vm_version_x86.cpp revision 6856:5217fa82f1a4
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "runtime/java.hpp"
30#include "runtime/os.hpp"
31#include "runtime/stubCodeGenerator.hpp"
32#include "vm_version_x86.hpp"
33
34
35int VM_Version::_cpu;
36int VM_Version::_model;
37int VM_Version::_stepping;
38int VM_Version::_cpuFeatures;
39const char*           VM_Version::_features_str = "";
40VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
41
42// Address of instruction which causes SEGV
43address VM_Version::_cpuinfo_segv_addr = 0;
44// Address of instruction after the one which causes SEGV
45address VM_Version::_cpuinfo_cont_addr = 0;
46
47static BufferBlob* stub_blob;
48static const int stub_size = 600;
49
50extern "C" {
51  typedef void (*get_cpu_info_stub_t)(void*);
52}
53static get_cpu_info_stub_t get_cpu_info_stub = NULL;
54
55
56class VM_Version_StubGenerator: public StubCodeGenerator {
57 public:
58
59  VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
60
61  address generate_get_cpu_info() {
62    // Flags to test CPU type.
63    const uint32_t HS_EFL_AC           = 0x40000;
64    const uint32_t HS_EFL_ID           = 0x200000;
65    // Values for when we don't have a CPUID instruction.
66    const int      CPU_FAMILY_SHIFT = 8;
67    const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
68    const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
69
70    Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
71    Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
72
73    StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
74#   define __ _masm->
75
76    address start = __ pc();
77
78    //
79    // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
80    //
81    // LP64: rcx and rdx are first and second argument registers on windows
82
83    __ push(rbp);
84#ifdef _LP64
85    __ mov(rbp, c_rarg0); // cpuid_info address
86#else
87    __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
88#endif
89    __ push(rbx);
90    __ push(rsi);
91    __ pushf();          // preserve rbx, and flags
92    __ pop(rax);
93    __ push(rax);
94    __ mov(rcx, rax);
95    //
96    // if we are unable to change the AC flag, we have a 386
97    //
98    __ xorl(rax, HS_EFL_AC);
99    __ push(rax);
100    __ popf();
101    __ pushf();
102    __ pop(rax);
103    __ cmpptr(rax, rcx);
104    __ jccb(Assembler::notEqual, detect_486);
105
106    __ movl(rax, CPU_FAMILY_386);
107    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
108    __ jmp(done);
109
110    //
111    // If we are unable to change the ID flag, we have a 486 which does
112    // not support the "cpuid" instruction.
113    //
114    __ bind(detect_486);
115    __ mov(rax, rcx);
116    __ xorl(rax, HS_EFL_ID);
117    __ push(rax);
118    __ popf();
119    __ pushf();
120    __ pop(rax);
121    __ cmpptr(rcx, rax);
122    __ jccb(Assembler::notEqual, detect_586);
123
124    __ bind(cpu486);
125    __ movl(rax, CPU_FAMILY_486);
126    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
127    __ jmp(done);
128
129    //
130    // At this point, we have a chip which supports the "cpuid" instruction
131    //
132    __ bind(detect_586);
133    __ xorl(rax, rax);
134    __ cpuid();
135    __ orl(rax, rax);
136    __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
137                                        // value of at least 1, we give up and
138                                        // assume a 486
139    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
140    __ movl(Address(rsi, 0), rax);
141    __ movl(Address(rsi, 4), rbx);
142    __ movl(Address(rsi, 8), rcx);
143    __ movl(Address(rsi,12), rdx);
144
145    __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
146    __ jccb(Assembler::belowEqual, std_cpuid4);
147
148    //
149    // cpuid(0xB) Processor Topology
150    //
151    __ movl(rax, 0xb);
152    __ xorl(rcx, rcx);   // Threads level
153    __ cpuid();
154
155    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
156    __ movl(Address(rsi, 0), rax);
157    __ movl(Address(rsi, 4), rbx);
158    __ movl(Address(rsi, 8), rcx);
159    __ movl(Address(rsi,12), rdx);
160
161    __ movl(rax, 0xb);
162    __ movl(rcx, 1);     // Cores level
163    __ cpuid();
164    __ push(rax);
165    __ andl(rax, 0x1f);  // Determine if valid topology level
166    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
167    __ andl(rax, 0xffff);
168    __ pop(rax);
169    __ jccb(Assembler::equal, std_cpuid4);
170
171    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
172    __ movl(Address(rsi, 0), rax);
173    __ movl(Address(rsi, 4), rbx);
174    __ movl(Address(rsi, 8), rcx);
175    __ movl(Address(rsi,12), rdx);
176
177    __ movl(rax, 0xb);
178    __ movl(rcx, 2);     // Packages level
179    __ cpuid();
180    __ push(rax);
181    __ andl(rax, 0x1f);  // Determine if valid topology level
182    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
183    __ andl(rax, 0xffff);
184    __ pop(rax);
185    __ jccb(Assembler::equal, std_cpuid4);
186
187    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
188    __ movl(Address(rsi, 0), rax);
189    __ movl(Address(rsi, 4), rbx);
190    __ movl(Address(rsi, 8), rcx);
191    __ movl(Address(rsi,12), rdx);
192
193    //
194    // cpuid(0x4) Deterministic cache params
195    //
196    __ bind(std_cpuid4);
197    __ movl(rax, 4);
198    __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
199    __ jccb(Assembler::greater, std_cpuid1);
200
201    __ xorl(rcx, rcx);   // L1 cache
202    __ cpuid();
203    __ push(rax);
204    __ andl(rax, 0x1f);  // Determine if valid cache parameters used
205    __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
206    __ pop(rax);
207    __ jccb(Assembler::equal, std_cpuid1);
208
209    __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
210    __ movl(Address(rsi, 0), rax);
211    __ movl(Address(rsi, 4), rbx);
212    __ movl(Address(rsi, 8), rcx);
213    __ movl(Address(rsi,12), rdx);
214
215    //
216    // Standard cpuid(0x1)
217    //
218    __ bind(std_cpuid1);
219    __ movl(rax, 1);
220    __ cpuid();
221    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
222    __ movl(Address(rsi, 0), rax);
223    __ movl(Address(rsi, 4), rbx);
224    __ movl(Address(rsi, 8), rcx);
225    __ movl(Address(rsi,12), rdx);
226
227    //
228    // Check if OS has enabled XGETBV instruction to access XCR0
229    // (OSXSAVE feature flag) and CPU supports AVX
230    //
231    __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
232    __ cmpl(rcx, 0x18000000);
233    __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
234
235    //
236    // XCR0, XFEATURE_ENABLED_MASK register
237    //
238    __ xorl(rcx, rcx);   // zero for XCR0 register
239    __ xgetbv();
240    __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
241    __ movl(Address(rsi, 0), rax);
242    __ movl(Address(rsi, 4), rdx);
243
244    __ andl(rax, 0x6); // xcr0 bits sse | ymm
245    __ cmpl(rax, 0x6);
246    __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
247
248    //
249    // Some OSs have a bug when upper 128bits of YMM
250    // registers are not restored after a signal processing.
251    // Generate SEGV here (reference through NULL)
252    // and check upper YMM bits after it.
253    //
254    VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
255    intx saved_useavx = UseAVX;
256    intx saved_usesse = UseSSE;
257    UseAVX = 1;
258    UseSSE = 2;
259
260    // load value into all 32 bytes of ymm7 register
261    __ movl(rcx, VM_Version::ymm_test_value());
262
263    __ movdl(xmm0, rcx);
264    __ pshufd(xmm0, xmm0, 0x00);
265    __ vinsertf128h(xmm0, xmm0, xmm0);
266    __ vmovdqu(xmm7, xmm0);
267#ifdef _LP64
268    __ vmovdqu(xmm8,  xmm0);
269    __ vmovdqu(xmm15, xmm0);
270#endif
271
272    __ xorl(rsi, rsi);
273    VM_Version::set_cpuinfo_segv_addr( __ pc() );
274    // Generate SEGV
275    __ movl(rax, Address(rsi, 0));
276
277    VM_Version::set_cpuinfo_cont_addr( __ pc() );
278    // Returns here after signal. Save xmm0 to check it later.
279    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
280    __ vmovdqu(Address(rsi,  0), xmm0);
281    __ vmovdqu(Address(rsi, 32), xmm7);
282#ifdef _LP64
283    __ vmovdqu(Address(rsi, 64), xmm8);
284    __ vmovdqu(Address(rsi, 96), xmm15);
285#endif
286
287    VM_Version::clean_cpuFeatures();
288    UseAVX = saved_useavx;
289    UseSSE = saved_usesse;
290
291    //
292    // cpuid(0x7) Structured Extended Features
293    //
294    __ bind(sef_cpuid);
295    __ movl(rax, 7);
296    __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
297    __ jccb(Assembler::greater, ext_cpuid);
298
299    __ xorl(rcx, rcx);
300    __ cpuid();
301    __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
302    __ movl(Address(rsi, 0), rax);
303    __ movl(Address(rsi, 4), rbx);
304
305    //
306    // Extended cpuid(0x80000000)
307    //
308    __ bind(ext_cpuid);
309    __ movl(rax, 0x80000000);
310    __ cpuid();
311    __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
312    __ jcc(Assembler::belowEqual, done);
313    __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
314    __ jccb(Assembler::belowEqual, ext_cpuid1);
315    __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
316    __ jccb(Assembler::belowEqual, ext_cpuid5);
317    __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
318    __ jccb(Assembler::belowEqual, ext_cpuid7);
319    //
320    // Extended cpuid(0x80000008)
321    //
322    __ movl(rax, 0x80000008);
323    __ cpuid();
324    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
325    __ movl(Address(rsi, 0), rax);
326    __ movl(Address(rsi, 4), rbx);
327    __ movl(Address(rsi, 8), rcx);
328    __ movl(Address(rsi,12), rdx);
329
330    //
331    // Extended cpuid(0x80000007)
332    //
333    __ bind(ext_cpuid7);
334    __ movl(rax, 0x80000007);
335    __ cpuid();
336    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
337    __ movl(Address(rsi, 0), rax);
338    __ movl(Address(rsi, 4), rbx);
339    __ movl(Address(rsi, 8), rcx);
340    __ movl(Address(rsi,12), rdx);
341
342    //
343    // Extended cpuid(0x80000005)
344    //
345    __ bind(ext_cpuid5);
346    __ movl(rax, 0x80000005);
347    __ cpuid();
348    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
349    __ movl(Address(rsi, 0), rax);
350    __ movl(Address(rsi, 4), rbx);
351    __ movl(Address(rsi, 8), rcx);
352    __ movl(Address(rsi,12), rdx);
353
354    //
355    // Extended cpuid(0x80000001)
356    //
357    __ bind(ext_cpuid1);
358    __ movl(rax, 0x80000001);
359    __ cpuid();
360    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
361    __ movl(Address(rsi, 0), rax);
362    __ movl(Address(rsi, 4), rbx);
363    __ movl(Address(rsi, 8), rcx);
364    __ movl(Address(rsi,12), rdx);
365
366    //
367    // return
368    //
369    __ bind(done);
370    __ popf();
371    __ pop(rsi);
372    __ pop(rbx);
373    __ pop(rbp);
374    __ ret(0);
375
376#   undef __
377
378    return start;
379  };
380};
381
382
383void VM_Version::get_cpu_info_wrapper() {
384  get_cpu_info_stub(&_cpuid_info);
385}
386
387#ifndef CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED
388  #define CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(f) f()
389#endif
390
391void VM_Version::get_processor_features() {
392
393  _cpu = 4; // 486 by default
394  _model = 0;
395  _stepping = 0;
396  _cpuFeatures = 0;
397  _logical_processors_per_package = 1;
398  // i486 internal cache is both I&D and has a 16-byte line size
399  _L1_data_cache_line_size = 16;
400
401  if (!Use486InstrsOnly) {
402    // Get raw processor info
403
404    // Some platforms (like Win*) need a wrapper around here
405    // in order to properly handle SEGV for YMM registers test.
406    CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(get_cpu_info_wrapper);
407
408    assert_is_initialized();
409    _cpu = extended_cpu_family();
410    _model = extended_cpu_model();
411    _stepping = cpu_stepping();
412
413    if (cpu_family() > 4) { // it supports CPUID
414      _cpuFeatures = feature_flags();
415      // Logical processors are only available on P4s and above,
416      // and only if hyperthreading is available.
417      _logical_processors_per_package = logical_processor_count();
418      _L1_data_cache_line_size = L1_line_size();
419    }
420  }
421
422  _supports_cx8 = supports_cmpxchg8();
423  // xchg and xadd instructions
424  _supports_atomic_getset4 = true;
425  _supports_atomic_getadd4 = true;
426  LP64_ONLY(_supports_atomic_getset8 = true);
427  LP64_ONLY(_supports_atomic_getadd8 = true);
428
429#ifdef _LP64
430  // OS should support SSE for x64 and hardware should support at least SSE2.
431  if (!VM_Version::supports_sse2()) {
432    vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
433  }
434  // in 64 bit the use of SSE2 is the minimum
435  if (UseSSE < 2) UseSSE = 2;
436#endif
437
438#ifdef AMD64
439  // flush_icache_stub have to be generated first.
440  // That is why Icache line size is hard coded in ICache class,
441  // see icache_x86.hpp. It is also the reason why we can't use
442  // clflush instruction in 32-bit VM since it could be running
443  // on CPU which does not support it.
444  //
445  // The only thing we can do is to verify that flushed
446  // ICache::line_size has correct value.
447  guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
448  // clflush_size is size in quadwords (8 bytes).
449  guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
450#endif
451
452  // If the OS doesn't support SSE, we can't use this feature even if the HW does
453  if (!os::supports_sse())
454    _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
455
456  if (UseSSE < 4) {
457    _cpuFeatures &= ~CPU_SSE4_1;
458    _cpuFeatures &= ~CPU_SSE4_2;
459  }
460
461  if (UseSSE < 3) {
462    _cpuFeatures &= ~CPU_SSE3;
463    _cpuFeatures &= ~CPU_SSSE3;
464    _cpuFeatures &= ~CPU_SSE4A;
465  }
466
467  if (UseSSE < 2)
468    _cpuFeatures &= ~CPU_SSE2;
469
470  if (UseSSE < 1)
471    _cpuFeatures &= ~CPU_SSE;
472
473  if (UseAVX < 2)
474    _cpuFeatures &= ~CPU_AVX2;
475
476  if (UseAVX < 1)
477    _cpuFeatures &= ~CPU_AVX;
478
479  if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
480    _cpuFeatures &= ~CPU_AES;
481
482  if (logical_processors_per_package() == 1) {
483    // HT processor could be installed on a system which doesn't support HT.
484    _cpuFeatures &= ~CPU_HT;
485  }
486
487  char buf[256];
488  jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
489               cores_per_cpu(), threads_per_core(),
490               cpu_family(), _model, _stepping,
491               (supports_cmov() ? ", cmov" : ""),
492               (supports_cmpxchg8() ? ", cx8" : ""),
493               (supports_fxsr() ? ", fxsr" : ""),
494               (supports_mmx()  ? ", mmx"  : ""),
495               (supports_sse()  ? ", sse"  : ""),
496               (supports_sse2() ? ", sse2" : ""),
497               (supports_sse3() ? ", sse3" : ""),
498               (supports_ssse3()? ", ssse3": ""),
499               (supports_sse4_1() ? ", sse4.1" : ""),
500               (supports_sse4_2() ? ", sse4.2" : ""),
501               (supports_popcnt() ? ", popcnt" : ""),
502               (supports_avx()    ? ", avx" : ""),
503               (supports_avx2()   ? ", avx2" : ""),
504               (supports_aes()    ? ", aes" : ""),
505               (supports_clmul()  ? ", clmul" : ""),
506               (supports_erms()   ? ", erms" : ""),
507               (supports_rtm()    ? ", rtm" : ""),
508               (supports_mmx_ext() ? ", mmxext" : ""),
509               (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
510               (supports_lzcnt()   ? ", lzcnt": ""),
511               (supports_sse4a()   ? ", sse4a": ""),
512               (supports_ht() ? ", ht": ""),
513               (supports_tsc() ? ", tsc": ""),
514               (supports_tscinv_bit() ? ", tscinvbit": ""),
515               (supports_tscinv() ? ", tscinv": ""),
516               (supports_bmi1() ? ", bmi1" : ""),
517               (supports_bmi2() ? ", bmi2" : ""));
518  _features_str = os::strdup(buf);
519
520  // UseSSE is set to the smaller of what hardware supports and what
521  // the command line requires.  I.e., you cannot set UseSSE to 2 on
522  // older Pentiums which do not support it.
523  if (UseSSE > 4) UseSSE=4;
524  if (UseSSE < 0) UseSSE=0;
525  if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
526    UseSSE = MIN2((intx)3,UseSSE);
527  if (!supports_sse3()) // Drop to 2 if no SSE3 support
528    UseSSE = MIN2((intx)2,UseSSE);
529  if (!supports_sse2()) // Drop to 1 if no SSE2 support
530    UseSSE = MIN2((intx)1,UseSSE);
531  if (!supports_sse ()) // Drop to 0 if no SSE  support
532    UseSSE = 0;
533
534  if (UseAVX > 2) UseAVX=2;
535  if (UseAVX < 0) UseAVX=0;
536  if (!supports_avx2()) // Drop to 1 if no AVX2 support
537    UseAVX = MIN2((intx)1,UseAVX);
538  if (!supports_avx ()) // Drop to 0 if no AVX  support
539    UseAVX = 0;
540
541  // Use AES instructions if available.
542  if (supports_aes()) {
543    if (FLAG_IS_DEFAULT(UseAES)) {
544      UseAES = true;
545    }
546  } else if (UseAES) {
547    if (!FLAG_IS_DEFAULT(UseAES))
548      warning("AES instructions are not available on this CPU");
549    FLAG_SET_DEFAULT(UseAES, false);
550  }
551
552  // Use CLMUL instructions if available.
553  if (supports_clmul()) {
554    if (FLAG_IS_DEFAULT(UseCLMUL)) {
555      UseCLMUL = true;
556    }
557  } else if (UseCLMUL) {
558    if (!FLAG_IS_DEFAULT(UseCLMUL))
559      warning("CLMUL instructions not available on this CPU (AVX may also be required)");
560    FLAG_SET_DEFAULT(UseCLMUL, false);
561  }
562
563  if (UseCLMUL && (UseSSE > 2)) {
564    if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
565      UseCRC32Intrinsics = true;
566    }
567  } else if (UseCRC32Intrinsics) {
568    if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
569      warning("CRC32 Intrinsics requires AVX and CLMUL instructions (not available on this CPU)");
570    FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
571  }
572
573  // The AES intrinsic stubs require AES instruction support (of course)
574  // but also require sse3 mode for instructions it use.
575  if (UseAES && (UseSSE > 2)) {
576    if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
577      UseAESIntrinsics = true;
578    }
579  } else if (UseAESIntrinsics) {
580    if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
581      warning("AES intrinsics are not available on this CPU");
582    FLAG_SET_DEFAULT(UseAESIntrinsics, false);
583  }
584
585  if (UseSHA) {
586    warning("SHA instructions are not available on this CPU");
587    FLAG_SET_DEFAULT(UseSHA, false);
588  }
589  if (UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics) {
590    warning("SHA intrinsics are not available on this CPU");
591    FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
592    FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
593    FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
594  }
595
596  // Adjust RTM (Restricted Transactional Memory) flags
597  if (!supports_rtm() && UseRTMLocking) {
598    // Can't continue because UseRTMLocking affects UseBiasedLocking flag
599    // setting during arguments processing. See use_biased_locking().
600    // VM_Version_init() is executed after UseBiasedLocking is used
601    // in Thread::allocate().
602    vm_exit_during_initialization("RTM instructions are not available on this CPU");
603  }
604
605#if INCLUDE_RTM_OPT
606  if (UseRTMLocking) {
607    if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
608      // RTM locking should be used only for applications with
609      // high lock contention. For now we do not use it by default.
610      vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
611    }
612    if (!is_power_of_2(RTMTotalCountIncrRate)) {
613      warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
614      FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
615    }
616    if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
617      warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
618      FLAG_SET_DEFAULT(RTMAbortRatio, 50);
619    }
620  } else { // !UseRTMLocking
621    if (UseRTMForStackLocks) {
622      if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
623        warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
624      }
625      FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
626    }
627    if (UseRTMDeopt) {
628      FLAG_SET_DEFAULT(UseRTMDeopt, false);
629    }
630    if (PrintPreciseRTMLockingStatistics) {
631      FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
632    }
633  }
634#else
635  if (UseRTMLocking) {
636    // Only C2 does RTM locking optimization.
637    // Can't continue because UseRTMLocking affects UseBiasedLocking flag
638    // setting during arguments processing. See use_biased_locking().
639    vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
640  }
641#endif
642
643#ifdef COMPILER2
644  if (UseFPUForSpilling) {
645    if (UseSSE < 2) {
646      // Only supported with SSE2+
647      FLAG_SET_DEFAULT(UseFPUForSpilling, false);
648    }
649  }
650  if (MaxVectorSize > 0) {
651    if (!is_power_of_2(MaxVectorSize)) {
652      warning("MaxVectorSize must be a power of 2");
653      FLAG_SET_DEFAULT(MaxVectorSize, 32);
654    }
655    if (MaxVectorSize > 32) {
656      FLAG_SET_DEFAULT(MaxVectorSize, 32);
657    }
658    if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
659      // 32 bytes vectors (in YMM) are only supported with AVX+
660      FLAG_SET_DEFAULT(MaxVectorSize, 16);
661    }
662    if (UseSSE < 2) {
663      // Vectors (in XMM) are only supported with SSE2+
664      FLAG_SET_DEFAULT(MaxVectorSize, 0);
665    }
666#ifdef ASSERT
667    if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
668      tty->print_cr("State of YMM registers after signal handle:");
669      int nreg = 2 LP64_ONLY(+2);
670      const char* ymm_name[4] = {"0", "7", "8", "15"};
671      for (int i = 0; i < nreg; i++) {
672        tty->print("YMM%s:", ymm_name[i]);
673        for (int j = 7; j >=0; j--) {
674          tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
675        }
676        tty->cr();
677      }
678    }
679#endif
680  }
681#endif
682
683  // On new cpus instructions which update whole XMM register should be used
684  // to prevent partial register stall due to dependencies on high half.
685  //
686  // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
687  // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
688  // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
689  // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
690
691  if( is_amd() ) { // AMD cpus specific settings
692    if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
693      // Use it on new AMD cpus starting from Opteron.
694      UseAddressNop = true;
695    }
696    if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
697      // Use it on new AMD cpus starting from Opteron.
698      UseNewLongLShift = true;
699    }
700    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
701      if( supports_sse4a() ) {
702        UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
703      } else {
704        UseXmmLoadAndClearUpper = false;
705      }
706    }
707    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
708      if( supports_sse4a() ) {
709        UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
710      } else {
711        UseXmmRegToRegMoveAll = false;
712      }
713    }
714    if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
715      if( supports_sse4a() ) {
716        UseXmmI2F = true;
717      } else {
718        UseXmmI2F = false;
719      }
720    }
721    if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
722      if( supports_sse4a() ) {
723        UseXmmI2D = true;
724      } else {
725        UseXmmI2D = false;
726      }
727    }
728    if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
729      if( supports_sse4_2() && UseSSE >= 4 ) {
730        UseSSE42Intrinsics = true;
731      }
732    }
733
734    // some defaults for AMD family 15h
735    if ( cpu_family() == 0x15 ) {
736      // On family 15h processors default is no sw prefetch
737      if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
738        AllocatePrefetchStyle = 0;
739      }
740      // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
741      if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
742        AllocatePrefetchInstr = 3;
743      }
744      // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
745      if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
746        UseXMMForArrayCopy = true;
747      }
748      if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
749        UseUnalignedLoadStores = true;
750      }
751    }
752
753#ifdef COMPILER2
754    if (MaxVectorSize > 16) {
755      // Limit vectors size to 16 bytes on current AMD cpus.
756      FLAG_SET_DEFAULT(MaxVectorSize, 16);
757    }
758#endif // COMPILER2
759  }
760
761  if( is_intel() ) { // Intel cpus specific settings
762    if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
763      UseStoreImmI16 = false; // don't use it on Intel cpus
764    }
765    if( cpu_family() == 6 || cpu_family() == 15 ) {
766      if( FLAG_IS_DEFAULT(UseAddressNop) ) {
767        // Use it on all Intel cpus starting from PentiumPro
768        UseAddressNop = true;
769      }
770    }
771    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
772      UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
773    }
774    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
775      if( supports_sse3() ) {
776        UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
777      } else {
778        UseXmmRegToRegMoveAll = false;
779      }
780    }
781    if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
782#ifdef COMPILER2
783      if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
784        // For new Intel cpus do the next optimization:
785        // don't align the beginning of a loop if there are enough instructions
786        // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
787        // in current fetch line (OptoLoopAlignment) or the padding
788        // is big (> MaxLoopPad).
789        // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
790        // generated NOP instructions. 11 is the largest size of one
791        // address NOP instruction '0F 1F' (see Assembler::nop(i)).
792        MaxLoopPad = 11;
793      }
794#endif // COMPILER2
795      if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
796        UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
797      }
798      if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
799        if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
800          UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
801        }
802      }
803      if (supports_sse4_2() && UseSSE >= 4) {
804        if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
805          UseSSE42Intrinsics = true;
806        }
807      }
808    }
809    if ((cpu_family() == 0x06) &&
810        ((extended_cpu_model() == 0x36) || // Centerton
811         (extended_cpu_model() == 0x37) || // Silvermont
812         (extended_cpu_model() == 0x4D))) {
813#ifdef COMPILER2
814      if (FLAG_IS_DEFAULT(OptoScheduling)) {
815        OptoScheduling = true;
816      }
817#endif
818      if (supports_sse4_2()) { // Silvermont
819        if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
820          UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
821        }
822      }
823    }
824  }
825
826  // Use count leading zeros count instruction if available.
827  if (supports_lzcnt()) {
828    if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
829      UseCountLeadingZerosInstruction = true;
830    }
831   } else if (UseCountLeadingZerosInstruction) {
832    warning("lzcnt instruction is not available on this CPU");
833    FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
834  }
835
836  if (supports_bmi1()) {
837    if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
838      UseBMI1Instructions = true;
839    }
840  } else if (UseBMI1Instructions) {
841    warning("BMI1 instructions are not available on this CPU");
842    FLAG_SET_DEFAULT(UseBMI1Instructions, false);
843  }
844
845  // Use count trailing zeros instruction if available
846  if (supports_bmi1()) {
847    if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
848      UseCountTrailingZerosInstruction = UseBMI1Instructions;
849    }
850  } else if (UseCountTrailingZerosInstruction) {
851    warning("tzcnt instruction is not available on this CPU");
852    FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
853  }
854
855  // Use population count instruction if available.
856  if (supports_popcnt()) {
857    if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
858      UsePopCountInstruction = true;
859    }
860  } else if (UsePopCountInstruction) {
861    warning("POPCNT instruction is not available on this CPU");
862    FLAG_SET_DEFAULT(UsePopCountInstruction, false);
863  }
864
865  // Use fast-string operations if available.
866  if (supports_erms()) {
867    if (FLAG_IS_DEFAULT(UseFastStosb)) {
868      UseFastStosb = true;
869    }
870  } else if (UseFastStosb) {
871    warning("fast-string operations are not available on this CPU");
872    FLAG_SET_DEFAULT(UseFastStosb, false);
873  }
874
875#ifdef COMPILER2
876  if (FLAG_IS_DEFAULT(AlignVector)) {
877    // Modern processors allow misaligned memory operations for vectors.
878    AlignVector = !UseUnalignedLoadStores;
879  }
880#endif // COMPILER2
881
882  assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
883  assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
884
885  // set valid Prefetch instruction
886  if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
887  if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
888  if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
889  if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
890
891  if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
892  if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
893  if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
894  if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
895
896  // Allocation prefetch settings
897  intx cache_line_size = prefetch_data_size();
898  if( cache_line_size > AllocatePrefetchStepSize )
899    AllocatePrefetchStepSize = cache_line_size;
900
901  assert(AllocatePrefetchLines > 0, "invalid value");
902  if( AllocatePrefetchLines < 1 )     // set valid value in product VM
903    AllocatePrefetchLines = 3;
904  assert(AllocateInstancePrefetchLines > 0, "invalid value");
905  if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
906    AllocateInstancePrefetchLines = 1;
907
908  AllocatePrefetchDistance = allocate_prefetch_distance();
909  AllocatePrefetchStyle    = allocate_prefetch_style();
910
911  if (is_intel() && cpu_family() == 6 && supports_sse3()) {
912    if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
913#ifdef _LP64
914      AllocatePrefetchDistance = 384;
915#else
916      AllocatePrefetchDistance = 320;
917#endif
918    }
919    if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
920      AllocatePrefetchDistance = 192;
921      AllocatePrefetchLines = 4;
922    }
923#ifdef COMPILER2
924    if (supports_sse4_2()) {
925      if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
926        FLAG_SET_DEFAULT(UseFPUForSpilling, true);
927      }
928    }
929#endif
930  }
931  assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
932
933#ifdef _LP64
934  // Prefetch settings
935  PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
936  PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
937  PrefetchFieldsAhead         = prefetch_fields_ahead();
938#endif
939
940  if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
941     (cache_line_size > ContendedPaddingWidth))
942     ContendedPaddingWidth = cache_line_size;
943
944#ifndef PRODUCT
945  if (PrintMiscellaneous && Verbose) {
946    tty->print_cr("Logical CPUs per core: %u",
947                  logical_processors_per_package());
948    tty->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
949    tty->print("UseSSE=%d", (int) UseSSE);
950    if (UseAVX > 0) {
951      tty->print("  UseAVX=%d", (int) UseAVX);
952    }
953    if (UseAES) {
954      tty->print("  UseAES=1");
955    }
956#ifdef COMPILER2
957    if (MaxVectorSize > 0) {
958      tty->print("  MaxVectorSize=%d", (int) MaxVectorSize);
959    }
960#endif
961    tty->cr();
962    tty->print("Allocation");
963    if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
964      tty->print_cr(": no prefetching");
965    } else {
966      tty->print(" prefetching: ");
967      if (UseSSE == 0 && supports_3dnow_prefetch()) {
968        tty->print("PREFETCHW");
969      } else if (UseSSE >= 1) {
970        if (AllocatePrefetchInstr == 0) {
971          tty->print("PREFETCHNTA");
972        } else if (AllocatePrefetchInstr == 1) {
973          tty->print("PREFETCHT0");
974        } else if (AllocatePrefetchInstr == 2) {
975          tty->print("PREFETCHT2");
976        } else if (AllocatePrefetchInstr == 3) {
977          tty->print("PREFETCHW");
978        }
979      }
980      if (AllocatePrefetchLines > 1) {
981        tty->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
982      } else {
983        tty->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
984      }
985    }
986
987    if (PrefetchCopyIntervalInBytes > 0) {
988      tty->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
989    }
990    if (PrefetchScanIntervalInBytes > 0) {
991      tty->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
992    }
993    if (PrefetchFieldsAhead > 0) {
994      tty->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
995    }
996    if (ContendedPaddingWidth > 0) {
997      tty->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
998    }
999  }
1000#endif // !PRODUCT
1001}
1002
1003bool VM_Version::use_biased_locking() {
1004#if INCLUDE_RTM_OPT
1005  // RTM locking is most useful when there is high lock contention and
1006  // low data contention.  With high lock contention the lock is usually
1007  // inflated and biased locking is not suitable for that case.
1008  // RTM locking code requires that biased locking is off.
1009  // Note: we can't switch off UseBiasedLocking in get_processor_features()
1010  // because it is used by Thread::allocate() which is called before
1011  // VM_Version::initialize().
1012  if (UseRTMLocking && UseBiasedLocking) {
1013    if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1014      FLAG_SET_DEFAULT(UseBiasedLocking, false);
1015    } else {
1016      warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1017      UseBiasedLocking = false;
1018    }
1019  }
1020#endif
1021  return UseBiasedLocking;
1022}
1023
1024void VM_Version::initialize() {
1025  ResourceMark rm;
1026  // Making this stub must be FIRST use of assembler
1027
1028  stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1029  if (stub_blob == NULL) {
1030    vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1031  }
1032  CodeBuffer c(stub_blob);
1033  VM_Version_StubGenerator g(&c);
1034  get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1035                                     g.generate_get_cpu_info());
1036
1037  get_processor_features();
1038}
1039