vm_version_x86.cpp revision 8212:c1d0d1e3b472
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "runtime/java.hpp"
30#include "runtime/os.hpp"
31#include "runtime/stubCodeGenerator.hpp"
32#include "vm_version_x86.hpp"
33
34
35int VM_Version::_cpu;
36int VM_Version::_model;
37int VM_Version::_stepping;
38int VM_Version::_cpuFeatures;
39const char*           VM_Version::_features_str = "";
40VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
41
42// Address of instruction which causes SEGV
43address VM_Version::_cpuinfo_segv_addr = 0;
44// Address of instruction after the one which causes SEGV
45address VM_Version::_cpuinfo_cont_addr = 0;
46
47static BufferBlob* stub_blob;
48static const int stub_size = 600;
49
50extern "C" {
51  typedef void (*get_cpu_info_stub_t)(void*);
52}
53static get_cpu_info_stub_t get_cpu_info_stub = NULL;
54
55
56class VM_Version_StubGenerator: public StubCodeGenerator {
57 public:
58
59  VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
60
61  address generate_get_cpu_info() {
62    // Flags to test CPU type.
63    const uint32_t HS_EFL_AC           = 0x40000;
64    const uint32_t HS_EFL_ID           = 0x200000;
65    // Values for when we don't have a CPUID instruction.
66    const int      CPU_FAMILY_SHIFT = 8;
67    const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
68    const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
69
70    Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
71    Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
72
73    StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
74#   define __ _masm->
75
76    address start = __ pc();
77
78    //
79    // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
80    //
81    // LP64: rcx and rdx are first and second argument registers on windows
82
83    __ push(rbp);
84#ifdef _LP64
85    __ mov(rbp, c_rarg0); // cpuid_info address
86#else
87    __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
88#endif
89    __ push(rbx);
90    __ push(rsi);
91    __ pushf();          // preserve rbx, and flags
92    __ pop(rax);
93    __ push(rax);
94    __ mov(rcx, rax);
95    //
96    // if we are unable to change the AC flag, we have a 386
97    //
98    __ xorl(rax, HS_EFL_AC);
99    __ push(rax);
100    __ popf();
101    __ pushf();
102    __ pop(rax);
103    __ cmpptr(rax, rcx);
104    __ jccb(Assembler::notEqual, detect_486);
105
106    __ movl(rax, CPU_FAMILY_386);
107    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
108    __ jmp(done);
109
110    //
111    // If we are unable to change the ID flag, we have a 486 which does
112    // not support the "cpuid" instruction.
113    //
114    __ bind(detect_486);
115    __ mov(rax, rcx);
116    __ xorl(rax, HS_EFL_ID);
117    __ push(rax);
118    __ popf();
119    __ pushf();
120    __ pop(rax);
121    __ cmpptr(rcx, rax);
122    __ jccb(Assembler::notEqual, detect_586);
123
124    __ bind(cpu486);
125    __ movl(rax, CPU_FAMILY_486);
126    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
127    __ jmp(done);
128
129    //
130    // At this point, we have a chip which supports the "cpuid" instruction
131    //
132    __ bind(detect_586);
133    __ xorl(rax, rax);
134    __ cpuid();
135    __ orl(rax, rax);
136    __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
137                                        // value of at least 1, we give up and
138                                        // assume a 486
139    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
140    __ movl(Address(rsi, 0), rax);
141    __ movl(Address(rsi, 4), rbx);
142    __ movl(Address(rsi, 8), rcx);
143    __ movl(Address(rsi,12), rdx);
144
145    __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
146    __ jccb(Assembler::belowEqual, std_cpuid4);
147
148    //
149    // cpuid(0xB) Processor Topology
150    //
151    __ movl(rax, 0xb);
152    __ xorl(rcx, rcx);   // Threads level
153    __ cpuid();
154
155    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
156    __ movl(Address(rsi, 0), rax);
157    __ movl(Address(rsi, 4), rbx);
158    __ movl(Address(rsi, 8), rcx);
159    __ movl(Address(rsi,12), rdx);
160
161    __ movl(rax, 0xb);
162    __ movl(rcx, 1);     // Cores level
163    __ cpuid();
164    __ push(rax);
165    __ andl(rax, 0x1f);  // Determine if valid topology level
166    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
167    __ andl(rax, 0xffff);
168    __ pop(rax);
169    __ jccb(Assembler::equal, std_cpuid4);
170
171    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
172    __ movl(Address(rsi, 0), rax);
173    __ movl(Address(rsi, 4), rbx);
174    __ movl(Address(rsi, 8), rcx);
175    __ movl(Address(rsi,12), rdx);
176
177    __ movl(rax, 0xb);
178    __ movl(rcx, 2);     // Packages level
179    __ cpuid();
180    __ push(rax);
181    __ andl(rax, 0x1f);  // Determine if valid topology level
182    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
183    __ andl(rax, 0xffff);
184    __ pop(rax);
185    __ jccb(Assembler::equal, std_cpuid4);
186
187    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
188    __ movl(Address(rsi, 0), rax);
189    __ movl(Address(rsi, 4), rbx);
190    __ movl(Address(rsi, 8), rcx);
191    __ movl(Address(rsi,12), rdx);
192
193    //
194    // cpuid(0x4) Deterministic cache params
195    //
196    __ bind(std_cpuid4);
197    __ movl(rax, 4);
198    __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
199    __ jccb(Assembler::greater, std_cpuid1);
200
201    __ xorl(rcx, rcx);   // L1 cache
202    __ cpuid();
203    __ push(rax);
204    __ andl(rax, 0x1f);  // Determine if valid cache parameters used
205    __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
206    __ pop(rax);
207    __ jccb(Assembler::equal, std_cpuid1);
208
209    __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
210    __ movl(Address(rsi, 0), rax);
211    __ movl(Address(rsi, 4), rbx);
212    __ movl(Address(rsi, 8), rcx);
213    __ movl(Address(rsi,12), rdx);
214
215    //
216    // Standard cpuid(0x1)
217    //
218    __ bind(std_cpuid1);
219    __ movl(rax, 1);
220    __ cpuid();
221    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
222    __ movl(Address(rsi, 0), rax);
223    __ movl(Address(rsi, 4), rbx);
224    __ movl(Address(rsi, 8), rcx);
225    __ movl(Address(rsi,12), rdx);
226
227    //
228    // Check if OS has enabled XGETBV instruction to access XCR0
229    // (OSXSAVE feature flag) and CPU supports AVX
230    //
231    __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
232    __ cmpl(rcx, 0x18000000);
233    __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
234
235    //
236    // XCR0, XFEATURE_ENABLED_MASK register
237    //
238    __ xorl(rcx, rcx);   // zero for XCR0 register
239    __ xgetbv();
240    __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
241    __ movl(Address(rsi, 0), rax);
242    __ movl(Address(rsi, 4), rdx);
243
244    __ andl(rax, 0x6); // xcr0 bits sse | ymm
245    __ cmpl(rax, 0x6);
246    __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
247
248    //
249    // Some OSs have a bug when upper 128bits of YMM
250    // registers are not restored after a signal processing.
251    // Generate SEGV here (reference through NULL)
252    // and check upper YMM bits after it.
253    //
254    VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
255    intx saved_useavx = UseAVX;
256    intx saved_usesse = UseSSE;
257    UseAVX = 1;
258    UseSSE = 2;
259
260    // load value into all 32 bytes of ymm7 register
261    __ movl(rcx, VM_Version::ymm_test_value());
262
263    __ movdl(xmm0, rcx);
264    __ pshufd(xmm0, xmm0, 0x00);
265    __ vinsertf128h(xmm0, xmm0, xmm0);
266    __ vmovdqu(xmm7, xmm0);
267#ifdef _LP64
268    __ vmovdqu(xmm8,  xmm0);
269    __ vmovdqu(xmm15, xmm0);
270#endif
271
272    __ xorl(rsi, rsi);
273    VM_Version::set_cpuinfo_segv_addr( __ pc() );
274    // Generate SEGV
275    __ movl(rax, Address(rsi, 0));
276
277    VM_Version::set_cpuinfo_cont_addr( __ pc() );
278    // Returns here after signal. Save xmm0 to check it later.
279    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
280    __ vmovdqu(Address(rsi,  0), xmm0);
281    __ vmovdqu(Address(rsi, 32), xmm7);
282#ifdef _LP64
283    __ vmovdqu(Address(rsi, 64), xmm8);
284    __ vmovdqu(Address(rsi, 96), xmm15);
285#endif
286
287    VM_Version::clean_cpuFeatures();
288    UseAVX = saved_useavx;
289    UseSSE = saved_usesse;
290
291    //
292    // cpuid(0x7) Structured Extended Features
293    //
294    __ bind(sef_cpuid);
295    __ movl(rax, 7);
296    __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
297    __ jccb(Assembler::greater, ext_cpuid);
298
299    __ xorl(rcx, rcx);
300    __ cpuid();
301    __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
302    __ movl(Address(rsi, 0), rax);
303    __ movl(Address(rsi, 4), rbx);
304
305    //
306    // Extended cpuid(0x80000000)
307    //
308    __ bind(ext_cpuid);
309    __ movl(rax, 0x80000000);
310    __ cpuid();
311    __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
312    __ jcc(Assembler::belowEqual, done);
313    __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
314    __ jccb(Assembler::belowEqual, ext_cpuid1);
315    __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
316    __ jccb(Assembler::belowEqual, ext_cpuid5);
317    __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
318    __ jccb(Assembler::belowEqual, ext_cpuid7);
319    //
320    // Extended cpuid(0x80000008)
321    //
322    __ movl(rax, 0x80000008);
323    __ cpuid();
324    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
325    __ movl(Address(rsi, 0), rax);
326    __ movl(Address(rsi, 4), rbx);
327    __ movl(Address(rsi, 8), rcx);
328    __ movl(Address(rsi,12), rdx);
329
330    //
331    // Extended cpuid(0x80000007)
332    //
333    __ bind(ext_cpuid7);
334    __ movl(rax, 0x80000007);
335    __ cpuid();
336    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
337    __ movl(Address(rsi, 0), rax);
338    __ movl(Address(rsi, 4), rbx);
339    __ movl(Address(rsi, 8), rcx);
340    __ movl(Address(rsi,12), rdx);
341
342    //
343    // Extended cpuid(0x80000005)
344    //
345    __ bind(ext_cpuid5);
346    __ movl(rax, 0x80000005);
347    __ cpuid();
348    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
349    __ movl(Address(rsi, 0), rax);
350    __ movl(Address(rsi, 4), rbx);
351    __ movl(Address(rsi, 8), rcx);
352    __ movl(Address(rsi,12), rdx);
353
354    //
355    // Extended cpuid(0x80000001)
356    //
357    __ bind(ext_cpuid1);
358    __ movl(rax, 0x80000001);
359    __ cpuid();
360    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
361    __ movl(Address(rsi, 0), rax);
362    __ movl(Address(rsi, 4), rbx);
363    __ movl(Address(rsi, 8), rcx);
364    __ movl(Address(rsi,12), rdx);
365
366    //
367    // return
368    //
369    __ bind(done);
370    __ popf();
371    __ pop(rsi);
372    __ pop(rbx);
373    __ pop(rbp);
374    __ ret(0);
375
376#   undef __
377
378    return start;
379  };
380};
381
382void VM_Version::get_processor_features() {
383
384  _cpu = 4; // 486 by default
385  _model = 0;
386  _stepping = 0;
387  _cpuFeatures = 0;
388  _logical_processors_per_package = 1;
389  // i486 internal cache is both I&D and has a 16-byte line size
390  _L1_data_cache_line_size = 16;
391
392  if (!Use486InstrsOnly) {
393    // Get raw processor info
394
395    get_cpu_info_stub(&_cpuid_info);
396
397    assert_is_initialized();
398    _cpu = extended_cpu_family();
399    _model = extended_cpu_model();
400    _stepping = cpu_stepping();
401
402    if (cpu_family() > 4) { // it supports CPUID
403      _cpuFeatures = feature_flags();
404      // Logical processors are only available on P4s and above,
405      // and only if hyperthreading is available.
406      _logical_processors_per_package = logical_processor_count();
407      _L1_data_cache_line_size = L1_line_size();
408    }
409  }
410
411  _supports_cx8 = supports_cmpxchg8();
412  // xchg and xadd instructions
413  _supports_atomic_getset4 = true;
414  _supports_atomic_getadd4 = true;
415  LP64_ONLY(_supports_atomic_getset8 = true);
416  LP64_ONLY(_supports_atomic_getadd8 = true);
417
418#ifdef _LP64
419  // OS should support SSE for x64 and hardware should support at least SSE2.
420  if (!VM_Version::supports_sse2()) {
421    vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
422  }
423  // in 64 bit the use of SSE2 is the minimum
424  if (UseSSE < 2) UseSSE = 2;
425#endif
426
427#ifdef AMD64
428  // flush_icache_stub have to be generated first.
429  // That is why Icache line size is hard coded in ICache class,
430  // see icache_x86.hpp. It is also the reason why we can't use
431  // clflush instruction in 32-bit VM since it could be running
432  // on CPU which does not support it.
433  //
434  // The only thing we can do is to verify that flushed
435  // ICache::line_size has correct value.
436  guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
437  // clflush_size is size in quadwords (8 bytes).
438  guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
439#endif
440
441  // If the OS doesn't support SSE, we can't use this feature even if the HW does
442  if (!os::supports_sse())
443    _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
444
445  if (UseSSE < 4) {
446    _cpuFeatures &= ~CPU_SSE4_1;
447    _cpuFeatures &= ~CPU_SSE4_2;
448  }
449
450  if (UseSSE < 3) {
451    _cpuFeatures &= ~CPU_SSE3;
452    _cpuFeatures &= ~CPU_SSSE3;
453    _cpuFeatures &= ~CPU_SSE4A;
454  }
455
456  if (UseSSE < 2)
457    _cpuFeatures &= ~CPU_SSE2;
458
459  if (UseSSE < 1)
460    _cpuFeatures &= ~CPU_SSE;
461
462  if (UseAVX < 2)
463    _cpuFeatures &= ~CPU_AVX2;
464
465  if (UseAVX < 1)
466    _cpuFeatures &= ~CPU_AVX;
467
468  if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
469    _cpuFeatures &= ~CPU_AES;
470
471  if (logical_processors_per_package() == 1) {
472    // HT processor could be installed on a system which doesn't support HT.
473    _cpuFeatures &= ~CPU_HT;
474  }
475
476  char buf[256];
477  jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
478               cores_per_cpu(), threads_per_core(),
479               cpu_family(), _model, _stepping,
480               (supports_cmov() ? ", cmov" : ""),
481               (supports_cmpxchg8() ? ", cx8" : ""),
482               (supports_fxsr() ? ", fxsr" : ""),
483               (supports_mmx()  ? ", mmx"  : ""),
484               (supports_sse()  ? ", sse"  : ""),
485               (supports_sse2() ? ", sse2" : ""),
486               (supports_sse3() ? ", sse3" : ""),
487               (supports_ssse3()? ", ssse3": ""),
488               (supports_sse4_1() ? ", sse4.1" : ""),
489               (supports_sse4_2() ? ", sse4.2" : ""),
490               (supports_popcnt() ? ", popcnt" : ""),
491               (supports_avx()    ? ", avx" : ""),
492               (supports_avx2()   ? ", avx2" : ""),
493               (supports_aes()    ? ", aes" : ""),
494               (supports_clmul()  ? ", clmul" : ""),
495               (supports_erms()   ? ", erms" : ""),
496               (supports_rtm()    ? ", rtm" : ""),
497               (supports_mmx_ext() ? ", mmxext" : ""),
498               (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
499               (supports_lzcnt()   ? ", lzcnt": ""),
500               (supports_sse4a()   ? ", sse4a": ""),
501               (supports_ht() ? ", ht": ""),
502               (supports_tsc() ? ", tsc": ""),
503               (supports_tscinv_bit() ? ", tscinvbit": ""),
504               (supports_tscinv() ? ", tscinv": ""),
505               (supports_bmi1() ? ", bmi1" : ""),
506               (supports_bmi2() ? ", bmi2" : ""),
507               (supports_adx() ? ", adx" : ""));
508  _features_str = os::strdup(buf);
509
510  // UseSSE is set to the smaller of what hardware supports and what
511  // the command line requires.  I.e., you cannot set UseSSE to 2 on
512  // older Pentiums which do not support it.
513  if (UseSSE > 4) UseSSE=4;
514  if (UseSSE < 0) UseSSE=0;
515  if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
516    UseSSE = MIN2((intx)3,UseSSE);
517  if (!supports_sse3()) // Drop to 2 if no SSE3 support
518    UseSSE = MIN2((intx)2,UseSSE);
519  if (!supports_sse2()) // Drop to 1 if no SSE2 support
520    UseSSE = MIN2((intx)1,UseSSE);
521  if (!supports_sse ()) // Drop to 0 if no SSE  support
522    UseSSE = 0;
523
524  if (UseAVX > 2) UseAVX=2;
525  if (UseAVX < 0) UseAVX=0;
526  if (!supports_avx2()) // Drop to 1 if no AVX2 support
527    UseAVX = MIN2((intx)1,UseAVX);
528  if (!supports_avx ()) // Drop to 0 if no AVX  support
529    UseAVX = 0;
530
531  // Use AES instructions if available.
532  if (supports_aes()) {
533    if (FLAG_IS_DEFAULT(UseAES)) {
534      UseAES = true;
535    }
536  } else if (UseAES) {
537    if (!FLAG_IS_DEFAULT(UseAES))
538      warning("AES instructions are not available on this CPU");
539    FLAG_SET_DEFAULT(UseAES, false);
540  }
541
542  // Use CLMUL instructions if available.
543  if (supports_clmul()) {
544    if (FLAG_IS_DEFAULT(UseCLMUL)) {
545      UseCLMUL = true;
546    }
547  } else if (UseCLMUL) {
548    if (!FLAG_IS_DEFAULT(UseCLMUL))
549      warning("CLMUL instructions not available on this CPU (AVX may also be required)");
550    FLAG_SET_DEFAULT(UseCLMUL, false);
551  }
552
553  if (UseCLMUL && (UseSSE > 2)) {
554    if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
555      UseCRC32Intrinsics = true;
556    }
557  } else if (UseCRC32Intrinsics) {
558    if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
559      warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
560    FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
561  }
562
563  // The AES intrinsic stubs require AES instruction support (of course)
564  // but also require sse3 mode for instructions it use.
565  if (UseAES && (UseSSE > 2)) {
566    if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
567      UseAESIntrinsics = true;
568    }
569  } else if (UseAESIntrinsics) {
570    if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
571      warning("AES intrinsics are not available on this CPU");
572    FLAG_SET_DEFAULT(UseAESIntrinsics, false);
573  }
574
575  if (UseSHA) {
576    warning("SHA instructions are not available on this CPU");
577    FLAG_SET_DEFAULT(UseSHA, false);
578  }
579  if (UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics) {
580    warning("SHA intrinsics are not available on this CPU");
581    FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
582    FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
583    FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
584  }
585
586  // Adjust RTM (Restricted Transactional Memory) flags
587  if (!supports_rtm() && UseRTMLocking) {
588    // Can't continue because UseRTMLocking affects UseBiasedLocking flag
589    // setting during arguments processing. See use_biased_locking().
590    // VM_Version_init() is executed after UseBiasedLocking is used
591    // in Thread::allocate().
592    vm_exit_during_initialization("RTM instructions are not available on this CPU");
593  }
594
595#if INCLUDE_RTM_OPT
596  if (UseRTMLocking) {
597    if (is_intel_family_core()) {
598      if ((_model == CPU_MODEL_HASWELL_E3) ||
599          (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
600          (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
601        if (!UnlockExperimentalVMOptions) {
602          vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
603        } else {
604          warning("UseRTMLocking is only available as experimental option on this platform.");
605        }
606      }
607    }
608    if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
609      // RTM locking should be used only for applications with
610      // high lock contention. For now we do not use it by default.
611      vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
612    }
613    if (!is_power_of_2(RTMTotalCountIncrRate)) {
614      warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
615      FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
616    }
617    if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
618      warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
619      FLAG_SET_DEFAULT(RTMAbortRatio, 50);
620    }
621  } else { // !UseRTMLocking
622    if (UseRTMForStackLocks) {
623      if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
624        warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
625      }
626      FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
627    }
628    if (UseRTMDeopt) {
629      FLAG_SET_DEFAULT(UseRTMDeopt, false);
630    }
631    if (PrintPreciseRTMLockingStatistics) {
632      FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
633    }
634  }
635#else
636  if (UseRTMLocking) {
637    // Only C2 does RTM locking optimization.
638    // Can't continue because UseRTMLocking affects UseBiasedLocking flag
639    // setting during arguments processing. See use_biased_locking().
640    vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
641  }
642#endif
643
644#ifdef COMPILER2
645  if (UseFPUForSpilling) {
646    if (UseSSE < 2) {
647      // Only supported with SSE2+
648      FLAG_SET_DEFAULT(UseFPUForSpilling, false);
649    }
650  }
651  if (MaxVectorSize > 0) {
652    if (!is_power_of_2(MaxVectorSize)) {
653      warning("MaxVectorSize must be a power of 2");
654      FLAG_SET_DEFAULT(MaxVectorSize, 32);
655    }
656    if (MaxVectorSize > 32) {
657      FLAG_SET_DEFAULT(MaxVectorSize, 32);
658    }
659    if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
660      // 32 bytes vectors (in YMM) are only supported with AVX+
661      FLAG_SET_DEFAULT(MaxVectorSize, 16);
662    }
663    if (UseSSE < 2) {
664      // Vectors (in XMM) are only supported with SSE2+
665      FLAG_SET_DEFAULT(MaxVectorSize, 0);
666    }
667#ifdef ASSERT
668    if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
669      tty->print_cr("State of YMM registers after signal handle:");
670      int nreg = 2 LP64_ONLY(+2);
671      const char* ymm_name[4] = {"0", "7", "8", "15"};
672      for (int i = 0; i < nreg; i++) {
673        tty->print("YMM%s:", ymm_name[i]);
674        for (int j = 7; j >=0; j--) {
675          tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
676        }
677        tty->cr();
678      }
679    }
680#endif
681  }
682
683#ifdef _LP64
684  if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
685    UseMultiplyToLenIntrinsic = true;
686  }
687#else
688  if (UseMultiplyToLenIntrinsic) {
689    if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
690      warning("multiplyToLen intrinsic is not available in 32-bit VM");
691    }
692    FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
693  }
694#endif
695#endif // COMPILER2
696
697  // On new cpus instructions which update whole XMM register should be used
698  // to prevent partial register stall due to dependencies on high half.
699  //
700  // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
701  // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
702  // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
703  // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
704
705  if( is_amd() ) { // AMD cpus specific settings
706    if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
707      // Use it on new AMD cpus starting from Opteron.
708      UseAddressNop = true;
709    }
710    if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
711      // Use it on new AMD cpus starting from Opteron.
712      UseNewLongLShift = true;
713    }
714    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
715      if( supports_sse4a() ) {
716        UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
717      } else {
718        UseXmmLoadAndClearUpper = false;
719      }
720    }
721    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
722      if( supports_sse4a() ) {
723        UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
724      } else {
725        UseXmmRegToRegMoveAll = false;
726      }
727    }
728    if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
729      if( supports_sse4a() ) {
730        UseXmmI2F = true;
731      } else {
732        UseXmmI2F = false;
733      }
734    }
735    if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
736      if( supports_sse4a() ) {
737        UseXmmI2D = true;
738      } else {
739        UseXmmI2D = false;
740      }
741    }
742    if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
743      if( supports_sse4_2() && UseSSE >= 4 ) {
744        UseSSE42Intrinsics = true;
745      }
746    }
747
748    // some defaults for AMD family 15h
749    if ( cpu_family() == 0x15 ) {
750      // On family 15h processors default is no sw prefetch
751      if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
752        AllocatePrefetchStyle = 0;
753      }
754      // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
755      if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
756        AllocatePrefetchInstr = 3;
757      }
758      // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
759      if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
760        UseXMMForArrayCopy = true;
761      }
762      if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
763        UseUnalignedLoadStores = true;
764      }
765    }
766
767#ifdef COMPILER2
768    if (MaxVectorSize > 16) {
769      // Limit vectors size to 16 bytes on current AMD cpus.
770      FLAG_SET_DEFAULT(MaxVectorSize, 16);
771    }
772#endif // COMPILER2
773  }
774
775  if( is_intel() ) { // Intel cpus specific settings
776    if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
777      UseStoreImmI16 = false; // don't use it on Intel cpus
778    }
779    if( cpu_family() == 6 || cpu_family() == 15 ) {
780      if( FLAG_IS_DEFAULT(UseAddressNop) ) {
781        // Use it on all Intel cpus starting from PentiumPro
782        UseAddressNop = true;
783      }
784    }
785    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
786      UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
787    }
788    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
789      if( supports_sse3() ) {
790        UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
791      } else {
792        UseXmmRegToRegMoveAll = false;
793      }
794    }
795    if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
796#ifdef COMPILER2
797      if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
798        // For new Intel cpus do the next optimization:
799        // don't align the beginning of a loop if there are enough instructions
800        // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
801        // in current fetch line (OptoLoopAlignment) or the padding
802        // is big (> MaxLoopPad).
803        // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
804        // generated NOP instructions. 11 is the largest size of one
805        // address NOP instruction '0F 1F' (see Assembler::nop(i)).
806        MaxLoopPad = 11;
807      }
808#endif // COMPILER2
809      if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
810        UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
811      }
812      if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
813        if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
814          UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
815        }
816      }
817      if (supports_sse4_2() && UseSSE >= 4) {
818        if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
819          UseSSE42Intrinsics = true;
820        }
821      }
822    }
823    if ((cpu_family() == 0x06) &&
824        ((extended_cpu_model() == 0x36) || // Centerton
825         (extended_cpu_model() == 0x37) || // Silvermont
826         (extended_cpu_model() == 0x4D))) {
827#ifdef COMPILER2
828      if (FLAG_IS_DEFAULT(OptoScheduling)) {
829        OptoScheduling = true;
830      }
831#endif
832      if (supports_sse4_2()) { // Silvermont
833        if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
834          UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
835        }
836      }
837    }
838    if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
839      AllocatePrefetchInstr = 3;
840    }
841  }
842
843  // Use count leading zeros count instruction if available.
844  if (supports_lzcnt()) {
845    if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
846      UseCountLeadingZerosInstruction = true;
847    }
848   } else if (UseCountLeadingZerosInstruction) {
849    warning("lzcnt instruction is not available on this CPU");
850    FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
851  }
852
853  // Use count trailing zeros instruction if available
854  if (supports_bmi1()) {
855    // tzcnt does not require VEX prefix
856    if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
857      if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
858        // Don't use tzcnt if BMI1 is switched off on command line.
859        UseCountTrailingZerosInstruction = false;
860      } else {
861        UseCountTrailingZerosInstruction = true;
862      }
863    }
864  } else if (UseCountTrailingZerosInstruction) {
865    warning("tzcnt instruction is not available on this CPU");
866    FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
867  }
868
869  // BMI instructions (except tzcnt) use an encoding with VEX prefix.
870  // VEX prefix is generated only when AVX > 0.
871  if (supports_bmi1() && supports_avx()) {
872    if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
873      UseBMI1Instructions = true;
874    }
875  } else if (UseBMI1Instructions) {
876    warning("BMI1 instructions are not available on this CPU (AVX is also required)");
877    FLAG_SET_DEFAULT(UseBMI1Instructions, false);
878  }
879
880  if (supports_bmi2() && supports_avx()) {
881    if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
882      UseBMI2Instructions = true;
883    }
884  } else if (UseBMI2Instructions) {
885    warning("BMI2 instructions are not available on this CPU (AVX is also required)");
886    FLAG_SET_DEFAULT(UseBMI2Instructions, false);
887  }
888
889  // Use population count instruction if available.
890  if (supports_popcnt()) {
891    if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
892      UsePopCountInstruction = true;
893    }
894  } else if (UsePopCountInstruction) {
895    warning("POPCNT instruction is not available on this CPU");
896    FLAG_SET_DEFAULT(UsePopCountInstruction, false);
897  }
898
899  // Use fast-string operations if available.
900  if (supports_erms()) {
901    if (FLAG_IS_DEFAULT(UseFastStosb)) {
902      UseFastStosb = true;
903    }
904  } else if (UseFastStosb) {
905    warning("fast-string operations are not available on this CPU");
906    FLAG_SET_DEFAULT(UseFastStosb, false);
907  }
908
909#ifdef COMPILER2
910  if (FLAG_IS_DEFAULT(AlignVector)) {
911    // Modern processors allow misaligned memory operations for vectors.
912    AlignVector = !UseUnalignedLoadStores;
913  }
914#endif // COMPILER2
915
916  assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
917
918  // set valid Prefetch instruction
919  if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
920  if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
921  if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
922  if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
923
924  // Allocation prefetch settings
925  intx cache_line_size = prefetch_data_size();
926  if( cache_line_size > AllocatePrefetchStepSize )
927    AllocatePrefetchStepSize = cache_line_size;
928
929  assert(AllocatePrefetchLines > 0, "invalid value");
930  if( AllocatePrefetchLines < 1 )     // set valid value in product VM
931    AllocatePrefetchLines = 3;
932  assert(AllocateInstancePrefetchLines > 0, "invalid value");
933  if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
934    AllocateInstancePrefetchLines = 1;
935
936  AllocatePrefetchDistance = allocate_prefetch_distance();
937  AllocatePrefetchStyle    = allocate_prefetch_style();
938
939  if (is_intel() && cpu_family() == 6 && supports_sse3()) {
940    if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
941#ifdef _LP64
942      AllocatePrefetchDistance = 384;
943#else
944      AllocatePrefetchDistance = 320;
945#endif
946    }
947    if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
948      AllocatePrefetchDistance = 192;
949      AllocatePrefetchLines = 4;
950    }
951#ifdef COMPILER2
952    if (supports_sse4_2()) {
953      if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
954        FLAG_SET_DEFAULT(UseFPUForSpilling, true);
955      }
956    }
957#endif
958  }
959  assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
960
961#ifdef _LP64
962  // Prefetch settings
963  PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
964  PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
965  PrefetchFieldsAhead         = prefetch_fields_ahead();
966#endif
967
968  if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
969     (cache_line_size > ContendedPaddingWidth))
970     ContendedPaddingWidth = cache_line_size;
971
972  // This machine allows unaligned memory accesses
973  if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
974    FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
975  }
976
977#ifndef PRODUCT
978  if (PrintMiscellaneous && Verbose) {
979    tty->print_cr("Logical CPUs per core: %u",
980                  logical_processors_per_package());
981    tty->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
982    tty->print("UseSSE=%d", (int) UseSSE);
983    if (UseAVX > 0) {
984      tty->print("  UseAVX=%d", (int) UseAVX);
985    }
986    if (UseAES) {
987      tty->print("  UseAES=1");
988    }
989#ifdef COMPILER2
990    if (MaxVectorSize > 0) {
991      tty->print("  MaxVectorSize=%d", (int) MaxVectorSize);
992    }
993#endif
994    tty->cr();
995    tty->print("Allocation");
996    if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
997      tty->print_cr(": no prefetching");
998    } else {
999      tty->print(" prefetching: ");
1000      if (UseSSE == 0 && supports_3dnow_prefetch()) {
1001        tty->print("PREFETCHW");
1002      } else if (UseSSE >= 1) {
1003        if (AllocatePrefetchInstr == 0) {
1004          tty->print("PREFETCHNTA");
1005        } else if (AllocatePrefetchInstr == 1) {
1006          tty->print("PREFETCHT0");
1007        } else if (AllocatePrefetchInstr == 2) {
1008          tty->print("PREFETCHT2");
1009        } else if (AllocatePrefetchInstr == 3) {
1010          tty->print("PREFETCHW");
1011        }
1012      }
1013      if (AllocatePrefetchLines > 1) {
1014        tty->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1015      } else {
1016        tty->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1017      }
1018    }
1019
1020    if (PrefetchCopyIntervalInBytes > 0) {
1021      tty->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1022    }
1023    if (PrefetchScanIntervalInBytes > 0) {
1024      tty->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1025    }
1026    if (PrefetchFieldsAhead > 0) {
1027      tty->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1028    }
1029    if (ContendedPaddingWidth > 0) {
1030      tty->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1031    }
1032  }
1033#endif // !PRODUCT
1034}
1035
1036bool VM_Version::use_biased_locking() {
1037#if INCLUDE_RTM_OPT
1038  // RTM locking is most useful when there is high lock contention and
1039  // low data contention.  With high lock contention the lock is usually
1040  // inflated and biased locking is not suitable for that case.
1041  // RTM locking code requires that biased locking is off.
1042  // Note: we can't switch off UseBiasedLocking in get_processor_features()
1043  // because it is used by Thread::allocate() which is called before
1044  // VM_Version::initialize().
1045  if (UseRTMLocking && UseBiasedLocking) {
1046    if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1047      FLAG_SET_DEFAULT(UseBiasedLocking, false);
1048    } else {
1049      warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1050      UseBiasedLocking = false;
1051    }
1052  }
1053#endif
1054  return UseBiasedLocking;
1055}
1056
1057void VM_Version::initialize() {
1058  ResourceMark rm;
1059  // Making this stub must be FIRST use of assembler
1060
1061  stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1062  if (stub_blob == NULL) {
1063    vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1064  }
1065  CodeBuffer c(stub_blob);
1066  VM_Version_StubGenerator g(&c);
1067  get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1068                                     g.generate_get_cpu_info());
1069
1070  get_processor_features();
1071}
1072