DONE_LABEL) ;
3407         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3408         masm.movl  (Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ;
3409         masm.xorl  (boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3410
3411         // If the CAS fails we can either retry or pass control to the slow-path.
3412         // We use the latter tactic.
3413         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3414         // If the CAS was successful ...
3415         //   Self has acquired the lock
3416         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3417         // Intentional fall-through into DONE_LABEL ...
3418      } else {
3419         masm.movl (Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3420         masm.movl (boxReg, tmpReg) ;
3421
3422         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3423         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3424            // prefetchw [eax + Offset(_owner)-2]
3425            masm.emit_raw (0x0F) ;
3426            masm.emit_raw (0x0D) ;
3427            masm.emit_raw (0x48) ;
3428            masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ;
3429         }
3430
3431         if ((EmitSync & 64) == 0) {
3432           // Optimistic form
3433           masm.xorl  (tmpReg, tmpReg) ;
3434         } else {
3435           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3436           masm.movl  (tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3437           masm.testl (tmpReg, tmpReg) ;                   // Locked ?
3438           masm.jccb  (Assembler::notZero, DONE_LABEL) ;
3439         }
3440
3441         // Appears unlocked - try to swing _owner from null to non-null.
3442         // Use either "Self" (in scr) or rsp as thread identity in _owner.
3443         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3444         masm.get_thread (scrReg) ;
3445         if (os::is_MP()) { masm.lock(); }
3446         masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3447
3448         // If the CAS fails we can either retry or pass control to the slow-path.
3449         // We use the latter tactic.
3450         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3451         // If the CAS was successful ...
3452         //   Self has acquired the lock
3453         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3454         // Intentional fall-through into DONE_LABEL ...
3455      }
3456
3457      // DONE_LABEL is a hot target - we'd really like to place it at the
3458      // start of cache line by padding with NOPs.
3459      // See the AMD and Intel software optimization manuals for the
3460      // most efficient "long" NOP encodings.
3461      // Unfortunately none of our alignment mechanisms suffice.
3462      masm.bind(DONE_LABEL);
3463
3464      // Avoid branch-to-branch on AMD processors
3465      // This appears to be superstition.
3466      if (EmitSync & 32) masm.nop() ;
3467
3468
3469      // At DONE_LABEL the icc ZFlag is set as follows ...
3470      // Fast_Unlock uses the same protocol.
3471      // ZFlag == 1 -> Success
3472      // ZFlag == 0 -> Failure - force control through the slow-path
3473    }
3474  %}
3475
3476  // obj: object to unlock
3477  // box: box address (displaced header location), killed.  Must be EAX.
3478  // rbx,: killed tmp; cannot be obj nor box.
3479  //
3480  // Some commentary on balanced locking:
3481  //
3482  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3483  // Methods that don't have provably balanced locking are forced to run in the
3484  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3485  // The interpreter provides two properties:
3486  // I1:  At return-time the interpreter automatically and quietly unlocks any
3487  //      objects acquired the current activation (frame).  Recall that the
3488  //      interpreter maintains an on-stack list of locks currently held by
3489  //      a frame.
3490  // I2:  If a method attempts to unlock an object that is not held by the
3491  //      the frame the interpreter throws IMSX.
3492  //
3493  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3494  // B() doesn't have provably balanced locking so it runs in the interpreter.
3495  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3496  // is still locked by A().
3497  //
3498  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3499  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3500  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3501  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3502
3503  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3504
3505    Register objReg = as_Register($obj$$reg);
3506    Register boxReg = as_Register($box$$reg);
3507    Register tmpReg = as_Register($tmp$$reg);
3508
3509    guarantee (objReg != boxReg, "") ;
3510    guarantee (objReg != tmpReg, "") ;
3511    guarantee (boxReg != tmpReg, "") ;
3512    guarantee (boxReg == as_Register(EAX_enc), "") ;
3513    MacroAssembler masm(&cbuf);
3514
3515    if (EmitSync & 4) {
3516      // Disable - inhibit all inlining.  Force control through the slow-path
3517      masm.cmpl (rsp, 0) ;
3518    } else
3519    if (EmitSync & 8) {
3520      Label DONE_LABEL ;
3521      if (UseBiasedLocking) {
3522         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3523      }
3524      // classic stack-locking code ...
3525      masm.movl  (tmpReg, Address(boxReg, 0)) ;
3526      masm.testl (tmpReg, tmpReg) ;
3527      masm.jcc   (Assembler::zero, DONE_LABEL) ;
3528      if (os::is_MP()) { masm.lock(); }
3529      masm.cmpxchg(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3530      masm.bind(DONE_LABEL);
3531    } else {
3532      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3533
3534      // Critically, the biased locking test must have precedence over
3535      // and appear before the (box->dhw == 0) recursive stack-lock test.
3536      if (UseBiasedLocking) {
3537         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3538      }
3539
3540      masm.cmpl  (Address(boxReg, 0), 0) ;            // Examine the displaced header
3541      masm.movl  (tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3542      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3543
3544      masm.testl (tmpReg, 0x02) ;                     // Inflated?
3545      masm.jccb  (Assembler::zero, Stacked) ;
3546
3547      masm.bind  (Inflated) ;
3548      // It's inflated.
3549      // Despite our balanced locking property we still check that m->_owner == Self
3550      // as java routines or native JNI code called by this thread might
3551      // have released the lock.
3552      // Refer to the comments in synchronizer.cpp for how we might encode extra
3553      // state in _succ so we can avoid fetching EntryList|cxq.
3554      //
3555      // I'd like to add more cases in fast_lock() and fast_unlock() --
3556      // such as recursive enter and exit -- but we have to be wary of
3557      // I$ bloat, T$ effects and BP$ effects.
3558      //
3559      // If there's no contention try a 1-0 exit.  That is, exit without
3560      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3561      // we detect and recover from the race that the 1-0 exit admits.
3562      //
3563      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3564      // before it STs null into _owner, releasing the lock.  Updates
3565      // to data protected by the critical section must be visible before
3566      // we drop the lock (and thus before any other thread could acquire
3567      // the lock and observe the fields protected by the lock).
3568      // IA32's memory-model is SPO, so STs are ordered with respect to
3569      // each other and there's no need for an explicit barrier (fence).
3570      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3571
3572      masm.get_thread (boxReg) ;
3573      if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3574         // prefetchw [ebx + Offset(_owner)-2]
3575         masm.emit_raw (0x0F) ;
3576         masm.emit_raw (0x0D) ;
3577         masm.emit_raw (0x4B) ;
3578         masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ;
3579      }
3580
3581      // Note that we could employ various encoding schemes to reduce
3582      // the number of loads below (currently 4) to just 2 or 3.
3583      // Refer to the comments in synchronizer.cpp.
3584      // In practice the chain of fetches doesn't seem to impact performance, however.
3585      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3586         // Attempt to reduce branch density - AMD's branch predictor.
3587         masm.xorl  (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3588         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3589         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
3590         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
3591         masm.jccb  (Assembler::notZero, DONE_LABEL) ;
3592         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
3593         masm.jmpb  (DONE_LABEL) ;
3594      } else {
3595         masm.xorl  (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3596         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3597         masm.jccb  (Assembler::notZero, DONE_LABEL) ;
3598         masm.movl  (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
3599         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
3600         masm.jccb  (Assembler::notZero, CheckSucc) ;
3601         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
3602         masm.jmpb  (DONE_LABEL) ;
3603      }
3604
3605      // The Following code fragment (EmitSync & 65536) improves the performance of
3606      // contended applications and contended synchronization microbenchmarks.
3607      // Unfortunately the emission of the code - even though not executed - causes regressions
3608      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3609      // with an equal number of never-executed NOPs results in the same regression.
3610      // We leave it off by default.
3611
3612      if ((EmitSync & 65536) != 0) {
3613         Label LSuccess, LGoSlowPath ;
3614
3615         masm.bind  (CheckSucc) ;
3616
3617         // Optional pre-test ... it's safe to elide this
3618         if ((EmitSync & 16) == 0) {
3619            masm.cmpl  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ;
3620            masm.jccb  (Assembler::zero, LGoSlowPath) ;
3621         }
3622
3623         // We have a classic Dekker-style idiom:
3624         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3625         // There are a number of ways to implement the barrier:
3626         // (1) lock:andl &m->_owner, 0
3627         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3628         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3629         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3630         // (2) If supported, an explicit MFENCE is appealing.
3631         //     In older IA32 processors MFENCE is slower than lock:add or xchg
3632         //     particularly if the write-buffer is full as might be the case if
3633         //     if stores closely precede the fence or fence-equivalent instruction.
3634         //     In more modern implementations MFENCE appears faster, however.
3635         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3636         //     The $lines underlying the top-of-stack should be in M-state.
3637         //     The locked add instruction is serializing, of course.
3638         // (4) Use xchg, which is serializing
3639         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3640         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3641         //     The integer condition codes will tell us if succ was 0.
3642         //     Since _succ and _owner should reside in the same $line and
3643         //     we just stored into _owner, it's likely that the $line
3644         //     remains in M-state for the lock:orl.
3645         //
3646         // We currently use (3), although it's likely that switching to (2)
3647         // is correct for the future.
3648
3649         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
3650         if (os::is_MP()) {
3651            if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
3652              masm.emit_raw (0x0F) ;    // MFENCE ...
3653              masm.emit_raw (0xAE) ;
3654              masm.emit_raw (0xF0) ;
3655            } else {
3656              masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
3657            }
3658         }
3659         // Ratify _succ remains non-null
3660         masm.cmpl  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ;
3661         masm.jccb  (Assembler::notZero, LSuccess) ;
3662
3663         masm.xorl  (boxReg, boxReg) ;                  // box is really EAX
3664         if (os::is_MP()) { masm.lock(); }
3665         masm.cmpxchg(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3666         masm.jccb  (Assembler::notEqual, LSuccess) ;
3667         // Since we're low on registers we installed rsp as a placeholding in _owner.
3668         // Now install Self over rsp.  This is safe as we're transitioning from
3669         // non-null to non=null
3670         masm.get_thread (boxReg) ;
3671         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3672         // Intentional fall-through into LGoSlowPath ...
3673
3674         masm.bind  (LGoSlowPath) ;
3675         masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3676         masm.jmpb  (DONE_LABEL) ;
3677
3678         masm.bind  (LSuccess) ;
3679         masm.xorl  (boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3680         masm.jmpb  (DONE_LABEL) ;
3681      }
3682
3683      masm.bind (Stacked) ;
3684      // It's not inflated and it's not recursively stack-locked and it's not biased.
3685      // It must be stack-locked.
3686      // Try to reset the header to displaced header.
3687      // The "box" value on the stack is stable, so we can reload
3688      // and be assured we observe the same value as above.
3689      masm.movl (tmpReg, Address(boxReg, 0)) ;
3690      if (os::is_MP()) {   masm.lock();    }
3691      masm.cmpxchg(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3692      // Intention fall-thru into DONE_LABEL
3693
3694
3695      // DONE_LABEL is a hot target - we'd really like to place it at the
3696      // start of cache line by padding with NOPs.
3697      // See the AMD and Intel software optimization manuals for the
3698      // most efficient "long" NOP encodings.
3699      // Unfortunately none of our alignment mechanisms suffice.
3700      if ((EmitSync & 65536) == 0) {
3701         masm.bind (CheckSucc) ;
3702      }
3703      masm.bind(DONE_LABEL);
3704
3705      // Avoid branch to branch on AMD processors
3706      if (EmitSync & 32768) { masm.nop() ; }
3707    }
3708  %}
3709
3710  enc_class enc_String_Compare() %{
3711    Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL,
3712          POP_LABEL, DONE_LABEL, CONT_LABEL,
3713          WHILE_HEAD_LABEL;
3714    MacroAssembler masm(&cbuf);
3715
3716    // Get the first character position in both strings
3717    //         [8] char array, [12] offset, [16] count
3718    int value_offset  = java_lang_String::value_offset_in_bytes();
3719    int offset_offset = java_lang_String::offset_offset_in_bytes();
3720    int count_offset  = java_lang_String::count_offset_in_bytes();
3721    int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3722
3723    masm.movl(rax, Address(rsi, value_offset));
3724    masm.movl(rcx, Address(rsi, offset_offset));
3725    masm.leal(rax, Address(rax, rcx, Address::times_2, base_offset));
3726    masm.movl(rbx, Address(rdi, value_offset));
3727    masm.movl(rcx, Address(rdi, offset_offset));
3728    masm.leal(rbx, Address(rbx, rcx, Address::times_2, base_offset));
3729
3730    // Compute the minimum of the string lengths(rsi) and the
3731    // difference of the string lengths (stack)
3732
3733
3734    if (VM_Version::supports_cmov()) {
3735      masm.movl(rdi, Address(rdi, count_offset));
3736      masm.movl(rsi, Address(rsi, count_offset));
3737      masm.movl(rcx, rdi);
3738      masm.subl(rdi, rsi);
3739      masm.pushl(rdi);
3740      masm.cmovl(Assembler::lessEqual, rsi, rcx);
3741    } else {
3742      masm.movl(rdi, Address(rdi, count_offset));
3743      masm.movl(rcx, Address(rsi, count_offset));
3744      masm.movl(rsi, rdi);
3745      masm.subl(rdi, rcx);
3746      masm.pushl(rdi);
3747      masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL);
3748      masm.movl(rsi, rcx);
3749      // rsi holds min, rcx is unused
3750    }
3751
3752    // Is the minimum length zero?
3753    masm.bind(ECX_GOOD_LABEL);
3754    masm.testl(rsi, rsi);
3755    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3756
3757    // Load first characters
3758    masm.load_unsigned_word(rcx, Address(rbx, 0));
3759    masm.load_unsigned_word(rdi, Address(rax, 0));
3760
3761    // Compare first characters
3762    masm.subl(rcx, rdi);
3763    masm.jcc(Assembler::notZero,  POP_LABEL);
3764    masm.decrement(rsi);
3765    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3766
3767    {
3768      // Check after comparing first character to see if strings are equivalent
3769      Label LSkip2;
3770      // Check if the strings start at same location
3771      masm.cmpl(rbx,rax);
3772      masm.jcc(Assembler::notEqual, LSkip2);
3773
3774      // Check if the length difference is zero (from stack)
3775      masm.cmpl(Address(rsp, 0), 0x0);
3776      masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
3777
3778      // Strings might not be equivalent
3779      masm.bind(LSkip2);
3780    }
3781
3782    // Shift rax, and rbx, to the end of the arrays, negate min
3783    masm.leal(rax, Address(rax, rsi, Address::times_2, 2));
3784    masm.leal(rbx, Address(rbx, rsi, Address::times_2, 2));
3785    masm.negl(rsi);
3786
3787    // Compare the rest of the characters
3788    masm.bind(WHILE_HEAD_LABEL);
3789    masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
3790    masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
3791    masm.subl(rcx, rdi);
3792    masm.jcc(Assembler::notZero, POP_LABEL);
3793    masm.increment(rsi);
3794    masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
3795
3796    // Strings are equal up to min length.  Return the length difference.
3797    masm.bind(LENGTH_DIFF_LABEL);
3798    masm.popl(rcx);
3799    masm.jmp(DONE_LABEL);
3800
3801    // Discard the stored length difference
3802    masm.bind(POP_LABEL);
3803    masm.addl(rsp, 4);
3804
3805    // That's it
3806    masm.bind(DONE_LABEL);
3807  %}
3808
3809  enc_class enc_pop_rdx() %{
3810    emit_opcode(cbuf,0x5A);
3811  %}
3812
3813  enc_class enc_rethrow() %{
3814    cbuf.set_inst_mark();
3815    emit_opcode(cbuf, 0xE9);        // jmp    entry
3816    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
3817                   runtime_call_Relocation::spec(), RELOC_IMM32 );
3818  %}
3819
3820
3821  // Convert a double to an int.  Java semantics require we do complex
3822  // manglelations in the corner cases.  So we set the rounding mode to
3823  // 'zero', store the darned double down as an int, and reset the
3824  // rounding mode to 'nearest'.  The hardware throws an exception which
3825  // patches up the correct value directly to the stack.
3826  enc_class D2I_encoding( regD src ) %{
3827    // Flip to round-to-zero mode.  We attempted to allow invalid-op
3828    // exceptions here, so that a NAN or other corner-case value will
3829    // thrown an exception (but normal values get converted at full speed).
3830    // However, I2C adapters and other float-stack manglers leave pending
3831    // invalid-op exceptions hanging.  We would have to clear them before
3832    // enabling them and that is more expensive than just testing for the
3833    // invalid value Intel stores down in the corner cases.
3834    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3835    emit_opcode(cbuf,0x2D);
3836    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3837    // Allocate a word
3838    emit_opcode(cbuf,0x83);            // SUB ESP,4
3839    emit_opcode(cbuf,0xEC);
3840    emit_d8(cbuf,0x04);
3841    // Encoding assumes a double has been pushed into FPR0.
3842    // Store down the double as an int, popping the FPU stack
3843    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3844    emit_opcode(cbuf,0x1C);
3845    emit_d8(cbuf,0x24);
3846    // Restore the rounding mode; mask the exception
3847    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3848    emit_opcode(cbuf,0x2D);
3849    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3850        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3851        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3852
3853    // Load the converted int; adjust CPU stack
3854    emit_opcode(cbuf,0x58);       // POP EAX
3855    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3856    emit_d32   (cbuf,0x80000000); //         0x80000000
3857    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3858    emit_d8    (cbuf,0x07);       // Size of slow_call
3859    // Push src onto stack slow-path
3860    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3861    emit_d8    (cbuf,0xC0-1+$src$$reg );
3862    // CALL directly to the runtime
3863    cbuf.set_inst_mark();
3864    emit_opcode(cbuf,0xE8);       // Call into runtime
3865    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3866    // Carry on here...
3867  %}
3868
3869  enc_class D2L_encoding( regD src ) %{
3870    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3871    emit_opcode(cbuf,0x2D);
3872    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3873    // Allocate a word
3874    emit_opcode(cbuf,0x83);            // SUB ESP,8
3875    emit_opcode(cbuf,0xEC);
3876    emit_d8(cbuf,0x08);
3877    // Encoding assumes a double has been pushed into FPR0.
3878    // Store down the double as a long, popping the FPU stack
3879    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3880    emit_opcode(cbuf,0x3C);
3881    emit_d8(cbuf,0x24);
3882    // Restore the rounding mode; mask the exception
3883    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3884    emit_opcode(cbuf,0x2D);
3885    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3886        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3887        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3888
3889    // Load the converted int; adjust CPU stack
3890    emit_opcode(cbuf,0x58);       // POP EAX
3891    emit_opcode(cbuf,0x5A);       // POP EDX
3892    emit_opcode(cbuf,0x81);       // CMP EDX,imm
3893    emit_d8    (cbuf,0xFA);       // rdx
3894    emit_d32   (cbuf,0x80000000); //         0x80000000
3895    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3896    emit_d8    (cbuf,0x07+4);     // Size of slow_call
3897    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3898    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3899    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3900    emit_d8    (cbuf,0x07);       // Size of slow_call
3901    // Push src onto stack slow-path
3902    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3903    emit_d8    (cbuf,0xC0-1+$src$$reg );
3904    // CALL directly to the runtime
3905    cbuf.set_inst_mark();
3906    emit_opcode(cbuf,0xE8);       // Call into runtime
3907    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3908    // Carry on here...
3909  %}
3910
3911  enc_class X2L_encoding( regX src ) %{
3912    // Allocate a word
3913    emit_opcode(cbuf,0x83);      // SUB ESP,8
3914    emit_opcode(cbuf,0xEC);
3915    emit_d8(cbuf,0x08);
3916
3917    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3918    emit_opcode  (cbuf, 0x0F );
3919    emit_opcode  (cbuf, 0x11 );
3920    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3921
3922    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3923    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3924
3925    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3926    emit_opcode(cbuf,0x2D);
3927    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3928
3929    // Encoding assumes a double has been pushed into FPR0.
3930    // Store down the double as a long, popping the FPU stack
3931    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3932    emit_opcode(cbuf,0x3C);
3933    emit_d8(cbuf,0x24);
3934
3935    // Restore the rounding mode; mask the exception
3936    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3937    emit_opcode(cbuf,0x2D);
3938    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3939      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3940      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3941
3942    // Load the converted int; adjust CPU stack
3943    emit_opcode(cbuf,0x58);      // POP EAX
3944
3945    emit_opcode(cbuf,0x5A);      // POP EDX
3946
3947    emit_opcode(cbuf,0x81);      // CMP EDX,imm
3948    emit_d8    (cbuf,0xFA);      // rdx
3949    emit_d32   (cbuf,0x80000000);//         0x80000000
3950
3951    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3952    emit_d8    (cbuf,0x13+4);    // Size of slow_call
3953
3954    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3955    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3956
3957    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3958    emit_d8    (cbuf,0x13);      // Size of slow_call
3959
3960    // Allocate a word
3961    emit_opcode(cbuf,0x83);      // SUB ESP,4
3962    emit_opcode(cbuf,0xEC);
3963    emit_d8(cbuf,0x04);
3964
3965    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3966    emit_opcode  (cbuf, 0x0F );
3967    emit_opcode  (cbuf, 0x11 );
3968    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3969
3970    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3971    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3972
3973    emit_opcode(cbuf,0x83);      // ADD ESP,4
3974    emit_opcode(cbuf,0xC4);
3975    emit_d8(cbuf,0x04);
3976
3977    // CALL directly to the runtime
3978    cbuf.set_inst_mark();
3979    emit_opcode(cbuf,0xE8);       // Call into runtime
3980    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3981    // Carry on here...
3982  %}
3983
3984  enc_class XD2L_encoding( regXD src ) %{
3985    // Allocate a word
3986    emit_opcode(cbuf,0x83);      // SUB ESP,8
3987    emit_opcode(cbuf,0xEC);
3988    emit_d8(cbuf,0x08);
3989
3990    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3991    emit_opcode  (cbuf, 0x0F );
3992    emit_opcode  (cbuf, 0x11 );
3993    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3994
3995    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3996    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3997
3998    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3999    emit_opcode(cbuf,0x2D);
4000    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
4001
4002    // Encoding assumes a double has been pushed into FPR0.
4003    // Store down the double as a long, popping the FPU stack
4004    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
4005    emit_opcode(cbuf,0x3C);
4006    emit_d8(cbuf,0x24);
4007
4008    // Restore the rounding mode; mask the exception
4009    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
4010    emit_opcode(cbuf,0x2D);
4011    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
4012      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
4013      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
4014
4015    // Load the converted int; adjust CPU stack
4016    emit_opcode(cbuf,0x58);      // POP EAX
4017
4018    emit_opcode(cbuf,0x5A);      // POP EDX
4019
4020    emit_opcode(cbuf,0x81);      // CMP EDX,imm
4021    emit_d8    (cbuf,0xFA);      // rdx
4022    emit_d32   (cbuf,0x80000000); //         0x80000000
4023
4024    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4025    emit_d8    (cbuf,0x13+4);    // Size of slow_call
4026
4027    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
4028    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
4029
4030    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4031    emit_d8    (cbuf,0x13);      // Size of slow_call
4032
4033    // Push src onto stack slow-path
4034    // Allocate a word
4035    emit_opcode(cbuf,0x83);      // SUB ESP,8
4036    emit_opcode(cbuf,0xEC);
4037    emit_d8(cbuf,0x08);
4038
4039    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4040    emit_opcode  (cbuf, 0x0F );
4041    emit_opcode  (cbuf, 0x11 );
4042    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4043
4044    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4045    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4046
4047    emit_opcode(cbuf,0x83);      // ADD ESP,8
4048    emit_opcode(cbuf,0xC4);
4049    emit_d8(cbuf,0x08);
4050
4051    // CALL directly to the runtime
4052    cbuf.set_inst_mark();
4053    emit_opcode(cbuf,0xE8);      // Call into runtime
4054    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4055    // Carry on here...
4056  %}
4057
4058  enc_class D2X_encoding( regX dst, regD src ) %{
4059    // Allocate a word
4060    emit_opcode(cbuf,0x83);            // SUB ESP,4
4061    emit_opcode(cbuf,0xEC);
4062    emit_d8(cbuf,0x04);
4063    int pop = 0x02;
4064    if ($src$$reg != FPR1L_enc) {
4065      emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
4066      emit_d8( cbuf, 0xC0-1+$src$$reg );
4067      pop = 0x03;
4068    }
4069    store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
4070
4071    emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
4072    emit_opcode  (cbuf, 0x0F );
4073    emit_opcode  (cbuf, 0x10 );
4074    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
4075
4076    emit_opcode(cbuf,0x83);            // ADD ESP,4
4077    emit_opcode(cbuf,0xC4);
4078    emit_d8(cbuf,0x04);
4079    // Carry on here...
4080  %}
4081
4082  enc_class FX2I_encoding( regX src, eRegI dst ) %{
4083    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4084
4085    // Compare the result to see if we need to go to the slow path
4086    emit_opcode(cbuf,0x81);       // CMP dst,imm
4087    emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4088    emit_d32   (cbuf,0x80000000); //         0x80000000
4089
4090    emit_opcode(cbuf,0x75);       // JNE around_slow_call
4091    emit_d8    (cbuf,0x13);       // Size of slow_call
4092    // Store xmm to a temp memory
4093    // location and push it onto stack.
4094
4095    emit_opcode(cbuf,0x83);  // SUB ESP,4
4096    emit_opcode(cbuf,0xEC);
4097    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4098
4099    emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4100    emit_opcode  (cbuf, 0x0F );
4101    emit_opcode  (cbuf, 0x11 );
4102    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4103
4104    emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4105    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4106
4107    emit_opcode(cbuf,0x83);    // ADD ESP,4
4108    emit_opcode(cbuf,0xC4);
4109    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4110
4111    // CALL directly to the runtime
4112    cbuf.set_inst_mark();
4113    emit_opcode(cbuf,0xE8);       // Call into runtime
4114    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4115
4116    // Carry on here...
4117  %}
4118
4119  enc_class X2D_encoding( regD dst, regX src ) %{
4120    // Allocate a word
4121    emit_opcode(cbuf,0x83);     // SUB ESP,4
4122    emit_opcode(cbuf,0xEC);
4123    emit_d8(cbuf,0x04);
4124
4125    emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4126    emit_opcode  (cbuf, 0x0F );
4127    emit_opcode  (cbuf, 0x11 );
4128    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4129
4130    emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4131    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4132
4133    emit_opcode(cbuf,0x83);     // ADD ESP,4
4134    emit_opcode(cbuf,0xC4);
4135    emit_d8(cbuf,0x04);
4136
4137    // Carry on here...
4138  %}
4139
4140  enc_class AbsXF_encoding(regX dst) %{
4141    address signmask_address=(address)float_signmask_pool;
4142    // andpd:\tANDPS  $dst,[signconst]
4143    emit_opcode(cbuf, 0x0F);
4144    emit_opcode(cbuf, 0x54);
4145    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4146    emit_d32(cbuf, (int)signmask_address);
4147  %}
4148
4149  enc_class AbsXD_encoding(regXD dst) %{
4150    address signmask_address=(address)double_signmask_pool;
4151    // andpd:\tANDPD  $dst,[signconst]
4152    emit_opcode(cbuf, 0x66);
4153    emit_opcode(cbuf, 0x0F);
4154    emit_opcode(cbuf, 0x54);
4155    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4156    emit_d32(cbuf, (int)signmask_address);
4157  %}
4158
4159  enc_class NegXF_encoding(regX dst) %{
4160    address signmask_address=(address)float_signflip_pool;
4161    // andpd:\tXORPS  $dst,[signconst]
4162    emit_opcode(cbuf, 0x0F);
4163    emit_opcode(cbuf, 0x57);
4164    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4165    emit_d32(cbuf, (int)signmask_address);
4166  %}
4167
4168  enc_class NegXD_encoding(regXD dst) %{
4169    address signmask_address=(address)double_signflip_pool;
4170    // andpd:\tXORPD  $dst,[signconst]
4171    emit_opcode(cbuf, 0x66);
4172    emit_opcode(cbuf, 0x0F);
4173    emit_opcode(cbuf, 0x57);
4174    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4175    emit_d32(cbuf, (int)signmask_address);
4176  %}
4177
4178  enc_class FMul_ST_reg( eRegF src1 ) %{
4179    // Operand was loaded from memory into fp ST (stack top)
4180    // FMUL   ST,$src  /* D8 C8+i */
4181    emit_opcode(cbuf, 0xD8);
4182    emit_opcode(cbuf, 0xC8 + $src1$$reg);
4183  %}
4184
4185  enc_class FAdd_ST_reg( eRegF src2 ) %{
4186    // FADDP  ST,src2  /* D8 C0+i */
4187    emit_opcode(cbuf, 0xD8);
4188    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4189    //could use FADDP  src2,fpST  /* DE C0+i */
4190  %}
4191
4192  enc_class FAddP_reg_ST( eRegF src2 ) %{
4193    // FADDP  src2,ST  /* DE C0+i */
4194    emit_opcode(cbuf, 0xDE);
4195    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4196  %}
4197
4198  enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4199    // Operand has been loaded into fp ST (stack top)
4200      // FSUB   ST,$src1
4201      emit_opcode(cbuf, 0xD8);
4202      emit_opcode(cbuf, 0xE0 + $src1$$reg);
4203
4204      // FDIV
4205      emit_opcode(cbuf, 0xD8);
4206      emit_opcode(cbuf, 0xF0 + $src2$$reg);
4207  %}
4208
4209  enc_class MulFAddF (eRegF src1, eRegF src2) %{
4210    // Operand was loaded from memory into fp ST (stack top)
4211    // FADD   ST,$src  /* D8 C0+i */
4212    emit_opcode(cbuf, 0xD8);
4213    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4214
4215    // FMUL  ST,src2  /* D8 C*+i */
4216    emit_opcode(cbuf, 0xD8);
4217    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4218  %}
4219
4220
4221  enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4222    // Operand was loaded from memory into fp ST (stack top)
4223    // FADD   ST,$src  /* D8 C0+i */
4224    emit_opcode(cbuf, 0xD8);
4225    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4226
4227    // FMULP  src2,ST  /* DE C8+i */
4228    emit_opcode(cbuf, 0xDE);
4229    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4230  %}
4231
4232  enc_class enc_membar_acquire %{
4233    // Doug Lea believes this is not needed with current Sparcs and TSO.
4234    // MacroAssembler masm(&cbuf);
4235    // masm.membar();
4236  %}
4237
4238  enc_class enc_membar_release %{
4239    // Doug Lea believes this is not needed with current Sparcs and TSO.
4240    // MacroAssembler masm(&cbuf);
4241    // masm.membar();
4242  %}
4243
4244  enc_class enc_membar_volatile %{
4245    MacroAssembler masm(&cbuf);
4246    masm.membar();
4247  %}
4248
4249  // Atomically load the volatile long
4250  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4251    emit_opcode(cbuf,0xDF);
4252    int rm_byte_opcode = 0x05;
4253    int base     = $mem$$base;
4254    int index    = $mem$$index;
4255    int scale    = $mem$$scale;
4256    int displace = $mem$$disp;
4257    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4258    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4259    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4260  %}
4261
4262  enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4263    { // Atomic long load
4264      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4265      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4266      emit_opcode(cbuf,0x0F);
4267      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4268      int base     = $mem$$base;
4269      int index    = $mem$$index;
4270      int scale    = $mem$$scale;
4271      int displace = $mem$$disp;
4272      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4273      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4274    }
4275    { // MOVSD $dst,$tmp ! atomic long store
4276      emit_opcode(cbuf,0xF2);
4277      emit_opcode(cbuf,0x0F);
4278      emit_opcode(cbuf,0x11);
4279      int base     = $dst$$base;
4280      int index    = $dst$$index;
4281      int scale    = $dst$$scale;
4282      int displace = $dst$$disp;
4283      bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4284      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4285    }
4286  %}
4287
4288  enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4289    { // Atomic long load
4290      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4291      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4292      emit_opcode(cbuf,0x0F);
4293      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4294      int base     = $mem$$base;
4295      int index    = $mem$$index;
4296      int scale    = $mem$$scale;
4297      int displace = $mem$$disp;
4298      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4299      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4300    }
4301    { // MOVD $dst.lo,$tmp
4302      emit_opcode(cbuf,0x66);
4303      emit_opcode(cbuf,0x0F);
4304      emit_opcode(cbuf,0x7E);
4305      emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4306    }
4307    { // PSRLQ $tmp,32
4308      emit_opcode(cbuf,0x66);
4309      emit_opcode(cbuf,0x0F);
4310      emit_opcode(cbuf,0x73);
4311      emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4312      emit_d8(cbuf, 0x20);
4313    }
4314    { // MOVD $dst.hi,$tmp
4315      emit_opcode(cbuf,0x66);
4316      emit_opcode(cbuf,0x0F);
4317      emit_opcode(cbuf,0x7E);
4318      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4319    }
4320  %}
4321
4322  // Volatile Store Long.  Must be atomic, so move it into
4323  // the FP TOS and then do a 64-bit FIST.  Has to probe the
4324  // target address before the store (for null-ptr checks)
4325  // so the memory operand is used twice in the encoding.
4326  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4327    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4328    cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
4329    emit_opcode(cbuf,0xDF);
4330    int rm_byte_opcode = 0x07;
4331    int base     = $mem$$base;
4332    int index    = $mem$$index;
4333    int scale    = $mem$$scale;
4334    int displace = $mem$$disp;
4335    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4336    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4337  %}
4338
4339  enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4340    { // Atomic long load
4341      // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4342      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4343      emit_opcode(cbuf,0x0F);
4344      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4345      int base     = $src$$base;
4346      int index    = $src$$index;
4347      int scale    = $src$$scale;
4348      int displace = $src$$disp;
4349      bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4350      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4351    }
4352    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4353    { // MOVSD $mem,$tmp ! atomic long store
4354      emit_opcode(cbuf,0xF2);
4355      emit_opcode(cbuf,0x0F);
4356      emit_opcode(cbuf,0x11);
4357      int base     = $mem$$base;
4358      int index    = $mem$$index;
4359      int scale    = $mem$$scale;
4360      int displace = $mem$$disp;
4361      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4362      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4363    }
4364  %}
4365
4366  enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4367    { // MOVD $tmp,$src.lo
4368      emit_opcode(cbuf,0x66);
4369      emit_opcode(cbuf,0x0F);
4370      emit_opcode(cbuf,0x6E);
4371      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4372    }
4373    { // MOVD $tmp2,$src.hi
4374      emit_opcode(cbuf,0x66);
4375      emit_opcode(cbuf,0x0F);
4376      emit_opcode(cbuf,0x6E);
4377      emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4378    }
4379    { // PUNPCKLDQ $tmp,$tmp2
4380      emit_opcode(cbuf,0x66);
4381      emit_opcode(cbuf,0x0F);
4382      emit_opcode(cbuf,0x62);
4383      emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4384    }
4385    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4386    { // MOVSD $mem,$tmp ! atomic long store
4387      emit_opcode(cbuf,0xF2);
4388      emit_opcode(cbuf,0x0F);
4389      emit_opcode(cbuf,0x11);
4390      int base     = $mem$$base;
4391      int index    = $mem$$index;
4392      int scale    = $mem$$scale;
4393      int displace = $mem$$disp;
4394      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4395      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4396    }
4397  %}
4398
4399  // Safepoint Poll.  This polls the safepoint page, and causes an
4400  // exception if it is not readable. Unfortunately, it kills the condition code
4401  // in the process
4402  // We current use TESTL [spp],EDI
4403  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4404
4405  enc_class Safepoint_Poll() %{
4406    cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
4407    emit_opcode(cbuf,0x85);
4408    emit_rm (cbuf, 0x0, 0x7, 0x5);
4409    emit_d32(cbuf, (intptr_t)os::get_polling_page());
4410  %}
4411%}
4412
4413
4414//----------FRAME--------------------------------------------------------------
4415// Definition of frame structure and management information.
4416//
4417//  S T A C K   L A Y O U T    Allocators stack-slot number
4418//                             |   (to get allocators register number
4419//  G  Owned by    |        |  v    add OptoReg::stack0())
4420//  r   CALLER     |        |
4421//  o     |        +--------+      pad to even-align allocators stack-slot
4422//  w     V        |  pad0  |        numbers; owned by CALLER
4423//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4424//  h     ^        |   in   |  5
4425//        |        |  args  |  4   Holes in incoming args owned by SELF
4426//  |     |        |        |  3
4427//  |     |        +--------+
4428//  V     |        | old out|      Empty on Intel, window on Sparc
4429//        |    old |preserve|      Must be even aligned.
4430//        |     SP-+--------+----> Matcher::_old_SP, even aligned
4431//        |        |   in   |  3   area for Intel ret address
4432//     Owned by    |preserve|      Empty on Sparc.
4433//       SELF      +--------+
4434//        |        |  pad2  |  2   pad to align old SP
4435//        |        +--------+  1
4436//        |        | locks  |  0
4437//        |        +--------+----> OptoReg::stack0(), even aligned
4438//        |        |  pad1  | 11   pad to align new SP
4439//        |        +--------+
4440//        |        |        | 10
4441//        |        | spills |  9   spills
4442//        V        |        |  8   (pad0 slot for callee)
4443//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4444//        ^        |  out   |  7
4445//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4446//     Owned by    +--------+
4447//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4448//        |    new |preserve|      Must be even-aligned.
4449//        |     SP-+--------+----> Matcher::_new_SP, even aligned
4450//        |        |        |
4451//
4452// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4453//         known from SELF's arguments and the Java calling convention.
4454//         Region 6-7 is determined per call site.
4455// Note 2: If the calling convention leaves holes in the incoming argument
4456//         area, those holes are owned by SELF.  Holes in the outgoing area
4457//         are owned by the CALLEE.  Holes should not be nessecary in the
4458//         incoming area, as the Java calling convention is completely under
4459//         the control of the AD file.  Doubles can be sorted and packed to
4460//         avoid holes.  Holes in the outgoing arguments may be nessecary for
4461//         varargs C calling conventions.
4462// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4463//         even aligned with pad0 as needed.
4464//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4465//         region 6-11 is even aligned; it may be padded out more so that
4466//         the region from SP to FP meets the minimum stack alignment.
4467
4468frame %{
4469  // What direction does stack grow in (assumed to be same for C & Java)
4470  stack_direction(TOWARDS_LOW);
4471
4472  // These three registers define part of the calling convention
4473  // between compiled code and the interpreter.
4474  inline_cache_reg(EAX);                // Inline Cache Register
4475  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4476
4477  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4478  cisc_spilling_operand_name(indOffset32);
4479
4480  // Number of stack slots consumed by locking an object
4481  sync_stack_slots(1);
4482
4483  // Compiled code's Frame Pointer
4484  frame_pointer(ESP);
4485  // Interpreter stores its frame pointer in a register which is
4486  // stored to the stack by I2CAdaptors.
4487  // I2CAdaptors convert from interpreted java to compiled java.
4488  interpreter_frame_pointer(EBP);
4489
4490  // Stack alignment requirement
4491  // Alignment size in bytes (128-bit -> 16 bytes)
4492  stack_alignment(StackAlignmentInBytes);
4493
4494  // Number of stack slots between incoming argument block and the start of
4495  // a new frame.  The PROLOG must add this many slots to the stack.  The
4496  // EPILOG must remove this many slots.  Intel needs one slot for
4497  // return address and one for rbp, (must save rbp)
4498  in_preserve_stack_slots(2+VerifyStackAtCalls);
4499
4500  // Number of outgoing stack slots killed above the out_preserve_stack_slots
4501  // for calls to C.  Supports the var-args backing area for register parms.
4502  varargs_C_out_slots_killed(0);
4503
4504  // The after-PROLOG location of the return address.  Location of
4505  // return address specifies a type (REG or STACK) and a number
4506  // representing the register number (i.e. - use a register name) or
4507  // stack slot.
4508  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4509  // Otherwise, it is above the locks and verification slot and alignment word
4510  return_addr(STACK - 1 +
4511              round_to(1+VerifyStackAtCalls+
4512              Compile::current()->fixed_slots(),
4513              (StackAlignmentInBytes/wordSize)));
4514
4515  // Body of function which returns an integer array locating
4516  // arguments either in registers or in stack slots.  Passed an array
4517  // of ideal registers called "sig" and a "length" count.  Stack-slot
4518  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4519  // arguments for a CALLEE.  Incoming stack arguments are
4520  // automatically biased by the preserve_stack_slots field above.
4521  calling_convention %{
4522    // No difference between ingoing/outgoing just pass false
4523    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4524  %}
4525
4526
4527  // Body of function which returns an integer array locating
4528  // arguments either in registers or in stack slots.  Passed an array
4529  // of ideal registers called "sig" and a "length" count.  Stack-slot
4530  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4531  // arguments for a CALLEE.  Incoming stack arguments are
4532  // automatically biased by the preserve_stack_slots field above.
4533  c_calling_convention %{
4534    // This is obviously always outgoing
4535    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4536  %}
4537
4538  // Location of C & interpreter return values
4539  c_return_value %{
4540    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4541    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4542    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4543
4544    // in SSE2+ mode we want to keep the FPU stack clean so pretend
4545    // that C functions return float and double results in XMM0.
4546    if( ideal_reg == Op_RegD && UseSSE>=2 )
4547      return OptoRegPair(XMM0b_num,XMM0a_num);
4548    if( ideal_reg == Op_RegF && UseSSE>=2 )
4549      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4550
4551    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4552  %}
4553
4554  // Location of return values
4555  return_value %{
4556    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4557    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4558    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4559    if( ideal_reg == Op_RegD && UseSSE>=2 )
4560      return OptoRegPair(XMM0b_num,XMM0a_num);
4561    if( ideal_reg == Op_RegF && UseSSE>=1 )
4562      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4563    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4564  %}
4565
4566%}
4567
4568//----------ATTRIBUTES---------------------------------------------------------
4569//----------Operand Attributes-------------------------------------------------
4570op_attrib op_cost(0);        // Required cost attribute
4571
4572//----------Instruction Attributes---------------------------------------------
4573ins_attrib ins_cost(100);       // Required cost attribute
4574ins_attrib ins_size(8);         // Required size attribute (in bits)
4575ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4576ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4577                                // non-matching short branch variant of some
4578                                                            // long branch?
4579ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4580                                // specifies the alignment that some part of the instruction (not
4581                                // necessarily the start) requires.  If > 1, a compute_padding()
4582                                // function must be provided for the instruction
4583
4584//----------OPERANDS-----------------------------------------------------------
4585// Operand definitions must precede instruction definitions for correct parsing
4586// in the ADLC because operands constitute user defined types which are used in
4587// instruction definitions.
4588
4589//----------Simple Operands----------------------------------------------------
4590// Immediate Operands
4591// Integer Immediate
4592operand immI() %{
4593  match(ConI);
4594
4595  op_cost(10);
4596  format %{ %}
4597  interface(CONST_INTER);
4598%}
4599
4600// Constant for test vs zero
4601operand immI0() %{
4602  predicate(n->get_int() == 0);
4603  match(ConI);
4604
4605  op_cost(0);
4606  format %{ %}
4607  interface(CONST_INTER);
4608%}
4609
4610// Constant for increment
4611operand immI1() %{
4612  predicate(n->get_int() == 1);
4613  match(ConI);
4614
4615  op_cost(0);
4616  format %{ %}
4617  interface(CONST_INTER);
4618%}
4619
4620// Constant for decrement
4621operand immI_M1() %{
4622  predicate(n->get_int() == -1);
4623  match(ConI);
4624
4625  op_cost(0);
4626  format %{ %}
4627  interface(CONST_INTER);
4628%}
4629
4630// Valid scale values for addressing modes
4631operand immI2() %{
4632  predicate(0 <= n->get_int() && (n->get_int() <= 3));
4633  match(ConI);
4634
4635  format %{ %}
4636  interface(CONST_INTER);
4637%}
4638
4639operand immI8() %{
4640  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4641  match(ConI);
4642
4643  op_cost(5);
4644  format %{ %}
4645  interface(CONST_INTER);
4646%}
4647
4648operand immI16() %{
4649  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4650  match(ConI);
4651
4652  op_cost(10);
4653  format %{ %}
4654  interface(CONST_INTER);
4655%}
4656
4657// Constant for long shifts
4658operand immI_32() %{
4659  predicate( n->get_int() == 32 );
4660  match(ConI);
4661
4662  op_cost(0);
4663  format %{ %}
4664  interface(CONST_INTER);
4665%}
4666
4667operand immI_1_31() %{
4668  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4669  match(ConI);
4670
4671  op_cost(0);
4672  format %{ %}
4673  interface(CONST_INTER);
4674%}
4675
4676operand immI_32_63() %{
4677  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4678  match(ConI);
4679  op_cost(0);
4680
4681  format %{ %}
4682  interface(CONST_INTER);
4683%}
4684
4685// Pointer Immediate
4686operand immP() %{
4687  match(ConP);
4688
4689  op_cost(10);
4690  format %{ %}
4691  interface(CONST_INTER);
4692%}
4693
4694// NULL Pointer Immediate
4695operand immP0() %{
4696  predicate( n->get_ptr() == 0 );
4697  match(ConP);
4698  op_cost(0);
4699
4700  format %{ %}
4701  interface(CONST_INTER);
4702%}
4703
4704// Long Immediate
4705operand immL() %{
4706  match(ConL);
4707
4708  op_cost(20);
4709  format %{ %}
4710  interface(CONST_INTER);
4711%}
4712
4713// Long Immediate zero
4714operand immL0() %{
4715  predicate( n->get_long() == 0L );
4716  match(ConL);
4717  op_cost(0);
4718
4719  format %{ %}
4720  interface(CONST_INTER);
4721%}
4722
4723// Long immediate from 0 to 127.
4724// Used for a shorter form of long mul by 10.
4725operand immL_127() %{
4726  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4727  match(ConL);
4728  op_cost(0);
4729
4730  format %{ %}
4731  interface(CONST_INTER);
4732%}
4733
4734// Long Immediate: low 32-bit mask
4735operand immL_32bits() %{
4736  predicate(n->get_long() == 0xFFFFFFFFL);
4737  match(ConL);
4738  op_cost(0);
4739
4740  format %{ %}
4741  interface(CONST_INTER);
4742%}
4743
4744// Long Immediate: low 32-bit mask
4745operand immL32() %{
4746  predicate(n->get_long() == (int)(n->get_long()));
4747  match(ConL);
4748  op_cost(20);
4749
4750  format %{ %}
4751  interface(CONST_INTER);
4752%}
4753
4754//Double Immediate zero
4755operand immD0() %{
4756  // Do additional (and counter-intuitive) test against NaN to work around VC++
4757  // bug that generates code such that NaNs compare equal to 0.0
4758  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4759  match(ConD);
4760
4761  op_cost(5);
4762  format %{ %}
4763  interface(CONST_INTER);
4764%}
4765
4766// Double Immediate
4767operand immD1() %{
4768  predicate( UseSSE<=1 && n->getd() == 1.0 );
4769  match(ConD);
4770
4771  op_cost(5);
4772  format %{ %}
4773  interface(CONST_INTER);
4774%}
4775
4776// Double Immediate
4777operand immD() %{
4778  predicate(UseSSE<=1);
4779  match(ConD);
4780
4781  op_cost(5);
4782  format %{ %}
4783  interface(CONST_INTER);
4784%}
4785
4786operand immXD() %{
4787  predicate(UseSSE>=2);
4788  match(ConD);
4789
4790  op_cost(5);
4791  format %{ %}
4792  interface(CONST_INTER);
4793%}
4794
4795// Double Immediate zero
4796operand immXD0() %{
4797  // Do additional (and counter-intuitive) test against NaN to work around VC++
4798  // bug that generates code such that NaNs compare equal to 0.0 AND do not
4799  // compare equal to -0.0.
4800  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4801  match(ConD);
4802
4803  format %{ %}
4804  interface(CONST_INTER);
4805%}
4806
4807// Float Immediate zero
4808operand immF0() %{
4809  predicate( UseSSE == 0 && n->getf() == 0.0 );
4810  match(ConF);
4811
4812  op_cost(5);
4813  format %{ %}
4814  interface(CONST_INTER);
4815%}
4816
4817// Float Immediate
4818operand immF() %{
4819  predicate( UseSSE == 0 );
4820  match(ConF);
4821
4822  op_cost(5);
4823  format %{ %}
4824  interface(CONST_INTER);
4825%}
4826
4827// Float Immediate
4828operand immXF() %{
4829  predicate(UseSSE >= 1);
4830  match(ConF);
4831
4832  op_cost(5);
4833  format %{ %}
4834  interface(CONST_INTER);
4835%}
4836
4837// Float Immediate zero.  Zero and not -0.0
4838operand immXF0() %{
4839  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4840  match(ConF);
4841
4842  op_cost(5);
4843  format %{ %}
4844  interface(CONST_INTER);
4845%}
4846
4847// Immediates for special shifts (sign extend)
4848
4849// Constants for increment
4850operand immI_16() %{
4851  predicate( n->get_int() == 16 );
4852  match(ConI);
4853
4854  format %{ %}
4855  interface(CONST_INTER);
4856%}
4857
4858operand immI_24() %{
4859  predicate( n->get_int() == 24 );
4860  match(ConI);
4861
4862  format %{ %}
4863  interface(CONST_INTER);
4864%}
4865
4866// Constant for byte-wide masking
4867operand immI_255() %{
4868  predicate( n->get_int() == 255 );
4869  match(ConI);
4870
4871  format %{ %}
4872  interface(CONST_INTER);
4873%}
4874
4875// Register Operands
4876// Integer Register
4877operand eRegI() %{
4878  constraint(ALLOC_IN_RC(e_reg));
4879  match(RegI);
4880  match(xRegI);
4881  match(eAXRegI);
4882  match(eBXRegI);
4883  match(eCXRegI);
4884  match(eDXRegI);
4885  match(eDIRegI);
4886  match(eSIRegI);
4887
4888  format %{ %}
4889  interface(REG_INTER);
4890%}
4891
4892// Subset of Integer Register
4893operand xRegI(eRegI reg) %{
4894  constraint(ALLOC_IN_RC(x_reg));
4895  match(reg);
4896  match(eAXRegI);
4897  match(eBXRegI);
4898  match(eCXRegI);
4899  match(eDXRegI);
4900
4901  format %{ %}
4902  interface(REG_INTER);
4903%}
4904
4905// Special Registers
4906operand eAXRegI(xRegI reg) %{
4907  constraint(ALLOC_IN_RC(eax_reg));
4908  match(reg);
4909  match(eRegI);
4910
4911  format %{ "EAX" %}
4912  interface(REG_INTER);
4913%}
4914
4915// Special Registers
4916operand eBXRegI(xRegI reg) %{
4917  constraint(ALLOC_IN_RC(ebx_reg));
4918  match(reg);
4919  match(eRegI);
4920
4921  format %{ "EBX" %}
4922  interface(REG_INTER);
4923%}
4924
4925operand eCXRegI(xRegI reg) %{
4926  constraint(ALLOC_IN_RC(ecx_reg));
4927  match(reg);
4928  match(eRegI);
4929
4930  format %{ "ECX" %}
4931  interface(REG_INTER);
4932%}
4933
4934operand eDXRegI(xRegI reg) %{
4935  constraint(ALLOC_IN_RC(edx_reg));
4936  match(reg);
4937  match(eRegI);
4938
4939  format %{ "EDX" %}
4940  interface(REG_INTER);
4941%}
4942
4943operand eDIRegI(xRegI reg) %{
4944  constraint(ALLOC_IN_RC(edi_reg));
4945  match(reg);
4946  match(eRegI);
4947
4948  format %{ "EDI" %}
4949  interface(REG_INTER);
4950%}
4951
4952operand naxRegI() %{
4953  constraint(ALLOC_IN_RC(nax_reg));
4954  match(RegI);
4955  match(eCXRegI);
4956  match(eDXRegI);
4957  match(eSIRegI);
4958  match(eDIRegI);
4959
4960  format %{ %}
4961  interface(REG_INTER);
4962%}
4963
4964operand nadxRegI() %{
4965  constraint(ALLOC_IN_RC(nadx_reg));
4966  match(RegI);
4967  match(eBXRegI);
4968  match(eCXRegI);
4969  match(eSIRegI);
4970  match(eDIRegI);
4971
4972  format %{ %}
4973  interface(REG_INTER);
4974%}
4975
4976operand ncxRegI() %{
4977  constraint(ALLOC_IN_RC(ncx_reg));
4978  match(RegI);
4979  match(eAXRegI);
4980  match(eDXRegI);
4981  match(eSIRegI);
4982  match(eDIRegI);
4983
4984  format %{ %}
4985  interface(REG_INTER);
4986%}
4987
4988// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4989// //
4990operand eSIRegI(xRegI reg) %{
4991   constraint(ALLOC_IN_RC(esi_reg));
4992   match(reg);
4993   match(eRegI);
4994
4995   format %{ "ESI" %}
4996   interface(REG_INTER);
4997%}
4998
4999// Pointer Register
5000operand anyRegP() %{
5001  constraint(ALLOC_IN_RC(any_reg));
5002  match(RegP);
5003  match(eAXRegP);
5004  match(eBXRegP);
5005  match(eCXRegP);
5006  match(eDIRegP);
5007  match(eRegP);
5008
5009  format %{ %}
5010  interface(REG_INTER);
5011%}
5012
5013operand eRegP() %{
5014  constraint(ALLOC_IN_RC(e_reg));
5015  match(RegP);
5016  match(eAXRegP);
5017  match(eBXRegP);
5018  match(eCXRegP);
5019  match(eDIRegP);
5020
5021  format %{ %}
5022  interface(REG_INTER);
5023%}
5024
5025// On windows95, EBP is not safe to use for implicit null tests.
5026operand eRegP_no_EBP() %{
5027  constraint(ALLOC_IN_RC(e_reg_no_rbp));
5028  match(RegP);
5029  match(eAXRegP);
5030  match(eBXRegP);
5031  match(eCXRegP);
5032  match(eDIRegP);
5033
5034  op_cost(100);
5035  format %{ %}
5036  interface(REG_INTER);
5037%}
5038
5039operand naxRegP() %{
5040  constraint(ALLOC_IN_RC(nax_reg));
5041  match(RegP);
5042  match(eBXRegP);
5043  match(eDXRegP);
5044  match(eCXRegP);
5045  match(eSIRegP);
5046  match(eDIRegP);
5047
5048  format %{ %}
5049  interface(REG_INTER);
5050%}
5051
5052operand nabxRegP() %{
5053  constraint(ALLOC_IN_RC(nabx_reg));
5054  match(RegP);
5055  match(eCXRegP);
5056  match(eDXRegP);
5057  match(eSIRegP);
5058  match(eDIRegP);
5059
5060  format %{ %}
5061  interface(REG_INTER);
5062%}
5063
5064operand pRegP() %{
5065  constraint(ALLOC_IN_RC(p_reg));
5066  match(RegP);
5067  match(eBXRegP);
5068  match(eDXRegP);
5069  match(eSIRegP);
5070  match(eDIRegP);
5071
5072  format %{ %}
5073  interface(REG_INTER);
5074%}
5075
5076// Special Registers
5077// Return a pointer value
5078operand eAXRegP(eRegP reg) %{
5079  constraint(ALLOC_IN_RC(eax_reg));
5080  match(reg);
5081  format %{ "EAX" %}
5082  interface(REG_INTER);
5083%}
5084
5085// Used in AtomicAdd
5086operand eBXRegP(eRegP reg) %{
5087  constraint(ALLOC_IN_RC(ebx_reg));
5088  match(reg);
5089  format %{ "EBX" %}
5090  interface(REG_INTER);
5091%}
5092
5093// Tail-call (interprocedural jump) to interpreter
5094operand eCXRegP(eRegP reg) %{
5095  constraint(ALLOC_IN_RC(ecx_reg));
5096  match(reg);
5097  format %{ "ECX" %}
5098  interface(REG_INTER);
5099%}
5100
5101operand eSIRegP(eRegP reg) %{
5102  constraint(ALLOC_IN_RC(esi_reg));
5103  match(reg);
5104  format %{ "ESI" %}
5105  interface(REG_INTER);
5106%}
5107
5108// Used in rep stosw
5109operand eDIRegP(eRegP reg) %{
5110  constraint(ALLOC_IN_RC(edi_reg));
5111  match(reg);
5112  format %{ "EDI" %}
5113  interface(REG_INTER);
5114%}
5115
5116operand eBPRegP() %{
5117  constraint(ALLOC_IN_RC(ebp_reg));
5118  match(RegP);
5119  format %{ "EBP" %}
5120  interface(REG_INTER);
5121%}
5122
5123operand eRegL() %{
5124  constraint(ALLOC_IN_RC(long_reg));
5125  match(RegL);
5126  match(eADXRegL);
5127
5128  format %{ %}
5129  interface(REG_INTER);
5130%}
5131
5132operand eADXRegL( eRegL reg ) %{
5133  constraint(ALLOC_IN_RC(eadx_reg));
5134  match(reg);
5135
5136  format %{ "EDX:EAX" %}
5137  interface(REG_INTER);
5138%}
5139
5140operand eBCXRegL( eRegL reg ) %{
5141  constraint(ALLOC_IN_RC(ebcx_reg));
5142  match(reg);
5143
5144  format %{ "EBX:ECX" %}
5145  interface(REG_INTER);
5146%}
5147
5148// Special case for integer high multiply
5149operand eADXRegL_low_only() %{
5150  constraint(ALLOC_IN_RC(eadx_reg));
5151  match(RegL);
5152
5153  format %{ "EAX" %}
5154  interface(REG_INTER);
5155%}
5156
5157// Flags register, used as output of compare instructions
5158operand eFlagsReg() %{
5159  constraint(ALLOC_IN_RC(int_flags));
5160  match(RegFlags);
5161
5162  format %{ "EFLAGS" %}
5163  interface(REG_INTER);
5164%}
5165
5166// Flags register, used as output of FLOATING POINT compare instructions
5167operand eFlagsRegU() %{
5168  constraint(ALLOC_IN_RC(int_flags));
5169  match(RegFlags);
5170
5171  format %{ "EFLAGS_U" %}
5172  interface(REG_INTER);
5173%}
5174
5175// Condition Code Register used by long compare
5176operand flagsReg_long_LTGE() %{
5177  constraint(ALLOC_IN_RC(int_flags));
5178  match(RegFlags);
5179  format %{ "FLAGS_LTGE" %}
5180  interface(REG_INTER);
5181%}
5182operand flagsReg_long_EQNE() %{
5183  constraint(ALLOC_IN_RC(int_flags));
5184  match(RegFlags);
5185  format %{ "FLAGS_EQNE" %}
5186  interface(REG_INTER);
5187%}
5188operand flagsReg_long_LEGT() %{
5189  constraint(ALLOC_IN_RC(int_flags));
5190  match(RegFlags);
5191  format %{ "FLAGS_LEGT" %}
5192  interface(REG_INTER);
5193%}
5194
5195// Float register operands
5196operand regD() %{
5197  predicate( UseSSE < 2 );
5198  constraint(ALLOC_IN_RC(dbl_reg));
5199  match(RegD);
5200  match(regDPR1);
5201  match(regDPR2);
5202  format %{ %}
5203  interface(REG_INTER);
5204%}
5205
5206operand regDPR1(regD reg) %{
5207  predicate( UseSSE < 2 );
5208  constraint(ALLOC_IN_RC(dbl_reg0));
5209  match(reg);
5210  format %{ "FPR1" %}
5211  interface(REG_INTER);
5212%}
5213
5214operand regDPR2(regD reg) %{
5215  predicate( UseSSE < 2 );
5216  constraint(ALLOC_IN_RC(dbl_reg1));
5217  match(reg);
5218  format %{ "FPR2" %}
5219  interface(REG_INTER);
5220%}
5221
5222operand regnotDPR1(regD reg) %{
5223  predicate( UseSSE < 2 );
5224  constraint(ALLOC_IN_RC(dbl_notreg0));
5225  match(reg);
5226  format %{ %}
5227  interface(REG_INTER);
5228%}
5229
5230// XMM Double register operands
5231operand regXD() %{
5232  predicate( UseSSE>=2 );
5233  constraint(ALLOC_IN_RC(xdb_reg));
5234  match(RegD);
5235  match(regXD6);
5236  match(regXD7);
5237  format %{ %}
5238  interface(REG_INTER);
5239%}
5240
5241// XMM6 double register operands
5242operand regXD6(regXD reg) %{
5243  predicate( UseSSE>=2 );
5244  constraint(ALLOC_IN_RC(xdb_reg6));
5245  match(reg);
5246  format %{ "XMM6" %}
5247  interface(REG_INTER);
5248%}
5249
5250// XMM7 double register operands
5251operand regXD7(regXD reg) %{
5252  predicate( UseSSE>=2 );
5253  constraint(ALLOC_IN_RC(xdb_reg7));
5254  match(reg);
5255  format %{ "XMM7" %}
5256  interface(REG_INTER);
5257%}
5258
5259// Float register operands
5260operand regF() %{
5261  predicate( UseSSE < 2 );
5262  constraint(ALLOC_IN_RC(flt_reg));
5263  match(RegF);
5264  match(regFPR1);
5265  format %{ %}
5266  interface(REG_INTER);
5267%}
5268
5269// Float register operands
5270operand regFPR1(regF reg) %{
5271  predicate( UseSSE < 2 );
5272  constraint(ALLOC_IN_RC(flt_reg0));
5273  match(reg);
5274  format %{ "FPR1" %}
5275  interface(REG_INTER);
5276%}
5277
5278// XMM register operands
5279operand regX() %{
5280  predicate( UseSSE>=1 );
5281  constraint(ALLOC_IN_RC(xmm_reg));
5282  match(RegF);
5283  format %{ %}
5284  interface(REG_INTER);
5285%}
5286
5287
5288//----------Memory Operands----------------------------------------------------
5289// Direct Memory Operand
5290operand direct(immP addr) %{
5291  match(addr);
5292
5293  format %{ "[$addr]" %}
5294  interface(MEMORY_INTER) %{
5295    base(0xFFFFFFFF);
5296    index(0x4);
5297    scale(0x0);
5298    disp($addr);
5299  %}
5300%}
5301
5302// Indirect Memory Operand
5303operand indirect(eRegP reg) %{
5304  constraint(ALLOC_IN_RC(e_reg));
5305  match(reg);
5306
5307  format %{ "[$reg]" %}
5308  interface(MEMORY_INTER) %{
5309    base($reg);
5310    index(0x4);
5311    scale(0x0);
5312    disp(0x0);
5313  %}
5314%}
5315
5316// Indirect Memory Plus Short Offset Operand
5317operand indOffset8(eRegP reg, immI8 off) %{
5318  match(AddP reg off);
5319
5320  format %{ "[$reg + $off]" %}
5321  interface(MEMORY_INTER) %{
5322    base($reg);
5323    index(0x4);
5324    scale(0x0);
5325    disp($off);
5326  %}
5327%}
5328
5329// Indirect Memory Plus Long Offset Operand
5330operand indOffset32(eRegP reg, immI off) %{
5331  match(AddP reg off);
5332
5333  format %{ "[$reg + $off]" %}
5334  interface(MEMORY_INTER) %{
5335    base($reg);
5336    index(0x4);
5337    scale(0x0);
5338    disp($off);
5339  %}
5340%}
5341
5342// Indirect Memory Plus Long Offset Operand
5343operand indOffset32X(eRegI reg, immP off) %{
5344  match(AddP off reg);
5345
5346  format %{ "[$reg + $off]" %}
5347  interface(MEMORY_INTER) %{
5348    base($reg);
5349    index(0x4);
5350    scale(0x0);
5351    disp($off);
5352  %}
5353%}
5354
5355// Indirect Memory Plus Index Register Plus Offset Operand
5356operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5357  match(AddP (AddP reg ireg) off);
5358
5359  op_cost(10);
5360  format %{"[$reg + $off + $ireg]" %}
5361  interface(MEMORY_INTER) %{
5362    base($reg);
5363    index($ireg);
5364    scale(0x0);
5365    disp($off);
5366  %}
5367%}
5368
5369// Indirect Memory Plus Index Register Plus Offset Operand
5370operand indIndex(eRegP reg, eRegI ireg) %{
5371  match(AddP reg ireg);
5372
5373  op_cost(10);
5374  format %{"[$reg + $ireg]" %}
5375  interface(MEMORY_INTER) %{
5376    base($reg);
5377    index($ireg);
5378    scale(0x0);
5379    disp(0x0);
5380  %}
5381%}
5382
5383// // -------------------------------------------------------------------------
5384// // 486 architecture doesn't support "scale * index + offset" with out a base
5385// // -------------------------------------------------------------------------
5386// // Scaled Memory Operands
5387// // Indirect Memory Times Scale Plus Offset Operand
5388// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5389//   match(AddP off (LShiftI ireg scale));
5390//
5391//   op_cost(10);
5392//   format %{"[$off + $ireg << $scale]" %}
5393//   interface(MEMORY_INTER) %{
5394//     base(0x4);
5395//     index($ireg);
5396//     scale($scale);
5397//     disp($off);
5398//   %}
5399// %}
5400
5401// Indirect Memory Times Scale Plus Index Register
5402operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5403  match(AddP reg (LShiftI ireg scale));
5404
5405  op_cost(10);
5406  format %{"[$reg + $ireg << $scale]" %}
5407  interface(MEMORY_INTER) %{
5408    base($reg);
5409    index($ireg);
5410    scale($scale);
5411    disp(0x0);
5412  %}
5413%}
5414
5415// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5416operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5417  match(AddP (AddP reg (LShiftI ireg scale)) off);
5418
5419  op_cost(10);
5420  format %{"[$reg + $off + $ireg << $scale]" %}
5421  interface(MEMORY_INTER) %{
5422    base($reg);
5423    index($ireg);
5424    scale($scale);
5425    disp($off);
5426  %}
5427%}
5428
5429//----------Load Long Memory Operands------------------------------------------
5430// The load-long idiom will use it's address expression again after loading
5431// the first word of the long.  If the load-long destination overlaps with
5432// registers used in the addressing expression, the 2nd half will be loaded
5433// from a clobbered address.  Fix this by requiring that load-long use
5434// address registers that do not overlap with the load-long target.
5435
5436// load-long support
5437operand load_long_RegP() %{
5438  constraint(ALLOC_IN_RC(esi_reg));
5439  match(RegP);
5440  match(eSIRegP);
5441  op_cost(100);
5442  format %{  %}
5443  interface(REG_INTER);
5444%}
5445
5446// Indirect Memory Operand Long
5447operand load_long_indirect(load_long_RegP reg) %{
5448  constraint(ALLOC_IN_RC(esi_reg));
5449  match(reg);
5450
5451  format %{ "[$reg]" %}
5452  interface(MEMORY_INTER) %{
5453    base($reg);
5454    index(0x4);
5455    scale(0x0);
5456    disp(0x0);
5457  %}
5458%}
5459
5460// Indirect Memory Plus Long Offset Operand
5461operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5462  match(AddP reg off);
5463
5464  format %{ "[$reg + $off]" %}
5465  interface(MEMORY_INTER) %{
5466    base($reg);
5467    index(0x4);
5468    scale(0x0);
5469    disp($off);
5470  %}
5471%}
5472
5473opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5474
5475
5476//----------Special Memory Operands--------------------------------------------
5477// Stack Slot Operand - This operand is used for loading and storing temporary
5478//                      values on the stack where a match requires a value to
5479//                      flow through memory.
5480operand stackSlotP(sRegP reg) %{
5481  constraint(ALLOC_IN_RC(stack_slots));
5482  // No match rule because this operand is only generated in matching
5483  format %{ "[$reg]" %}
5484  interface(MEMORY_INTER) %{
5485    base(0x4);   // ESP
5486    index(0x4);  // No Index
5487    scale(0x0);  // No Scale
5488    disp($reg);  // Stack Offset
5489  %}
5490%}
5491
5492operand stackSlotI(sRegI reg) %{
5493  constraint(ALLOC_IN_RC(stack_slots));
5494  // No match rule because this operand is only generated in matching
5495  format %{ "[$reg]" %}
5496  interface(MEMORY_INTER) %{
5497    base(0x4);   // ESP
5498    index(0x4);  // No Index
5499    scale(0x0);  // No Scale
5500    disp($reg);  // Stack Offset
5501  %}
5502%}
5503
5504operand stackSlotF(sRegF reg) %{
5505  constraint(ALLOC_IN_RC(stack_slots));
5506  // No match rule because this operand is only generated in matching
5507  format %{ "[$reg]" %}
5508  interface(MEMORY_INTER) %{
5509    base(0x4);   // ESP
5510    index(0x4);  // No Index
5511    scale(0x0);  // No Scale
5512    disp($reg);  // Stack Offset
5513  %}
5514%}
5515
5516operand stackSlotD(sRegD reg) %{
5517  constraint(ALLOC_IN_RC(stack_slots));
5518  // No match rule because this operand is only generated in matching
5519  format %{ "[$reg]" %}
5520  interface(MEMORY_INTER) %{
5521    base(0x4);   // ESP
5522    index(0x4);  // No Index
5523    scale(0x0);  // No Scale
5524    disp($reg);  // Stack Offset
5525  %}
5526%}
5527
5528operand stackSlotL(sRegL reg) %{
5529  constraint(ALLOC_IN_RC(stack_slots));
5530  // No match rule because this operand is only generated in matching
5531  format %{ "[$reg]" %}
5532  interface(MEMORY_INTER) %{
5533    base(0x4);   // ESP
5534    index(0x4);  // No Index
5535    scale(0x0);  // No Scale
5536    disp($reg);  // Stack Offset
5537  %}
5538%}
5539
5540//----------Memory Operands - Win95 Implicit Null Variants----------------
5541// Indirect Memory Operand
5542operand indirect_win95_safe(eRegP_no_EBP reg)
5543%{
5544  constraint(ALLOC_IN_RC(e_reg));
5545  match(reg);
5546
5547  op_cost(100);
5548  format %{ "[$reg]" %}
5549  interface(MEMORY_INTER) %{
5550    base($reg);
5551    index(0x4);
5552    scale(0x0);
5553    disp(0x0);
5554  %}
5555%}
5556
5557// Indirect Memory Plus Short Offset Operand
5558operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5559%{
5560  match(AddP reg off);
5561
5562  op_cost(100);
5563  format %{ "[$reg + $off]" %}
5564  interface(MEMORY_INTER) %{
5565    base($reg);
5566    index(0x4);
5567    scale(0x0);
5568    disp($off);
5569  %}
5570%}
5571
5572// Indirect Memory Plus Long Offset Operand
5573operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5574%{
5575  match(AddP reg off);
5576
5577  op_cost(100);
5578  format %{ "[$reg + $off]" %}
5579  interface(MEMORY_INTER) %{
5580    base($reg);
5581    index(0x4);
5582    scale(0x0);
5583    disp($off);
5584  %}
5585%}
5586
5587// Indirect Memory Plus Index Register Plus Offset Operand
5588operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5589%{
5590  match(AddP (AddP reg ireg) off);
5591
5592  op_cost(100);
5593  format %{"[$reg + $off + $ireg]" %}
5594  interface(MEMORY_INTER) %{
5595    base($reg);
5596    index($ireg);
5597    scale(0x0);
5598    disp($off);
5599  %}
5600%}
5601
5602// Indirect Memory Times Scale Plus Index Register
5603operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5604%{
5605  match(AddP reg (LShiftI ireg scale));
5606
5607  op_cost(100);
5608  format %{"[$reg + $ireg << $scale]" %}
5609  interface(MEMORY_INTER) %{
5610    base($reg);
5611    index($ireg);
5612    scale($scale);
5613    disp(0x0);
5614  %}
5615%}
5616
5617// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5618operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5619%{
5620  match(AddP (AddP reg (LShiftI ireg scale)) off);
5621
5622  op_cost(100);
5623  format %{"[$reg + $off + $ireg << $scale]" %}
5624  interface(MEMORY_INTER) %{
5625    base($reg);
5626    index($ireg);
5627    scale($scale);
5628    disp($off);
5629  %}
5630%}
5631
5632//----------Conditional Branch Operands----------------------------------------
5633// Comparison Op  - This is the operation of the comparison, and is limited to
5634//                  the following set of codes:
5635//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5636//
5637// Other attributes of the comparison, such as unsignedness, are specified
5638// by the comparison instruction that sets a condition code flags register.
5639// That result is represented by a flags operand whose subtype is appropriate
5640// to the unsignedness (etc.) of the comparison.
5641//
5642// Later, the instruction which matches both the Comparison Op (a Bool) and
5643// the flags (produced by the Cmp) specifies the coding of the comparison op
5644// by matching a specific subtype of Bool operand below, such as cmpOpU.
5645
5646// Comparision Code
5647operand cmpOp() %{
5648  match(Bool);
5649
5650  format %{ "" %}
5651  interface(COND_INTER) %{
5652    equal(0x4);
5653    not_equal(0x5);
5654    less(0xC);
5655    greater_equal(0xD);
5656    less_equal(0xE);
5657    greater(0xF);
5658  %}
5659%}
5660
5661// Comparison Code, unsigned compare.  Used by FP also, with
5662// C2 (unordered) turned into GT or LT already.  The other bits
5663// C0 and C3 are turned into Carry & Zero flags.
5664operand cmpOpU() %{
5665  match(Bool);
5666
5667  format %{ "" %}
5668  interface(COND_INTER) %{
5669    equal(0x4);
5670    not_equal(0x5);
5671    less(0x2);
5672    greater_equal(0x3);
5673    less_equal(0x6);
5674    greater(0x7);
5675  %}
5676%}
5677
5678// Comparison Code for FP conditional move
5679operand cmpOp_fcmov() %{
5680  match(Bool);
5681
5682  format %{ "" %}
5683  interface(COND_INTER) %{
5684    equal        (0x0C8);
5685    not_equal    (0x1C8);
5686    less         (0x0C0);
5687    greater_equal(0x1C0);
5688    less_equal   (0x0D0);
5689    greater      (0x1D0);
5690  %}
5691%}
5692
5693// Comparision Code used in long compares
5694operand cmpOp_commute() %{
5695  match(Bool);
5696
5697  format %{ "" %}
5698  interface(COND_INTER) %{
5699    equal(0x4);
5700    not_equal(0x5);
5701    less(0xF);
5702    greater_equal(0xE);
5703    less_equal(0xD);
5704    greater(0xC);
5705  %}
5706%}
5707
5708//----------OPERAND CLASSES----------------------------------------------------
5709// Operand Classes are groups of operands that are used as to simplify
5710// instruction definitions by not requiring the AD writer to specify seperate
5711// instructions for every form of operand when the instruction accepts
5712// multiple operand types with the same basic encoding and format.  The classic
5713// case of this is memory operands.
5714
5715opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5716               indIndex, indIndexScale, indIndexScaleOffset);
5717
5718// Long memory operations are encoded in 2 instructions and a +4 offset.
5719// This means some kind of offset is always required and you cannot use
5720// an oop as the offset (done when working on static globals).
5721opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5722                    indIndex, indIndexScale, indIndexScaleOffset);
5723
5724
5725//----------PIPELINE-----------------------------------------------------------
5726// Rules which define the behavior of the target architectures pipeline.
5727pipeline %{
5728
5729//----------ATTRIBUTES---------------------------------------------------------
5730attributes %{
5731  variable_size_instructions;        // Fixed size instructions
5732  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5733  instruction_unit_size = 1;         // An instruction is 1 bytes long
5734  instruction_fetch_unit_size = 16;  // The processor fetches one line
5735  instruction_fetch_units = 1;       // of 16 bytes
5736
5737  // List of nop instructions
5738  nops( MachNop );
5739%}
5740
5741//----------RESOURCES----------------------------------------------------------
5742// Resources are the functional units available to the machine
5743
5744// Generic P2/P3 pipeline
5745// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5746// 3 instructions decoded per cycle.
5747// 2 load/store ops per cycle, 1 branch, 1 FPU,
5748// 2 ALU op, only ALU0 handles mul/div instructions.
5749resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5750           MS0, MS1, MEM = MS0 | MS1,
5751           BR, FPU,
5752           ALU0, ALU1, ALU = ALU0 | ALU1 );
5753
5754//----------PIPELINE DESCRIPTION-----------------------------------------------
5755// Pipeline Description specifies the stages in the machine's pipeline
5756
5757// Generic P2/P3 pipeline
5758pipe_desc(S0, S1, S2, S3, S4, S5);
5759
5760//----------PIPELINE CLASSES---------------------------------------------------
5761// Pipeline Classes describe the stages in which input and output are
5762// referenced by the hardware pipeline.
5763
5764// Naming convention: ialu or fpu
5765// Then: _reg
5766// Then: _reg if there is a 2nd register
5767// Then: _long if it's a pair of instructions implementing a long
5768// Then: _fat if it requires the big decoder
5769//   Or: _mem if it requires the big decoder and a memory unit.
5770
5771// Integer ALU reg operation
5772pipe_class ialu_reg(eRegI dst) %{
5773    single_instruction;
5774    dst    : S4(write);
5775    dst    : S3(read);
5776    DECODE : S0;        // any decoder
5777    ALU    : S3;        // any alu
5778%}
5779
5780// Long ALU reg operation
5781pipe_class ialu_reg_long(eRegL dst) %{
5782    instruction_count(2);
5783    dst    : S4(write);
5784    dst    : S3(read);
5785    DECODE : S0(2);     // any 2 decoders
5786    ALU    : S3(2);     // both alus
5787%}
5788
5789// Integer ALU reg operation using big decoder
5790pipe_class ialu_reg_fat(eRegI dst) %{
5791    single_instruction;
5792    dst    : S4(write);
5793    dst    : S3(read);
5794    D0     : S0;        // big decoder only
5795    ALU    : S3;        // any alu
5796%}
5797
5798// Long ALU reg operation using big decoder
5799pipe_class ialu_reg_long_fat(eRegL dst) %{
5800    instruction_count(2);
5801    dst    : S4(write);
5802    dst    : S3(read);
5803    D0     : S0(2);     // big decoder only; twice
5804    ALU    : S3(2);     // any 2 alus
5805%}
5806
5807// Integer ALU reg-reg operation
5808pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5809    single_instruction;
5810    dst    : S4(write);
5811    src    : S3(read);
5812    DECODE : S0;        // any decoder
5813    ALU    : S3;        // any alu
5814%}
5815
5816// Long ALU reg-reg operation
5817pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5818    instruction_count(2);
5819    dst    : S4(write);
5820    src    : S3(read);
5821    DECODE : S0(2);     // any 2 decoders
5822    ALU    : S3(2);     // both alus
5823%}
5824
5825// Integer ALU reg-reg operation
5826pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5827    single_instruction;
5828    dst    : S4(write);
5829    src    : S3(read);
5830    D0     : S0;        // big decoder only
5831    ALU    : S3;        // any alu
5832%}
5833
5834// Long ALU reg-reg operation
5835pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5836    instruction_count(2);
5837    dst    : S4(write);
5838    src    : S3(read);
5839    D0     : S0(2);     // big decoder only; twice
5840    ALU    : S3(2);     // both alus
5841%}
5842
5843// Integer ALU reg-mem operation
5844pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5845    single_instruction;
5846    dst    : S5(write);
5847    mem    : S3(read);
5848    D0     : S0;        // big decoder only
5849    ALU    : S4;        // any alu
5850    MEM    : S3;        // any mem
5851%}
5852
5853// Long ALU reg-mem operation
5854pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5855    instruction_count(2);
5856    dst    : S5(write);
5857    mem    : S3(read);
5858    D0     : S0(2);     // big decoder only; twice
5859    ALU    : S4(2);     // any 2 alus
5860    MEM    : S3(2);     // both mems
5861%}
5862
5863// Integer mem operation (prefetch)
5864pipe_class ialu_mem(memory mem)
5865%{
5866    single_instruction;
5867    mem    : S3(read);
5868    D0     : S0;        // big decoder only
5869    MEM    : S3;        // any mem
5870%}
5871
5872// Integer Store to Memory
5873pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5874    single_instruction;
5875    mem    : S3(read);
5876    src    : S5(read);
5877    D0     : S0;        // big decoder only
5878    ALU    : S4;        // any alu
5879    MEM    : S3;
5880%}
5881
5882// Long Store to Memory
5883pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5884    instruction_count(2);
5885    mem    : S3(read);
5886    src    : S5(read);
5887    D0     : S0(2);     // big decoder only; twice
5888    ALU    : S4(2);     // any 2 alus
5889    MEM    : S3(2);     // Both mems
5890%}
5891
5892// Integer Store to Memory
5893pipe_class ialu_mem_imm(memory mem) %{
5894    single_instruction;
5895    mem    : S3(read);
5896    D0     : S0;        // big decoder only
5897    ALU    : S4;        // any alu
5898    MEM    : S3;
5899%}
5900
5901// Integer ALU0 reg-reg operation
5902pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5903    single_instruction;
5904    dst    : S4(write);
5905    src    : S3(read);
5906    D0     : S0;        // Big decoder only
5907    ALU0   : S3;        // only alu0
5908%}
5909
5910// Integer ALU0 reg-mem operation
5911pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5912    single_instruction;
5913    dst    : S5(write);
5914    mem    : S3(read);
5915    D0     : S0;        // big decoder only
5916    ALU0   : S4;        // ALU0 only
5917    MEM    : S3;        // any mem
5918%}
5919
5920// Integer ALU reg-reg operation
5921pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5922    single_instruction;
5923    cr     : S4(write);
5924    src1   : S3(read);
5925    src2   : S3(read);
5926    DECODE : S0;        // any decoder
5927    ALU    : S3;        // any alu
5928%}
5929
5930// Integer ALU reg-imm operation
5931pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
5932    single_instruction;
5933    cr     : S4(write);
5934    src1   : S3(read);
5935    DECODE : S0;        // any decoder
5936    ALU    : S3;        // any alu
5937%}
5938
5939// Integer ALU reg-mem operation
5940pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
5941    single_instruction;
5942    cr     : S4(write);
5943    src1   : S3(read);
5944    src2   : S3(read);
5945    D0     : S0;        // big decoder only
5946    ALU    : S4;        // any alu
5947    MEM    : S3;
5948%}
5949
5950// Conditional move reg-reg
5951pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
5952    instruction_count(4);
5953    y      : S4(read);
5954    q      : S3(read);
5955    p      : S3(read);
5956    DECODE : S0(4);     // any decoder
5957%}
5958
5959// Conditional move reg-reg
5960pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
5961    single_instruction;
5962    dst    : S4(write);
5963    src    : S3(read);
5964    cr     : S3(read);
5965    DECODE : S0;        // any decoder
5966%}
5967
5968// Conditional move reg-mem
5969pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
5970    single_instruction;
5971    dst    : S4(write);
5972    src    : S3(read);
5973    cr     : S3(read);
5974    DECODE : S0;        // any decoder
5975    MEM    : S3;
5976%}
5977
5978// Conditional move reg-reg long
5979pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5980    single_instruction;
5981    dst    : S4(write);
5982    src    : S3(read);
5983    cr     : S3(read);
5984    DECODE : S0(2);     // any 2 decoders
5985%}
5986
5987// Conditional move double reg-reg
5988pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
5989    single_instruction;
5990    dst    : S4(write);
5991    src    : S3(read);
5992    cr     : S3(read);
5993    DECODE : S0;        // any decoder
5994%}
5995
5996// Float reg-reg operation
5997pipe_class fpu_reg(regD dst) %{
5998    instruction_count(2);
5999    dst    : S3(read);
6000    DECODE : S0(2);     // any 2 decoders
6001    FPU    : S3;
6002%}
6003
6004// Float reg-reg operation
6005pipe_class fpu_reg_reg(regD dst, regD src) %{
6006    instruction_count(2);
6007    dst    : S4(write);
6008    src    : S3(read);
6009    DECODE : S0(2);     // any 2 decoders
6010    FPU    : S3;
6011%}
6012
6013// Float reg-reg operation
6014pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6015    instruction_count(3);
6016    dst    : S4(write);
6017    src1   : S3(read);
6018    src2   : S3(read);
6019    DECODE : S0(3);     // any 3 decoders
6020    FPU    : S3(2);
6021%}
6022
6023// Float reg-reg operation
6024pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6025    instruction_count(4);
6026    dst    : S4(write);
6027    src1   : S3(read);
6028    src2   : S3(read);
6029    src3   : S3(read);
6030    DECODE : S0(4);     // any 3 decoders
6031    FPU    : S3(2);
6032%}
6033
6034// Float reg-reg operation
6035pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6036    instruction_count(4);
6037    dst    : S4(write);
6038    src1   : S3(read);
6039    src2   : S3(read);
6040    src3   : S3(read);
6041    DECODE : S1(3);     // any 3 decoders
6042    D0     : S0;        // Big decoder only
6043    FPU    : S3(2);
6044    MEM    : S3;
6045%}
6046
6047// Float reg-mem operation
6048pipe_class fpu_reg_mem(regD dst, memory mem) %{
6049    instruction_count(2);
6050    dst    : S5(write);
6051    mem    : S3(read);
6052    D0     : S0;        // big decoder only
6053    DECODE : S1;        // any decoder for FPU POP
6054    FPU    : S4;
6055    MEM    : S3;        // any mem
6056%}
6057
6058// Float reg-mem operation
6059pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6060    instruction_count(3);
6061    dst    : S5(write);
6062    src1   : S3(read);
6063    mem    : S3(read);
6064    D0     : S0;        // big decoder only
6065    DECODE : S1(2);     // any decoder for FPU POP
6066    FPU    : S4;
6067    MEM    : S3;        // any mem
6068%}
6069
6070// Float mem-reg operation
6071pipe_class fpu_mem_reg(memory mem, regD src) %{
6072    instruction_count(2);
6073    src    : S5(read);
6074    mem    : S3(read);
6075    DECODE : S0;        // any decoder for FPU PUSH
6076    D0     : S1;        // big decoder only
6077    FPU    : S4;
6078    MEM    : S3;        // any mem
6079%}
6080
6081pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6082    instruction_count(3);
6083    src1   : S3(read);
6084    src2   : S3(read);
6085    mem    : S3(read);
6086    DECODE : S0(2);     // any decoder for FPU PUSH
6087    D0     : S1;        // big decoder only
6088    FPU    : S4;
6089    MEM    : S3;        // any mem
6090%}
6091
6092pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6093    instruction_count(3);
6094    src1   : S3(read);
6095    src2   : S3(read);
6096    mem    : S4(read);
6097    DECODE : S0;        // any decoder for FPU PUSH
6098    D0     : S0(2);     // big decoder only
6099    FPU    : S4;
6100    MEM    : S3(2);     // any mem
6101%}
6102
6103pipe_class fpu_mem_mem(memory dst, memory src1) %{
6104    instruction_count(2);
6105    src1   : S3(read);
6106    dst    : S4(read);
6107    D0     : S0(2);     // big decoder only
6108    MEM    : S3(2);     // any mem
6109%}
6110
6111pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6112    instruction_count(3);
6113    src1   : S3(read);
6114    src2   : S3(read);
6115    dst    : S4(read);
6116    D0     : S0(3);     // big decoder only
6117    FPU    : S4;
6118    MEM    : S3(3);     // any mem
6119%}
6120
6121pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6122    instruction_count(3);
6123    src1   : S4(read);
6124    mem    : S4(read);
6125    DECODE : S0;        // any decoder for FPU PUSH
6126    D0     : S0(2);     // big decoder only
6127    FPU    : S4;
6128    MEM    : S3(2);     // any mem
6129%}
6130
6131// Float load constant
6132pipe_class fpu_reg_con(regD dst) %{
6133    instruction_count(2);
6134    dst    : S5(write);
6135    D0     : S0;        // big decoder only for the load
6136    DECODE : S1;        // any decoder for FPU POP
6137    FPU    : S4;
6138    MEM    : S3;        // any mem
6139%}
6140
6141// Float load constant
6142pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6143    instruction_count(3);
6144    dst    : S5(write);
6145    src    : S3(read);
6146    D0     : S0;        // big decoder only for the load
6147    DECODE : S1(2);     // any decoder for FPU POP
6148    FPU    : S4;
6149    MEM    : S3;        // any mem
6150%}
6151
6152// UnConditional branch
6153pipe_class pipe_jmp( label labl ) %{
6154    single_instruction;
6155    BR   : S3;
6156%}
6157
6158// Conditional branch
6159pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6160    single_instruction;
6161    cr    : S1(read);
6162    BR    : S3;
6163%}
6164
6165// Allocation idiom
6166pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6167    instruction_count(1); force_serialization;
6168    fixed_latency(6);
6169    heap_ptr : S3(read);
6170    DECODE   : S0(3);
6171    D0       : S2;
6172    MEM      : S3;
6173    ALU      : S3(2);
6174    dst      : S5(write);
6175    BR       : S5;
6176%}
6177
6178// Generic big/slow expanded idiom
6179pipe_class pipe_slow(  ) %{
6180    instruction_count(10); multiple_bundles; force_serialization;
6181    fixed_latency(100);
6182    D0  : S0(2);
6183    MEM : S3(2);
6184%}
6185
6186// The real do-nothing guy
6187pipe_class empty( ) %{
6188    instruction_count(0);
6189%}
6190
6191// Define the class for the Nop node
6192define %{
6193   MachNop = empty;
6194%}
6195
6196%}
6197
6198//----------INSTRUCTIONS-------------------------------------------------------
6199//
6200// match      -- States which machine-independent subtree may be replaced
6201//               by this instruction.
6202// ins_cost   -- The estimated cost of this instruction is used by instruction
6203//               selection to identify a minimum cost tree of machine
6204//               instructions that matches a tree of machine-independent
6205//               instructions.
6206// format     -- A string providing the disassembly for this instruction.
6207//               The value of an instruction's operand may be inserted
6208//               by referring to it with a '$' prefix.
6209// opcode     -- Three instruction opcodes may be provided.  These are referred
6210//               to within an encode class as $primary, $secondary, and $tertiary
6211//               respectively.  The primary opcode is commonly used to
6212//               indicate the type of machine instruction, while secondary
6213//               and tertiary are often used for prefix options or addressing
6214//               modes.
6215// ins_encode -- A list of encode classes with parameters. The encode class
6216//               name must have been defined in an 'enc_class' specification
6217//               in the encode section of the architecture description.
6218
6219//----------BSWAP-Instruction--------------------------------------------------
6220instruct bytes_reverse_int(eRegI dst) %{
6221  match(Set dst (ReverseBytesI dst));
6222
6223  format %{ "BSWAP  $dst" %}
6224  opcode(0x0F, 0xC8);
6225  ins_encode( OpcP, OpcSReg(dst) );
6226  ins_pipe( ialu_reg );
6227%}
6228
6229instruct bytes_reverse_long(eRegL dst) %{
6230  match(Set dst (ReverseBytesL dst));
6231
6232  format %{ "BSWAP  $dst.lo\n\t"
6233            "BSWAP  $dst.hi\n\t"
6234            "XCHG   $dst.lo $dst.hi" %}
6235
6236  ins_cost(125);
6237  ins_encode( bswap_long_bytes(dst) );
6238  ins_pipe( ialu_reg_reg);
6239%}
6240
6241
6242//----------Load/Store/Move Instructions---------------------------------------
6243//----------Load Instructions--------------------------------------------------
6244// Load Byte (8bit signed)
6245instruct loadB(xRegI dst, memory mem) %{
6246  match(Set dst (LoadB mem));
6247
6248  ins_cost(125);
6249  format %{ "MOVSX8 $dst,$mem" %}
6250  opcode(0xBE, 0x0F);
6251  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6252  ins_pipe( ialu_reg_mem );
6253%}
6254
6255// Load Byte (8bit UNsigned)
6256instruct loadUB(xRegI dst, memory mem, immI_255 bytemask) %{
6257  match(Set dst (AndI (LoadB mem) bytemask));
6258
6259  ins_cost(125);
6260  format %{ "MOVZX8 $dst,$mem" %}
6261  opcode(0xB6, 0x0F);
6262  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6263  ins_pipe( ialu_reg_mem );
6264%}
6265
6266// Load Char (16bit unsigned)
6267instruct loadC(eRegI dst, memory mem) %{
6268  match(Set dst (LoadC mem));
6269
6270  ins_cost(125);
6271  format %{ "MOVZX  $dst,$mem" %}
6272  opcode(0xB7, 0x0F);
6273  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6274  ins_pipe( ialu_reg_mem );
6275%}
6276
6277// Load Integer
6278instruct loadI(eRegI dst, memory mem) %{
6279  match(Set dst (LoadI mem));
6280
6281  ins_cost(125);
6282  format %{ "MOV    $dst,$mem" %}
6283  opcode(0x8B);
6284  ins_encode( OpcP, RegMem(dst,mem));
6285  ins_pipe( ialu_reg_mem );
6286%}
6287
6288// Load Long.  Cannot clobber address while loading, so restrict address
6289// register to ESI
6290instruct loadL(eRegL dst, load_long_memory mem) %{
6291  predicate(!((LoadLNode*)n)->require_atomic_access());
6292  match(Set dst (LoadL mem));
6293
6294  ins_cost(250);
6295  format %{ "MOV    $dst.lo,$mem\n\t"
6296            "MOV    $dst.hi,$mem+4" %}
6297  opcode(0x8B, 0x8B);
6298  ins_encode( OpcP, RegMem(dst,mem), OpcS, RegMem_Hi(dst,mem));
6299  ins_pipe( ialu_reg_long_mem );
6300%}
6301
6302// Volatile Load Long.  Must be atomic, so do 64-bit FILD
6303// then store it down to the stack and reload on the int
6304// side.
6305instruct loadL_volatile(stackSlotL dst, memory mem) %{
6306  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6307  match(Set dst (LoadL mem));
6308
6309  ins_cost(200);
6310  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6311            "FISTp  $dst" %}
6312  ins_encode(enc_loadL_volatile(mem,dst));
6313  ins_pipe( fpu_reg_mem );
6314%}
6315
6316instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6317  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6318  match(Set dst (LoadL mem));
6319  effect(TEMP tmp);
6320  ins_cost(180);
6321  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6322            "MOVSD  $dst,$tmp" %}
6323  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6324  ins_pipe( pipe_slow );
6325%}
6326
6327instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6328  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6329  match(Set dst (LoadL mem));
6330  effect(TEMP tmp);
6331  ins_cost(160);
6332  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6333            "MOVD   $dst.lo,$tmp\n\t"
6334            "PSRLQ  $tmp,32\n\t"
6335            "MOVD   $dst.hi,$tmp" %}
6336  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6337  ins_pipe( pipe_slow );
6338%}
6339
6340// Load Range
6341instruct loadRange(eRegI dst, memory mem) %{
6342  match(Set dst (LoadRange mem));
6343
6344  ins_cost(125);
6345  format %{ "MOV    $dst,$mem" %}
6346  opcode(0x8B);
6347  ins_encode( OpcP, RegMem(dst,mem));
6348  ins_pipe( ialu_reg_mem );
6349%}
6350
6351
6352// Load Pointer
6353instruct loadP(eRegP dst, memory mem) %{
6354  match(Set dst (LoadP mem));
6355
6356  ins_cost(125);
6357  format %{ "MOV    $dst,$mem" %}
6358  opcode(0x8B);
6359  ins_encode( OpcP, RegMem(dst,mem));
6360  ins_pipe( ialu_reg_mem );
6361%}
6362
6363// Load Klass Pointer
6364instruct loadKlass(eRegP dst, memory mem) %{
6365  match(Set dst (LoadKlass mem));
6366
6367  ins_cost(125);
6368  format %{ "MOV    $dst,$mem" %}
6369  opcode(0x8B);
6370  ins_encode( OpcP, RegMem(dst,mem));
6371  ins_pipe( ialu_reg_mem );
6372%}
6373
6374// Load Short (16bit signed)
6375instruct loadS(eRegI dst, memory mem) %{
6376  match(Set dst (LoadS mem));
6377
6378  ins_cost(125);
6379  format %{ "MOVSX  $dst,$mem" %}
6380  opcode(0xBF, 0x0F);
6381  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6382  ins_pipe( ialu_reg_mem );
6383%}
6384
6385// Load Double
6386instruct loadD(regD dst, memory mem) %{
6387  predicate(UseSSE<=1);
6388  match(Set dst (LoadD mem));
6389
6390  ins_cost(150);
6391  format %{ "FLD_D  ST,$mem\n\t"
6392            "FSTP   $dst" %}
6393  opcode(0xDD);               /* DD /0 */
6394  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6395              Pop_Reg_D(dst) );
6396  ins_pipe( fpu_reg_mem );
6397%}
6398
6399// Load Double to XMM
6400instruct loadXD(regXD dst, memory mem) %{
6401  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6402  match(Set dst (LoadD mem));
6403  ins_cost(145);
6404  format %{ "MOVSD  $dst,$mem" %}
6405  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6406  ins_pipe( pipe_slow );
6407%}
6408
6409instruct loadXD_partial(regXD dst, memory mem) %{
6410  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6411  match(Set dst (LoadD mem));
6412  ins_cost(145);
6413  format %{ "MOVLPD $dst,$mem" %}
6414  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6415  ins_pipe( pipe_slow );
6416%}
6417
6418// Load to XMM register (single-precision floating point)
6419// MOVSS instruction
6420instruct loadX(regX dst, memory mem) %{
6421  predicate(UseSSE>=1);
6422  match(Set dst (LoadF mem));
6423  ins_cost(145);
6424  format %{ "MOVSS  $dst,$mem" %}
6425  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6426  ins_pipe( pipe_slow );
6427%}
6428
6429// Load Float
6430instruct loadF(regF dst, memory mem) %{
6431  predicate(UseSSE==0);
6432  match(Set dst (LoadF mem));
6433
6434  ins_cost(150);
6435  format %{ "FLD_S  ST,$mem\n\t"
6436            "FSTP   $dst" %}
6437  opcode(0xD9);               /* D9 /0 */
6438  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6439              Pop_Reg_F(dst) );
6440  ins_pipe( fpu_reg_mem );
6441%}
6442
6443// Load Aligned Packed Byte to XMM register
6444instruct loadA8B(regXD dst, memory mem) %{
6445  predicate(UseSSE>=1);
6446  match(Set dst (Load8B mem));
6447  ins_cost(125);
6448  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
6449  ins_encode( movq_ld(dst, mem));
6450  ins_pipe( pipe_slow );
6451%}
6452
6453// Load Aligned Packed Short to XMM register
6454instruct loadA4S(regXD dst, memory mem) %{
6455  predicate(UseSSE>=1);
6456  match(Set dst (Load4S mem));
6457  ins_cost(125);
6458  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
6459  ins_encode( movq_ld(dst, mem));
6460  ins_pipe( pipe_slow );
6461%}
6462
6463// Load Aligned Packed Char to XMM register
6464instruct loadA4C(regXD dst, memory mem) %{
6465  predicate(UseSSE>=1);
6466  match(Set dst (Load4C mem));
6467  ins_cost(125);
6468  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
6469  ins_encode( movq_ld(dst, mem));
6470  ins_pipe( pipe_slow );
6471%}
6472
6473// Load Aligned Packed Integer to XMM register
6474instruct load2IU(regXD dst, memory mem) %{
6475  predicate(UseSSE>=1);
6476  match(Set dst (Load2I mem));
6477  ins_cost(125);
6478  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
6479  ins_encode( movq_ld(dst, mem));
6480  ins_pipe( pipe_slow );
6481%}
6482
6483// Load Aligned Packed Single to XMM
6484instruct loadA2F(regXD dst, memory mem) %{
6485  predicate(UseSSE>=1);
6486  match(Set dst (Load2F mem));
6487  ins_cost(145);
6488  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
6489  ins_encode( movq_ld(dst, mem));
6490  ins_pipe( pipe_slow );
6491%}
6492
6493// Load Effective Address
6494instruct leaP8(eRegP dst, indOffset8 mem) %{
6495  match(Set dst mem);
6496
6497  ins_cost(110);
6498  format %{ "LEA    $dst,$mem" %}
6499  opcode(0x8D);
6500  ins_encode( OpcP, RegMem(dst,mem));
6501  ins_pipe( ialu_reg_reg_fat );
6502%}
6503
6504instruct leaP32(eRegP dst, indOffset32 mem) %{
6505  match(Set dst mem);
6506
6507  ins_cost(110);
6508  format %{ "LEA    $dst,$mem" %}
6509  opcode(0x8D);
6510  ins_encode( OpcP, RegMem(dst,mem));
6511  ins_pipe( ialu_reg_reg_fat );
6512%}
6513
6514instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6515  match(Set dst mem);
6516
6517  ins_cost(110);
6518  format %{ "LEA    $dst,$mem" %}
6519  opcode(0x8D);
6520  ins_encode( OpcP, RegMem(dst,mem));
6521  ins_pipe( ialu_reg_reg_fat );
6522%}
6523
6524instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6525  match(Set dst mem);
6526
6527  ins_cost(110);
6528  format %{ "LEA    $dst,$mem" %}
6529  opcode(0x8D);
6530  ins_encode( OpcP, RegMem(dst,mem));
6531  ins_pipe( ialu_reg_reg_fat );
6532%}
6533
6534instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6535  match(Set dst mem);
6536
6537  ins_cost(110);
6538  format %{ "LEA    $dst,$mem" %}
6539  opcode(0x8D);
6540  ins_encode( OpcP, RegMem(dst,mem));
6541  ins_pipe( ialu_reg_reg_fat );
6542%}
6543
6544// Load Constant
6545instruct loadConI(eRegI dst, immI src) %{
6546  match(Set dst src);
6547
6548  format %{ "MOV    $dst,$src" %}
6549  ins_encode( LdImmI(dst, src) );
6550  ins_pipe( ialu_reg_fat );
6551%}
6552
6553// Load Constant zero
6554instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
6555  match(Set dst src);
6556  effect(KILL cr);
6557
6558  ins_cost(50);
6559  format %{ "XOR    $dst,$dst" %}
6560  opcode(0x33);  /* + rd */
6561  ins_encode( OpcP, RegReg( dst, dst ) );
6562  ins_pipe( ialu_reg );
6563%}
6564
6565instruct loadConP(eRegP dst, immP src) %{
6566  match(Set dst src);
6567
6568  format %{ "MOV    $dst,$src" %}
6569  opcode(0xB8);  /* + rd */
6570  ins_encode( LdImmP(dst, src) );
6571  ins_pipe( ialu_reg_fat );
6572%}
6573
6574instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6575  match(Set dst src);
6576  effect(KILL cr);
6577  ins_cost(200);
6578  format %{ "MOV    $dst.lo,$src.lo\n\t"
6579            "MOV    $dst.hi,$src.hi" %}
6580  opcode(0xB8);
6581  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6582  ins_pipe( ialu_reg_long_fat );
6583%}
6584
6585instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6586  match(Set dst src);
6587  effect(KILL cr);
6588  ins_cost(150);
6589  format %{ "XOR    $dst.lo,$dst.lo\n\t"
6590            "XOR    $dst.hi,$dst.hi" %}
6591  opcode(0x33,0x33);
6592  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6593  ins_pipe( ialu_reg_long );
6594%}
6595
6596// The instruction usage is guarded by predicate in operand immF().
6597instruct loadConF(regF dst, immF src) %{
6598  match(Set dst src);
6599  ins_cost(125);
6600
6601  format %{ "FLD_S  ST,$src\n\t"
6602            "FSTP   $dst" %}
6603  opcode(0xD9, 0x00);       /* D9 /0 */
6604  ins_encode(LdImmF(src), Pop_Reg_F(dst) );
6605  ins_pipe( fpu_reg_con );
6606%}
6607
6608// The instruction usage is guarded by predicate in operand immXF().
6609instruct loadConX(regX dst, immXF con) %{
6610  match(Set dst con);
6611  ins_cost(125);
6612  format %{ "MOVSS  $dst,[$con]" %}
6613  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
6614  ins_pipe( pipe_slow );
6615%}
6616
6617// The instruction usage is guarded by predicate in operand immXF0().
6618instruct loadConX0(regX dst, immXF0 src) %{
6619  match(Set dst src);
6620  ins_cost(100);
6621  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6622  ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
6623  ins_pipe( pipe_slow );
6624%}
6625
6626// The instruction usage is guarded by predicate in operand immD().
6627instruct loadConD(regD dst, immD src) %{
6628  match(Set dst src);
6629  ins_cost(125);
6630
6631  format %{ "FLD_D  ST,$src\n\t"
6632            "FSTP   $dst" %}
6633  ins_encode(LdImmD(src), Pop_Reg_D(dst) );
6634  ins_pipe( fpu_reg_con );
6635%}
6636
6637// The instruction usage is guarded by predicate in operand immXD().
6638instruct loadConXD(regXD dst, immXD con) %{
6639  match(Set dst con);
6640  ins_cost(125);
6641  format %{ "MOVSD  $dst,[$con]" %}
6642  ins_encode(load_conXD(dst, con));
6643  ins_pipe( pipe_slow );
6644%}
6645
6646// The instruction usage is guarded by predicate in operand immXD0().
6647instruct loadConXD0(regXD dst, immXD0 src) %{
6648  match(Set dst src);
6649  ins_cost(100);
6650  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6651  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
6652  ins_pipe( pipe_slow );
6653%}
6654
6655// Load Stack Slot
6656instruct loadSSI(eRegI dst, stackSlotI src) %{
6657  match(Set dst src);
6658  ins_cost(125);
6659
6660  format %{ "MOV    $dst,$src" %}
6661  opcode(0x8B);
6662  ins_encode( OpcP, RegMem(dst,src));
6663  ins_pipe( ialu_reg_mem );
6664%}
6665
6666instruct loadSSL(eRegL dst, stackSlotL src) %{
6667  match(Set dst src);
6668
6669  ins_cost(200);
6670  format %{ "MOV    $dst,$src.lo\n\t"
6671            "MOV    $dst+4,$src.hi" %}
6672  opcode(0x8B, 0x8B);
6673  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6674  ins_pipe( ialu_mem_long_reg );
6675%}
6676
6677// Load Stack Slot
6678instruct loadSSP(eRegP dst, stackSlotP src) %{
6679  match(Set dst src);
6680  ins_cost(125);
6681
6682  format %{ "MOV    $dst,$src" %}
6683  opcode(0x8B);
6684  ins_encode( OpcP, RegMem(dst,src));
6685  ins_pipe( ialu_reg_mem );
6686%}
6687
6688// Load Stack Slot
6689instruct loadSSF(regF dst, stackSlotF src) %{
6690  match(Set dst src);
6691  ins_cost(125);
6692
6693  format %{ "FLD_S  $src\n\t"
6694            "FSTP   $dst" %}
6695  opcode(0xD9);               /* D9 /0, FLD m32real */
6696  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6697              Pop_Reg_F(dst) );
6698  ins_pipe( fpu_reg_mem );
6699%}
6700
6701// Load Stack Slot
6702instruct loadSSD(regD dst, stackSlotD src) %{
6703  match(Set dst src);
6704  ins_cost(125);
6705
6706  format %{ "FLD_D  $src\n\t"
6707            "FSTP   $dst" %}
6708  opcode(0xDD);               /* DD /0, FLD m64real */
6709  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6710              Pop_Reg_D(dst) );
6711  ins_pipe( fpu_reg_mem );
6712%}
6713
6714// Prefetch instructions.
6715// Must be safe to execute with invalid address (cannot fault).
6716
6717instruct prefetchr0( memory mem ) %{
6718  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
6719  match(PrefetchRead mem);
6720  ins_cost(0);
6721  size(0);
6722  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6723  ins_encode();
6724  ins_pipe(empty);
6725%}
6726
6727instruct prefetchr( memory mem ) %{
6728  predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
6729  match(PrefetchRead mem);
6730  ins_cost(100);
6731
6732  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6733  opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
6734  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6735  ins_pipe(ialu_mem);
6736%}
6737
6738instruct prefetchrNTA( memory mem ) %{
6739  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6740  match(PrefetchRead mem);
6741  ins_cost(100);
6742
6743  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6744  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
6745  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6746  ins_pipe(ialu_mem);
6747%}
6748
6749instruct prefetchrT0( memory mem ) %{
6750  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6751  match(PrefetchRead mem);
6752  ins_cost(100);
6753
6754  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6755  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
6756  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6757  ins_pipe(ialu_mem);
6758%}
6759
6760instruct prefetchrT2( memory mem ) %{
6761  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6762  match(PrefetchRead mem);
6763  ins_cost(100);
6764
6765  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6766  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
6767  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
6768  ins_pipe(ialu_mem);
6769%}
6770
6771instruct prefetchw0( memory mem ) %{
6772  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
6773  match(PrefetchWrite mem);
6774  ins_cost(0);
6775  size(0);
6776  format %{ "Prefetch (non-SSE is empty encoding)" %}
6777  ins_encode();
6778  ins_pipe(empty);
6779%}
6780
6781instruct prefetchw( memory mem ) %{
6782  predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
6783  match( PrefetchWrite mem );
6784  ins_cost(100);
6785
6786  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6787  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
6788  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6789  ins_pipe(ialu_mem);
6790%}
6791
6792instruct prefetchwNTA( memory mem ) %{
6793  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6794  match(PrefetchWrite mem);
6795  ins_cost(100);
6796
6797  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6798  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
6799  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6800  ins_pipe(ialu_mem);
6801%}
6802
6803instruct prefetchwT0( memory mem ) %{
6804  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6805  match(PrefetchWrite mem);
6806  ins_cost(100);
6807
6808  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
6809  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
6810  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6811  ins_pipe(ialu_mem);
6812%}
6813
6814instruct prefetchwT2( memory mem ) %{
6815  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6816  match(PrefetchWrite mem);
6817  ins_cost(100);
6818
6819  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
6820  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
6821  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
6822  ins_pipe(ialu_mem);
6823%}
6824
6825//----------Store Instructions-------------------------------------------------
6826
6827// Store Byte
6828instruct storeB(memory mem, xRegI src) %{
6829  match(Set mem (StoreB mem src));
6830
6831  ins_cost(125);
6832  format %{ "MOV8   $mem,$src" %}
6833  opcode(0x88);
6834  ins_encode( OpcP, RegMem( src, mem ) );
6835  ins_pipe( ialu_mem_reg );
6836%}
6837
6838// Store Char/Short
6839instruct storeC(memory mem, eRegI src) %{
6840  match(Set mem (StoreC mem src));
6841
6842  ins_cost(125);
6843  format %{ "MOV16  $mem,$src" %}
6844  opcode(0x89, 0x66);
6845  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6846  ins_pipe( ialu_mem_reg );
6847%}
6848
6849// Store Integer
6850instruct storeI(memory mem, eRegI src) %{
6851  match(Set mem (StoreI mem src));
6852
6853  ins_cost(125);
6854  format %{ "MOV    $mem,$src" %}
6855  opcode(0x89);
6856  ins_encode( OpcP, RegMem( src, mem ) );
6857  ins_pipe( ialu_mem_reg );
6858%}
6859
6860// Store Long
6861instruct storeL(long_memory mem, eRegL src) %{
6862  predicate(!((StoreLNode*)n)->require_atomic_access());
6863  match(Set mem (StoreL mem src));
6864
6865  ins_cost(200);
6866  format %{ "MOV    $mem,$src.lo\n\t"
6867            "MOV    $mem+4,$src.hi" %}
6868  opcode(0x89, 0x89);
6869  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6870  ins_pipe( ialu_mem_long_reg );
6871%}
6872
6873// Volatile Store Long.  Must be atomic, so move it into
6874// the FP TOS and then do a 64-bit FIST.  Has to probe the
6875// target address before the store (for null-ptr checks)
6876// so the memory operand is used twice in the encoding.
6877instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6878  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6879  match(Set mem (StoreL mem src));
6880  effect( KILL cr );
6881  ins_cost(400);
6882  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6883            "FILD   $src\n\t"
6884            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6885  opcode(0x3B);
6886  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6887  ins_pipe( fpu_reg_mem );
6888%}
6889
6890instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
6891  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6892  match(Set mem (StoreL mem src));
6893  effect( TEMP tmp, KILL cr );
6894  ins_cost(380);
6895  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6896            "MOVSD  $tmp,$src\n\t"
6897            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6898  opcode(0x3B);
6899  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
6900  ins_pipe( pipe_slow );
6901%}
6902
6903instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
6904  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6905  match(Set mem (StoreL mem src));
6906  effect( TEMP tmp2 , TEMP tmp, KILL cr );
6907  ins_cost(360);
6908  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6909            "MOVD   $tmp,$src.lo\n\t"
6910            "MOVD   $tmp2,$src.hi\n\t"
6911            "PUNPCKLDQ $tmp,$tmp2\n\t"
6912            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6913  opcode(0x3B);
6914  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
6915  ins_pipe( pipe_slow );
6916%}
6917
6918// Store Pointer; for storing unknown oops and raw pointers
6919instruct storeP(memory mem, anyRegP src) %{
6920  match(Set mem (StoreP mem src));
6921
6922  ins_cost(125);
6923  format %{ "MOV    $mem,$src" %}
6924  opcode(0x89);
6925  ins_encode( OpcP, RegMem( src, mem ) );
6926  ins_pipe( ialu_mem_reg );
6927%}
6928
6929// Store Integer Immediate
6930instruct storeImmI(memory mem, immI src) %{
6931  match(Set mem (StoreI mem src));
6932
6933  ins_cost(150);
6934  format %{ "MOV    $mem,$src" %}
6935  opcode(0xC7);               /* C7 /0 */
6936  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6937  ins_pipe( ialu_mem_imm );
6938%}
6939
6940// Store Short/Char Immediate
6941instruct storeImmI16(memory mem, immI16 src) %{
6942  predicate(UseStoreImmI16);
6943  match(Set mem (StoreC mem src));
6944
6945  ins_cost(150);
6946  format %{ "MOV16  $mem,$src" %}
6947  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6948  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6949  ins_pipe( ialu_mem_imm );
6950%}
6951
6952// Store Pointer Immediate; null pointers or constant oops that do not
6953// need card-mark barriers.
6954instruct storeImmP(memory mem, immP src) %{
6955  match(Set mem (StoreP mem src));
6956
6957  ins_cost(150);
6958  format %{ "MOV    $mem,$src" %}
6959  opcode(0xC7);               /* C7 /0 */
6960  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6961  ins_pipe( ialu_mem_imm );
6962%}
6963
6964// Store Byte Immediate
6965instruct storeImmB(memory mem, immI8 src) %{
6966  match(Set mem (StoreB mem src));
6967
6968  ins_cost(150);
6969  format %{ "MOV8   $mem,$src" %}
6970  opcode(0xC6);               /* C6 /0 */
6971  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6972  ins_pipe( ialu_mem_imm );
6973%}
6974
6975// Store Aligned Packed Byte XMM register to memory
6976instruct storeA8B(memory mem, regXD src) %{
6977  predicate(UseSSE>=1);
6978  match(Set mem (Store8B mem src));
6979  ins_cost(145);
6980  format %{ "MOVQ  $mem,$src\t! packed8B" %}
6981  ins_encode( movq_st(mem, src));
6982  ins_pipe( pipe_slow );
6983%}
6984
6985// Store Aligned Packed Char/Short XMM register to memory
6986instruct storeA4C(memory mem, regXD src) %{
6987  predicate(UseSSE>=1);
6988  match(Set mem (Store4C mem src));
6989  ins_cost(145);
6990  format %{ "MOVQ  $mem,$src\t! packed4C" %}
6991  ins_encode( movq_st(mem, src));
6992  ins_pipe( pipe_slow );
6993%}
6994
6995// Store Aligned Packed Integer XMM register to memory
6996instruct storeA2I(memory mem, regXD src) %{
6997  predicate(UseSSE>=1);
6998  match(Set mem (Store2I mem src));
6999  ins_cost(145);
7000  format %{ "MOVQ  $mem,$src\t! packed2I" %}
7001  ins_encode( movq_st(mem, src));
7002  ins_pipe( pipe_slow );
7003%}
7004
7005// Store CMS card-mark Immediate
7006instruct storeImmCM(memory mem, immI8 src) %{
7007  match(Set mem (StoreCM mem src));
7008
7009  ins_cost(150);
7010  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7011  opcode(0xC6);               /* C6 /0 */
7012  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7013  ins_pipe( ialu_mem_imm );
7014%}
7015
7016// Store Double
7017instruct storeD( memory mem, regDPR1 src) %{
7018  predicate(UseSSE<=1);
7019  match(Set mem (StoreD mem src));
7020
7021  ins_cost(100);
7022  format %{ "FST_D  $mem,$src" %}
7023  opcode(0xDD);       /* DD /2 */
7024  ins_encode( enc_FP_store(mem,src) );
7025  ins_pipe( fpu_mem_reg );
7026%}
7027
7028// Store double does rounding on x86
7029instruct storeD_rounded( memory mem, regDPR1 src) %{
7030  predicate(UseSSE<=1);
7031  match(Set mem (StoreD mem (RoundDouble src)));
7032
7033  ins_cost(100);
7034  format %{ "FST_D  $mem,$src\t# round" %}
7035  opcode(0xDD);       /* DD /2 */
7036  ins_encode( enc_FP_store(mem,src) );
7037  ins_pipe( fpu_mem_reg );
7038%}
7039
7040// Store XMM register to memory (double-precision floating points)
7041// MOVSD instruction
7042instruct storeXD(memory mem, regXD src) %{
7043  predicate(UseSSE>=2);
7044  match(Set mem (StoreD mem src));
7045  ins_cost(95);
7046  format %{ "MOVSD  $mem,$src" %}
7047  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7048  ins_pipe( pipe_slow );
7049%}
7050
7051// Store XMM register to memory (single-precision floating point)
7052// MOVSS instruction
7053instruct storeX(memory mem, regX src) %{
7054  predicate(UseSSE>=1);
7055  match(Set mem (StoreF mem src));
7056  ins_cost(95);
7057  format %{ "MOVSS  $mem,$src" %}
7058  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7059  ins_pipe( pipe_slow );
7060%}
7061
7062// Store Aligned Packed Single Float XMM register to memory
7063instruct storeA2F(memory mem, regXD src) %{
7064  predicate(UseSSE>=1);
7065  match(Set mem (Store2F mem src));
7066  ins_cost(145);
7067  format %{ "MOVQ  $mem,$src\t! packed2F" %}
7068  ins_encode( movq_st(mem, src));
7069  ins_pipe( pipe_slow );
7070%}
7071
7072// Store Float
7073instruct storeF( memory mem, regFPR1 src) %{
7074  predicate(UseSSE==0);
7075  match(Set mem (StoreF mem src));
7076
7077  ins_cost(100);
7078  format %{ "FST_S  $mem,$src" %}
7079  opcode(0xD9);       /* D9 /2 */
7080  ins_encode( enc_FP_store(mem,src) );
7081  ins_pipe( fpu_mem_reg );
7082%}
7083
7084// Store Float does rounding on x86
7085instruct storeF_rounded( memory mem, regFPR1 src) %{
7086  predicate(UseSSE==0);
7087  match(Set mem (StoreF mem (RoundFloat src)));
7088
7089  ins_cost(100);
7090  format %{ "FST_S  $mem,$src\t# round" %}
7091  opcode(0xD9);       /* D9 /2 */
7092  ins_encode( enc_FP_store(mem,src) );
7093  ins_pipe( fpu_mem_reg );
7094%}
7095
7096// Store Float does rounding on x86
7097instruct storeF_Drounded( memory mem, regDPR1 src) %{
7098  predicate(UseSSE<=1);
7099  match(Set mem (StoreF mem (ConvD2F src)));
7100
7101  ins_cost(100);
7102  format %{ "FST_S  $mem,$src\t# D-round" %}
7103  opcode(0xD9);       /* D9 /2 */
7104  ins_encode( enc_FP_store(mem,src) );
7105  ins_pipe( fpu_mem_reg );
7106%}
7107
7108// Store immediate Float value (it is faster than store from FPU register)
7109// The instruction usage is guarded by predicate in operand immF().
7110instruct storeF_imm( memory mem, immF src) %{
7111  match(Set mem (StoreF mem src));
7112
7113  ins_cost(50);
7114  format %{ "MOV    $mem,$src\t# store float" %}
7115  opcode(0xC7);               /* C7 /0 */
7116  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7117  ins_pipe( ialu_mem_imm );
7118%}
7119
7120// Store immediate Float value (it is faster than store from XMM register)
7121// The instruction usage is guarded by predicate in operand immXF().
7122instruct storeX_imm( memory mem, immXF src) %{
7123  match(Set mem (StoreF mem src));
7124
7125  ins_cost(50);
7126  format %{ "MOV    $mem,$src\t# store float" %}
7127  opcode(0xC7);               /* C7 /0 */
7128  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7129  ins_pipe( ialu_mem_imm );
7130%}
7131
7132// Store Integer to stack slot
7133instruct storeSSI(stackSlotI dst, eRegI src) %{
7134  match(Set dst src);
7135
7136  ins_cost(100);
7137  format %{ "MOV    $dst,$src" %}
7138  opcode(0x89);
7139  ins_encode( OpcPRegSS( dst, src ) );
7140  ins_pipe( ialu_mem_reg );
7141%}
7142
7143// Store Integer to stack slot
7144instruct storeSSP(stackSlotP dst, eRegP src) %{
7145  match(Set dst src);
7146
7147  ins_cost(100);
7148  format %{ "MOV    $dst,$src" %}
7149  opcode(0x89);
7150  ins_encode( OpcPRegSS( dst, src ) );
7151  ins_pipe( ialu_mem_reg );
7152%}
7153
7154// Store Long to stack slot
7155instruct storeSSL(stackSlotL dst, eRegL src) %{
7156  match(Set dst src);
7157
7158  ins_cost(200);
7159  format %{ "MOV    $dst,$src.lo\n\t"
7160            "MOV    $dst+4,$src.hi" %}
7161  opcode(0x89, 0x89);
7162  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7163  ins_pipe( ialu_mem_long_reg );
7164%}
7165
7166//----------MemBar Instructions-----------------------------------------------
7167// Memory barrier flavors
7168
7169instruct membar_acquire() %{
7170  match(MemBarAcquire);
7171  ins_cost(400);
7172
7173  size(0);
7174  format %{ "MEMBAR-acquire" %}
7175  ins_encode( enc_membar_acquire );
7176  ins_pipe(pipe_slow);
7177%}
7178
7179instruct membar_acquire_lock() %{
7180  match(MemBarAcquire);
7181  predicate(Matcher::prior_fast_lock(n));
7182  ins_cost(0);
7183
7184  size(0);
7185  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7186  ins_encode( );
7187  ins_pipe(empty);
7188%}
7189
7190instruct membar_release() %{
7191  match(MemBarRelease);
7192  ins_cost(400);
7193
7194  size(0);
7195  format %{ "MEMBAR-release" %}
7196  ins_encode( enc_membar_release );
7197  ins_pipe(pipe_slow);
7198%}
7199
7200instruct membar_release_lock() %{
7201  match(MemBarRelease);
7202  predicate(Matcher::post_fast_unlock(n));
7203  ins_cost(0);
7204
7205  size(0);
7206  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7207  ins_encode( );
7208  ins_pipe(empty);
7209%}
7210
7211instruct membar_volatile() %{
7212  match(MemBarVolatile);
7213  ins_cost(400);
7214
7215  format %{ "MEMBAR-volatile" %}
7216  ins_encode( enc_membar_volatile );
7217  ins_pipe(pipe_slow);
7218%}
7219
7220instruct unnecessary_membar_volatile() %{
7221  match(MemBarVolatile);
7222  predicate(Matcher::post_store_load_barrier(n));
7223  ins_cost(0);
7224
7225  size(0);
7226  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7227  ins_encode( );
7228  ins_pipe(empty);
7229%}
7230
7231//----------Move Instructions--------------------------------------------------
7232instruct castX2P(eAXRegP dst, eAXRegI src) %{
7233  match(Set dst (CastX2P src));
7234  format %{ "# X2P  $dst, $src" %}
7235  ins_encode( /*empty encoding*/ );
7236  ins_cost(0);
7237  ins_pipe(empty);
7238%}
7239
7240instruct castP2X(eRegI dst, eRegP src ) %{
7241  match(Set dst (CastP2X src));
7242  ins_cost(50);
7243  format %{ "MOV    $dst, $src\t# CastP2X" %}
7244  ins_encode( enc_Copy( dst, src) );
7245  ins_pipe( ialu_reg_reg );
7246%}
7247
7248//----------Conditional Move---------------------------------------------------
7249// Conditional move
7250instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7251  predicate(VM_Version::supports_cmov() );
7252  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7253  ins_cost(200);
7254  format %{ "CMOV$cop $dst,$src" %}
7255  opcode(0x0F,0x40);
7256  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7257  ins_pipe( pipe_cmov_reg );
7258%}
7259
7260instruct cmovI_regU( eRegI dst, eRegI src, eFlagsRegU cr, cmpOpU cop ) %{
7261  predicate(VM_Version::supports_cmov() );
7262  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7263  ins_cost(200);
7264  format %{ "CMOV$cop $dst,$src" %}
7265  opcode(0x0F,0x40);
7266  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7267  ins_pipe( pipe_cmov_reg );
7268%}
7269
7270// Conditional move
7271instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7272  predicate(VM_Version::supports_cmov() );
7273  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7274  ins_cost(250);
7275  format %{ "CMOV$cop $dst,$src" %}
7276  opcode(0x0F,0x40);
7277  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7278  ins_pipe( pipe_cmov_mem );
7279%}
7280
7281// Conditional move
7282instruct cmovI_memu(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7283  predicate(VM_Version::supports_cmov() );
7284  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7285  ins_cost(250);
7286  format %{ "CMOV$cop $dst,$src" %}
7287  opcode(0x0F,0x40);
7288  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7289  ins_pipe( pipe_cmov_mem );
7290%}
7291
7292// Conditional move
7293instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7294  predicate(VM_Version::supports_cmov() );
7295  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7296  ins_cost(200);
7297  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7298  opcode(0x0F,0x40);
7299  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7300  ins_pipe( pipe_cmov_reg );
7301%}
7302
7303// Conditional move (non-P6 version)
7304// Note:  a CMoveP is generated for  stubs and native wrappers
7305//        regardless of whether we are on a P6, so we
7306//        emulate a cmov here
7307instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7308  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7309  ins_cost(300);
7310  format %{ "Jn$cop   skip\n\t"
7311          "MOV    $dst,$src\t# pointer\n"
7312      "skip:" %}
7313  opcode(0x8b);
7314  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7315  ins_pipe( pipe_cmov_reg );
7316%}
7317
7318// Conditional move
7319instruct cmovP_regU(eRegP dst, eRegP src, eFlagsRegU cr, cmpOpU cop ) %{
7320  predicate(VM_Version::supports_cmov() );
7321  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7322  ins_cost(200);
7323  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7324  opcode(0x0F,0x40);
7325  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7326  ins_pipe( pipe_cmov_reg );
7327%}
7328
7329// DISABLED: Requires the ADLC to emit a bottom_type call that
7330// correctly meets the two pointer arguments; one is an incoming
7331// register but the other is a memory operand.  ALSO appears to
7332// be buggy with implicit null checks.
7333//
7334//// Conditional move
7335//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7336//  predicate(VM_Version::supports_cmov() );
7337//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7338//  ins_cost(250);
7339//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7340//  opcode(0x0F,0x40);
7341//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7342//  ins_pipe( pipe_cmov_mem );
7343//%}
7344//
7345//// Conditional move
7346//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7347//  predicate(VM_Version::supports_cmov() );
7348//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7349//  ins_cost(250);
7350//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7351//  opcode(0x0F,0x40);
7352//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7353//  ins_pipe( pipe_cmov_mem );
7354//%}
7355
7356// Conditional move
7357instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
7358  predicate(UseSSE<=1);
7359  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7360  ins_cost(200);
7361  format %{ "FCMOV$cop $dst,$src\t# double" %}
7362  opcode(0xDA);
7363  ins_encode( enc_cmov_d(cop,src) );
7364  ins_pipe( pipe_cmovD_reg );
7365%}
7366
7367// Conditional move
7368instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
7369  predicate(UseSSE==0);
7370  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7371  ins_cost(200);
7372  format %{ "FCMOV$cop $dst,$src\t# float" %}
7373  opcode(0xDA);
7374  ins_encode( enc_cmov_d(cop,src) );
7375  ins_pipe( pipe_cmovD_reg );
7376%}
7377
7378// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7379instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7380  predicate(UseSSE<=1);
7381  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7382  ins_cost(200);
7383  format %{ "Jn$cop   skip\n\t"
7384            "MOV    $dst,$src\t# double\n"
7385      "skip:" %}
7386  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7387  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
7388  ins_pipe( pipe_cmovD_reg );
7389%}
7390
7391// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7392instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7393  predicate(UseSSE==0);
7394  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7395  ins_cost(200);
7396  format %{ "Jn$cop    skip\n\t"
7397            "MOV    $dst,$src\t# float\n"
7398      "skip:" %}
7399  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7400  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
7401  ins_pipe( pipe_cmovD_reg );
7402%}
7403
7404// No CMOVE with SSE/SSE2
7405instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
7406  predicate (UseSSE>=1);
7407  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7408  ins_cost(200);
7409  format %{ "Jn$cop   skip\n\t"
7410            "MOVSS  $dst,$src\t# float\n"
7411      "skip:" %}
7412  ins_encode %{
7413    Label skip;
7414    // Invert sense of branch from sense of CMOV
7415    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7416    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7417    __ bind(skip);
7418  %}
7419  ins_pipe( pipe_slow );
7420%}
7421
7422// No CMOVE with SSE/SSE2
7423instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
7424  predicate (UseSSE>=2);
7425  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7426  ins_cost(200);
7427  format %{ "Jn$cop   skip\n\t"
7428            "MOVSD  $dst,$src\t# float\n"
7429      "skip:" %}
7430  ins_encode %{
7431    Label skip;
7432    // Invert sense of branch from sense of CMOV
7433    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7434    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7435    __ bind(skip);
7436  %}
7437  ins_pipe( pipe_slow );
7438%}
7439
7440// unsigned version
7441instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
7442  predicate (UseSSE>=1);
7443  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7444  ins_cost(200);
7445  format %{ "Jn$cop   skip\n\t"
7446            "MOVSS  $dst,$src\t# float\n"
7447      "skip:" %}
7448  ins_encode %{
7449    Label skip;
7450    // Invert sense of branch from sense of CMOV
7451    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7452    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7453    __ bind(skip);
7454  %}
7455  ins_pipe( pipe_slow );
7456%}
7457
7458// unsigned version
7459instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
7460  predicate (UseSSE>=2);
7461  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7462  ins_cost(200);
7463  format %{ "Jn$cop   skip\n\t"
7464            "MOVSD  $dst,$src\t# float\n"
7465      "skip:" %}
7466  ins_encode %{
7467    Label skip;
7468    // Invert sense of branch from sense of CMOV
7469    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7470    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7471    __ bind(skip);
7472  %}
7473  ins_pipe( pipe_slow );
7474%}
7475
7476instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7477  predicate(VM_Version::supports_cmov() );
7478  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7479  ins_cost(200);
7480  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7481            "CMOV$cop $dst.hi,$src.hi" %}
7482  opcode(0x0F,0x40);
7483  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7484  ins_pipe( pipe_cmov_reg_long );
7485%}
7486
7487instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7488  predicate(VM_Version::supports_cmov() );
7489  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7490  ins_cost(200);
7491  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7492            "CMOV$cop $dst.hi,$src.hi" %}
7493  opcode(0x0F,0x40);
7494  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7495  ins_pipe( pipe_cmov_reg_long );
7496%}
7497
7498//----------Arithmetic Instructions--------------------------------------------
7499//----------Addition Instructions----------------------------------------------
7500// Integer Addition Instructions
7501instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
7502  match(Set dst (AddI dst src));
7503  effect(KILL cr);
7504
7505  size(2);
7506  format %{ "ADD    $dst,$src" %}
7507  opcode(0x03);
7508  ins_encode( OpcP, RegReg( dst, src) );
7509  ins_pipe( ialu_reg_reg );
7510%}
7511
7512instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
7513  match(Set dst (AddI dst src));
7514  effect(KILL cr);
7515
7516  format %{ "ADD    $dst,$src" %}
7517  opcode(0x81, 0x00); /* /0 id */
7518  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7519  ins_pipe( ialu_reg );
7520%}
7521
7522instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
7523  predicate(UseIncDec);
7524  match(Set dst (AddI dst src));
7525  effect(KILL cr);
7526
7527  size(1);
7528  format %{ "INC    $dst" %}
7529  opcode(0x40); /*  */
7530  ins_encode( Opc_plus( primary, dst ) );
7531  ins_pipe( ialu_reg );
7532%}
7533
7534instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
7535  match(Set dst (AddI src0 src1));
7536  ins_cost(110);
7537
7538  format %{ "LEA    $dst,[$src0 + $src1]" %}
7539  opcode(0x8D); /* 0x8D /r */
7540  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7541  ins_pipe( ialu_reg_reg );
7542%}
7543
7544instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7545  match(Set dst (AddP src0 src1));
7546  ins_cost(110);
7547
7548  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7549  opcode(0x8D); /* 0x8D /r */
7550  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7551  ins_pipe( ialu_reg_reg );
7552%}
7553
7554instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
7555  predicate(UseIncDec);
7556  match(Set dst (AddI dst src));
7557  effect(KILL cr);
7558
7559  size(1);
7560  format %{ "DEC    $dst" %}
7561  opcode(0x48); /*  */
7562  ins_encode( Opc_plus( primary, dst ) );
7563  ins_pipe( ialu_reg );
7564%}
7565
7566instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
7567  match(Set dst (AddP dst src));
7568  effect(KILL cr);
7569
7570  size(2);
7571  format %{ "ADD    $dst,$src" %}
7572  opcode(0x03);
7573  ins_encode( OpcP, RegReg( dst, src) );
7574  ins_pipe( ialu_reg_reg );
7575%}
7576
7577instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7578  match(Set dst (AddP dst src));
7579  effect(KILL cr);
7580
7581  format %{ "ADD    $dst,$src" %}
7582  opcode(0x81,0x00); /* Opcode 81 /0 id */
7583  // ins_encode( RegImm( dst, src) );
7584  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7585  ins_pipe( ialu_reg );
7586%}
7587
7588instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
7589  match(Set dst (AddI dst (LoadI src)));
7590  effect(KILL cr);
7591
7592  ins_cost(125);
7593  format %{ "ADD    $dst,$src" %}
7594  opcode(0x03);
7595  ins_encode( OpcP, RegMem( dst, src) );
7596  ins_pipe( ialu_reg_mem );
7597%}
7598
7599instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
7600  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7601  effect(KILL cr);
7602
7603  ins_cost(150);
7604  format %{ "ADD    $dst,$src" %}
7605  opcode(0x01);  /* Opcode 01 /r */
7606  ins_encode( OpcP, RegMem( src, dst ) );
7607  ins_pipe( ialu_mem_reg );
7608%}
7609
7610// Add Memory with Immediate
7611instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7612  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7613  effect(KILL cr);
7614
7615  ins_cost(125);
7616  format %{ "ADD    $dst,$src" %}
7617  opcode(0x81);               /* Opcode 81 /0 id */
7618  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7619  ins_pipe( ialu_mem_imm );
7620%}
7621
7622instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7623  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7624  effect(KILL cr);
7625
7626  ins_cost(125);
7627  format %{ "INC    $dst" %}
7628  opcode(0xFF);               /* Opcode FF /0 */
7629  ins_encode( OpcP, RMopc_Mem(0x00,dst));
7630  ins_pipe( ialu_mem_imm );
7631%}
7632
7633instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7634  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7635  effect(KILL cr);
7636
7637  ins_cost(125);
7638  format %{ "DEC    $dst" %}
7639  opcode(0xFF);               /* Opcode FF /1 */
7640  ins_encode( OpcP, RMopc_Mem(0x01,dst));
7641  ins_pipe( ialu_mem_imm );
7642%}
7643
7644
7645instruct checkCastPP( eRegP dst ) %{
7646  match(Set dst (CheckCastPP dst));
7647
7648  size(0);
7649  format %{ "#checkcastPP of $dst" %}
7650  ins_encode( /*empty encoding*/ );
7651  ins_pipe( empty );
7652%}
7653
7654instruct castPP( eRegP dst ) %{
7655  match(Set dst (CastPP dst));
7656  format %{ "#castPP of $dst" %}
7657  ins_encode( /*empty encoding*/ );
7658  ins_pipe( empty );
7659%}
7660
7661instruct castII( eRegI dst ) %{
7662  match(Set dst (CastII dst));
7663  format %{ "#castII of $dst" %}
7664  ins_encode( /*empty encoding*/ );
7665  ins_cost(0);
7666  ins_pipe( empty );
7667%}
7668
7669
7670// Load-locked - same as a regular pointer load when used with compare-swap
7671instruct loadPLocked(eRegP dst, memory mem) %{
7672  match(Set dst (LoadPLocked mem));
7673
7674  ins_cost(125);
7675  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7676  opcode(0x8B);
7677  ins_encode( OpcP, RegMem(dst,mem));
7678  ins_pipe( ialu_reg_mem );
7679%}
7680
7681// LoadLong-locked - same as a volatile long load when used with compare-swap
7682instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
7683  predicate(UseSSE<=1);
7684  match(Set dst (LoadLLocked mem));
7685
7686  ins_cost(200);
7687  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
7688            "FISTp  $dst" %}
7689  ins_encode(enc_loadL_volatile(mem,dst));
7690  ins_pipe( fpu_reg_mem );
7691%}
7692
7693instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
7694  predicate(UseSSE>=2);
7695  match(Set dst (LoadLLocked mem));
7696  effect(TEMP tmp);
7697  ins_cost(180);
7698  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
7699            "MOVSD  $dst,$tmp" %}
7700  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
7701  ins_pipe( pipe_slow );
7702%}
7703
7704instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
7705  predicate(UseSSE>=2);
7706  match(Set dst (LoadLLocked mem));
7707  effect(TEMP tmp);
7708  ins_cost(160);
7709  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
7710            "MOVD   $dst.lo,$tmp\n\t"
7711            "PSRLQ  $tmp,32\n\t"
7712            "MOVD   $dst.hi,$tmp" %}
7713  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
7714  ins_pipe( pipe_slow );
7715%}
7716
7717// Conditional-store of the updated heap-top.
7718// Used during allocation of the shared heap.
7719// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7720instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7721  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7722  // EAX is killed if there is contention, but then it's also unused.
7723  // In the common case of no contention, EAX holds the new oop address.
7724  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7725  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7726  ins_pipe( pipe_cmpxchg );
7727%}
7728
7729// Conditional-store of a long value
7730// Returns a boolean value (0/1) on success.  Implemented with a CMPXCHG8 on Intel.
7731// mem_ptr can actually be in either ESI or EDI
7732instruct storeLConditional( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7733  match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
7734  effect(KILL cr);
7735  // EDX:EAX is killed if there is contention, but then it's also unused.
7736  // In the common case of no contention, EDX:EAX holds the new oop address.
7737  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7738            "MOV    $res,0\n\t"
7739            "JNE,s  fail\n\t"
7740            "MOV    $res,1\n"
7741          "fail:" %}
7742  ins_encode( enc_cmpxchg8(mem_ptr),
7743              enc_flags_ne_to_boolean(res) );
7744  ins_pipe( pipe_cmpxchg );
7745%}
7746
7747// Conditional-store of a long value
7748// ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG8 on Intel.
7749// mem_ptr can actually be in either ESI or EDI
7750instruct storeLConditional_flags( eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr, immI0 zero ) %{
7751  match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
7752  // EDX:EAX is killed if there is contention, but then it's also unused.
7753  // In the common case of no contention, EDX:EAX holds the new oop address.
7754  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %}
7755  ins_encode( enc_cmpxchg8(mem_ptr) );
7756  ins_pipe( pipe_cmpxchg );
7757%}
7758
7759// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7760
7761instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7762  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7763  effect(KILL cr, KILL oldval);
7764  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7765            "MOV    $res,0\n\t"
7766            "JNE,s  fail\n\t"
7767            "MOV    $res,1\n"
7768          "fail:" %}
7769  ins_encode( enc_cmpxchg8(mem_ptr),
7770              enc_flags_ne_to_boolean(res) );
7771  ins_pipe( pipe_cmpxchg );
7772%}
7773
7774instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7775  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7776  effect(KILL cr, KILL oldval);
7777  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7778            "MOV    $res,0\n\t"
7779            "JNE,s  fail\n\t"
7780            "MOV    $res,1\n"
7781          "fail:" %}
7782  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7783  ins_pipe( pipe_cmpxchg );
7784%}
7785
7786instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7787  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7788  effect(KILL cr, KILL oldval);
7789  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7790            "MOV    $res,0\n\t"
7791            "JNE,s  fail\n\t"
7792            "MOV    $res,1\n"
7793          "fail:" %}
7794  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7795  ins_pipe( pipe_cmpxchg );
7796%}
7797
7798//----------Subtraction Instructions-------------------------------------------
7799// Integer Subtraction Instructions
7800instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
7801  match(Set dst (SubI dst src));
7802  effect(KILL cr);
7803
7804  size(2);
7805  format %{ "SUB    $dst,$src" %}
7806  opcode(0x2B);
7807  ins_encode( OpcP, RegReg( dst, src) );
7808  ins_pipe( ialu_reg_reg );
7809%}
7810
7811instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
7812  match(Set dst (SubI dst src));
7813  effect(KILL cr);
7814
7815  format %{ "SUB    $dst,$src" %}
7816  opcode(0x81,0x05);  /* Opcode 81 /5 */
7817  // ins_encode( RegImm( dst, src) );
7818  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7819  ins_pipe( ialu_reg );
7820%}
7821
7822instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
7823  match(Set dst (SubI dst (LoadI src)));
7824  effect(KILL cr);
7825
7826  ins_cost(125);
7827  format %{ "SUB    $dst,$src" %}
7828  opcode(0x2B);
7829  ins_encode( OpcP, RegMem( dst, src) );
7830  ins_pipe( ialu_reg_mem );
7831%}
7832
7833instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
7834  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7835  effect(KILL cr);
7836
7837  ins_cost(150);
7838  format %{ "SUB    $dst,$src" %}
7839  opcode(0x29);  /* Opcode 29 /r */
7840  ins_encode( OpcP, RegMem( src, dst ) );
7841  ins_pipe( ialu_mem_reg );
7842%}
7843
7844// Subtract from a pointer
7845instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
7846  match(Set dst (AddP dst (SubI zero src)));
7847  effect(KILL cr);
7848
7849  size(2);
7850  format %{ "SUB    $dst,$src" %}
7851  opcode(0x2B);
7852  ins_encode( OpcP, RegReg( dst, src) );
7853  ins_pipe( ialu_reg_reg );
7854%}
7855
7856instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
7857  match(Set dst (SubI zero dst));
7858  effect(KILL cr);
7859
7860  size(2);
7861  format %{ "NEG    $dst" %}
7862  opcode(0xF7,0x03);  // Opcode F7 /3
7863  ins_encode( OpcP, RegOpc( dst ) );
7864  ins_pipe( ialu_reg );
7865%}
7866
7867
7868//----------Multiplication/Division Instructions-------------------------------
7869// Integer Multiplication Instructions
7870// Multiply Register
7871instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
7872  match(Set dst (MulI dst src));
7873  effect(KILL cr);
7874
7875  size(3);
7876  ins_cost(300);
7877  format %{ "IMUL   $dst,$src" %}
7878  opcode(0xAF, 0x0F);
7879  ins_encode( OpcS, OpcP, RegReg( dst, src) );
7880  ins_pipe( ialu_reg_reg_alu0 );
7881%}
7882
7883// Multiply 32-bit Immediate
7884instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
7885  match(Set dst (MulI src imm));
7886  effect(KILL cr);
7887
7888  ins_cost(300);
7889  format %{ "IMUL   $dst,$src,$imm" %}
7890  opcode(0x69);  /* 69 /r id */
7891  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7892  ins_pipe( ialu_reg_reg_alu0 );
7893%}
7894
7895instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7896  match(Set dst src);
7897  effect(KILL cr);
7898
7899  // Note that this is artificially increased to make it more expensive than loadConL
7900  ins_cost(250);
7901  format %{ "MOV    EAX,$src\t// low word only" %}
7902  opcode(0xB8);
7903  ins_encode( LdImmL_Lo(dst, src) );
7904  ins_pipe( ialu_reg_fat );
7905%}
7906
7907// Multiply by 32-bit Immediate, taking the shifted high order results
7908//  (special case for shift by 32)
7909instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7910  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7911  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7912             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7913             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7914  effect(USE src1, KILL cr);
7915
7916  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7917  ins_cost(0*100 + 1*400 - 150);
7918  format %{ "IMUL   EDX:EAX,$src1" %}
7919  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7920  ins_pipe( pipe_slow );
7921%}
7922
7923// Multiply by 32-bit Immediate, taking the shifted high order results
7924instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7925  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7926  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7927             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7928             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7929  effect(USE src1, KILL cr);
7930
7931  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7932  ins_cost(1*100 + 1*400 - 150);
7933  format %{ "IMUL   EDX:EAX,$src1\n\t"
7934            "SAR    EDX,$cnt-32" %}
7935  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7936  ins_pipe( pipe_slow );
7937%}
7938
7939// Multiply Memory 32-bit Immediate
7940instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
7941  match(Set dst (MulI (LoadI src) imm));
7942  effect(KILL cr);
7943
7944  ins_cost(300);
7945  format %{ "IMUL   $dst,$src,$imm" %}
7946  opcode(0x69);  /* 69 /r id */
7947  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7948  ins_pipe( ialu_reg_mem_alu0 );
7949%}
7950
7951// Multiply Memory
7952instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
7953  match(Set dst (MulI dst (LoadI src)));
7954  effect(KILL cr);
7955
7956  ins_cost(350);
7957  format %{ "IMUL   $dst,$src" %}
7958  opcode(0xAF, 0x0F);
7959  ins_encode( OpcS, OpcP, RegMem( dst, src) );
7960  ins_pipe( ialu_reg_mem_alu0 );
7961%}
7962
7963// Multiply Register Int to Long
7964instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
7965  // Basic Idea: long = (long)int * (long)int
7966  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
7967  effect(DEF dst, USE src, USE src1, KILL flags);
7968
7969  ins_cost(300);
7970  format %{ "IMUL   $dst,$src1" %}
7971
7972  ins_encode( long_int_multiply( dst, src1 ) );
7973  ins_pipe( ialu_reg_reg_alu0 );
7974%}
7975
7976instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
7977  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
7978  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
7979  effect(KILL flags);
7980
7981  ins_cost(300);
7982  format %{ "MUL    $dst,$src1" %}
7983
7984  ins_encode( long_uint_multiply(dst, src1) );
7985  ins_pipe( ialu_reg_reg_alu0 );
7986%}
7987
7988// Multiply Register Long
7989instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
7990  match(Set dst (MulL dst src));
7991  effect(KILL cr, TEMP tmp);
7992  ins_cost(4*100+3*400);
7993// Basic idea: lo(result) = lo(x_lo * y_lo)
7994//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
7995  format %{ "MOV    $tmp,$src.lo\n\t"
7996            "IMUL   $tmp,EDX\n\t"
7997            "MOV    EDX,$src.hi\n\t"
7998            "IMUL   EDX,EAX\n\t"
7999            "ADD    $tmp,EDX\n\t"
8000            "MUL    EDX:EAX,$src.lo\n\t"
8001            "ADD    EDX,$tmp" %}
8002  ins_encode( long_multiply( dst, src, tmp ) );
8003  ins_pipe( pipe_slow );
8004%}
8005
8006// Multiply Register Long by small constant
8007instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8008  match(Set dst (MulL dst src));
8009  effect(KILL cr, TEMP tmp);
8010  ins_cost(2*100+2*400);
8011  size(12);
8012// Basic idea: lo(result) = lo(src * EAX)
8013//             hi(result) = hi(src * EAX) + lo(src * EDX)
8014  format %{ "IMUL   $tmp,EDX,$src\n\t"
8015            "MOV    EDX,$src\n\t"
8016            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8017            "ADD    EDX,$tmp" %}
8018  ins_encode( long_multiply_con( dst, src, tmp ) );
8019  ins_pipe( pipe_slow );
8020%}
8021
8022// Integer DIV with Register
8023instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8024  match(Set rax (DivI rax div));
8025  effect(KILL rdx, KILL cr);
8026  size(26);
8027  ins_cost(30*100+10*100);
8028  format %{ "CMP    EAX,0x80000000\n\t"
8029            "JNE,s  normal\n\t"
8030            "XOR    EDX,EDX\n\t"
8031            "CMP    ECX,-1\n\t"
8032            "JE,s   done\n"
8033    "normal: CDQ\n\t"
8034            "IDIV   $div\n\t"
8035    "done:"        %}
8036  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8037  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8038  ins_pipe( ialu_reg_reg_alu0 );
8039%}
8040
8041// Divide Register Long
8042instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8043  match(Set dst (DivL src1 src2));
8044  effect( KILL cr, KILL cx, KILL bx );
8045  ins_cost(10000);
8046  format %{ "PUSH   $src1.hi\n\t"
8047            "PUSH   $src1.lo\n\t"
8048            "PUSH   $src2.hi\n\t"
8049            "PUSH   $src2.lo\n\t"
8050            "CALL   SharedRuntime::ldiv\n\t"
8051            "ADD    ESP,16" %}
8052  ins_encode( long_div(src1,src2) );
8053  ins_pipe( pipe_slow );
8054%}
8055
8056// Integer DIVMOD with Register, both quotient and mod results
8057instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8058  match(DivModI rax div);
8059  effect(KILL cr);
8060  size(26);
8061  ins_cost(30*100+10*100);
8062  format %{ "CMP    EAX,0x80000000\n\t"
8063            "JNE,s  normal\n\t"
8064            "XOR    EDX,EDX\n\t"
8065            "CMP    ECX,-1\n\t"
8066            "JE,s   done\n"
8067    "normal: CDQ\n\t"
8068            "IDIV   $div\n\t"
8069    "done:"        %}
8070  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8071  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8072  ins_pipe( pipe_slow );
8073%}
8074
8075// Integer MOD with Register
8076instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8077  match(Set rdx (ModI rax div));
8078  effect(KILL rax, KILL cr);
8079
8080  size(26);
8081  ins_cost(300);
8082  format %{ "CDQ\n\t"
8083            "IDIV   $div" %}
8084  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8085  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8086  ins_pipe( ialu_reg_reg_alu0 );
8087%}
8088
8089// Remainder Register Long
8090instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8091  match(Set dst (ModL src1 src2));
8092  effect( KILL cr, KILL cx, KILL bx );
8093  ins_cost(10000);
8094  format %{ "PUSH   $src1.hi\n\t"
8095            "PUSH   $src1.lo\n\t"
8096            "PUSH   $src2.hi\n\t"
8097            "PUSH   $src2.lo\n\t"
8098            "CALL   SharedRuntime::lrem\n\t"
8099            "ADD    ESP,16" %}
8100  ins_encode( long_mod(src1,src2) );
8101  ins_pipe( pipe_slow );
8102%}
8103
8104// Integer Shift Instructions
8105// Shift Left by one
8106instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8107  match(Set dst (LShiftI dst shift));
8108  effect(KILL cr);
8109
8110  size(2);
8111  format %{ "SHL    $dst,$shift" %}
8112  opcode(0xD1, 0x4);  /* D1 /4 */
8113  ins_encode( OpcP, RegOpc( dst ) );
8114  ins_pipe( ialu_reg );
8115%}
8116
8117// Shift Left by 8-bit immediate
8118instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8119  match(Set dst (LShiftI dst shift));
8120  effect(KILL cr);
8121
8122  size(3);
8123  format %{ "SHL    $dst,$shift" %}
8124  opcode(0xC1, 0x4);  /* C1 /4 ib */
8125  ins_encode( RegOpcImm( dst, shift) );
8126  ins_pipe( ialu_reg );
8127%}
8128
8129// Shift Left by variable
8130instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8131  match(Set dst (LShiftI dst shift));
8132  effect(KILL cr);
8133
8134  size(2);
8135  format %{ "SHL    $dst,$shift" %}
8136  opcode(0xD3, 0x4);  /* D3 /4 */
8137  ins_encode( OpcP, RegOpc( dst ) );
8138  ins_pipe( ialu_reg_reg );
8139%}
8140
8141// Arithmetic shift right by one
8142instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8143  match(Set dst (RShiftI dst shift));
8144  effect(KILL cr);
8145
8146  size(2);
8147  format %{ "SAR    $dst,$shift" %}
8148  opcode(0xD1, 0x7);  /* D1 /7 */
8149  ins_encode( OpcP, RegOpc( dst ) );
8150  ins_pipe( ialu_reg );
8151%}
8152
8153// Arithmetic shift right by one
8154instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8155  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8156  effect(KILL cr);
8157  format %{ "SAR    $dst,$shift" %}
8158  opcode(0xD1, 0x7);  /* D1 /7 */
8159  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8160  ins_pipe( ialu_mem_imm );
8161%}
8162
8163// Arithmetic Shift Right by 8-bit immediate
8164instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8165  match(Set dst (RShiftI dst shift));
8166  effect(KILL cr);
8167
8168  size(3);
8169  format %{ "SAR    $dst,$shift" %}
8170  opcode(0xC1, 0x7);  /* C1 /7 ib */
8171  ins_encode( RegOpcImm( dst, shift ) );
8172  ins_pipe( ialu_mem_imm );
8173%}
8174
8175// Arithmetic Shift Right by 8-bit immediate
8176instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8177  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8178  effect(KILL cr);
8179
8180  format %{ "SAR    $dst,$shift" %}
8181  opcode(0xC1, 0x7);  /* C1 /7 ib */
8182  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8183  ins_pipe( ialu_mem_imm );
8184%}
8185
8186// Arithmetic Shift Right by variable
8187instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8188  match(Set dst (RShiftI dst shift));
8189  effect(KILL cr);
8190
8191  size(2);
8192  format %{ "SAR    $dst,$shift" %}
8193  opcode(0xD3, 0x7);  /* D3 /7 */
8194  ins_encode( OpcP, RegOpc( dst ) );
8195  ins_pipe( ialu_reg_reg );
8196%}
8197
8198// Logical shift right by one
8199instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8200  match(Set dst (URShiftI dst shift));
8201  effect(KILL cr);
8202
8203  size(2);
8204  format %{ "SHR    $dst,$shift" %}
8205  opcode(0xD1, 0x5);  /* D1 /5 */
8206  ins_encode( OpcP, RegOpc( dst ) );
8207  ins_pipe( ialu_reg );
8208%}
8209
8210// Logical Shift Right by 8-bit immediate
8211instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8212  match(Set dst (URShiftI dst shift));
8213  effect(KILL cr);
8214
8215  size(3);
8216  format %{ "SHR    $dst,$shift" %}
8217  opcode(0xC1, 0x5);  /* C1 /5 ib */
8218  ins_encode( RegOpcImm( dst, shift) );
8219  ins_pipe( ialu_reg );
8220%}
8221
8222// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8223// This idiom is used by the compiler for the i2b bytecode.
8224instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{
8225  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8226  effect(KILL cr);
8227
8228  size(3);
8229  format %{ "MOVSX  $dst,$src :8" %}
8230  opcode(0xBE, 0x0F);
8231  ins_encode( OpcS, OpcP, RegReg( dst, src));
8232  ins_pipe( ialu_reg_reg );
8233%}
8234
8235// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8236// This idiom is used by the compiler the i2s bytecode.
8237instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{
8238  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8239  effect(KILL cr);
8240
8241  size(3);
8242  format %{ "MOVSX  $dst,$src :16" %}
8243  opcode(0xBF, 0x0F);
8244  ins_encode( OpcS, OpcP, RegReg( dst, src));
8245  ins_pipe( ialu_reg_reg );
8246%}
8247
8248
8249// Logical Shift Right by variable
8250instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8251  match(Set dst (URShiftI dst shift));
8252  effect(KILL cr);
8253
8254  size(2);
8255  format %{ "SHR    $dst,$shift" %}
8256  opcode(0xD3, 0x5);  /* D3 /5 */
8257  ins_encode( OpcP, RegOpc( dst ) );
8258  ins_pipe( ialu_reg_reg );
8259%}
8260
8261
8262//----------Logical Instructions-----------------------------------------------
8263//----------Integer Logical Instructions---------------------------------------
8264// And Instructions
8265// And Register with Register
8266instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8267  match(Set dst (AndI dst src));
8268  effect(KILL cr);
8269
8270  size(2);
8271  format %{ "AND    $dst,$src" %}
8272  opcode(0x23);
8273  ins_encode( OpcP, RegReg( dst, src) );
8274  ins_pipe( ialu_reg_reg );
8275%}
8276
8277// And Register with Immediate
8278instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8279  match(Set dst (AndI dst src));
8280  effect(KILL cr);
8281
8282  format %{ "AND    $dst,$src" %}
8283  opcode(0x81,0x04);  /* Opcode 81 /4 */
8284  // ins_encode( RegImm( dst, src) );
8285  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8286  ins_pipe( ialu_reg );
8287%}
8288
8289// And Register with Memory
8290instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8291  match(Set dst (AndI dst (LoadI src)));
8292  effect(KILL cr);
8293
8294  ins_cost(125);
8295  format %{ "AND    $dst,$src" %}
8296  opcode(0x23);
8297  ins_encode( OpcP, RegMem( dst, src) );
8298  ins_pipe( ialu_reg_mem );
8299%}
8300
8301// And Memory with Register
8302instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8303  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8304  effect(KILL cr);
8305
8306  ins_cost(150);
8307  format %{ "AND    $dst,$src" %}
8308  opcode(0x21);  /* Opcode 21 /r */
8309  ins_encode( OpcP, RegMem( src, dst ) );
8310  ins_pipe( ialu_mem_reg );
8311%}
8312
8313// And Memory with Immediate
8314instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8315  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8316  effect(KILL cr);
8317
8318  ins_cost(125);
8319  format %{ "AND    $dst,$src" %}
8320  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8321  // ins_encode( MemImm( dst, src) );
8322  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8323  ins_pipe( ialu_mem_imm );
8324%}
8325
8326// Or Instructions
8327// Or Register with Register
8328instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8329  match(Set dst (OrI dst src));
8330  effect(KILL cr);
8331
8332  size(2);
8333  format %{ "OR     $dst,$src" %}
8334  opcode(0x0B);
8335  ins_encode( OpcP, RegReg( dst, src) );
8336  ins_pipe( ialu_reg_reg );
8337%}
8338
8339// Or Register with Immediate
8340instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8341  match(Set dst (OrI dst src));
8342  effect(KILL cr);
8343
8344  format %{ "OR     $dst,$src" %}
8345  opcode(0x81,0x01);  /* Opcode 81 /1 id */
8346  // ins_encode( RegImm( dst, src) );
8347  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8348  ins_pipe( ialu_reg );
8349%}
8350
8351// Or Register with Memory
8352instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8353  match(Set dst (OrI dst (LoadI src)));
8354  effect(KILL cr);
8355
8356  ins_cost(125);
8357  format %{ "OR     $dst,$src" %}
8358  opcode(0x0B);
8359  ins_encode( OpcP, RegMem( dst, src) );
8360  ins_pipe( ialu_reg_mem );
8361%}
8362
8363// Or Memory with Register
8364instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8365  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8366  effect(KILL cr);
8367
8368  ins_cost(150);
8369  format %{ "OR     $dst,$src" %}
8370  opcode(0x09);  /* Opcode 09 /r */
8371  ins_encode( OpcP, RegMem( src, dst ) );
8372  ins_pipe( ialu_mem_reg );
8373%}
8374
8375// Or Memory with Immediate
8376instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8377  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8378  effect(KILL cr);
8379
8380  ins_cost(125);
8381  format %{ "OR     $dst,$src" %}
8382  opcode(0x81,0x1);  /* Opcode 81 /1 id */
8383  // ins_encode( MemImm( dst, src) );
8384  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8385  ins_pipe( ialu_mem_imm );
8386%}
8387
8388// ROL/ROR
8389// ROL expand
8390instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8391  effect(USE_DEF dst, USE shift, KILL cr);
8392
8393  format %{ "ROL    $dst, $shift" %}
8394  opcode(0xD1, 0x0); /* Opcode D1 /0 */
8395  ins_encode( OpcP, RegOpc( dst ));
8396  ins_pipe( ialu_reg );
8397%}
8398
8399instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
8400  effect(USE_DEF dst, USE shift, KILL cr);
8401
8402  format %{ "ROL    $dst, $shift" %}
8403  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8404  ins_encode( RegOpcImm(dst, shift) );
8405  ins_pipe(ialu_reg);
8406%}
8407
8408instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8409  effect(USE_DEF dst, USE shift, KILL cr);
8410
8411  format %{ "ROL    $dst, $shift" %}
8412  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8413  ins_encode(OpcP, RegOpc(dst));
8414  ins_pipe( ialu_reg_reg );
8415%}
8416// end of ROL expand
8417
8418// ROL 32bit by one once
8419instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8420  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8421
8422  expand %{
8423    rolI_eReg_imm1(dst, lshift, cr);
8424  %}
8425%}
8426
8427// ROL 32bit var by imm8 once
8428instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8429  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8430  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8431
8432  expand %{
8433    rolI_eReg_imm8(dst, lshift, cr);
8434  %}
8435%}
8436
8437// ROL 32bit var by var once
8438instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8439  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8440
8441  expand %{
8442    rolI_eReg_CL(dst, shift, cr);
8443  %}
8444%}
8445
8446// ROL 32bit var by var once
8447instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8448  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8449
8450  expand %{
8451    rolI_eReg_CL(dst, shift, cr);
8452  %}
8453%}
8454
8455// ROR expand
8456instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8457  effect(USE_DEF dst, USE shift, KILL cr);
8458
8459  format %{ "ROR    $dst, $shift" %}
8460  opcode(0xD1,0x1);  /* Opcode D1 /1 */
8461  ins_encode( OpcP, RegOpc( dst ) );
8462  ins_pipe( ialu_reg );
8463%}
8464
8465instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
8466  effect (USE_DEF dst, USE shift, KILL cr);
8467
8468  format %{ "ROR    $dst, $shift" %}
8469  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8470  ins_encode( RegOpcImm(dst, shift) );
8471  ins_pipe( ialu_reg );
8472%}
8473
8474instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8475  effect(USE_DEF dst, USE shift, KILL cr);
8476
8477  format %{ "ROR    $dst, $shift" %}
8478  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8479  ins_encode(OpcP, RegOpc(dst));
8480  ins_pipe( ialu_reg_reg );
8481%}
8482// end of ROR expand
8483
8484// ROR right once
8485instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8486  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8487
8488  expand %{
8489    rorI_eReg_imm1(dst, rshift, cr);
8490  %}
8491%}
8492
8493// ROR 32bit by immI8 once
8494instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8495  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8496  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8497
8498  expand %{
8499    rorI_eReg_imm8(dst, rshift, cr);
8500  %}
8501%}
8502
8503// ROR 32bit var by var once
8504instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8505  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8506
8507  expand %{
8508    rorI_eReg_CL(dst, shift, cr);
8509  %}
8510%}
8511
8512// ROR 32bit var by var once
8513instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8514  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8515
8516  expand %{
8517    rorI_eReg_CL(dst, shift, cr);
8518  %}
8519%}
8520
8521// Xor Instructions
8522// Xor Register with Register
8523instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8524  match(Set dst (XorI dst src));
8525  effect(KILL cr);
8526
8527  size(2);
8528  format %{ "XOR    $dst,$src" %}
8529  opcode(0x33);
8530  ins_encode( OpcP, RegReg( dst, src) );
8531  ins_pipe( ialu_reg_reg );
8532%}
8533
8534// Xor Register with Immediate
8535instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8536  match(Set dst (XorI dst src));
8537  effect(KILL cr);
8538
8539  format %{ "XOR    $dst,$src" %}
8540  opcode(0x81,0x06);  /* Opcode 81 /6 id */
8541  // ins_encode( RegImm( dst, src) );
8542  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8543  ins_pipe( ialu_reg );
8544%}
8545
8546// Xor Register with Memory
8547instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8548  match(Set dst (XorI dst (LoadI src)));
8549  effect(KILL cr);
8550
8551  ins_cost(125);
8552  format %{ "XOR    $dst,$src" %}
8553  opcode(0x33);
8554  ins_encode( OpcP, RegMem(dst, src) );
8555  ins_pipe( ialu_reg_mem );
8556%}
8557
8558// Xor Memory with Register
8559instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8560  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8561  effect(KILL cr);
8562
8563  ins_cost(150);
8564  format %{ "XOR    $dst,$src" %}
8565  opcode(0x31);  /* Opcode 31 /r */
8566  ins_encode( OpcP, RegMem( src, dst ) );
8567  ins_pipe( ialu_mem_reg );
8568%}
8569
8570// Xor Memory with Immediate
8571instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8572  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8573  effect(KILL cr);
8574
8575  ins_cost(125);
8576  format %{ "XOR    $dst,$src" %}
8577  opcode(0x81,0x6);  /* Opcode 81 /6 id */
8578  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8579  ins_pipe( ialu_mem_imm );
8580%}
8581
8582//----------Convert Int to Boolean---------------------------------------------
8583
8584instruct movI_nocopy(eRegI dst, eRegI src) %{
8585  effect( DEF dst, USE src );
8586  format %{ "MOV    $dst,$src" %}
8587  ins_encode( enc_Copy( dst, src) );
8588  ins_pipe( ialu_reg_reg );
8589%}
8590
8591instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
8592  effect( USE_DEF dst, USE src, KILL cr );
8593
8594  size(4);
8595  format %{ "NEG    $dst\n\t"
8596            "ADC    $dst,$src" %}
8597  ins_encode( neg_reg(dst),
8598              OpcRegReg(0x13,dst,src) );
8599  ins_pipe( ialu_reg_reg_long );
8600%}
8601
8602instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
8603  match(Set dst (Conv2B src));
8604
8605  expand %{
8606    movI_nocopy(dst,src);
8607    ci2b(dst,src,cr);
8608  %}
8609%}
8610
8611instruct movP_nocopy(eRegI dst, eRegP src) %{
8612  effect( DEF dst, USE src );
8613  format %{ "MOV    $dst,$src" %}
8614  ins_encode( enc_Copy( dst, src) );
8615  ins_pipe( ialu_reg_reg );
8616%}
8617
8618instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
8619  effect( USE_DEF dst, USE src, KILL cr );
8620  format %{ "NEG    $dst\n\t"
8621            "ADC    $dst,$src" %}
8622  ins_encode( neg_reg(dst),
8623              OpcRegReg(0x13,dst,src) );
8624  ins_pipe( ialu_reg_reg_long );
8625%}
8626
8627instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
8628  match(Set dst (Conv2B src));
8629
8630  expand %{
8631    movP_nocopy(dst,src);
8632    cp2b(dst,src,cr);
8633  %}
8634%}
8635
8636instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
8637  match(Set dst (CmpLTMask p q));
8638  effect( KILL cr );
8639  ins_cost(400);
8640
8641  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8642  format %{ "XOR    $dst,$dst\n\t"
8643            "CMP    $p,$q\n\t"
8644            "SETlt  $dst\n\t"
8645            "NEG    $dst" %}
8646  ins_encode( OpcRegReg(0x33,dst,dst),
8647              OpcRegReg(0x3B,p,q),
8648              setLT_reg(dst), neg_reg(dst) );
8649  ins_pipe( pipe_slow );
8650%}
8651
8652instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
8653  match(Set dst (CmpLTMask dst zero));
8654  effect( DEF dst, KILL cr );
8655  ins_cost(100);
8656
8657  format %{ "SAR    $dst,31" %}
8658  opcode(0xC1, 0x7);  /* C1 /7 ib */
8659  ins_encode( RegOpcImm( dst, 0x1F ) );
8660  ins_pipe( ialu_reg );
8661%}
8662
8663
8664instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
8665  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8666  effect( KILL tmp, KILL cr );
8667  ins_cost(400);
8668  // annoyingly, $tmp has no edges so you cant ask for it in
8669  // any format or encoding
8670  format %{ "SUB    $p,$q\n\t"
8671            "SBB    ECX,ECX\n\t"
8672            "AND    ECX,$y\n\t"
8673            "ADD    $p,ECX" %}
8674  ins_encode( enc_cmpLTP(p,q,y,tmp) );
8675  ins_pipe( pipe_cmplt );
8676%}
8677
8678/* If I enable this, I encourage spilling in the inner loop of compress.
8679instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
8680  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8681  effect( USE_KILL tmp, KILL cr );
8682  ins_cost(400);
8683
8684  format %{ "SUB    $p,$q\n\t"
8685            "SBB    ECX,ECX\n\t"
8686            "AND    ECX,$y\n\t"
8687            "ADD    $p,ECX" %}
8688  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
8689%}
8690*/
8691
8692//----------Long Instructions------------------------------------------------
8693// Add Long Register with Register
8694instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8695  match(Set dst (AddL dst src));
8696  effect(KILL cr);
8697  ins_cost(200);
8698  format %{ "ADD    $dst.lo,$src.lo\n\t"
8699            "ADC    $dst.hi,$src.hi" %}
8700  opcode(0x03, 0x13);
8701  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8702  ins_pipe( ialu_reg_reg_long );
8703%}
8704
8705// Add Long Register with Immediate
8706instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8707  match(Set dst (AddL dst src));
8708  effect(KILL cr);
8709  format %{ "ADD    $dst.lo,$src.lo\n\t"
8710            "ADC    $dst.hi,$src.hi" %}
8711  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8712  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8713  ins_pipe( ialu_reg_long );
8714%}
8715
8716// Add Long Register with Memory
8717instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8718  match(Set dst (AddL dst (LoadL mem)));
8719  effect(KILL cr);
8720  ins_cost(125);
8721  format %{ "ADD    $dst.lo,$mem\n\t"
8722            "ADC    $dst.hi,$mem+4" %}
8723  opcode(0x03, 0x13);
8724  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8725  ins_pipe( ialu_reg_long_mem );
8726%}
8727
8728// Subtract Long Register with Register.
8729instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8730  match(Set dst (SubL dst src));
8731  effect(KILL cr);
8732  ins_cost(200);
8733  format %{ "SUB    $dst.lo,$src.lo\n\t"
8734            "SBB    $dst.hi,$src.hi" %}
8735  opcode(0x2B, 0x1B);
8736  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8737  ins_pipe( ialu_reg_reg_long );
8738%}
8739
8740// Subtract Long Register with Immediate
8741instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8742  match(Set dst (SubL dst src));
8743  effect(KILL cr);
8744  format %{ "SUB    $dst.lo,$src.lo\n\t"
8745            "SBB    $dst.hi,$src.hi" %}
8746  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8747  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8748  ins_pipe( ialu_reg_long );
8749%}
8750
8751// Subtract Long Register with Memory
8752instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8753  match(Set dst (SubL dst (LoadL mem)));
8754  effect(KILL cr);
8755  ins_cost(125);
8756  format %{ "SUB    $dst.lo,$mem\n\t"
8757            "SBB    $dst.hi,$mem+4" %}
8758  opcode(0x2B, 0x1B);
8759  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8760  ins_pipe( ialu_reg_long_mem );
8761%}
8762
8763instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
8764  match(Set dst (SubL zero dst));
8765  effect(KILL cr);
8766  ins_cost(300);
8767  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
8768  ins_encode( neg_long(dst) );
8769  ins_pipe( ialu_reg_reg_long );
8770%}
8771
8772// And Long Register with Register
8773instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8774  match(Set dst (AndL dst src));
8775  effect(KILL cr);
8776  format %{ "AND    $dst.lo,$src.lo\n\t"
8777            "AND    $dst.hi,$src.hi" %}
8778  opcode(0x23,0x23);
8779  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8780  ins_pipe( ialu_reg_reg_long );
8781%}
8782
8783// And Long Register with Immediate
8784instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8785  match(Set dst (AndL dst src));
8786  effect(KILL cr);
8787  format %{ "AND    $dst.lo,$src.lo\n\t"
8788            "AND    $dst.hi,$src.hi" %}
8789  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
8790  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8791  ins_pipe( ialu_reg_long );
8792%}
8793
8794// And Long Register with Memory
8795instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8796  match(Set dst (AndL dst (LoadL mem)));
8797  effect(KILL cr);
8798  ins_cost(125);
8799  format %{ "AND    $dst.lo,$mem\n\t"
8800            "AND    $dst.hi,$mem+4" %}
8801  opcode(0x23, 0x23);
8802  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8803  ins_pipe( ialu_reg_long_mem );
8804%}
8805
8806// Or Long Register with Register
8807instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8808  match(Set dst (OrL dst src));
8809  effect(KILL cr);
8810  format %{ "OR     $dst.lo,$src.lo\n\t"
8811            "OR     $dst.hi,$src.hi" %}
8812  opcode(0x0B,0x0B);
8813  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8814  ins_pipe( ialu_reg_reg_long );
8815%}
8816
8817// Or Long Register with Immediate
8818instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8819  match(Set dst (OrL dst src));
8820  effect(KILL cr);
8821  format %{ "OR     $dst.lo,$src.lo\n\t"
8822            "OR     $dst.hi,$src.hi" %}
8823  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
8824  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8825  ins_pipe( ialu_reg_long );
8826%}
8827
8828// Or Long Register with Memory
8829instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8830  match(Set dst (OrL dst (LoadL mem)));
8831  effect(KILL cr);
8832  ins_cost(125);
8833  format %{ "OR     $dst.lo,$mem\n\t"
8834            "OR     $dst.hi,$mem+4" %}
8835  opcode(0x0B,0x0B);
8836  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8837  ins_pipe( ialu_reg_long_mem );
8838%}
8839
8840// Xor Long Register with Register
8841instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8842  match(Set dst (XorL dst src));
8843  effect(KILL cr);
8844  format %{ "XOR    $dst.lo,$src.lo\n\t"
8845            "XOR    $dst.hi,$src.hi" %}
8846  opcode(0x33,0x33);
8847  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8848  ins_pipe( ialu_reg_reg_long );
8849%}
8850
8851// Xor Long Register with Immediate
8852instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8853  match(Set dst (XorL dst src));
8854  effect(KILL cr);
8855  format %{ "XOR    $dst.lo,$src.lo\n\t"
8856            "XOR    $dst.hi,$src.hi" %}
8857  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
8858  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8859  ins_pipe( ialu_reg_long );
8860%}
8861
8862// Xor Long Register with Memory
8863instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8864  match(Set dst (XorL dst (LoadL mem)));
8865  effect(KILL cr);
8866  ins_cost(125);
8867  format %{ "XOR    $dst.lo,$mem\n\t"
8868            "XOR    $dst.hi,$mem+4" %}
8869  opcode(0x33,0x33);
8870  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8871  ins_pipe( ialu_reg_long_mem );
8872%}
8873
8874// Shift Left Long by 1-31
8875instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
8876  match(Set dst (LShiftL dst cnt));
8877  effect(KILL cr);
8878  ins_cost(200);
8879  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
8880            "SHL    $dst.lo,$cnt" %}
8881  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
8882  ins_encode( move_long_small_shift(dst,cnt) );
8883  ins_pipe( ialu_reg_long );
8884%}
8885
8886// Shift Left Long by 32-63
8887instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
8888  match(Set dst (LShiftL dst cnt));
8889  effect(KILL cr);
8890  ins_cost(300);
8891  format %{ "MOV    $dst.hi,$dst.lo\n"
8892          "\tSHL    $dst.hi,$cnt-32\n"
8893          "\tXOR    $dst.lo,$dst.lo" %}
8894  opcode(0xC1, 0x4);  /* C1 /4 ib */
8895  ins_encode( move_long_big_shift_clr(dst,cnt) );
8896  ins_pipe( ialu_reg_long );
8897%}
8898
8899// Shift Left Long by variable
8900instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
8901  match(Set dst (LShiftL dst shift));
8902  effect(KILL cr);
8903  ins_cost(500+200);
8904  size(17);
8905  format %{ "TEST   $shift,32\n\t"
8906            "JEQ,s  small\n\t"
8907            "MOV    $dst.hi,$dst.lo\n\t"
8908            "XOR    $dst.lo,$dst.lo\n"
8909    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
8910            "SHL    $dst.lo,$shift" %}
8911  ins_encode( shift_left_long( dst, shift ) );
8912  ins_pipe( pipe_slow );
8913%}
8914
8915// Shift Right Long by 1-31
8916instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
8917  match(Set dst (URShiftL dst cnt));
8918  effect(KILL cr);
8919  ins_cost(200);
8920  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
8921            "SHR    $dst.hi,$cnt" %}
8922  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
8923  ins_encode( move_long_small_shift(dst,cnt) );
8924  ins_pipe( ialu_reg_long );
8925%}
8926
8927// Shift Right Long by 32-63
8928instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
8929  match(Set dst (URShiftL dst cnt));
8930  effect(KILL cr);
8931  ins_cost(300);
8932  format %{ "MOV    $dst.lo,$dst.hi\n"
8933          "\tSHR    $dst.lo,$cnt-32\n"
8934          "\tXOR    $dst.hi,$dst.hi" %}
8935  opcode(0xC1, 0x5);  /* C1 /5 ib */
8936  ins_encode( move_long_big_shift_clr(dst,cnt) );
8937  ins_pipe( ialu_reg_long );
8938%}
8939
8940// Shift Right Long by variable
8941instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
8942  match(Set dst (URShiftL dst shift));
8943  effect(KILL cr);
8944  ins_cost(600);
8945  size(17);
8946  format %{ "TEST   $shift,32\n\t"
8947            "JEQ,s  small\n\t"
8948            "MOV    $dst.lo,$dst.hi\n\t"
8949            "XOR    $dst.hi,$dst.hi\n"
8950    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
8951            "SHR    $dst.hi,$shift" %}
8952  ins_encode( shift_right_long( dst, shift ) );
8953  ins_pipe( pipe_slow );
8954%}
8955
8956// Shift Right Long by 1-31
8957instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
8958  match(Set dst (RShiftL dst cnt));
8959  effect(KILL cr);
8960  ins_cost(200);
8961  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
8962            "SAR    $dst.hi,$cnt" %}
8963  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
8964  ins_encode( move_long_small_shift(dst,cnt) );
8965  ins_pipe( ialu_reg_long );
8966%}
8967
8968// Shift Right Long by 32-63
8969instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
8970  match(Set dst (RShiftL dst cnt));
8971  effect(KILL cr);
8972  ins_cost(300);
8973  format %{ "MOV    $dst.lo,$dst.hi\n"
8974          "\tSAR    $dst.lo,$cnt-32\n"
8975          "\tSAR    $dst.hi,31" %}
8976  opcode(0xC1, 0x7);  /* C1 /7 ib */
8977  ins_encode( move_long_big_shift_sign(dst,cnt) );
8978  ins_pipe( ialu_reg_long );
8979%}
8980
8981// Shift Right arithmetic Long by variable
8982instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
8983  match(Set dst (RShiftL dst shift));
8984  effect(KILL cr);
8985  ins_cost(600);
8986  size(18);
8987  format %{ "TEST   $shift,32\n\t"
8988            "JEQ,s  small\n\t"
8989            "MOV    $dst.lo,$dst.hi\n\t"
8990            "SAR    $dst.hi,31\n"
8991    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
8992            "SAR    $dst.hi,$shift" %}
8993  ins_encode( shift_right_arith_long( dst, shift ) );
8994  ins_pipe( pipe_slow );
8995%}
8996
8997
8998//----------Double Instructions------------------------------------------------
8999// Double Math
9000
9001// Compare & branch
9002
9003// P6 version of float compare, sets condition codes in EFLAGS
9004instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9005  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9006  match(Set cr (CmpD src1 src2));
9007  effect(KILL rax);
9008  ins_cost(150);
9009  format %{ "FLD    $src1\n\t"
9010            "FUCOMIP ST,$src2  // P6 instruction\n\t"
9011            "JNP    exit\n\t"
9012            "MOV    ah,1       // saw a NaN, set CF\n\t"
9013            "SAHF\n"
9014     "exit:\tNOP               // avoid branch to branch" %}
9015  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9016  ins_encode( Push_Reg_D(src1),
9017              OpcP, RegOpc(src2),
9018              cmpF_P6_fixup );
9019  ins_pipe( pipe_slow );
9020%}
9021
9022// Compare & branch
9023instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9024  predicate(UseSSE<=1);
9025  match(Set cr (CmpD src1 src2));
9026  effect(KILL rax);
9027  ins_cost(200);
9028  format %{ "FLD    $src1\n\t"
9029            "FCOMp  $src2\n\t"
9030            "FNSTSW AX\n\t"
9031            "TEST   AX,0x400\n\t"
9032            "JZ,s   flags\n\t"
9033            "MOV    AH,1\t# unordered treat as LT\n"
9034    "flags:\tSAHF" %}
9035  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9036  ins_encode( Push_Reg_D(src1),
9037              OpcP, RegOpc(src2),
9038              fpu_flags);
9039  ins_pipe( pipe_slow );
9040%}
9041
9042// Compare vs zero into -1,0,1
9043instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
9044  predicate(UseSSE<=1);
9045  match(Set dst (CmpD3 src1 zero));
9046  effect(KILL cr, KILL rax);
9047  ins_cost(280);
9048  format %{ "FTSTD  $dst,$src1" %}
9049  opcode(0xE4, 0xD9);
9050  ins_encode( Push_Reg_D(src1),
9051              OpcS, OpcP, PopFPU,
9052              CmpF_Result(dst));
9053  ins_pipe( pipe_slow );
9054%}
9055
9056// Compare into -1,0,1
9057instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
9058  predicate(UseSSE<=1);
9059  match(Set dst (CmpD3 src1 src2));
9060  effect(KILL cr, KILL rax);
9061  ins_cost(300);
9062  format %{ "FCMPD  $dst,$src1,$src2" %}
9063  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9064  ins_encode( Push_Reg_D(src1),
9065              OpcP, RegOpc(src2),
9066              CmpF_Result(dst));
9067  ins_pipe( pipe_slow );
9068%}
9069
9070// float compare and set condition codes in EFLAGS by XMM regs
9071instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
9072  predicate(UseSSE>=2);
9073  match(Set cr (CmpD dst src));
9074  effect(KILL rax);
9075  ins_cost(125);
9076  format %{ "COMISD $dst,$src\n"
9077          "\tJNP    exit\n"
9078          "\tMOV    ah,1       // saw a NaN, set CF\n"
9079          "\tSAHF\n"
9080     "exit:\tNOP               // avoid branch to branch" %}
9081  opcode(0x66, 0x0F, 0x2F);
9082  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
9083  ins_pipe( pipe_slow );
9084%}
9085
9086// float compare and set condition codes in EFLAGS by XMM regs
9087instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
9088  predicate(UseSSE>=2);
9089  match(Set cr (CmpD dst (LoadD src)));
9090  effect(KILL rax);
9091  ins_cost(145);
9092  format %{ "COMISD $dst,$src\n"
9093          "\tJNP    exit\n"
9094          "\tMOV    ah,1       // saw a NaN, set CF\n"
9095          "\tSAHF\n"
9096     "exit:\tNOP               // avoid branch to branch" %}
9097  opcode(0x66, 0x0F, 0x2F);
9098  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
9099  ins_pipe( pipe_slow );
9100%}
9101
9102// Compare into -1,0,1 in XMM
9103instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
9104  predicate(UseSSE>=2);
9105  match(Set dst (CmpD3 src1 src2));
9106  effect(KILL cr);
9107  ins_cost(255);
9108  format %{ "XOR    $dst,$dst\n"
9109          "\tCOMISD $src1,$src2\n"
9110          "\tJP,s   nan\n"
9111          "\tJEQ,s  exit\n"
9112          "\tJA,s   inc\n"
9113      "nan:\tDEC    $dst\n"
9114          "\tJMP,s  exit\n"
9115      "inc:\tINC    $dst\n"
9116      "exit:"
9117                %}
9118  opcode(0x66, 0x0F, 0x2F);
9119  ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
9120             CmpX_Result(dst));
9121  ins_pipe( pipe_slow );
9122%}
9123
9124// Compare into -1,0,1 in XMM and memory
9125instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
9126  predicate(UseSSE>=2);
9127  match(Set dst (CmpD3 src1 (LoadD mem)));
9128  effect(KILL cr);
9129  ins_cost(275);
9130  format %{ "COMISD $src1,$mem\n"
9131          "\tMOV    $dst,0\t\t# do not blow flags\n"
9132          "\tJP,s   nan\n"
9133          "\tJEQ,s  exit\n"
9134          "\tJA,s   inc\n"
9135      "nan:\tDEC    $dst\n"
9136          "\tJMP,s  exit\n"
9137      "inc:\tINC    $dst\n"
9138      "exit:"
9139                %}
9140  opcode(0x66, 0x0F, 0x2F);
9141  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
9142             LdImmI(dst,0x0), CmpX_Result(dst));
9143  ins_pipe( pipe_slow );
9144%}
9145
9146
9147instruct subD_reg(regD dst, regD src) %{
9148  predicate (UseSSE <=1);
9149  match(Set dst (SubD dst src));
9150
9151  format %{ "FLD    $src\n\t"
9152            "DSUBp  $dst,ST" %}
9153  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9154  ins_cost(150);
9155  ins_encode( Push_Reg_D(src),
9156              OpcP, RegOpc(dst) );
9157  ins_pipe( fpu_reg_reg );
9158%}
9159
9160instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9161  predicate (UseSSE <=1);
9162  match(Set dst (RoundDouble (SubD src1 src2)));
9163  ins_cost(250);
9164
9165  format %{ "FLD    $src2\n\t"
9166            "DSUB   ST,$src1\n\t"
9167            "FSTP_D $dst\t# D-round" %}
9168  opcode(0xD8, 0x5);
9169  ins_encode( Push_Reg_D(src2),
9170              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9171  ins_pipe( fpu_mem_reg_reg );
9172%}
9173
9174
9175instruct subD_reg_mem(regD dst, memory src) %{
9176  predicate (UseSSE <=1);
9177  match(Set dst (SubD dst (LoadD src)));
9178  ins_cost(150);
9179
9180  format %{ "FLD    $src\n\t"
9181            "DSUBp  $dst,ST" %}
9182  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9183  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9184              OpcP, RegOpc(dst) );
9185  ins_pipe( fpu_reg_mem );
9186%}
9187
9188instruct absD_reg(regDPR1 dst, regDPR1 src) %{
9189  predicate (UseSSE<=1);
9190  match(Set dst (AbsD src));
9191  ins_cost(100);
9192  format %{ "FABS" %}
9193  opcode(0xE1, 0xD9);
9194  ins_encode( OpcS, OpcP );
9195  ins_pipe( fpu_reg_reg );
9196%}
9197
9198instruct absXD_reg( regXD dst ) %{
9199  predicate(UseSSE>=2);
9200  match(Set dst (AbsD dst));
9201  format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
9202  ins_encode( AbsXD_encoding(dst));
9203  ins_pipe( pipe_slow );
9204%}
9205
9206instruct negD_reg(regDPR1 dst, regDPR1 src) %{
9207  predicate(UseSSE<=1);
9208  match(Set dst (NegD src));
9209  ins_cost(100);
9210  format %{ "FCHS" %}
9211  opcode(0xE0, 0xD9);
9212  ins_encode( OpcS, OpcP );
9213  ins_pipe( fpu_reg_reg );
9214%}
9215
9216instruct negXD_reg( regXD dst ) %{
9217  predicate(UseSSE>=2);
9218  match(Set dst (NegD dst));
9219  format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
9220  ins_encode %{
9221     __ xorpd($dst$$XMMRegister,
9222              ExternalAddress((address)double_signflip_pool));
9223  %}
9224  ins_pipe( pipe_slow );
9225%}
9226
9227instruct addD_reg(regD dst, regD src) %{
9228  predicate(UseSSE<=1);
9229  match(Set dst (AddD dst src));
9230  format %{ "FLD    $src\n\t"
9231            "DADD   $dst,ST" %}
9232  size(4);
9233  ins_cost(150);
9234  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9235  ins_encode( Push_Reg_D(src),
9236              OpcP, RegOpc(dst) );
9237  ins_pipe( fpu_reg_reg );
9238%}
9239
9240
9241instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9242  predicate(UseSSE<=1);
9243  match(Set dst (RoundDouble (AddD src1 src2)));
9244  ins_cost(250);
9245
9246  format %{ "FLD    $src2\n\t"
9247            "DADD   ST,$src1\n\t"
9248            "FSTP_D $dst\t# D-round" %}
9249  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9250  ins_encode( Push_Reg_D(src2),
9251              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9252  ins_pipe( fpu_mem_reg_reg );
9253%}
9254
9255
9256instruct addD_reg_mem(regD dst, memory src) %{
9257  predicate(UseSSE<=1);
9258  match(Set dst (AddD dst (LoadD src)));
9259  ins_cost(150);
9260
9261  format %{ "FLD    $src\n\t"
9262            "DADDp  $dst,ST" %}
9263  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9264  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9265              OpcP, RegOpc(dst) );
9266  ins_pipe( fpu_reg_mem );
9267%}
9268
9269// add-to-memory
9270instruct addD_mem_reg(memory dst, regD src) %{
9271  predicate(UseSSE<=1);
9272  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9273  ins_cost(150);
9274
9275  format %{ "FLD_D  $dst\n\t"
9276            "DADD   ST,$src\n\t"
9277            "FST_D  $dst" %}
9278  opcode(0xDD, 0x0);
9279  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9280              Opcode(0xD8), RegOpc(src),
9281              set_instruction_start,
9282              Opcode(0xDD), RMopc_Mem(0x03,dst) );
9283  ins_pipe( fpu_reg_mem );
9284%}
9285
9286instruct addD_reg_imm1(regD dst, immD1 src) %{
9287  predicate(UseSSE<=1);
9288  match(Set dst (AddD dst src));
9289  ins_cost(125);
9290  format %{ "FLD1\n\t"
9291            "DADDp  $dst,ST" %}
9292  opcode(0xDE, 0x00);
9293  ins_encode( LdImmD(src),
9294              OpcP, RegOpc(dst) );
9295  ins_pipe( fpu_reg );
9296%}
9297
9298instruct addD_reg_imm(regD dst, immD src) %{
9299  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9300  match(Set dst (AddD dst src));
9301  ins_cost(200);
9302  format %{ "FLD_D  [$src]\n\t"
9303            "DADDp  $dst,ST" %}
9304  opcode(0xDE, 0x00);       /* DE /0 */
9305  ins_encode( LdImmD(src),
9306              OpcP, RegOpc(dst));
9307  ins_pipe( fpu_reg_mem );
9308%}
9309
9310instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
9311  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9312  match(Set dst (RoundDouble (AddD src con)));
9313  ins_cost(200);
9314  format %{ "FLD_D  [$con]\n\t"
9315            "DADD   ST,$src\n\t"
9316            "FSTP_D $dst\t# D-round" %}
9317  opcode(0xD8, 0x00);       /* D8 /0 */
9318  ins_encode( LdImmD(con),
9319              OpcP, RegOpc(src), Pop_Mem_D(dst));
9320  ins_pipe( fpu_mem_reg_con );
9321%}
9322
9323// Add two double precision floating point values in xmm
9324instruct addXD_reg(regXD dst, regXD src) %{
9325  predicate(UseSSE>=2);
9326  match(Set dst (AddD dst src));
9327  format %{ "ADDSD  $dst,$src" %}
9328  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
9329  ins_pipe( pipe_slow );
9330%}
9331
9332instruct addXD_imm(regXD dst, immXD con) %{
9333  predicate(UseSSE>=2);
9334  match(Set dst (AddD dst con));
9335  format %{ "ADDSD  $dst,[$con]" %}
9336  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
9337  ins_pipe( pipe_slow );
9338%}
9339
9340instruct addXD_mem(regXD dst, memory mem) %{
9341  predicate(UseSSE>=2);
9342  match(Set dst (AddD dst (LoadD mem)));
9343  format %{ "ADDSD  $dst,$mem" %}
9344  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
9345  ins_pipe( pipe_slow );
9346%}
9347
9348// Sub two double precision floating point values in xmm
9349instruct subXD_reg(regXD dst, regXD src) %{
9350  predicate(UseSSE>=2);
9351  match(Set dst (SubD dst src));
9352  format %{ "SUBSD  $dst,$src" %}
9353  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
9354  ins_pipe( pipe_slow );
9355%}
9356
9357instruct subXD_imm(regXD dst, immXD con) %{
9358  predicate(UseSSE>=2);
9359  match(Set dst (SubD dst con));
9360  format %{ "SUBSD  $dst,[$con]" %}
9361  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
9362  ins_pipe( pipe_slow );
9363%}
9364
9365instruct subXD_mem(regXD dst, memory mem) %{
9366  predicate(UseSSE>=2);
9367  match(Set dst (SubD dst (LoadD mem)));
9368  format %{ "SUBSD  $dst,$mem" %}
9369  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
9370  ins_pipe( pipe_slow );
9371%}
9372
9373// Mul two double precision floating point values in xmm
9374instruct mulXD_reg(regXD dst, regXD src) %{
9375  predicate(UseSSE>=2);
9376  match(Set dst (MulD dst src));
9377  format %{ "MULSD  $dst,$src" %}
9378  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
9379  ins_pipe( pipe_slow );
9380%}
9381
9382instruct mulXD_imm(regXD dst, immXD con) %{
9383  predicate(UseSSE>=2);
9384  match(Set dst (MulD dst con));
9385  format %{ "MULSD  $dst,[$con]" %}
9386  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
9387  ins_pipe( pipe_slow );
9388%}
9389
9390instruct mulXD_mem(regXD dst, memory mem) %{
9391  predicate(UseSSE>=2);
9392  match(Set dst (MulD dst (LoadD mem)));
9393  format %{ "MULSD  $dst,$mem" %}
9394  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
9395  ins_pipe( pipe_slow );
9396%}
9397
9398// Div two double precision floating point values in xmm
9399instruct divXD_reg(regXD dst, regXD src) %{
9400  predicate(UseSSE>=2);
9401  match(Set dst (DivD dst src));
9402  format %{ "DIVSD  $dst,$src" %}
9403  opcode(0xF2, 0x0F, 0x5E);
9404  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
9405  ins_pipe( pipe_slow );
9406%}
9407
9408instruct divXD_imm(regXD dst, immXD con) %{
9409  predicate(UseSSE>=2);
9410  match(Set dst (DivD dst con));
9411  format %{ "DIVSD  $dst,[$con]" %}
9412  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
9413  ins_pipe( pipe_slow );
9414%}
9415
9416instruct divXD_mem(regXD dst, memory mem) %{
9417  predicate(UseSSE>=2);
9418  match(Set dst (DivD dst (LoadD mem)));
9419  format %{ "DIVSD  $dst,$mem" %}
9420  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
9421  ins_pipe( pipe_slow );
9422%}
9423
9424
9425instruct mulD_reg(regD dst, regD src) %{
9426  predicate(UseSSE<=1);
9427  match(Set dst (MulD dst src));
9428  format %{ "FLD    $src\n\t"
9429            "DMULp  $dst,ST" %}
9430  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9431  ins_cost(150);
9432  ins_encode( Push_Reg_D(src),
9433              OpcP, RegOpc(dst) );
9434  ins_pipe( fpu_reg_reg );
9435%}
9436
9437// Strict FP instruction biases argument before multiply then
9438// biases result to avoid double rounding of subnormals.
9439//
9440// scale arg1 by multiplying arg1 by 2^(-15360)
9441// load arg2
9442// multiply scaled arg1 by arg2
9443// rescale product by 2^(15360)
9444//
9445instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
9446  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9447  match(Set dst (MulD dst src));
9448  ins_cost(1);   // Select this instruction for all strict FP double multiplies
9449
9450  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9451            "DMULp  $dst,ST\n\t"
9452            "FLD    $src\n\t"
9453            "DMULp  $dst,ST\n\t"
9454            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9455            "DMULp  $dst,ST\n\t" %}
9456  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9457  ins_encode( strictfp_bias1(dst),
9458              Push_Reg_D(src),
9459              OpcP, RegOpc(dst),
9460              strictfp_bias2(dst) );
9461  ins_pipe( fpu_reg_reg );
9462%}
9463
9464instruct mulD_reg_imm(regD dst, immD src) %{
9465  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9466  match(Set dst (MulD dst src));
9467  ins_cost(200);
9468  format %{ "FLD_D  [$src]\n\t"
9469            "DMULp  $dst,ST" %}
9470  opcode(0xDE, 0x1); /* DE /1 */
9471  ins_encode( LdImmD(src),
9472              OpcP, RegOpc(dst) );
9473  ins_pipe( fpu_reg_mem );
9474%}
9475
9476
9477instruct mulD_reg_mem(regD dst, memory src) %{
9478  predicate( UseSSE<=1 );
9479  match(Set dst (MulD dst (LoadD src)));
9480  ins_cost(200);
9481  format %{ "FLD_D  $src\n\t"
9482            "DMULp  $dst,ST" %}
9483  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9484  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9485              OpcP, RegOpc(dst) );
9486  ins_pipe( fpu_reg_mem );
9487%}
9488
9489//
9490// Cisc-alternate to reg-reg multiply
9491instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
9492  predicate( UseSSE<=1 );
9493  match(Set dst (MulD src (LoadD mem)));
9494  ins_cost(250);
9495  format %{ "FLD_D  $mem\n\t"
9496            "DMUL   ST,$src\n\t"
9497            "FSTP_D $dst" %}
9498  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9499  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9500              OpcReg_F(src),
9501              Pop_Reg_D(dst) );
9502  ins_pipe( fpu_reg_reg_mem );
9503%}
9504
9505
9506// MACRO3 -- addD a mulD
9507// This instruction is a '2-address' instruction in that the result goes
9508// back to src2.  This eliminates a move from the macro; possibly the
9509// register allocator will have to add it back (and maybe not).
9510instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
9511  predicate( UseSSE<=1 );
9512  match(Set src2 (AddD (MulD src0 src1) src2));
9513  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9514            "DMUL   ST,$src1\n\t"
9515            "DADDp  $src2,ST" %}
9516  ins_cost(250);
9517  opcode(0xDD); /* LoadD DD /0 */
9518  ins_encode( Push_Reg_F(src0),
9519              FMul_ST_reg(src1),
9520              FAddP_reg_ST(src2) );
9521  ins_pipe( fpu_reg_reg_reg );
9522%}
9523
9524
9525// MACRO3 -- subD a mulD
9526instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
9527  predicate( UseSSE<=1 );
9528  match(Set src2 (SubD (MulD src0 src1) src2));
9529  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9530            "DMUL   ST,$src1\n\t"
9531            "DSUBRp $src2,ST" %}
9532  ins_cost(250);
9533  ins_encode( Push_Reg_F(src0),
9534              FMul_ST_reg(src1),
9535              Opcode(0xDE), Opc_plus(0xE0,src2));
9536  ins_pipe( fpu_reg_reg_reg );
9537%}
9538
9539
9540instruct divD_reg(regD dst, regD src) %{
9541  predicate( UseSSE<=1 );
9542  match(Set dst (DivD dst src));
9543
9544  format %{ "FLD    $src\n\t"
9545            "FDIVp  $dst,ST" %}
9546  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9547  ins_cost(150);
9548  ins_encode( Push_Reg_D(src),
9549              OpcP, RegOpc(dst) );
9550  ins_pipe( fpu_reg_reg );
9551%}
9552
9553// Strict FP instruction biases argument before division then
9554// biases result, to avoid double rounding of subnormals.
9555//
9556// scale dividend by multiplying dividend by 2^(-15360)
9557// load divisor
9558// divide scaled dividend by divisor
9559// rescale quotient by 2^(15360)
9560//
9561instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
9562  predicate (UseSSE<=1);
9563  match(Set dst (DivD dst src));
9564  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9565  ins_cost(01);
9566
9567  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9568            "DMULp  $dst,ST\n\t"
9569            "FLD    $src\n\t"
9570            "FDIVp  $dst,ST\n\t"
9571            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9572            "DMULp  $dst,ST\n\t" %}
9573  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9574  ins_encode( strictfp_bias1(dst),
9575              Push_Reg_D(src),
9576              OpcP, RegOpc(dst),
9577              strictfp_bias2(dst) );
9578  ins_pipe( fpu_reg_reg );
9579%}
9580
9581instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9582  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9583  match(Set dst (RoundDouble (DivD src1 src2)));
9584
9585  format %{ "FLD    $src1\n\t"
9586            "FDIV   ST,$src2\n\t"
9587            "FSTP_D $dst\t# D-round" %}
9588  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9589  ins_encode( Push_Reg_D(src1),
9590              OpcP, RegOpc(src2), Pop_Mem_D(dst) );
9591  ins_pipe( fpu_mem_reg_reg );
9592%}
9593
9594
9595instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
9596  predicate(UseSSE<=1);
9597  match(Set dst (ModD dst src));
9598  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
9599
9600  format %{ "DMOD   $dst,$src" %}
9601  ins_cost(250);
9602  ins_encode(Push_Reg_Mod_D(dst, src),
9603              emitModD(),
9604              Push_Result_Mod_D(src),
9605              Pop_Reg_D(dst));
9606  ins_pipe( pipe_slow );
9607%}
9608
9609instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
9610  predicate(UseSSE>=2);
9611  match(Set dst (ModD src0 src1));
9612  effect(KILL rax, KILL cr);
9613
9614  format %{ "SUB    ESP,8\t # DMOD\n"
9615          "\tMOVSD  [ESP+0],$src1\n"
9616          "\tFLD_D  [ESP+0]\n"
9617          "\tMOVSD  [ESP+0],$src0\n"
9618          "\tFLD_D  [ESP+0]\n"
9619     "loop:\tFPREM\n"
9620          "\tFWAIT\n"
9621          "\tFNSTSW AX\n"
9622          "\tSAHF\n"
9623          "\tJP     loop\n"
9624          "\tFSTP_D [ESP+0]\n"
9625          "\tMOVSD  $dst,[ESP+0]\n"
9626          "\tADD    ESP,8\n"
9627          "\tFSTP   ST0\t # Restore FPU Stack"
9628    %}
9629  ins_cost(250);
9630  ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
9631  ins_pipe( pipe_slow );
9632%}
9633
9634instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
9635  predicate (UseSSE<=1);
9636  match(Set dst (SinD src));
9637  ins_cost(1800);
9638  format %{ "DSIN   $dst" %}
9639  opcode(0xD9, 0xFE);
9640  ins_encode( OpcP, OpcS );
9641  ins_pipe( pipe_slow );
9642%}
9643
9644instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
9645  predicate (UseSSE>=2);
9646  match(Set dst (SinD dst));
9647  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9648  ins_cost(1800);
9649  format %{ "DSIN   $dst" %}
9650  opcode(0xD9, 0xFE);
9651  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9652  ins_pipe( pipe_slow );
9653%}
9654
9655instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
9656  predicate (UseSSE<=1);
9657  match(Set dst (CosD src));
9658  ins_cost(1800);
9659  format %{ "DCOS   $dst" %}
9660  opcode(0xD9, 0xFF);
9661  ins_encode( OpcP, OpcS );
9662  ins_pipe( pipe_slow );
9663%}
9664
9665instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
9666  predicate (UseSSE>=2);
9667  match(Set dst (CosD dst));
9668  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9669  ins_cost(1800);
9670  format %{ "DCOS   $dst" %}
9671  opcode(0xD9, 0xFF);
9672  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9673  ins_pipe( pipe_slow );
9674%}
9675
9676instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
9677  predicate (UseSSE<=1);
9678  match(Set dst(TanD src));
9679  format %{ "DTAN   $dst" %}
9680  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9681              Opcode(0xDD), Opcode(0xD8));   // fstp st
9682  ins_pipe( pipe_slow );
9683%}
9684
9685instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
9686  predicate (UseSSE>=2);
9687  match(Set dst(TanD dst));
9688  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9689  format %{ "DTAN   $dst" %}
9690  ins_encode( Push_SrcXD(dst),
9691              Opcode(0xD9), Opcode(0xF2),    // fptan
9692              Opcode(0xDD), Opcode(0xD8),   // fstp st
9693              Push_ResultXD(dst) );
9694  ins_pipe( pipe_slow );
9695%}
9696
9697instruct atanD_reg(regD dst, regD src) %{
9698  predicate (UseSSE<=1);
9699  match(Set dst(AtanD dst src));
9700  format %{ "DATA   $dst,$src" %}
9701  opcode(0xD9, 0xF3);
9702  ins_encode( Push_Reg_D(src),
9703              OpcP, OpcS, RegOpc(dst) );
9704  ins_pipe( pipe_slow );
9705%}
9706
9707instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
9708  predicate (UseSSE>=2);
9709  match(Set dst(AtanD dst src));
9710  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9711  format %{ "DATA   $dst,$src" %}
9712  opcode(0xD9, 0xF3);
9713  ins_encode( Push_SrcXD(src),
9714              OpcP, OpcS, Push_ResultXD(dst) );
9715  ins_pipe( pipe_slow );
9716%}
9717
9718instruct sqrtD_reg(regD dst, regD src) %{
9719  predicate (UseSSE<=1);
9720  match(Set dst (SqrtD src));
9721  format %{ "DSQRT  $dst,$src" %}
9722  opcode(0xFA, 0xD9);
9723  ins_encode( Push_Reg_D(src),
9724              OpcS, OpcP, Pop_Reg_D(dst) );
9725  ins_pipe( pipe_slow );
9726%}
9727
9728instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
9729  predicate (UseSSE<=1);
9730  match(Set Y (PowD X Y));  // Raise X to the Yth power
9731  effect(KILL rax, KILL rbx, KILL rcx);
9732  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
9733            "FLD_D  $X\n\t"
9734            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
9735
9736            "FDUP   \t\t\t# Q Q\n\t"
9737            "FRNDINT\t\t\t# int(Q) Q\n\t"
9738            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
9739            "FISTP  dword [ESP]\n\t"
9740            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
9741            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
9742            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
9743            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
9744            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
9745            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
9746            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
9747            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
9748            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
9749            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
9750            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
9751            "MOV    [ESP+0],0\n\t"
9752            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
9753
9754            "ADD    ESP,8"
9755             %}
9756  ins_encode( push_stack_temp_qword,
9757              Push_Reg_D(X),
9758              Opcode(0xD9), Opcode(0xF1),   // fyl2x
9759              pow_exp_core_encoding,
9760              pop_stack_temp_qword);
9761  ins_pipe( pipe_slow );
9762%}
9763
9764instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
9765  predicate (UseSSE>=2);
9766  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9767  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
9768  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
9769            "MOVSD  [ESP],$src1\n\t"
9770            "FLD    FPR1,$src1\n\t"
9771            "MOVSD  [ESP],$src0\n\t"
9772            "FLD    FPR1,$src0\n\t"
9773            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
9774
9775            "FDUP   \t\t\t# Q Q\n\t"
9776            "FRNDINT\t\t\t# int(Q) Q\n\t"
9777            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
9778            "FISTP  dword [ESP]\n\t"
9779            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
9780            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
9781            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
9782            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
9783            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
9784            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
9785            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
9786            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
9787            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
9788            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
9789            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
9790            "MOV    [ESP+0],0\n\t"
9791            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
9792
9793            "FST_D  [ESP]\n\t"
9794            "MOVSD  $dst,[ESP]\n\t"
9795            "ADD    ESP,8"
9796             %}
9797  ins_encode( push_stack_temp_qword,
9798              push_xmm_to_fpr1(src1),
9799              push_xmm_to_fpr1(src0),
9800              Opcode(0xD9), Opcode(0xF1),   // fyl2x
9801              pow_exp_core_encoding,
9802              Push_ResultXD(dst) );
9803  ins_pipe( pipe_slow );
9804%}
9805
9806
9807instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
9808  predicate (UseSSE<=1);
9809  match(Set dpr1 (ExpD dpr1));
9810  effect(KILL rax, KILL rbx, KILL rcx);
9811  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
9812            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
9813            "FMULP  \t\t\t# Q=X*log2(e)\n\t"
9814
9815            "FDUP   \t\t\t# Q Q\n\t"
9816            "FRNDINT\t\t\t# int(Q) Q\n\t"
9817            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
9818            "FISTP  dword [ESP]\n\t"
9819            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
9820            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
9821            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
9822            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
9823            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
9824            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
9825            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
9826            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
9827            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
9828            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
9829            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
9830            "MOV    [ESP+0],0\n\t"
9831            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
9832
9833            "ADD    ESP,8"
9834             %}
9835  ins_encode( push_stack_temp_qword,
9836              Opcode(0xD9), Opcode(0xEA),   // fldl2e
9837              Opcode(0xDE), Opcode(0xC9),   // fmulp
9838              pow_exp_core_encoding,
9839              pop_stack_temp_qword);
9840  ins_pipe( pipe_slow );
9841%}
9842
9843instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
9844  predicate (UseSSE>=2);
9845  match(Set dst (ExpD src));
9846  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
9847  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
9848            "MOVSD  [ESP],$src\n\t"
9849            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
9850            "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
9851
9852            "FDUP   \t\t\t# Q Q\n\t"
9853            "FRNDINT\t\t\t# int(Q) Q\n\t"
9854            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
9855            "FISTP  dword [ESP]\n\t"
9856            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
9857            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
9858            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
9859            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
9860            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
9861            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
9862            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
9863            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
9864            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
9865            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
9866            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
9867            "MOV    [ESP+0],0\n\t"
9868            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
9869
9870            "FST_D  [ESP]\n\t"
9871            "MOVSD  $dst,[ESP]\n\t"
9872            "ADD    ESP,8"
9873             %}
9874  ins_encode( Push_SrcXD(src),
9875              Opcode(0xD9), Opcode(0xEA),   // fldl2e
9876              Opcode(0xDE), Opcode(0xC9),   // fmulp
9877              pow_exp_core_encoding,
9878              Push_ResultXD(dst) );
9879  ins_pipe( pipe_slow );
9880%}
9881
9882
9883
9884instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
9885  predicate (UseSSE<=1);
9886  // The source Double operand on FPU stack
9887  match(Set dst (Log10D src));
9888  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9889  // fxch         ; swap ST(0) with ST(1)
9890  // fyl2x        ; compute log_10(2) * log_2(x)
9891  format %{ "FLDLG2 \t\t\t#Log10\n\t"
9892            "FXCH   \n\t"
9893            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9894         %}
9895  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9896              Opcode(0xD9), Opcode(0xC9),   // fxch
9897              Opcode(0xD9), Opcode(0xF1));  // fyl2x
9898
9899  ins_pipe( pipe_slow );
9900%}
9901
9902instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
9903  predicate (UseSSE>=2);
9904  effect(KILL cr);
9905  match(Set dst (Log10D src));
9906  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9907  // fyl2x        ; compute log_10(2) * log_2(x)
9908  format %{ "FLDLG2 \t\t\t#Log10\n\t"
9909            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9910         %}
9911  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9912              Push_SrcXD(src),
9913              Opcode(0xD9), Opcode(0xF1),   // fyl2x
9914              Push_ResultXD(dst));
9915
9916  ins_pipe( pipe_slow );
9917%}
9918
9919instruct logD_reg(regDPR1 dst, regDPR1 src) %{
9920  predicate (UseSSE<=1);
9921  // The source Double operand on FPU stack
9922  match(Set dst (LogD src));
9923  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
9924  // fxch         ; swap ST(0) with ST(1)
9925  // fyl2x        ; compute log_e(2) * log_2(x)
9926  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
9927            "FXCH   \n\t"
9928            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
9929         %}
9930  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
9931              Opcode(0xD9), Opcode(0xC9),   // fxch
9932              Opcode(0xD9), Opcode(0xF1));  // fyl2x
9933
9934  ins_pipe( pipe_slow );
9935%}
9936
9937instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
9938  predicate (UseSSE>=2);
9939  effect(KILL cr);
9940  // The source and result Double operands in XMM registers
9941  match(Set dst (LogD src));
9942  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
9943  // fyl2x        ; compute log_e(2) * log_2(x)
9944  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
9945            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
9946         %}
9947  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
9948              Push_SrcXD(src),
9949              Opcode(0xD9), Opcode(0xF1),   // fyl2x
9950              Push_ResultXD(dst));
9951  ins_pipe( pipe_slow );
9952%}
9953
9954//-------------Float Instructions-------------------------------
9955// Float Math
9956
9957// Code for float compare:
9958//     fcompp();
9959//     fwait(); fnstsw_ax();
9960//     sahf();
9961//     movl(dst, unordered_result);
9962//     jcc(Assembler::parity, exit);
9963//     movl(dst, less_result);
9964//     jcc(Assembler::below, exit);
9965//     movl(dst, equal_result);
9966//     jcc(Assembler::equal, exit);
9967//     movl(dst, greater_result);
9968//   exit:
9969
9970// P6 version of float compare, sets condition codes in EFLAGS
9971instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
9972  predicate(VM_Version::supports_cmov() && UseSSE == 0);
9973  match(Set cr (CmpF src1 src2));
9974  effect(KILL rax);
9975  ins_cost(150);
9976  format %{ "FLD    $src1\n\t"
9977            "FUCOMIP ST,$src2  // P6 instruction\n\t"
9978            "JNP    exit\n\t"
9979            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
9980            "SAHF\n"
9981     "exit:\tNOP               // avoid branch to branch" %}
9982  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9983  ins_encode( Push_Reg_D(src1),
9984              OpcP, RegOpc(src2),
9985              cmpF_P6_fixup );
9986  ins_pipe( pipe_slow );
9987%}
9988
9989
9990// Compare & branch
9991instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
9992  predicate(UseSSE == 0);
9993  match(Set cr (CmpF src1 src2));
9994  effect(KILL rax);
9995  ins_cost(200);
9996  format %{ "FLD    $src1\n\t"
9997            "FCOMp  $src2\n\t"
9998            "FNSTSW AX\n\t"
9999            "TEST   AX,0x400\n\t"
10000            "JZ,s   flags\n\t"
10001            "MOV    AH,1\t# unordered treat as LT\n"
10002    "flags:\tSAHF" %}
10003  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10004  ins_encode( Push_Reg_D(src1),
10005              OpcP, RegOpc(src2),
10006              fpu_flags);
10007  ins_pipe( pipe_slow );
10008%}
10009
10010// Compare vs zero into -1,0,1
10011instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
10012  predicate(UseSSE == 0);
10013  match(Set dst (CmpF3 src1 zero));
10014  effect(KILL cr, KILL rax);
10015  ins_cost(280);
10016  format %{ "FTSTF  $dst,$src1" %}
10017  opcode(0xE4, 0xD9);
10018  ins_encode( Push_Reg_D(src1),
10019              OpcS, OpcP, PopFPU,
10020              CmpF_Result(dst));
10021  ins_pipe( pipe_slow );
10022%}
10023
10024// Compare into -1,0,1
10025instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10026  predicate(UseSSE == 0);
10027  match(Set dst (CmpF3 src1 src2));
10028  effect(KILL cr, KILL rax);
10029  ins_cost(300);
10030  format %{ "FCMPF  $dst,$src1,$src2" %}
10031  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10032  ins_encode( Push_Reg_D(src1),
10033              OpcP, RegOpc(src2),
10034              CmpF_Result(dst));
10035  ins_pipe( pipe_slow );
10036%}
10037
10038// float compare and set condition codes in EFLAGS by XMM regs
10039instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
10040  predicate(UseSSE>=1);
10041  match(Set cr (CmpF dst src));
10042  effect(KILL rax);
10043  ins_cost(145);
10044  format %{ "COMISS $dst,$src\n"
10045          "\tJNP    exit\n"
10046          "\tMOV    ah,1       // saw a NaN, set CF\n"
10047          "\tSAHF\n"
10048     "exit:\tNOP               // avoid branch to branch" %}
10049  opcode(0x0F, 0x2F);
10050  ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
10051  ins_pipe( pipe_slow );
10052%}
10053
10054// float compare and set condition codes in EFLAGS by XMM regs
10055instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
10056  predicate(UseSSE>=1);
10057  match(Set cr (CmpF dst (LoadF src)));
10058  effect(KILL rax);
10059  ins_cost(165);
10060  format %{ "COMISS $dst,$src\n"
10061          "\tJNP    exit\n"
10062          "\tMOV    ah,1       // saw a NaN, set CF\n"
10063          "\tSAHF\n"
10064     "exit:\tNOP               // avoid branch to branch" %}
10065  opcode(0x0F, 0x2F);
10066  ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
10067  ins_pipe( pipe_slow );
10068%}
10069
10070// Compare into -1,0,1 in XMM
10071instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
10072  predicate(UseSSE>=1);
10073  match(Set dst (CmpF3 src1 src2));
10074  effect(KILL cr);
10075  ins_cost(255);
10076  format %{ "XOR    $dst,$dst\n"
10077          "\tCOMISS $src1,$src2\n"
10078          "\tJP,s   nan\n"
10079          "\tJEQ,s  exit\n"
10080          "\tJA,s   inc\n"
10081      "nan:\tDEC    $dst\n"
10082          "\tJMP,s  exit\n"
10083      "inc:\tINC    $dst\n"
10084      "exit:"
10085                %}
10086  opcode(0x0F, 0x2F);
10087  ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
10088  ins_pipe( pipe_slow );
10089%}
10090
10091// Compare into -1,0,1 in XMM and memory
10092instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
10093  predicate(UseSSE>=1);
10094  match(Set dst (CmpF3 src1 (LoadF mem)));
10095  effect(KILL cr);
10096  ins_cost(275);
10097  format %{ "COMISS $src1,$mem\n"
10098          "\tMOV    $dst,0\t\t# do not blow flags\n"
10099          "\tJP,s   nan\n"
10100          "\tJEQ,s  exit\n"
10101          "\tJA,s   inc\n"
10102      "nan:\tDEC    $dst\n"
10103          "\tJMP,s  exit\n"
10104      "inc:\tINC    $dst\n"
10105      "exit:"
10106                %}
10107  opcode(0x0F, 0x2F);
10108  ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
10109  ins_pipe( pipe_slow );
10110%}
10111
10112// Spill to obtain 24-bit precision
10113instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
10114  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10115  match(Set dst (SubF src1 src2));
10116
10117  format %{ "FSUB   $dst,$src1 - $src2" %}
10118  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10119  ins_encode( Push_Reg_F(src1),
10120              OpcReg_F(src2),
10121              Pop_Mem_F(dst) );
10122  ins_pipe( fpu_mem_reg_reg );
10123%}
10124//
10125// This instruction does not round to 24-bits
10126instruct subF_reg(regF dst, regF src) %{
10127  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10128  match(Set dst (SubF dst src));
10129
10130  format %{ "FSUB   $dst,$src" %}
10131  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10132  ins_encode( Push_Reg_F(src),
10133              OpcP, RegOpc(dst) );
10134  ins_pipe( fpu_reg_reg );
10135%}
10136
10137// Spill to obtain 24-bit precision
10138instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
10139  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10140  match(Set dst (AddF src1 src2));
10141
10142  format %{ "FADD   $dst,$src1,$src2" %}
10143  opcode(0xD8, 0x0); /* D8 C0+i */
10144  ins_encode( Push_Reg_F(src2),
10145              OpcReg_F(src1),
10146              Pop_Mem_F(dst) );
10147  ins_pipe( fpu_mem_reg_reg );
10148%}
10149//
10150// This instruction does not round to 24-bits
10151instruct addF_reg(regF dst, regF src) %{
10152  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10153  match(Set dst (AddF dst src));
10154
10155  format %{ "FLD    $src\n\t"
10156            "FADDp  $dst,ST" %}
10157  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10158  ins_encode( Push_Reg_F(src),
10159              OpcP, RegOpc(dst) );
10160  ins_pipe( fpu_reg_reg );
10161%}
10162
10163// Add two single precision floating point values in xmm
10164instruct addX_reg(regX dst, regX src) %{
10165  predicate(UseSSE>=1);
10166  match(Set dst (AddF dst src));
10167  format %{ "ADDSS  $dst,$src" %}
10168  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10169  ins_pipe( pipe_slow );
10170%}
10171
10172instruct addX_imm(regX dst, immXF con) %{
10173  predicate(UseSSE>=1);
10174  match(Set dst (AddF dst con));
10175  format %{ "ADDSS  $dst,[$con]" %}
10176  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
10177  ins_pipe( pipe_slow );
10178%}
10179
10180instruct addX_mem(regX dst, memory mem) %{
10181  predicate(UseSSE>=1);
10182  match(Set dst (AddF dst (LoadF mem)));
10183  format %{ "ADDSS  $dst,$mem" %}
10184  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
10185  ins_pipe( pipe_slow );
10186%}
10187
10188// Subtract two single precision floating point values in xmm
10189instruct subX_reg(regX dst, regX src) %{
10190  predicate(UseSSE>=1);
10191  match(Set dst (SubF dst src));
10192  format %{ "SUBSS  $dst,$src" %}
10193  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10194  ins_pipe( pipe_slow );
10195%}
10196
10197instruct subX_imm(regX dst, immXF con) %{
10198  predicate(UseSSE>=1);
10199  match(Set dst (SubF dst con));
10200  format %{ "SUBSS  $dst,[$con]" %}
10201  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
10202  ins_pipe( pipe_slow );
10203%}
10204
10205instruct subX_mem(regX dst, memory mem) %{
10206  predicate(UseSSE>=1);
10207  match(Set dst (SubF dst (LoadF mem)));
10208  format %{ "SUBSS  $dst,$mem" %}
10209  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10210  ins_pipe( pipe_slow );
10211%}
10212
10213// Multiply two single precision floating point values in xmm
10214instruct mulX_reg(regX dst, regX src) %{
10215  predicate(UseSSE>=1);
10216  match(Set dst (MulF dst src));
10217  format %{ "MULSS  $dst,$src" %}
10218  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10219  ins_pipe( pipe_slow );
10220%}
10221
10222instruct mulX_imm(regX dst, immXF con) %{
10223  predicate(UseSSE>=1);
10224  match(Set dst (MulF dst con));
10225  format %{ "MULSS  $dst,[$con]" %}
10226  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
10227  ins_pipe( pipe_slow );
10228%}
10229
10230instruct mulX_mem(regX dst, memory mem) %{
10231  predicate(UseSSE>=1);
10232  match(Set dst (MulF dst (LoadF mem)));
10233  format %{ "MULSS  $dst,$mem" %}
10234  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10235  ins_pipe( pipe_slow );
10236%}
10237
10238// Divide two single precision floating point values in xmm
10239instruct divX_reg(regX dst, regX src) %{
10240  predicate(UseSSE>=1);
10241  match(Set dst (DivF dst src));
10242  format %{ "DIVSS  $dst,$src" %}
10243  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10244  ins_pipe( pipe_slow );
10245%}
10246
10247instruct divX_imm(regX dst, immXF con) %{
10248  predicate(UseSSE>=1);
10249  match(Set dst (DivF dst con));
10250  format %{ "DIVSS  $dst,[$con]" %}
10251  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
10252  ins_pipe( pipe_slow );
10253%}
10254
10255instruct divX_mem(regX dst, memory mem) %{
10256  predicate(UseSSE>=1);
10257  match(Set dst (DivF dst (LoadF mem)));
10258  format %{ "DIVSS  $dst,$mem" %}
10259  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10260  ins_pipe( pipe_slow );
10261%}
10262
10263// Get the square root of a single precision floating point values in xmm
10264instruct sqrtX_reg(regX dst, regX src) %{
10265  predicate(UseSSE>=1);
10266  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
10267  format %{ "SQRTSS $dst,$src" %}
10268  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10269  ins_pipe( pipe_slow );
10270%}
10271
10272instruct sqrtX_mem(regX dst, memory mem) %{
10273  predicate(UseSSE>=1);
10274  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
10275  format %{ "SQRTSS $dst,$mem" %}
10276  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
10277  ins_pipe( pipe_slow );
10278%}
10279
10280// Get the square root of a double precision floating point values in xmm
10281instruct sqrtXD_reg(regXD dst, regXD src) %{
10282  predicate(UseSSE>=2);
10283  match(Set dst (SqrtD src));
10284  format %{ "SQRTSD $dst,$src" %}
10285  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10286  ins_pipe( pipe_slow );
10287%}
10288
10289instruct sqrtXD_mem(regXD dst, memory mem) %{
10290  predicate(UseSSE>=2);
10291  match(Set dst (SqrtD (LoadD mem)));
10292  format %{ "SQRTSD $dst,$mem" %}
10293  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
10294  ins_pipe( pipe_slow );
10295%}
10296
10297instruct absF_reg(regFPR1 dst, regFPR1 src) %{
10298  predicate(UseSSE==0);
10299  match(Set dst (AbsF src));
10300  ins_cost(100);
10301  format %{ "FABS" %}
10302  opcode(0xE1, 0xD9);
10303  ins_encode( OpcS, OpcP );
10304  ins_pipe( fpu_reg_reg );
10305%}
10306
10307instruct absX_reg(regX dst ) %{
10308  predicate(UseSSE>=1);
10309  match(Set dst (AbsF dst));
10310  format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
10311  ins_encode( AbsXF_encoding(dst));
10312  ins_pipe( pipe_slow );
10313%}
10314
10315instruct negF_reg(regFPR1 dst, regFPR1 src) %{
10316  predicate(UseSSE==0);
10317  match(Set dst (NegF src));
10318  ins_cost(100);
10319  format %{ "FCHS" %}
10320  opcode(0xE0, 0xD9);
10321  ins_encode( OpcS, OpcP );
10322  ins_pipe( fpu_reg_reg );
10323%}
10324
10325instruct negX_reg( regX dst ) %{
10326  predicate(UseSSE>=1);
10327  match(Set dst (NegF dst));
10328  format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
10329  ins_encode( NegXF_encoding(dst));
10330  ins_pipe( pipe_slow );
10331%}
10332
10333// Cisc-alternate to addF_reg
10334// Spill to obtain 24-bit precision
10335instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
10336  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10337  match(Set dst (AddF src1 (LoadF src2)));
10338
10339  format %{ "FLD    $src2\n\t"
10340            "FADD   ST,$src1\n\t"
10341            "FSTP_S $dst" %}
10342  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10343  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10344              OpcReg_F(src1),
10345              Pop_Mem_F(dst) );
10346  ins_pipe( fpu_mem_reg_mem );
10347%}
10348//
10349// Cisc-alternate to addF_reg
10350// This instruction does not round to 24-bits
10351instruct addF_reg_mem(regF dst, memory src) %{
10352  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10353  match(Set dst (AddF dst (LoadF src)));
10354
10355  format %{ "FADD   $dst,$src" %}
10356  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10357  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10358              OpcP, RegOpc(dst) );
10359  ins_pipe( fpu_reg_mem );
10360%}
10361
10362// // Following two instructions for _222_mpegaudio
10363// Spill to obtain 24-bit precision
10364instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
10365  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10366  match(Set dst (AddF src1 src2));
10367
10368  format %{ "FADD   $dst,$src1,$src2" %}
10369  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10370  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10371              OpcReg_F(src2),
10372              Pop_Mem_F(dst) );
10373  ins_pipe( fpu_mem_reg_mem );
10374%}
10375
10376// Cisc-spill variant
10377// Spill to obtain 24-bit precision
10378instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10379  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10380  match(Set dst (AddF src1 (LoadF src2)));
10381
10382  format %{ "FADD   $dst,$src1,$src2 cisc" %}
10383  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10384  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10385              set_instruction_start,
10386              OpcP, RMopc_Mem(secondary,src1),
10387              Pop_Mem_F(dst) );
10388  ins_pipe( fpu_mem_mem_mem );
10389%}
10390
10391// Spill to obtain 24-bit precision
10392instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10393  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10394  match(Set dst (AddF src1 src2));
10395
10396  format %{ "FADD   $dst,$src1,$src2" %}
10397  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10398  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10399              set_instruction_start,
10400              OpcP, RMopc_Mem(secondary,src1),
10401              Pop_Mem_F(dst) );
10402  ins_pipe( fpu_mem_mem_mem );
10403%}
10404
10405
10406// Spill to obtain 24-bit precision
10407instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
10408  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10409  match(Set dst (AddF src1 src2));
10410  format %{ "FLD    $src1\n\t"
10411            "FADD   $src2\n\t"
10412            "FSTP_S $dst"  %}
10413  opcode(0xD8, 0x00);       /* D8 /0 */
10414  ins_encode( Push_Reg_F(src1),
10415              Opc_MemImm_F(src2),
10416              Pop_Mem_F(dst));
10417  ins_pipe( fpu_mem_reg_con );
10418%}
10419//
10420// This instruction does not round to 24-bits
10421instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
10422  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10423  match(Set dst (AddF src1 src2));
10424  format %{ "FLD    $src1\n\t"
10425            "FADD   $src2\n\t"
10426            "FSTP_S $dst"  %}
10427  opcode(0xD8, 0x00);       /* D8 /0 */
10428  ins_encode( Push_Reg_F(src1),
10429              Opc_MemImm_F(src2),
10430              Pop_Reg_F(dst));
10431  ins_pipe( fpu_reg_reg_con );
10432%}
10433
10434// Spill to obtain 24-bit precision
10435instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
10436  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10437  match(Set dst (MulF src1 src2));
10438
10439  format %{ "FLD    $src1\n\t"
10440            "FMUL   $src2\n\t"
10441            "FSTP_S $dst"  %}
10442  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10443  ins_encode( Push_Reg_F(src1),
10444              OpcReg_F(src2),
10445              Pop_Mem_F(dst) );
10446  ins_pipe( fpu_mem_reg_reg );
10447%}
10448//
10449// This instruction does not round to 24-bits
10450instruct mulF_reg(regF dst, regF src1, regF src2) %{
10451  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10452  match(Set dst (MulF src1 src2));
10453
10454  format %{ "FLD    $src1\n\t"
10455            "FMUL   $src2\n\t"
10456            "FSTP_S $dst"  %}
10457  opcode(0xD8, 0x1); /* D8 C8+i */
10458  ins_encode( Push_Reg_F(src2),
10459              OpcReg_F(src1),
10460              Pop_Reg_F(dst) );
10461  ins_pipe( fpu_reg_reg_reg );
10462%}
10463
10464
10465// Spill to obtain 24-bit precision
10466// Cisc-alternate to reg-reg multiply
10467instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
10468  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10469  match(Set dst (MulF src1 (LoadF src2)));
10470
10471  format %{ "FLD_S  $src2\n\t"
10472            "FMUL   $src1\n\t"
10473            "FSTP_S $dst"  %}
10474  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10475  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10476              OpcReg_F(src1),
10477              Pop_Mem_F(dst) );
10478  ins_pipe( fpu_mem_reg_mem );
10479%}
10480//
10481// This instruction does not round to 24-bits
10482// Cisc-alternate to reg-reg multiply
10483instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
10484  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10485  match(Set dst (MulF src1 (LoadF src2)));
10486
10487  format %{ "FMUL   $dst,$src1,$src2" %}
10488  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10489  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10490              OpcReg_F(src1),
10491              Pop_Reg_F(dst) );
10492  ins_pipe( fpu_reg_reg_mem );
10493%}
10494
10495// Spill to obtain 24-bit precision
10496instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10497  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10498  match(Set dst (MulF src1 src2));
10499
10500  format %{ "FMUL   $dst,$src1,$src2" %}
10501  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10502  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10503              set_instruction_start,
10504              OpcP, RMopc_Mem(secondary,src1),
10505              Pop_Mem_F(dst) );
10506  ins_pipe( fpu_mem_mem_mem );
10507%}
10508
10509// Spill to obtain 24-bit precision
10510instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
10511  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10512  match(Set dst (MulF src1 src2));
10513
10514  format %{ "FMULc $dst,$src1,$src2" %}
10515  opcode(0xD8, 0x1);  /* D8 /1*/
10516  ins_encode( Push_Reg_F(src1),
10517              Opc_MemImm_F(src2),
10518              Pop_Mem_F(dst));
10519  ins_pipe( fpu_mem_reg_con );
10520%}
10521//
10522// This instruction does not round to 24-bits
10523instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
10524  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10525  match(Set dst (MulF src1 src2));
10526
10527  format %{ "FMULc $dst. $src1, $src2" %}
10528  opcode(0xD8, 0x1);  /* D8 /1*/
10529  ins_encode( Push_Reg_F(src1),
10530              Opc_MemImm_F(src2),
10531              Pop_Reg_F(dst));
10532  ins_pipe( fpu_reg_reg_con );
10533%}
10534
10535
10536//
10537// MACRO1 -- subsume unshared load into mulF
10538// This instruction does not round to 24-bits
10539instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
10540  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10541  match(Set dst (MulF (LoadF mem1) src));
10542
10543  format %{ "FLD    $mem1    ===MACRO1===\n\t"
10544            "FMUL   ST,$src\n\t"
10545            "FSTP   $dst" %}
10546  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10547  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10548              OpcReg_F(src),
10549              Pop_Reg_F(dst) );
10550  ins_pipe( fpu_reg_reg_mem );
10551%}
10552//
10553// MACRO2 -- addF a mulF which subsumed an unshared load
10554// This instruction does not round to 24-bits
10555instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
10556  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10557  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10558  ins_cost(95);
10559
10560  format %{ "FLD    $mem1     ===MACRO2===\n\t"
10561            "FMUL   ST,$src1  subsume mulF left load\n\t"
10562            "FADD   ST,$src2\n\t"
10563            "FSTP   $dst" %}
10564  opcode(0xD9); /* LoadF D9 /0 */
10565  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10566              FMul_ST_reg(src1),
10567              FAdd_ST_reg(src2),
10568              Pop_Reg_F(dst) );
10569  ins_pipe( fpu_reg_mem_reg_reg );
10570%}
10571
10572// MACRO3 -- addF a mulF
10573// This instruction does not round to 24-bits.  It is a '2-address'
10574// instruction in that the result goes back to src2.  This eliminates
10575// a move from the macro; possibly the register allocator will have
10576// to add it back (and maybe not).
10577instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
10578  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10579  match(Set src2 (AddF (MulF src0 src1) src2));
10580
10581  format %{ "FLD    $src0     ===MACRO3===\n\t"
10582            "FMUL   ST,$src1\n\t"
10583            "FADDP  $src2,ST" %}
10584  opcode(0xD9); /* LoadF D9 /0 */
10585  ins_encode( Push_Reg_F(src0),
10586              FMul_ST_reg(src1),
10587              FAddP_reg_ST(src2) );
10588  ins_pipe( fpu_reg_reg_reg );
10589%}
10590
10591// MACRO4 -- divF subF
10592// This instruction does not round to 24-bits
10593instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
10594  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10595  match(Set dst (DivF (SubF src2 src1) src3));
10596
10597  format %{ "FLD    $src2   ===MACRO4===\n\t"
10598            "FSUB   ST,$src1\n\t"
10599            "FDIV   ST,$src3\n\t"
10600            "FSTP  $dst" %}
10601  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10602  ins_encode( Push_Reg_F(src2),
10603              subF_divF_encode(src1,src3),
10604              Pop_Reg_F(dst) );
10605  ins_pipe( fpu_reg_reg_reg_reg );
10606%}
10607
10608// Spill to obtain 24-bit precision
10609instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
10610  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10611  match(Set dst (DivF src1 src2));
10612
10613  format %{ "FDIV   $dst,$src1,$src2" %}
10614  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10615  ins_encode( Push_Reg_F(src1),
10616              OpcReg_F(src2),
10617              Pop_Mem_F(dst) );
10618  ins_pipe( fpu_mem_reg_reg );
10619%}
10620//
10621// This instruction does not round to 24-bits
10622instruct divF_reg(regF dst, regF src) %{
10623  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10624  match(Set dst (DivF dst src));
10625
10626  format %{ "FDIV   $dst,$src" %}
10627  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10628  ins_encode( Push_Reg_F(src),
10629              OpcP, RegOpc(dst) );
10630  ins_pipe( fpu_reg_reg );
10631%}
10632
10633
10634// Spill to obtain 24-bit precision
10635instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10636  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10637  match(Set dst (ModF src1 src2));
10638  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10639
10640  format %{ "FMOD   $dst,$src1,$src2" %}
10641  ins_encode( Push_Reg_Mod_D(src1, src2),
10642              emitModD(),
10643              Push_Result_Mod_D(src2),
10644              Pop_Mem_F(dst));
10645  ins_pipe( pipe_slow );
10646%}
10647//
10648// This instruction does not round to 24-bits
10649instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
10650  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10651  match(Set dst (ModF dst src));
10652  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10653
10654  format %{ "FMOD   $dst,$src" %}
10655  ins_encode(Push_Reg_Mod_D(dst, src),
10656              emitModD(),
10657              Push_Result_Mod_D(src),
10658              Pop_Reg_F(dst));
10659  ins_pipe( pipe_slow );
10660%}
10661
10662instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
10663  predicate(UseSSE>=1);
10664  match(Set dst (ModF src0 src1));
10665  effect(KILL rax, KILL cr);
10666  format %{ "SUB    ESP,4\t # FMOD\n"
10667          "\tMOVSS  [ESP+0],$src1\n"
10668          "\tFLD_S  [ESP+0]\n"
10669          "\tMOVSS  [ESP+0],$src0\n"
10670          "\tFLD_S  [ESP+0]\n"
10671     "loop:\tFPREM\n"
10672          "\tFWAIT\n"
10673          "\tFNSTSW AX\n"
10674          "\tSAHF\n"
10675          "\tJP     loop\n"
10676          "\tFSTP_S [ESP+0]\n"
10677          "\tMOVSS  $dst,[ESP+0]\n"
10678          "\tADD    ESP,4\n"
10679          "\tFSTP   ST0\t # Restore FPU Stack"
10680    %}
10681  ins_cost(250);
10682  ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
10683  ins_pipe( pipe_slow );
10684%}
10685
10686
10687//----------Arithmetic Conversion Instructions---------------------------------
10688// The conversions operations are all Alpha sorted.  Please keep it that way!
10689
10690instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
10691  predicate(UseSSE==0);
10692  match(Set dst (RoundFloat src));
10693  ins_cost(125);
10694  format %{ "FST_S  $dst,$src\t# F-round" %}
10695  ins_encode( Pop_Mem_Reg_F(dst, src) );
10696  ins_pipe( fpu_mem_reg );
10697%}
10698
10699instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
10700  predicate(UseSSE<=1);
10701  match(Set dst (RoundDouble src));
10702  ins_cost(125);
10703  format %{ "FST_D  $dst,$src\t# D-round" %}
10704  ins_encode( Pop_Mem_Reg_D(dst, src) );
10705  ins_pipe( fpu_mem_reg );
10706%}
10707
10708// Force rounding to 24-bit precision and 6-bit exponent
10709instruct convD2F_reg(stackSlotF dst, regD src) %{
10710  predicate(UseSSE==0);
10711  match(Set dst (ConvD2F src));
10712  format %{ "FST_S  $dst,$src\t# F-round" %}
10713  expand %{
10714    roundFloat_mem_reg(dst,src);
10715  %}
10716%}
10717
10718// Force rounding to 24-bit precision and 6-bit exponent
10719instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
10720  predicate(UseSSE==1);
10721  match(Set dst (ConvD2F src));
10722  effect( KILL cr );
10723  format %{ "SUB    ESP,4\n\t"
10724            "FST_S  [ESP],$src\t# F-round\n\t"
10725            "MOVSS  $dst,[ESP]\n\t"
10726            "ADD ESP,4" %}
10727  ins_encode( D2X_encoding(dst, src) );
10728  ins_pipe( pipe_slow );
10729%}
10730
10731// Force rounding double precision to single precision
10732instruct convXD2X_reg(regX dst, regXD src) %{
10733  predicate(UseSSE>=2);
10734  match(Set dst (ConvD2F src));
10735  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10736  opcode(0xF2, 0x0F, 0x5A);
10737  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10738  ins_pipe( pipe_slow );
10739%}
10740
10741instruct convF2D_reg_reg(regD dst, regF src) %{
10742  predicate(UseSSE==0);
10743  match(Set dst (ConvF2D src));
10744  format %{ "FST_S  $dst,$src\t# D-round" %}
10745  ins_encode( Pop_Reg_Reg_D(dst, src));
10746  ins_pipe( fpu_reg_reg );
10747%}
10748
10749instruct convF2D_reg(stackSlotD dst, regF src) %{
10750  predicate(UseSSE==1);
10751  match(Set dst (ConvF2D src));
10752  format %{ "FST_D  $dst,$src\t# D-round" %}
10753  expand %{
10754    roundDouble_mem_reg(dst,src);
10755  %}
10756%}
10757
10758instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
10759  predicate(UseSSE==1);
10760  match(Set dst (ConvF2D src));
10761  effect( KILL cr );
10762  format %{ "SUB    ESP,4\n\t"
10763            "MOVSS  [ESP] $src\n\t"
10764            "FLD_S  [ESP]\n\t"
10765            "ADD    ESP,4\n\t"
10766            "FSTP   $dst\t# D-round" %}
10767  ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
10768  ins_pipe( pipe_slow );
10769%}
10770
10771instruct convX2XD_reg(regXD dst, regX src) %{
10772  predicate(UseSSE>=2);
10773  match(Set dst (ConvF2D src));
10774  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10775  opcode(0xF3, 0x0F, 0x5A);
10776  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10777  ins_pipe( pipe_slow );
10778%}
10779
10780// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10781instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10782  predicate(UseSSE<=1);
10783  match(Set dst (ConvD2I src));
10784  effect( KILL tmp, KILL cr );
10785  format %{ "FLD    $src\t# Convert double to int \n\t"
10786            "FLDCW  trunc mode\n\t"
10787            "SUB    ESP,4\n\t"
10788            "FISTp  [ESP + #0]\n\t"
10789            "FLDCW  std/24-bit mode\n\t"
10790            "POP    EAX\n\t"
10791            "CMP    EAX,0x80000000\n\t"
10792            "JNE,s  fast\n\t"
10793            "FLD_D  $src\n\t"
10794            "CALL   d2i_wrapper\n"
10795      "fast:" %}
10796  ins_encode( Push_Reg_D(src), D2I_encoding(src) );
10797  ins_pipe( pipe_slow );
10798%}
10799
10800// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10801instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
10802  predicate(UseSSE>=2);
10803  match(Set dst (ConvD2I src));
10804  effect( KILL tmp, KILL cr );
10805  format %{ "CVTTSD2SI $dst, $src\n\t"
10806            "CMP    $dst,0x80000000\n\t"
10807            "JNE,s  fast\n\t"
10808            "SUB    ESP, 8\n\t"
10809            "MOVSD  [ESP], $src\n\t"
10810            "FLD_D  [ESP]\n\t"
10811            "ADD    ESP, 8\n\t"
10812            "CALL   d2i_wrapper\n"
10813      "fast:" %}
10814  opcode(0x1); // double-precision conversion
10815  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
10816  ins_pipe( pipe_slow );
10817%}
10818
10819instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10820  predicate(UseSSE<=1);
10821  match(Set dst (ConvD2L src));
10822  effect( KILL cr );
10823  format %{ "FLD    $src\t# Convert double to long\n\t"
10824            "FLDCW  trunc mode\n\t"
10825            "SUB    ESP,8\n\t"
10826            "FISTp  [ESP + #0]\n\t"
10827            "FLDCW  std/24-bit mode\n\t"
10828            "POP    EAX\n\t"
10829            "POP    EDX\n\t"
10830            "CMP    EDX,0x80000000\n\t"
10831            "JNE,s  fast\n\t"
10832            "TEST   EAX,EAX\n\t"
10833            "JNE,s  fast\n\t"
10834            "FLD    $src\n\t"
10835            "CALL   d2l_wrapper\n"
10836      "fast:" %}
10837  ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
10838  ins_pipe( pipe_slow );
10839%}
10840
10841// XMM lacks a float/double->long conversion, so use the old FPU stack.
10842instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
10843  predicate (UseSSE>=2);
10844  match(Set dst (ConvD2L src));
10845  effect( KILL cr );
10846  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10847            "MOVSD  [ESP],$src\n\t"
10848            "FLD_D  [ESP]\n\t"
10849            "FLDCW  trunc mode\n\t"
10850            "FISTp  [ESP + #0]\n\t"
10851            "FLDCW  std/24-bit mode\n\t"
10852            "POP    EAX\n\t"
10853            "POP    EDX\n\t"
10854            "CMP    EDX,0x80000000\n\t"
10855            "JNE,s  fast\n\t"
10856            "TEST   EAX,EAX\n\t"
10857            "JNE,s  fast\n\t"
10858            "SUB    ESP,8\n\t"
10859            "MOVSD  [ESP],$src\n\t"
10860            "FLD_D  [ESP]\n\t"
10861            "CALL   d2l_wrapper\n"
10862      "fast:" %}
10863  ins_encode( XD2L_encoding(src) );
10864  ins_pipe( pipe_slow );
10865%}
10866
10867// Convert a double to an int.  Java semantics require we do complex
10868// manglations in the corner cases.  So we set the rounding mode to
10869// 'zero', store the darned double down as an int, and reset the
10870// rounding mode to 'nearest'.  The hardware stores a flag value down
10871// if we would overflow or converted a NAN; we check for this and
10872// and go the slow path if needed.
10873instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
10874  predicate(UseSSE==0);
10875  match(Set dst (ConvF2I src));
10876  effect( KILL tmp, KILL cr );
10877  format %{ "FLD    $src\t# Convert float to int \n\t"
10878            "FLDCW  trunc mode\n\t"
10879            "SUB    ESP,4\n\t"
10880            "FISTp  [ESP + #0]\n\t"
10881            "FLDCW  std/24-bit mode\n\t"
10882            "POP    EAX\n\t"
10883            "CMP    EAX,0x80000000\n\t"
10884            "JNE,s  fast\n\t"
10885            "FLD    $src\n\t"
10886            "CALL   d2i_wrapper\n"
10887      "fast:" %}
10888  // D2I_encoding works for F2I
10889  ins_encode( Push_Reg_F(src), D2I_encoding(src) );
10890  ins_pipe( pipe_slow );
10891%}
10892
10893// Convert a float in xmm to an int reg.
10894instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
10895  predicate(UseSSE>=1);
10896  match(Set dst (ConvF2I src));
10897  effect( KILL tmp, KILL cr );
10898  format %{ "CVTTSS2SI $dst, $src\n\t"
10899            "CMP    $dst,0x80000000\n\t"
10900            "JNE,s  fast\n\t"
10901            "SUB    ESP, 4\n\t"
10902            "MOVSS  [ESP], $src\n\t"
10903            "FLD    [ESP]\n\t"
10904            "ADD    ESP, 4\n\t"
10905            "CALL   d2i_wrapper\n"
10906      "fast:" %}
10907  opcode(0x0); // single-precision conversion
10908  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
10909  ins_pipe( pipe_slow );
10910%}
10911
10912instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
10913  predicate(UseSSE==0);
10914  match(Set dst (ConvF2L src));
10915  effect( KILL cr );
10916  format %{ "FLD    $src\t# Convert float to long\n\t"
10917            "FLDCW  trunc mode\n\t"
10918            "SUB    ESP,8\n\t"
10919            "FISTp  [ESP + #0]\n\t"
10920            "FLDCW  std/24-bit mode\n\t"
10921            "POP    EAX\n\t"
10922            "POP    EDX\n\t"
10923            "CMP    EDX,0x80000000\n\t"
10924            "JNE,s  fast\n\t"
10925            "TEST   EAX,EAX\n\t"
10926            "JNE,s  fast\n\t"
10927            "FLD    $src\n\t"
10928            "CALL   d2l_wrapper\n"
10929      "fast:" %}
10930  // D2L_encoding works for F2L
10931  ins_encode( Push_Reg_F(src), D2L_encoding(src) );
10932  ins_pipe( pipe_slow );
10933%}
10934
10935// XMM lacks a float/double->long conversion, so use the old FPU stack.
10936instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
10937  predicate (UseSSE>=1);
10938  match(Set dst (ConvF2L src));
10939  effect( KILL cr );
10940  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
10941            "MOVSS  [ESP],$src\n\t"
10942            "FLD_S  [ESP]\n\t"
10943            "FLDCW  trunc mode\n\t"
10944            "FISTp  [ESP + #0]\n\t"
10945            "FLDCW  std/24-bit mode\n\t"
10946            "POP    EAX\n\t"
10947            "POP    EDX\n\t"
10948            "CMP    EDX,0x80000000\n\t"
10949            "JNE,s  fast\n\t"
10950            "TEST   EAX,EAX\n\t"
10951            "JNE,s  fast\n\t"
10952            "SUB    ESP,4\t# Convert float to long\n\t"
10953            "MOVSS  [ESP],$src\n\t"
10954            "FLD_S  [ESP]\n\t"
10955            "ADD    ESP,4\n\t"
10956            "CALL   d2l_wrapper\n"
10957      "fast:" %}
10958  ins_encode( X2L_encoding(src) );
10959  ins_pipe( pipe_slow );
10960%}
10961
10962instruct convI2D_reg(regD dst, stackSlotI src) %{
10963  predicate( UseSSE<=1 );
10964  match(Set dst (ConvI2D src));
10965  format %{ "FILD   $src\n\t"
10966            "FSTP   $dst" %}
10967  opcode(0xDB, 0x0);  /* DB /0 */
10968  ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
10969  ins_pipe( fpu_reg_mem );
10970%}
10971
10972instruct convI2XD_reg(regXD dst, eRegI src) %{
10973  predicate( UseSSE>=2 && !UseXmmI2D );
10974  match(Set dst (ConvI2D src));
10975  format %{ "CVTSI2SD $dst,$src" %}
10976  opcode(0xF2, 0x0F, 0x2A);
10977  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10978  ins_pipe( pipe_slow );
10979%}
10980
10981instruct convI2XD_mem(regXD dst, memory mem) %{
10982  predicate( UseSSE>=2 );
10983  match(Set dst (ConvI2D (LoadI mem)));
10984  format %{ "CVTSI2SD $dst,$mem" %}
10985  opcode(0xF2, 0x0F, 0x2A);
10986  ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
10987  ins_pipe( pipe_slow );
10988%}
10989
10990instruct convXI2XD_reg(regXD dst, eRegI src)
10991%{
10992  predicate( UseSSE>=2 && UseXmmI2D );
10993  match(Set dst (ConvI2D src));
10994
10995  format %{ "MOVD  $dst,$src\n\t"
10996            "CVTDQ2PD $dst,$dst\t# i2d" %}
10997  ins_encode %{
10998    __ movd($dst$$XMMRegister, $src$$Register);
10999    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11000  %}
11001  ins_pipe(pipe_slow); // XXX
11002%}
11003
11004instruct convI2D_mem(regD dst, memory mem) %{
11005  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11006  match(Set dst (ConvI2D (LoadI mem)));
11007  format %{ "FILD   $mem\n\t"
11008            "FSTP   $dst" %}
11009  opcode(0xDB);      /* DB /0 */
11010  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11011              Pop_Reg_D(dst));
11012  ins_pipe( fpu_reg_mem );
11013%}
11014
11015// Convert a byte to a float; no rounding step needed.
11016instruct conv24I2F_reg(regF dst, stackSlotI src) %{
11017  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11018  match(Set dst (ConvI2F src));
11019  format %{ "FILD   $src\n\t"
11020            "FSTP   $dst" %}
11021
11022  opcode(0xDB, 0x0);  /* DB /0 */
11023  ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
11024  ins_pipe( fpu_reg_mem );
11025%}
11026
11027// In 24-bit mode, force exponent rounding by storing back out
11028instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
11029  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11030  match(Set dst (ConvI2F src));
11031  ins_cost(200);
11032  format %{ "FILD   $src\n\t"
11033            "FSTP_S $dst" %}
11034  opcode(0xDB, 0x0);  /* DB /0 */
11035  ins_encode( Push_Mem_I(src),
11036              Pop_Mem_F(dst));
11037  ins_pipe( fpu_mem_mem );
11038%}
11039
11040// In 24-bit mode, force exponent rounding by storing back out
11041instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
11042  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11043  match(Set dst (ConvI2F (LoadI mem)));
11044  ins_cost(200);
11045  format %{ "FILD   $mem\n\t"
11046            "FSTP_S $dst" %}
11047  opcode(0xDB);  /* DB /0 */
11048  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11049              Pop_Mem_F(dst));
11050  ins_pipe( fpu_mem_mem );
11051%}
11052
11053// This instruction does not round to 24-bits
11054instruct convI2F_reg(regF dst, stackSlotI src) %{
11055  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11056  match(Set dst (ConvI2F src));
11057  format %{ "FILD   $src\n\t"
11058            "FSTP   $dst" %}
11059  opcode(0xDB, 0x0);  /* DB /0 */
11060  ins_encode( Push_Mem_I(src),
11061              Pop_Reg_F(dst));
11062  ins_pipe( fpu_reg_mem );
11063%}
11064
11065// This instruction does not round to 24-bits
11066instruct convI2F_mem(regF dst, memory mem) %{
11067  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11068  match(Set dst (ConvI2F (LoadI mem)));
11069  format %{ "FILD   $mem\n\t"
11070            "FSTP   $dst" %}
11071  opcode(0xDB);      /* DB /0 */
11072  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11073              Pop_Reg_F(dst));
11074  ins_pipe( fpu_reg_mem );
11075%}
11076
11077// Convert an int to a float in xmm; no rounding step needed.
11078instruct convI2X_reg(regX dst, eRegI src) %{
11079  predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11080  match(Set dst (ConvI2F src));
11081  format %{ "CVTSI2SS $dst, $src" %}
11082
11083  opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
11084  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11085  ins_pipe( pipe_slow );
11086%}
11087
11088 instruct convXI2X_reg(regX dst, eRegI src)
11089%{
11090  predicate( UseSSE>=2 && UseXmmI2F );
11091  match(Set dst (ConvI2F src));
11092
11093  format %{ "MOVD  $dst,$src\n\t"
11094            "CVTDQ2PS $dst,$dst\t# i2f" %}
11095  ins_encode %{
11096    __ movd($dst$$XMMRegister, $src$$Register);
11097    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11098  %}
11099  ins_pipe(pipe_slow); // XXX
11100%}
11101
11102instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
11103  match(Set dst (ConvI2L src));
11104  effect(KILL cr);
11105  format %{ "MOV    $dst.lo,$src\n\t"
11106            "MOV    $dst.hi,$src\n\t"
11107            "SAR    $dst.hi,31" %}
11108  ins_encode(convert_int_long(dst,src));
11109  ins_pipe( ialu_reg_reg_long );
11110%}
11111
11112// Zero-extend convert int to long
11113instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
11114  match(Set dst (AndL (ConvI2L src) mask) );
11115  effect( KILL flags );
11116  format %{ "MOV    $dst.lo,$src\n\t"
11117            "XOR    $dst.hi,$dst.hi" %}
11118  opcode(0x33); // XOR
11119  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11120  ins_pipe( ialu_reg_reg_long );
11121%}
11122
11123// Zero-extend long
11124instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11125  match(Set dst (AndL src mask) );
11126  effect( KILL flags );
11127  format %{ "MOV    $dst.lo,$src.lo\n\t"
11128            "XOR    $dst.hi,$dst.hi\n\t" %}
11129  opcode(0x33); // XOR
11130  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11131  ins_pipe( ialu_reg_reg_long );
11132%}
11133
11134instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11135  predicate (UseSSE<=1);
11136  match(Set dst (ConvL2D src));
11137  effect( KILL cr );
11138  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11139            "PUSH   $src.lo\n\t"
11140            "FILD   ST,[ESP + #0]\n\t"
11141            "ADD    ESP,8\n\t"
11142            "FSTP_D $dst\t# D-round" %}
11143  opcode(0xDF, 0x5);  /* DF /5 */
11144  ins_encode(convert_long_double(src), Pop_Mem_D(dst));
11145  ins_pipe( pipe_slow );
11146%}
11147
11148instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
11149  predicate (UseSSE>=2);
11150  match(Set dst (ConvL2D src));
11151  effect( KILL cr );
11152  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11153            "PUSH   $src.lo\n\t"
11154            "FILD_D [ESP]\n\t"
11155            "FSTP_D [ESP]\n\t"
11156            "MOVSD  $dst,[ESP]\n\t"
11157            "ADD    ESP,8" %}
11158  opcode(0xDF, 0x5);  /* DF /5 */
11159  ins_encode(convert_long_double2(src), Push_ResultXD(dst));
11160  ins_pipe( pipe_slow );
11161%}
11162
11163instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
11164  predicate (UseSSE>=1);
11165  match(Set dst (ConvL2F src));
11166  effect( KILL cr );
11167  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11168            "PUSH   $src.lo\n\t"
11169            "FILD_D [ESP]\n\t"
11170            "FSTP_S [ESP]\n\t"
11171            "MOVSS  $dst,[ESP]\n\t"
11172            "ADD    ESP,8" %}
11173  opcode(0xDF, 0x5);  /* DF /5 */
11174  ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
11175  ins_pipe( pipe_slow );
11176%}
11177
11178instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11179  match(Set dst (ConvL2F src));
11180  effect( KILL cr );
11181  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11182            "PUSH   $src.lo\n\t"
11183            "FILD   ST,[ESP + #0]\n\t"
11184            "ADD    ESP,8\n\t"
11185            "FSTP_S $dst\t# F-round" %}
11186  opcode(0xDF, 0x5);  /* DF /5 */
11187  ins_encode(convert_long_double(src), Pop_Mem_F(dst));
11188  ins_pipe( pipe_slow );
11189%}
11190
11191instruct convL2I_reg( eRegI dst, eRegL src ) %{
11192  match(Set dst (ConvL2I src));
11193  effect( DEF dst, USE src );
11194  format %{ "MOV    $dst,$src.lo" %}
11195  ins_encode(enc_CopyL_Lo(dst,src));
11196  ins_pipe( ialu_reg_reg );
11197%}
11198
11199
11200instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
11201  match(Set dst (MoveF2I src));
11202  effect( DEF dst, USE src );
11203  ins_cost(100);
11204  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11205  opcode(0x8B);
11206  ins_encode( OpcP, RegMem(dst,src));
11207  ins_pipe( ialu_reg_mem );
11208%}
11209
11210instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
11211  predicate(UseSSE==0);
11212  match(Set dst (MoveF2I src));
11213  effect( DEF dst, USE src );
11214
11215  ins_cost(125);
11216  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11217  ins_encode( Pop_Mem_Reg_F(dst, src) );
11218  ins_pipe( fpu_mem_reg );
11219%}
11220
11221instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
11222  predicate(UseSSE>=1);
11223  match(Set dst (MoveF2I src));
11224  effect( DEF dst, USE src );
11225
11226  ins_cost(95);
11227  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11228  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
11229  ins_pipe( pipe_slow );
11230%}
11231
11232instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
11233  predicate(UseSSE>=2);
11234  match(Set dst (MoveF2I src));
11235  effect( DEF dst, USE src );
11236  ins_cost(85);
11237  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11238  ins_encode( MovX2I_reg(dst, src));
11239  ins_pipe( pipe_slow );
11240%}
11241
11242instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
11243  match(Set dst (MoveI2F src));
11244  effect( DEF dst, USE src );
11245
11246  ins_cost(100);
11247  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11248  opcode(0x89);
11249  ins_encode( OpcPRegSS( dst, src ) );
11250  ins_pipe( ialu_mem_reg );
11251%}
11252
11253
11254instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
11255  predicate(UseSSE==0);
11256  match(Set dst (MoveI2F src));
11257  effect(DEF dst, USE src);
11258
11259  ins_cost(125);
11260  format %{ "FLD_S  $src\n\t"
11261            "FSTP   $dst\t# MoveI2F_stack_reg" %}
11262  opcode(0xD9);               /* D9 /0, FLD m32real */
11263  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11264              Pop_Reg_F(dst) );
11265  ins_pipe( fpu_reg_mem );
11266%}
11267
11268instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
11269  predicate(UseSSE>=1);
11270  match(Set dst (MoveI2F src));
11271  effect( DEF dst, USE src );
11272
11273  ins_cost(95);
11274  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11275  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
11276  ins_pipe( pipe_slow );
11277%}
11278
11279instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
11280  predicate(UseSSE>=2);
11281  match(Set dst (MoveI2F src));
11282  effect( DEF dst, USE src );
11283
11284  ins_cost(85);
11285  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11286  ins_encode( MovI2X_reg(dst, src) );
11287  ins_pipe( pipe_slow );
11288%}
11289
11290instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11291  match(Set dst (MoveD2L src));
11292  effect(DEF dst, USE src);
11293
11294  ins_cost(250);
11295  format %{ "MOV    $dst.lo,$src\n\t"
11296            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11297  opcode(0x8B, 0x8B);
11298  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11299  ins_pipe( ialu_mem_long_reg );
11300%}
11301
11302instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
11303  predicate(UseSSE<=1);
11304  match(Set dst (MoveD2L src));
11305  effect(DEF dst, USE src);
11306
11307  ins_cost(125);
11308  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11309  ins_encode( Pop_Mem_Reg_D(dst, src) );
11310  ins_pipe( fpu_mem_reg );
11311%}
11312
11313instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
11314  predicate(UseSSE>=2);
11315  match(Set dst (MoveD2L src));
11316  effect(DEF dst, USE src);
11317  ins_cost(95);
11318
11319  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11320  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
11321  ins_pipe( pipe_slow );
11322%}
11323
11324instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
11325  predicate(UseSSE>=2);
11326  match(Set dst (MoveD2L src));
11327  effect(DEF dst, USE src, TEMP tmp);
11328  ins_cost(85);
11329  format %{ "MOVD   $dst.lo,$src\n\t"
11330            "PSHUFLW $tmp,$src,0x4E\n\t"
11331            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11332  ins_encode( MovXD2L_reg(dst, src, tmp) );
11333  ins_pipe( pipe_slow );
11334%}
11335
11336instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11337  match(Set dst (MoveL2D src));
11338  effect(DEF dst, USE src);
11339
11340  ins_cost(200);
11341  format %{ "MOV    $dst,$src.lo\n\t"
11342            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11343  opcode(0x89, 0x89);
11344  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11345  ins_pipe( ialu_mem_long_reg );
11346%}
11347
11348
11349instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
11350  predicate(UseSSE<=1);
11351  match(Set dst (MoveL2D src));
11352  effect(DEF dst, USE src);
11353  ins_cost(125);
11354
11355  format %{ "FLD_D  $src\n\t"
11356            "FSTP   $dst\t# MoveL2D_stack_reg" %}
11357  opcode(0xDD);               /* DD /0, FLD m64real */
11358  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11359              Pop_Reg_D(dst) );
11360  ins_pipe( fpu_reg_mem );
11361%}
11362
11363
11364instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
11365  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11366  match(Set dst (MoveL2D src));
11367  effect(DEF dst, USE src);
11368
11369  ins_cost(95);
11370  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11371  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
11372  ins_pipe( pipe_slow );
11373%}
11374
11375instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
11376  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11377  match(Set dst (MoveL2D src));
11378  effect(DEF dst, USE src);
11379
11380  ins_cost(95);
11381  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11382  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
11383  ins_pipe( pipe_slow );
11384%}
11385
11386instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
11387  predicate(UseSSE>=2);
11388  match(Set dst (MoveL2D src));
11389  effect(TEMP dst, USE src, TEMP tmp);
11390  ins_cost(85);
11391  format %{ "MOVD   $dst,$src.lo\n\t"
11392            "MOVD   $tmp,$src.hi\n\t"
11393            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11394  ins_encode( MovL2XD_reg(dst, src, tmp) );
11395  ins_pipe( pipe_slow );
11396%}
11397
11398// Replicate scalar to packed byte (1 byte) values in xmm
11399instruct Repl8B_reg(regXD dst, regXD src) %{
11400  predicate(UseSSE>=2);
11401  match(Set dst (Replicate8B src));
11402  format %{ "MOVDQA  $dst,$src\n\t"
11403            "PUNPCKLBW $dst,$dst\n\t"
11404            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
11405  ins_encode( pshufd_8x8(dst, src));
11406  ins_pipe( pipe_slow );
11407%}
11408
11409// Replicate scalar to packed byte (1 byte) values in xmm
11410instruct Repl8B_eRegI(regXD dst, eRegI src) %{
11411  predicate(UseSSE>=2);
11412  match(Set dst (Replicate8B src));
11413  format %{ "MOVD    $dst,$src\n\t"
11414            "PUNPCKLBW $dst,$dst\n\t"
11415            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
11416  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
11417  ins_pipe( pipe_slow );
11418%}
11419
11420// Replicate scalar zero to packed byte (1 byte) values in xmm
11421instruct Repl8B_immI0(regXD dst, immI0 zero) %{
11422  predicate(UseSSE>=2);
11423  match(Set dst (Replicate8B zero));
11424  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
11425  ins_encode( pxor(dst, dst));
11426  ins_pipe( fpu_reg_reg );
11427%}
11428
11429// Replicate scalar to packed shore (2 byte) values in xmm
11430instruct Repl4S_reg(regXD dst, regXD src) %{
11431  predicate(UseSSE>=2);
11432  match(Set dst (Replicate4S src));
11433  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
11434  ins_encode( pshufd_4x16(dst, src));
11435  ins_pipe( fpu_reg_reg );
11436%}
11437
11438// Replicate scalar to packed shore (2 byte) values in xmm
11439instruct Repl4S_eRegI(regXD dst, eRegI src) %{
11440  predicate(UseSSE>=2);
11441  match(Set dst (Replicate4S src));
11442  format %{ "MOVD    $dst,$src\n\t"
11443            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
11444  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
11445  ins_pipe( fpu_reg_reg );
11446%}
11447
11448// Replicate scalar zero to packed short (2 byte) values in xmm
11449instruct Repl4S_immI0(regXD dst, immI0 zero) %{
11450  predicate(UseSSE>=2);
11451  match(Set dst (Replicate4S zero));
11452  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
11453  ins_encode( pxor(dst, dst));
11454  ins_pipe( fpu_reg_reg );
11455%}
11456
11457// Replicate scalar to packed char (2 byte) values in xmm
11458instruct Repl4C_reg(regXD dst, regXD src) %{
11459  predicate(UseSSE>=2);
11460  match(Set dst (Replicate4C src));
11461  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
11462  ins_encode( pshufd_4x16(dst, src));
11463  ins_pipe( fpu_reg_reg );
11464%}
11465
11466// Replicate scalar to packed char (2 byte) values in xmm
11467instruct Repl4C_eRegI(regXD dst, eRegI src) %{
11468  predicate(UseSSE>=2);
11469  match(Set dst (Replicate4C src));
11470  format %{ "MOVD    $dst,$src\n\t"
11471            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
11472  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
11473  ins_pipe( fpu_reg_reg );
11474%}
11475
11476// Replicate scalar zero to packed char (2 byte) values in xmm
11477instruct Repl4C_immI0(regXD dst, immI0 zero) %{
11478  predicate(UseSSE>=2);
11479  match(Set dst (Replicate4C zero));
11480  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
11481  ins_encode( pxor(dst, dst));
11482  ins_pipe( fpu_reg_reg );
11483%}
11484
11485// Replicate scalar to packed integer (4 byte) values in xmm
11486instruct Repl2I_reg(regXD dst, regXD src) %{
11487  predicate(UseSSE>=2);
11488  match(Set dst (Replicate2I src));
11489  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
11490  ins_encode( pshufd(dst, src, 0x00));
11491  ins_pipe( fpu_reg_reg );
11492%}
11493
11494// Replicate scalar to packed integer (4 byte) values in xmm
11495instruct Repl2I_eRegI(regXD dst, eRegI src) %{
11496  predicate(UseSSE>=2);
11497  match(Set dst (Replicate2I src));
11498  format %{ "MOVD   $dst,$src\n\t"
11499            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
11500  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
11501  ins_pipe( fpu_reg_reg );
11502%}
11503
11504// Replicate scalar zero to packed integer (2 byte) values in xmm
11505instruct Repl2I_immI0(regXD dst, immI0 zero) %{
11506  predicate(UseSSE>=2);
11507  match(Set dst (Replicate2I zero));
11508  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
11509  ins_encode( pxor(dst, dst));
11510  ins_pipe( fpu_reg_reg );
11511%}
11512
11513// Replicate scalar to packed single precision floating point values in xmm
11514instruct Repl2F_reg(regXD dst, regXD src) %{
11515  predicate(UseSSE>=2);
11516  match(Set dst (Replicate2F src));
11517  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
11518  ins_encode( pshufd(dst, src, 0xe0));
11519  ins_pipe( fpu_reg_reg );
11520%}
11521
11522// Replicate scalar to packed single precision floating point values in xmm
11523instruct Repl2F_regX(regXD dst, regX src) %{
11524  predicate(UseSSE>=2);
11525  match(Set dst (Replicate2F src));
11526  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
11527  ins_encode( pshufd(dst, src, 0xe0));
11528  ins_pipe( fpu_reg_reg );
11529%}
11530
11531// Replicate scalar to packed single precision floating point values in xmm
11532instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
11533  predicate(UseSSE>=2);
11534  match(Set dst (Replicate2F zero));
11535  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
11536  ins_encode( pxor(dst, dst));
11537  ins_pipe( fpu_reg_reg );
11538%}
11539
11540
11541
11542// =======================================================================
11543// fast clearing of an array
11544
11545instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11546  match(Set dummy (ClearArray cnt base));
11547  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11548  format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
11549            "XOR    EAX,EAX\n\t"
11550            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11551  opcode(0,0x4);
11552  ins_encode( Opcode(0xD1), RegOpc(ECX),
11553              OpcRegReg(0x33,EAX,EAX),
11554              Opcode(0xF3), Opcode(0xAB) );
11555  ins_pipe( pipe_slow );
11556%}
11557
11558instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
11559  match(Set result (StrComp str1 str2));
11560  effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
11561  //ins_cost(300);
11562
11563  format %{ "String Compare $str1,$str2 -> $result    // KILL EAX, EBX" %}
11564  ins_encode( enc_String_Compare() );
11565  ins_pipe( pipe_slow );
11566%}
11567
11568//----------Control Flow Instructions------------------------------------------
11569// Signed compare Instructions
11570instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
11571  match(Set cr (CmpI op1 op2));
11572  effect( DEF cr, USE op1, USE op2 );
11573  format %{ "CMP    $op1,$op2" %}
11574  opcode(0x3B);  /* Opcode 3B /r */
11575  ins_encode( OpcP, RegReg( op1, op2) );
11576  ins_pipe( ialu_cr_reg_reg );
11577%}
11578
11579instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
11580  match(Set cr (CmpI op1 op2));
11581  effect( DEF cr, USE op1 );
11582  format %{ "CMP    $op1,$op2" %}
11583  opcode(0x81,0x07);  /* Opcode 81 /7 */
11584  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11585  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11586  ins_pipe( ialu_cr_reg_imm );
11587%}
11588
11589// Cisc-spilled version of cmpI_eReg
11590instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
11591  match(Set cr (CmpI op1 (LoadI op2)));
11592
11593  format %{ "CMP    $op1,$op2" %}
11594  ins_cost(500);
11595  opcode(0x3B);  /* Opcode 3B /r */
11596  ins_encode( OpcP, RegMem( op1, op2) );
11597  ins_pipe( ialu_cr_reg_mem );
11598%}
11599
11600instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
11601  match(Set cr (CmpI src zero));
11602  effect( DEF cr, USE src );
11603
11604  format %{ "TEST   $src,$src" %}
11605  opcode(0x85);
11606  ins_encode( OpcP, RegReg( src, src ) );
11607  ins_pipe( ialu_cr_reg_imm );
11608%}
11609
11610instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
11611  match(Set cr (CmpI (AndI src con) zero));
11612
11613  format %{ "TEST   $src,$con" %}
11614  opcode(0xF7,0x00);
11615  ins_encode( OpcP, RegOpc(src), Con32(con) );
11616  ins_pipe( ialu_cr_reg_imm );
11617%}
11618
11619instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
11620  match(Set cr (CmpI (AndI src mem) zero));
11621
11622  format %{ "TEST   $src,$mem" %}
11623  opcode(0x85);
11624  ins_encode( OpcP, RegMem( src, mem ) );
11625  ins_pipe( ialu_cr_reg_mem );
11626%}
11627
11628// Unsigned compare Instructions; really, same as signed except they
11629// produce an eFlagsRegU instead of eFlagsReg.
11630instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
11631  match(Set cr (CmpU op1 op2));
11632
11633  format %{ "CMPu   $op1,$op2" %}
11634  opcode(0x3B);  /* Opcode 3B /r */
11635  ins_encode( OpcP, RegReg( op1, op2) );
11636  ins_pipe( ialu_cr_reg_reg );
11637%}
11638
11639instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
11640  match(Set cr (CmpU op1 op2));
11641
11642  format %{ "CMPu   $op1,$op2" %}
11643  opcode(0x81,0x07);  /* Opcode 81 /7 */
11644  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11645  ins_pipe( ialu_cr_reg_imm );
11646%}
11647
11648// // Cisc-spilled version of cmpU_eReg
11649instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
11650  match(Set cr (CmpU op1 (LoadI op2)));
11651
11652  format %{ "CMPu   $op1,$op2" %}
11653  ins_cost(500);
11654  opcode(0x3B);  /* Opcode 3B /r */
11655  ins_encode( OpcP, RegMem( op1, op2) );
11656  ins_pipe( ialu_cr_reg_mem );
11657%}
11658
11659// // Cisc-spilled version of cmpU_eReg
11660//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
11661//  match(Set cr (CmpU (LoadI op1) op2));
11662//
11663//  format %{ "CMPu   $op1,$op2" %}
11664//  ins_cost(500);
11665//  opcode(0x39);  /* Opcode 39 /r */
11666//  ins_encode( OpcP, RegMem( op1, op2) );
11667//%}
11668
11669instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
11670  match(Set cr (CmpU src zero));
11671
11672  format %{ "TESTu  $src,$src" %}
11673  opcode(0x85);
11674  ins_encode( OpcP, RegReg( src, src ) );
11675  ins_pipe( ialu_cr_reg_imm );
11676%}
11677
11678// Unsigned pointer compare Instructions
11679instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11680  match(Set cr (CmpP op1 op2));
11681
11682  format %{ "CMPu   $op1,$op2" %}
11683  opcode(0x3B);  /* Opcode 3B /r */
11684  ins_encode( OpcP, RegReg( op1, op2) );
11685  ins_pipe( ialu_cr_reg_reg );
11686%}
11687
11688instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11689  match(Set cr (CmpP op1 op2));
11690
11691  format %{ "CMPu   $op1,$op2" %}
11692  opcode(0x81,0x07);  /* Opcode 81 /7 */
11693  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11694  ins_pipe( ialu_cr_reg_imm );
11695%}
11696
11697// // Cisc-spilled version of cmpP_eReg
11698instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11699  match(Set cr (CmpP op1 (LoadP op2)));
11700
11701  format %{ "CMPu   $op1,$op2" %}
11702  ins_cost(500);
11703  opcode(0x3B);  /* Opcode 3B /r */
11704  ins_encode( OpcP, RegMem( op1, op2) );
11705  ins_pipe( ialu_cr_reg_mem );
11706%}
11707
11708// // Cisc-spilled version of cmpP_eReg
11709//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11710//  match(Set cr (CmpP (LoadP op1) op2));
11711//
11712//  format %{ "CMPu   $op1,$op2" %}
11713//  ins_cost(500);
11714//  opcode(0x39);  /* Opcode 39 /r */
11715//  ins_encode( OpcP, RegMem( op1, op2) );
11716//%}
11717
11718// Compare raw pointer (used in out-of-heap check).
11719// Only works because non-oop pointers must be raw pointers
11720// and raw pointers have no anti-dependencies.
11721instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11722  predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
11723  match(Set cr (CmpP op1 (LoadP op2)));
11724
11725  format %{ "CMPu   $op1,$op2" %}
11726  opcode(0x3B);  /* Opcode 3B /r */
11727  ins_encode( OpcP, RegMem( op1, op2) );
11728  ins_pipe( ialu_cr_reg_mem );
11729%}
11730
11731//
11732// This will generate a signed flags result. This should be ok
11733// since any compare to a zero should be eq/neq.
11734instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11735  match(Set cr (CmpP src zero));
11736
11737  format %{ "TEST   $src,$src" %}
11738  opcode(0x85);
11739  ins_encode( OpcP, RegReg( src, src ) );
11740  ins_pipe( ialu_cr_reg_imm );
11741%}
11742
11743// Cisc-spilled version of testP_reg
11744// This will generate a signed flags result. This should be ok
11745// since any compare to a zero should be eq/neq.
11746instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11747  match(Set cr (CmpP (LoadP op) zero));
11748
11749  format %{ "TEST   $op,0xFFFFFFFF" %}
11750  ins_cost(500);
11751  opcode(0xF7);               /* Opcode F7 /0 */
11752  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11753  ins_pipe( ialu_cr_reg_imm );
11754%}
11755
11756// Yanked all unsigned pointer compare operations.
11757// Pointer compares are done with CmpP which is already unsigned.
11758
11759//----------Max and Min--------------------------------------------------------
11760// Min Instructions
11761////
11762//   *** Min and Max using the conditional move are slower than the
11763//   *** branch version on a Pentium III.
11764// // Conditional move for min
11765//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
11766//  effect( USE_DEF op2, USE op1, USE cr );
11767//  format %{ "CMOVlt $op2,$op1\t! min" %}
11768//  opcode(0x4C,0x0F);
11769//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11770//  ins_pipe( pipe_cmov_reg );
11771//%}
11772//
11773//// Min Register with Register (P6 version)
11774//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
11775//  predicate(VM_Version::supports_cmov() );
11776//  match(Set op2 (MinI op1 op2));
11777//  ins_cost(200);
11778//  expand %{
11779//    eFlagsReg cr;
11780//    compI_eReg(cr,op1,op2);
11781//    cmovI_reg_lt(op2,op1,cr);
11782//  %}
11783//%}
11784
11785// Min Register with Register (generic version)
11786instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
11787  match(Set dst (MinI dst src));
11788  effect(KILL flags);
11789  ins_cost(300);
11790
11791  format %{ "MIN    $dst,$src" %}
11792  opcode(0xCC);
11793  ins_encode( min_enc(dst,src) );
11794  ins_pipe( pipe_slow );
11795%}
11796
11797// Max Register with Register
11798//   *** Min and Max using the conditional move are slower than the
11799//   *** branch version on a Pentium III.
11800// // Conditional move for max
11801//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
11802//  effect( USE_DEF op2, USE op1, USE cr );
11803//  format %{ "CMOVgt $op2,$op1\t! max" %}
11804//  opcode(0x4F,0x0F);
11805//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11806//  ins_pipe( pipe_cmov_reg );
11807//%}
11808//
11809// // Max Register with Register (P6 version)
11810//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
11811//  predicate(VM_Version::supports_cmov() );
11812//  match(Set op2 (MaxI op1 op2));
11813//  ins_cost(200);
11814//  expand %{
11815//    eFlagsReg cr;
11816//    compI_eReg(cr,op1,op2);
11817//    cmovI_reg_gt(op2,op1,cr);
11818//  %}
11819//%}
11820
11821// Max Register with Register (generic version)
11822instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
11823  match(Set dst (MaxI dst src));
11824  effect(KILL flags);
11825  ins_cost(300);
11826
11827  format %{ "MAX    $dst,$src" %}
11828  opcode(0xCC);
11829  ins_encode( max_enc(dst,src) );
11830  ins_pipe( pipe_slow );
11831%}
11832
11833// ============================================================================
11834// Branch Instructions
11835// Jump Table
11836instruct jumpXtnd(eRegI switch_val) %{
11837  match(Jump switch_val);
11838  ins_cost(350);
11839
11840  format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
11841
11842  ins_encode %{
11843    address table_base  = __ address_table_constant(_index2label);
11844
11845    // Jump to Address(table_base + switch_reg)
11846    InternalAddress table(table_base);
11847    Address index(noreg, $switch_val$$Register, Address::times_1);
11848    __ jump(ArrayAddress(table, index));
11849  %}
11850  ins_pc_relative(1);
11851  ins_pipe(pipe_jmp);
11852%}
11853
11854// Jump Direct - Label defines a relative address from JMP+1
11855instruct jmpDir(label labl) %{
11856  match(Goto);
11857  effect(USE labl);
11858
11859  ins_cost(300);
11860  format %{ "JMP    $labl" %}
11861  size(5);
11862  opcode(0xE9);
11863  ins_encode( OpcP, Lbl( labl ) );
11864  ins_pipe( pipe_jmp );
11865  ins_pc_relative(1);
11866%}
11867
11868// Jump Direct Conditional - Label defines a relative address from Jcc+1
11869instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
11870  match(If cop cr);
11871  effect(USE labl);
11872
11873  ins_cost(300);
11874  format %{ "J$cop    $labl" %}
11875  size(6);
11876  opcode(0x0F, 0x80);
11877  ins_encode( Jcc( cop, labl) );
11878  ins_pipe( pipe_jcc );
11879  ins_pc_relative(1);
11880%}
11881
11882// Jump Direct Conditional - Label defines a relative address from Jcc+1
11883instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
11884  match(CountedLoopEnd cop cr);
11885  effect(USE labl);
11886
11887  ins_cost(300);
11888  format %{ "J$cop    $labl\t# Loop end" %}
11889  size(6);
11890  opcode(0x0F, 0x80);
11891  ins_encode( Jcc( cop, labl) );
11892  ins_pipe( pipe_jcc );
11893  ins_pc_relative(1);
11894%}
11895
11896// Jump Direct Conditional - Label defines a relative address from Jcc+1
11897instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
11898  match(CountedLoopEnd cop cmp);
11899  effect(USE labl);
11900
11901  ins_cost(300);
11902  format %{ "J$cop,u  $labl\t# Loop end" %}
11903  size(6);
11904  opcode(0x0F, 0x80);
11905  ins_encode( Jcc( cop, labl) );
11906  ins_pipe( pipe_jcc );
11907  ins_pc_relative(1);
11908%}
11909
11910// Jump Direct Conditional - using unsigned comparison
11911instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
11912  match(If cop cmp);
11913  effect(USE labl);
11914
11915  ins_cost(300);
11916  format %{ "J$cop,u  $labl" %}
11917  size(6);
11918  opcode(0x0F, 0x80);
11919  ins_encode( Jcc( cop, labl) );
11920  ins_pipe( pipe_jcc );
11921  ins_pc_relative(1);
11922%}
11923
11924// ============================================================================
11925// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
11926// array for an instance of the superklass.  Set a hidden internal cache on a
11927// hit (cache is checked with exposed code in gen_subtype_check()).  Return
11928// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
11929instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
11930  match(Set result (PartialSubtypeCheck sub super));
11931  effect( KILL rcx, KILL cr );
11932
11933  ins_cost(1100);  // slightly larger than the next version
11934  format %{ "CMPL   EAX,ESI\n\t"
11935            "JEQ,s  hit\n\t"
11936            "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
11937            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
11938            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
11939            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
11940            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
11941            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
11942     "hit:\n\t"
11943            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
11944     "miss:\t" %}
11945
11946  opcode(0x1); // Force a XOR of EDI
11947  ins_encode( enc_PartialSubtypeCheck() );
11948  ins_pipe( pipe_slow );
11949%}
11950
11951instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
11952  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
11953  effect( KILL rcx, KILL result );
11954
11955  ins_cost(1000);
11956  format %{ "CMPL   EAX,ESI\n\t"
11957            "JEQ,s  miss\t# Actually a hit; we are done.\n\t"
11958            "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
11959            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
11960            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
11961            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
11962            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
11963            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
11964     "miss:\t" %}
11965
11966  opcode(0x0);  // No need to XOR EDI
11967  ins_encode( enc_PartialSubtypeCheck() );
11968  ins_pipe( pipe_slow );
11969%}
11970
11971// ============================================================================
11972// Branch Instructions -- short offset versions
11973//
11974// These instructions are used to replace jumps of a long offset (the default
11975// match) with jumps of a shorter offset.  These instructions are all tagged
11976// with the ins_short_branch attribute, which causes the ADLC to suppress the
11977// match rules in general matching.  Instead, the ADLC generates a conversion
11978// method in the MachNode which can be used to do in-place replacement of the
11979// long variant with the shorter variant.  The compiler will determine if a
11980// branch can be taken by the is_short_branch_offset() predicate in the machine
11981// specific code section of the file.
11982
11983// Jump Direct - Label defines a relative address from JMP+1
11984instruct jmpDir_short(label labl) %{
11985  match(Goto);
11986  effect(USE labl);
11987
11988  ins_cost(300);
11989  format %{ "JMP,s  $labl" %}
11990  size(2);
11991  opcode(0xEB);
11992  ins_encode( OpcP, LblShort( labl ) );
11993  ins_pipe( pipe_jmp );
11994  ins_pc_relative(1);
11995  ins_short_branch(1);
11996%}
11997
11998// Jump Direct Conditional - Label defines a relative address from Jcc+1
11999instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12000  match(If cop cr);
12001  effect(USE labl);
12002
12003  ins_cost(300);
12004  format %{ "J$cop,s  $labl" %}
12005  size(2);
12006  opcode(0x70);
12007  ins_encode( JccShort( cop, labl) );
12008  ins_pipe( pipe_jcc );
12009  ins_pc_relative(1);
12010  ins_short_branch(1);
12011%}
12012
12013// Jump Direct Conditional - Label defines a relative address from Jcc+1
12014instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12015  match(CountedLoopEnd cop cr);
12016  effect(USE labl);
12017
12018  ins_cost(300);
12019  format %{ "J$cop,s  $labl" %}
12020  size(2);
12021  opcode(0x70);
12022  ins_encode( JccShort( cop, labl) );
12023  ins_pipe( pipe_jcc );
12024  ins_pc_relative(1);
12025  ins_short_branch(1);
12026%}
12027
12028// Jump Direct Conditional - Label defines a relative address from Jcc+1
12029instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12030  match(CountedLoopEnd cop cmp);
12031  effect(USE labl);
12032
12033  ins_cost(300);
12034  format %{ "J$cop,us $labl" %}
12035  size(2);
12036  opcode(0x70);
12037  ins_encode( JccShort( cop, labl) );
12038  ins_pipe( pipe_jcc );
12039  ins_pc_relative(1);
12040  ins_short_branch(1);
12041%}
12042
12043// Jump Direct Conditional - using unsigned comparison
12044instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12045  match(If cop cmp);
12046  effect(USE labl);
12047
12048  ins_cost(300);
12049  format %{ "J$cop,us $labl" %}
12050  size(2);
12051  opcode(0x70);
12052  ins_encode( JccShort( cop, labl) );
12053  ins_pipe( pipe_jcc );
12054  ins_pc_relative(1);
12055  ins_short_branch(1);
12056%}
12057
12058// ============================================================================
12059// Long Compare
12060//
12061// Currently we hold longs in 2 registers.  Comparing such values efficiently
12062// is tricky.  The flavor of compare used depends on whether we are testing
12063// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12064// The GE test is the negated LT test.  The LE test can be had by commuting
12065// the operands (yielding a GE test) and then negating; negate again for the
12066// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12067// NE test is negated from that.
12068
12069// Due to a shortcoming in the ADLC, it mixes up expressions like:
12070// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12071// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12072// are collapsed internally in the ADLC's dfa-gen code.  The match for
12073// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12074// foo match ends up with the wrong leaf.  One fix is to not match both
12075// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12076// both forms beat the trinary form of long-compare and both are very useful
12077// on Intel which has so few registers.
12078
12079// Manifest a CmpL result in an integer register.  Very painful.
12080// This is the test to avoid.
12081instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12082  match(Set dst (CmpL3 src1 src2));
12083  effect( KILL flags );
12084  ins_cost(1000);
12085  format %{ "XOR    $dst,$dst\n\t"
12086            "CMP    $src1.hi,$src2.hi\n\t"
12087            "JLT,s  m_one\n\t"
12088            "JGT,s  p_one\n\t"
12089            "CMP    $src1.lo,$src2.lo\n\t"
12090            "JB,s   m_one\n\t"
12091            "JEQ,s  done\n"
12092    "p_one:\tINC    $dst\n\t"
12093            "JMP,s  done\n"
12094    "m_one:\tDEC    $dst\n"
12095     "done:" %}
12096  ins_encode %{
12097    Label p_one, m_one, done;
12098    __ xorl($dst$$Register, $dst$$Register);
12099    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12100    __ jccb(Assembler::less,    m_one);
12101    __ jccb(Assembler::greater, p_one);
12102    __ cmpl($src1$$Register, $src2$$Register);
12103    __ jccb(Assembler::below,   m_one);
12104    __ jccb(Assembler::equal,   done);
12105    __ bind(p_one);
12106    __ increment($dst$$Register);
12107    __ jmpb(done);
12108    __ bind(m_one);
12109    __ decrement($dst$$Register);
12110    __ bind(done);
12111  %}
12112  ins_pipe( pipe_slow );
12113%}
12114
12115//======
12116// Manifest a CmpL result in the normal flags.  Only good for LT or GE
12117// compares.  Can be used for LE or GT compares by reversing arguments.
12118// NOT GOOD FOR EQ/NE tests.
12119instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12120  match( Set flags (CmpL src zero ));
12121  ins_cost(100);
12122  format %{ "TEST   $src.hi,$src.hi" %}
12123  opcode(0x85);
12124  ins_encode( OpcP, RegReg_Hi2( src, src ) );
12125  ins_pipe( ialu_cr_reg_reg );
12126%}
12127
12128// Manifest a CmpL result in the normal flags.  Only good for LT or GE
12129// compares.  Can be used for LE or GT compares by reversing arguments.
12130// NOT GOOD FOR EQ/NE tests.
12131instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
12132  match( Set flags (CmpL src1 src2 ));
12133  effect( TEMP tmp );
12134  ins_cost(300);
12135  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12136            "MOV    $tmp,$src1.hi\n\t"
12137            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12138  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12139  ins_pipe( ialu_cr_reg_reg );
12140%}
12141
12142// Long compares reg < zero/req OR reg >= zero/req.
12143// Just a wrapper for a normal branch, plus the predicate test.
12144instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12145  match(If cmp flags);
12146  effect(USE labl);
12147  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12148  expand %{
12149    jmpCon(cmp,flags,labl);    // JLT or JGE...
12150  %}
12151%}
12152
12153// Compare 2 longs and CMOVE longs.
12154instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12155  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12156  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12157  ins_cost(400);
12158  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12159            "CMOV$cmp $dst.hi,$src.hi" %}
12160  opcode(0x0F,0x40);
12161  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12162  ins_pipe( pipe_cmov_reg_long );
12163%}
12164
12165instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12166  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12167  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12168  ins_cost(500);
12169  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12170            "CMOV$cmp $dst.hi,$src.hi" %}
12171  opcode(0x0F,0x40);
12172  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12173  ins_pipe( pipe_cmov_reg_long );
12174%}
12175
12176// Compare 2 longs and CMOVE ints.
12177instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
12178  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12179  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12180  ins_cost(200);
12181  format %{ "CMOV$cmp $dst,$src" %}
12182  opcode(0x0F,0x40);
12183  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12184  ins_pipe( pipe_cmov_reg );
12185%}
12186
12187instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
12188  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12189  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12190  ins_cost(250);
12191  format %{ "CMOV$cmp $dst,$src" %}
12192  opcode(0x0F,0x40);
12193  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12194  ins_pipe( pipe_cmov_mem );
12195%}
12196
12197// Compare 2 longs and CMOVE ints.
12198instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12199  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12200  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12201  ins_cost(200);
12202  format %{ "CMOV$cmp $dst,$src" %}
12203  opcode(0x0F,0x40);
12204  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12205  ins_pipe( pipe_cmov_reg );
12206%}
12207
12208// Compare 2 longs and CMOVE doubles
12209instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12210  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12211  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12212  ins_cost(200);
12213  expand %{
12214    fcmovD_regS(cmp,flags,dst,src);
12215  %}
12216%}
12217
12218// Compare 2 longs and CMOVE doubles
12219instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
12220  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12221  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12222  ins_cost(200);
12223  expand %{
12224    fcmovXD_regS(cmp,flags,dst,src);
12225  %}
12226%}
12227
12228instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12229  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12230  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12231  ins_cost(200);
12232  expand %{
12233    fcmovF_regS(cmp,flags,dst,src);
12234  %}
12235%}
12236
12237instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
12238  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12239  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12240  ins_cost(200);
12241  expand %{
12242    fcmovX_regS(cmp,flags,dst,src);
12243  %}
12244%}
12245
12246//======
12247// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12248instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
12249  match( Set flags (CmpL src zero ));
12250  effect(TEMP tmp);
12251  ins_cost(200);
12252  format %{ "MOV    $tmp,$src.lo\n\t"
12253            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12254  ins_encode( long_cmp_flags0( src, tmp ) );
12255  ins_pipe( ialu_reg_reg_long );
12256%}
12257
12258// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12259instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12260  match( Set flags (CmpL src1 src2 ));
12261  ins_cost(200+300);
12262  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12263            "JNE,s  skip\n\t"
12264            "CMP    $src1.hi,$src2.hi\n\t"
12265     "skip:\t" %}
12266  ins_encode( long_cmp_flags1( src1, src2 ) );
12267  ins_pipe( ialu_cr_reg_reg );
12268%}
12269
12270// Long compare reg == zero/reg OR reg != zero/reg
12271// Just a wrapper for a normal branch, plus the predicate test.
12272instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12273  match(If cmp flags);
12274  effect(USE labl);
12275  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12276  expand %{
12277    jmpCon(cmp,flags,labl);    // JEQ or JNE...
12278  %}
12279%}
12280
12281// Compare 2 longs and CMOVE longs.
12282instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12283  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12284  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12285  ins_cost(400);
12286  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12287            "CMOV$cmp $dst.hi,$src.hi" %}
12288  opcode(0x0F,0x40);
12289  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12290  ins_pipe( pipe_cmov_reg_long );
12291%}
12292
12293instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12294  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12295  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12296  ins_cost(500);
12297  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12298            "CMOV$cmp $dst.hi,$src.hi" %}
12299  opcode(0x0F,0x40);
12300  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12301  ins_pipe( pipe_cmov_reg_long );
12302%}
12303
12304// Compare 2 longs and CMOVE ints.
12305instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
12306  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12307  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12308  ins_cost(200);
12309  format %{ "CMOV$cmp $dst,$src" %}
12310  opcode(0x0F,0x40);
12311  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12312  ins_pipe( pipe_cmov_reg );
12313%}
12314
12315instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
12316  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12317  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12318  ins_cost(250);
12319  format %{ "CMOV$cmp $dst,$src" %}
12320  opcode(0x0F,0x40);
12321  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12322  ins_pipe( pipe_cmov_mem );
12323%}
12324
12325// Compare 2 longs and CMOVE ints.
12326instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12327  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12328  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12329  ins_cost(200);
12330  format %{ "CMOV$cmp $dst,$src" %}
12331  opcode(0x0F,0x40);
12332  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12333  ins_pipe( pipe_cmov_reg );
12334%}
12335
12336// Compare 2 longs and CMOVE doubles
12337instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12338  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12339  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12340  ins_cost(200);
12341  expand %{
12342    fcmovD_regS(cmp,flags,dst,src);
12343  %}
12344%}
12345
12346// Compare 2 longs and CMOVE doubles
12347instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
12348  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12349  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12350  ins_cost(200);
12351  expand %{
12352    fcmovXD_regS(cmp,flags,dst,src);
12353  %}
12354%}
12355
12356instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12357  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12358  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12359  ins_cost(200);
12360  expand %{
12361    fcmovF_regS(cmp,flags,dst,src);
12362  %}
12363%}
12364
12365instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
12366  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12367  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12368  ins_cost(200);
12369  expand %{
12370    fcmovX_regS(cmp,flags,dst,src);
12371  %}
12372%}
12373
12374//======
12375// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12376// Same as cmpL_reg_flags_LEGT except must negate src
12377instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
12378  match( Set flags (CmpL src zero ));
12379  effect( TEMP tmp );
12380  ins_cost(300);
12381  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12382            "CMP    $tmp,$src.lo\n\t"
12383            "SBB    $tmp,$src.hi\n\t" %}
12384  ins_encode( long_cmp_flags3(src, tmp) );
12385  ins_pipe( ialu_reg_reg_long );
12386%}
12387
12388// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12389// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12390// requires a commuted test to get the same result.
12391instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
12392  match( Set flags (CmpL src1 src2 ));
12393  effect( TEMP tmp );
12394  ins_cost(300);
12395  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12396            "MOV    $tmp,$src2.hi\n\t"
12397            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12398  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12399  ins_pipe( ialu_cr_reg_reg );
12400%}
12401
12402// Long compares reg < zero/req OR reg >= zero/req.
12403// Just a wrapper for a normal branch, plus the predicate test
12404instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12405  match(If cmp flags);
12406  effect(USE labl);
12407  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12408  ins_cost(300);
12409  expand %{
12410    jmpCon(cmp,flags,labl);    // JGT or JLE...
12411  %}
12412%}
12413
12414// Compare 2 longs and CMOVE longs.
12415instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12416  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12417  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12418  ins_cost(400);
12419  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12420            "CMOV$cmp $dst.hi,$src.hi" %}
12421  opcode(0x0F,0x40);
12422  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12423  ins_pipe( pipe_cmov_reg_long );
12424%}
12425
12426instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12427  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12428  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12429  ins_cost(500);
12430  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12431            "CMOV$cmp $dst.hi,$src.hi+4" %}
12432  opcode(0x0F,0x40);
12433  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12434  ins_pipe( pipe_cmov_reg_long );
12435%}
12436
12437// Compare 2 longs and CMOVE ints.
12438instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
12439  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12440  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12441  ins_cost(200);
12442  format %{ "CMOV$cmp $dst,$src" %}
12443  opcode(0x0F,0x40);
12444  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12445  ins_pipe( pipe_cmov_reg );
12446%}
12447
12448instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
12449  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12450  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12451  ins_cost(250);
12452  format %{ "CMOV$cmp $dst,$src" %}
12453  opcode(0x0F,0x40);
12454  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12455  ins_pipe( pipe_cmov_mem );
12456%}
12457
12458// Compare 2 longs and CMOVE ptrs.
12459instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12460  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12461  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12462  ins_cost(200);
12463  format %{ "CMOV$cmp $dst,$src" %}
12464  opcode(0x0F,0x40);
12465  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12466  ins_pipe( pipe_cmov_reg );
12467%}
12468
12469// Compare 2 longs and CMOVE doubles
12470instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12471  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12472  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12473  ins_cost(200);
12474  expand %{
12475    fcmovD_regS(cmp,flags,dst,src);
12476  %}
12477%}
12478
12479// Compare 2 longs and CMOVE doubles
12480instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
12481  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12482  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12483  ins_cost(200);
12484  expand %{
12485    fcmovXD_regS(cmp,flags,dst,src);
12486  %}
12487%}
12488
12489instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12490  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12491  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12492  ins_cost(200);
12493  expand %{
12494    fcmovF_regS(cmp,flags,dst,src);
12495  %}
12496%}
12497
12498
12499instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
12500  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12501  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12502  ins_cost(200);
12503  expand %{
12504    fcmovX_regS(cmp,flags,dst,src);
12505  %}
12506%}
12507
12508
12509// ============================================================================
12510// Procedure Call/Return Instructions
12511// Call Java Static Instruction
12512// Note: If this code changes, the corresponding ret_addr_offset() and
12513//       compute_padding() functions will have to be adjusted.
12514instruct CallStaticJavaDirect(method meth) %{
12515  match(CallStaticJava);
12516  effect(USE meth);
12517
12518  ins_cost(300);
12519  format %{ "CALL,static " %}
12520  opcode(0xE8); /* E8 cd */
12521  ins_encode( pre_call_FPU,
12522              Java_Static_Call( meth ),
12523              call_epilog,
12524              post_call_FPU );
12525  ins_pipe( pipe_slow );
12526  ins_pc_relative(1);
12527  ins_alignment(4);
12528%}
12529
12530// Call Java Dynamic Instruction
12531// Note: If this code changes, the corresponding ret_addr_offset() and
12532//       compute_padding() functions will have to be adjusted.
12533instruct CallDynamicJavaDirect(method meth) %{
12534  match(CallDynamicJava);
12535  effect(USE meth);
12536
12537  ins_cost(300);
12538  format %{ "MOV    EAX,(oop)-1\n\t"
12539            "CALL,dynamic" %}
12540  opcode(0xE8); /* E8 cd */
12541  ins_encode( pre_call_FPU,
12542              Java_Dynamic_Call( meth ),
12543              call_epilog,
12544              post_call_FPU );
12545  ins_pipe( pipe_slow );
12546  ins_pc_relative(1);
12547  ins_alignment(4);
12548%}
12549
12550// Call Runtime Instruction
12551instruct CallRuntimeDirect(method meth) %{
12552  match(CallRuntime );
12553  effect(USE meth);
12554
12555  ins_cost(300);
12556  format %{ "CALL,runtime " %}
12557  opcode(0xE8); /* E8 cd */
12558  // Use FFREEs to clear entries in float stack
12559  ins_encode( pre_call_FPU,
12560              FFree_Float_Stack_All,
12561              Java_To_Runtime( meth ),
12562              post_call_FPU );
12563  ins_pipe( pipe_slow );
12564  ins_pc_relative(1);
12565%}
12566
12567// Call runtime without safepoint
12568instruct CallLeafDirect(method meth) %{
12569  match(CallLeaf);
12570  effect(USE meth);
12571
12572  ins_cost(300);
12573  format %{ "CALL_LEAF,runtime " %}
12574  opcode(0xE8); /* E8 cd */
12575  ins_encode( pre_call_FPU,
12576              FFree_Float_Stack_All,
12577              Java_To_Runtime( meth ),
12578              Verify_FPU_For_Leaf, post_call_FPU );
12579  ins_pipe( pipe_slow );
12580  ins_pc_relative(1);
12581%}
12582
12583instruct CallLeafNoFPDirect(method meth) %{
12584  match(CallLeafNoFP);
12585  effect(USE meth);
12586
12587  ins_cost(300);
12588  format %{ "CALL_LEAF_NOFP,runtime " %}
12589  opcode(0xE8); /* E8 cd */
12590  ins_encode(Java_To_Runtime(meth));
12591  ins_pipe( pipe_slow );
12592  ins_pc_relative(1);
12593%}
12594
12595
12596// Return Instruction
12597// Remove the return address & jump to it.
12598instruct Ret() %{
12599  match(Return);
12600  format %{ "RET" %}
12601  opcode(0xC3);
12602  ins_encode(OpcP);
12603  ins_pipe( pipe_jmp );
12604%}
12605
12606// Tail Call; Jump from runtime stub to Java code.
12607// Also known as an 'interprocedural jump'.
12608// Target of jump will eventually return to caller.
12609// TailJump below removes the return address.
12610instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12611  match(TailCall jump_target method_oop );
12612  ins_cost(300);
12613  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12614  opcode(0xFF, 0x4);  /* Opcode FF /4 */
12615  ins_encode( OpcP, RegOpc(jump_target) );
12616  ins_pipe( pipe_jmp );
12617%}
12618
12619
12620// Tail Jump; remove the return address; jump to target.
12621// TailCall above leaves the return address around.
12622instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12623  match( TailJump jump_target ex_oop );
12624  ins_cost(300);
12625  format %{ "POP    EDX\t# pop return address into dummy\n\t"
12626            "JMP    $jump_target " %}
12627  opcode(0xFF, 0x4);  /* Opcode FF /4 */
12628  ins_encode( enc_pop_rdx,
12629              OpcP, RegOpc(jump_target) );
12630  ins_pipe( pipe_jmp );
12631%}
12632
12633// Create exception oop: created by stack-crawling runtime code.
12634// Created exception is now available to this handler, and is setup
12635// just prior to jumping to this handler.  No code emitted.
12636instruct CreateException( eAXRegP ex_oop )
12637%{
12638  match(Set ex_oop (CreateEx));
12639
12640  size(0);
12641  // use the following format syntax
12642  format %{ "# exception oop is in EAX; no code emitted" %}
12643  ins_encode();
12644  ins_pipe( empty );
12645%}
12646
12647
12648// Rethrow exception:
12649// The exception oop will come in the first argument position.
12650// Then JUMP (not call) to the rethrow stub code.
12651instruct RethrowException()
12652%{
12653  match(Rethrow);
12654
12655  // use the following format syntax
12656  format %{ "JMP    rethrow_stub" %}
12657  ins_encode(enc_rethrow);
12658  ins_pipe( pipe_jmp );
12659%}
12660
12661// inlined locking and unlocking
12662
12663
12664instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
12665  match( Set cr (FastLock object box) );
12666  effect( TEMP tmp, TEMP scr );
12667  ins_cost(300);
12668  format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
12669  ins_encode( Fast_Lock(object,box,tmp,scr) );
12670  ins_pipe( pipe_slow );
12671  ins_pc_relative(1);
12672%}
12673
12674instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12675  match( Set cr (FastUnlock object box) );
12676  effect( TEMP tmp );
12677  ins_cost(300);
12678  format %{ "FASTUNLOCK $object, $box, $tmp" %}
12679  ins_encode( Fast_Unlock(object,box,tmp) );
12680  ins_pipe( pipe_slow );
12681  ins_pc_relative(1);
12682%}
12683
12684
12685
12686// ============================================================================
12687// Safepoint Instruction
12688instruct safePoint_poll(eFlagsReg cr) %{
12689  match(SafePoint);
12690  effect(KILL cr);
12691
12692  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
12693  // On SPARC that might be acceptable as we can generate the address with
12694  // just a sethi, saving an or.  By polling at offset 0 we can end up
12695  // putting additional pressure on the index-0 in the D$.  Because of
12696  // alignment (just like the situation at hand) the lower indices tend
12697  // to see more traffic.  It'd be better to change the polling address
12698  // to offset 0 of the last $line in the polling page.
12699
12700  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
12701  ins_cost(125);
12702  size(6) ;
12703  ins_encode( Safepoint_Poll() );
12704  ins_pipe( ialu_reg_mem );
12705%}
12706
12707//----------PEEPHOLE RULES-----------------------------------------------------
12708// These must follow all instruction definitions as they use the names
12709// defined in the instructions definitions.
12710//
12711// peepmatch ( root_instr_name [preceeding_instruction]* );
12712//
12713// peepconstraint %{
12714// (instruction_number.operand_name relational_op instruction_number.operand_name
12715//  [, ...] );
12716// // instruction numbers are zero-based using left to right order in peepmatch
12717//
12718// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12719// // provide an instruction_number.operand_name for each operand that appears
12720// // in the replacement instruction's match rule
12721//
12722// ---------VM FLAGS---------------------------------------------------------
12723//
12724// All peephole optimizations can be turned off using -XX:-OptoPeephole
12725//
12726// Each peephole rule is given an identifying number starting with zero and
12727// increasing by one in the order seen by the parser.  An individual peephole
12728// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12729// on the command-line.
12730//
12731// ---------CURRENT LIMITATIONS----------------------------------------------
12732//
12733// Only match adjacent instructions in same basic block
12734// Only equality constraints
12735// Only constraints between operands, not (0.dest_reg == EAX_enc)
12736// Only one replacement instruction
12737//
12738// ---------EXAMPLE----------------------------------------------------------
12739//
12740// // pertinent parts of existing instructions in architecture description
12741// instruct movI(eRegI dst, eRegI src) %{
12742//   match(Set dst (CopyI src));
12743// %}
12744//
12745// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
12746//   match(Set dst (AddI dst src));
12747//   effect(KILL cr);
12748// %}
12749//
12750// // Change (inc mov) to lea
12751// peephole %{
12752//   // increment preceeded by register-register move
12753//   peepmatch ( incI_eReg movI );
12754//   // require that the destination register of the increment
12755//   // match the destination register of the move
12756//   peepconstraint ( 0.dst == 1.dst );
12757//   // construct a replacement instruction that sets
12758//   // the destination to ( move's source register + one )
12759//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12760// %}
12761//
12762// Implementation no longer uses movX instructions since
12763// machine-independent system no longer uses CopyX nodes.
12764//
12765// peephole %{
12766//   peepmatch ( incI_eReg movI );
12767//   peepconstraint ( 0.dst == 1.dst );
12768//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12769// %}
12770//
12771// peephole %{
12772//   peepmatch ( decI_eReg movI );
12773//   peepconstraint ( 0.dst == 1.dst );
12774//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12775// %}
12776//
12777// peephole %{
12778//   peepmatch ( addI_eReg_imm movI );
12779//   peepconstraint ( 0.dst == 1.dst );
12780//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12781// %}
12782//
12783// peephole %{
12784//   peepmatch ( addP_eReg_imm movP );
12785//   peepconstraint ( 0.dst == 1.dst );
12786//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12787// %}
12788
12789// // Change load of spilled value to only a spill
12790// instruct storeI(memory mem, eRegI src) %{
12791//   match(Set mem (StoreI mem src));
12792// %}
12793//
12794// instruct loadI(eRegI dst, memory mem) %{
12795//   match(Set dst (LoadI mem));
12796// %}
12797//
12798peephole %{
12799  peepmatch ( loadI storeI );
12800  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12801  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12802%}
12803
12804//----------SMARTSPILL RULES---------------------------------------------------
12805// These must follow all instruction definitions as they use the names
12806// defined in the instructions definitions.
12807