vm_version_x86.cpp revision 2721:f08d439fab8c
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "assembler_x86.inline.hpp"
27#include "memory/resourceArea.hpp"
28#include "runtime/java.hpp"
29#include "runtime/stubCodeGenerator.hpp"
30#include "vm_version_x86.hpp"
31#ifdef TARGET_OS_FAMILY_linux
32# include "os_linux.inline.hpp"
33#endif
34#ifdef TARGET_OS_FAMILY_solaris
35# include "os_solaris.inline.hpp"
36#endif
37#ifdef TARGET_OS_FAMILY_windows
38# include "os_windows.inline.hpp"
39#endif
40#ifdef TARGET_OS_FAMILY_bsd
41# include "os_bsd.inline.hpp"
42#endif
43
44
45int VM_Version::_cpu;
46int VM_Version::_model;
47int VM_Version::_stepping;
48int VM_Version::_cpuFeatures;
49const char*           VM_Version::_features_str = "";
50VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
51
52static BufferBlob* stub_blob;
53static const int stub_size = 400;
54
55extern "C" {
56  typedef void (*getPsrInfo_stub_t)(void*);
57}
58static getPsrInfo_stub_t getPsrInfo_stub = NULL;
59
60
61class VM_Version_StubGenerator: public StubCodeGenerator {
62 public:
63
64  VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
65
66  address generate_getPsrInfo() {
67    // Flags to test CPU type.
68    const uint32_t EFL_AC           = 0x40000;
69    const uint32_t EFL_ID           = 0x200000;
70    // Values for when we don't have a CPUID instruction.
71    const int      CPU_FAMILY_SHIFT = 8;
72    const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
73    const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
74
75    Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
76    Label ext_cpuid1, ext_cpuid5, done;
77
78    StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
79#   define __ _masm->
80
81    address start = __ pc();
82
83    //
84    // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
85    //
86    // LP64: rcx and rdx are first and second argument registers on windows
87
88    __ push(rbp);
89#ifdef _LP64
90    __ mov(rbp, c_rarg0); // cpuid_info address
91#else
92    __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
93#endif
94    __ push(rbx);
95    __ push(rsi);
96    __ pushf();          // preserve rbx, and flags
97    __ pop(rax);
98    __ push(rax);
99    __ mov(rcx, rax);
100    //
101    // if we are unable to change the AC flag, we have a 386
102    //
103    __ xorl(rax, EFL_AC);
104    __ push(rax);
105    __ popf();
106    __ pushf();
107    __ pop(rax);
108    __ cmpptr(rax, rcx);
109    __ jccb(Assembler::notEqual, detect_486);
110
111    __ movl(rax, CPU_FAMILY_386);
112    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
113    __ jmp(done);
114
115    //
116    // If we are unable to change the ID flag, we have a 486 which does
117    // not support the "cpuid" instruction.
118    //
119    __ bind(detect_486);
120    __ mov(rax, rcx);
121    __ xorl(rax, EFL_ID);
122    __ push(rax);
123    __ popf();
124    __ pushf();
125    __ pop(rax);
126    __ cmpptr(rcx, rax);
127    __ jccb(Assembler::notEqual, detect_586);
128
129    __ bind(cpu486);
130    __ movl(rax, CPU_FAMILY_486);
131    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
132    __ jmp(done);
133
134    //
135    // At this point, we have a chip which supports the "cpuid" instruction
136    //
137    __ bind(detect_586);
138    __ xorl(rax, rax);
139    __ cpuid();
140    __ orl(rax, rax);
141    __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
142                                        // value of at least 1, we give up and
143                                        // assume a 486
144    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
145    __ movl(Address(rsi, 0), rax);
146    __ movl(Address(rsi, 4), rbx);
147    __ movl(Address(rsi, 8), rcx);
148    __ movl(Address(rsi,12), rdx);
149
150    __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
151    __ jccb(Assembler::belowEqual, std_cpuid4);
152
153    //
154    // cpuid(0xB) Processor Topology
155    //
156    __ movl(rax, 0xb);
157    __ xorl(rcx, rcx);   // Threads level
158    __ cpuid();
159
160    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
161    __ movl(Address(rsi, 0), rax);
162    __ movl(Address(rsi, 4), rbx);
163    __ movl(Address(rsi, 8), rcx);
164    __ movl(Address(rsi,12), rdx);
165
166    __ movl(rax, 0xb);
167    __ movl(rcx, 1);     // Cores level
168    __ cpuid();
169    __ push(rax);
170    __ andl(rax, 0x1f);  // Determine if valid topology level
171    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
172    __ andl(rax, 0xffff);
173    __ pop(rax);
174    __ jccb(Assembler::equal, std_cpuid4);
175
176    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
177    __ movl(Address(rsi, 0), rax);
178    __ movl(Address(rsi, 4), rbx);
179    __ movl(Address(rsi, 8), rcx);
180    __ movl(Address(rsi,12), rdx);
181
182    __ movl(rax, 0xb);
183    __ movl(rcx, 2);     // Packages level
184    __ cpuid();
185    __ push(rax);
186    __ andl(rax, 0x1f);  // Determine if valid topology level
187    __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
188    __ andl(rax, 0xffff);
189    __ pop(rax);
190    __ jccb(Assembler::equal, std_cpuid4);
191
192    __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
193    __ movl(Address(rsi, 0), rax);
194    __ movl(Address(rsi, 4), rbx);
195    __ movl(Address(rsi, 8), rcx);
196    __ movl(Address(rsi,12), rdx);
197
198    //
199    // cpuid(0x4) Deterministic cache params
200    //
201    __ bind(std_cpuid4);
202    __ movl(rax, 4);
203    __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
204    __ jccb(Assembler::greater, std_cpuid1);
205
206    __ xorl(rcx, rcx);   // L1 cache
207    __ cpuid();
208    __ push(rax);
209    __ andl(rax, 0x1f);  // Determine if valid cache parameters used
210    __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
211    __ pop(rax);
212    __ jccb(Assembler::equal, std_cpuid1);
213
214    __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
215    __ movl(Address(rsi, 0), rax);
216    __ movl(Address(rsi, 4), rbx);
217    __ movl(Address(rsi, 8), rcx);
218    __ movl(Address(rsi,12), rdx);
219
220    //
221    // Standard cpuid(0x1)
222    //
223    __ bind(std_cpuid1);
224    __ movl(rax, 1);
225    __ cpuid();
226    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
227    __ movl(Address(rsi, 0), rax);
228    __ movl(Address(rsi, 4), rbx);
229    __ movl(Address(rsi, 8), rcx);
230    __ movl(Address(rsi,12), rdx);
231
232    __ movl(rax, 0x80000000);
233    __ cpuid();
234    __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
235    __ jcc(Assembler::belowEqual, done);
236    __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
237    __ jccb(Assembler::belowEqual, ext_cpuid1);
238    __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
239    __ jccb(Assembler::belowEqual, ext_cpuid5);
240    //
241    // Extended cpuid(0x80000008)
242    //
243    __ movl(rax, 0x80000008);
244    __ cpuid();
245    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
246    __ movl(Address(rsi, 0), rax);
247    __ movl(Address(rsi, 4), rbx);
248    __ movl(Address(rsi, 8), rcx);
249    __ movl(Address(rsi,12), rdx);
250
251    //
252    // Extended cpuid(0x80000005)
253    //
254    __ bind(ext_cpuid5);
255    __ movl(rax, 0x80000005);
256    __ cpuid();
257    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
258    __ movl(Address(rsi, 0), rax);
259    __ movl(Address(rsi, 4), rbx);
260    __ movl(Address(rsi, 8), rcx);
261    __ movl(Address(rsi,12), rdx);
262
263    //
264    // Extended cpuid(0x80000001)
265    //
266    __ bind(ext_cpuid1);
267    __ movl(rax, 0x80000001);
268    __ cpuid();
269    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
270    __ movl(Address(rsi, 0), rax);
271    __ movl(Address(rsi, 4), rbx);
272    __ movl(Address(rsi, 8), rcx);
273    __ movl(Address(rsi,12), rdx);
274
275    //
276    // return
277    //
278    __ bind(done);
279    __ popf();
280    __ pop(rsi);
281    __ pop(rbx);
282    __ pop(rbp);
283    __ ret(0);
284
285#   undef __
286
287    return start;
288  };
289};
290
291
292void VM_Version::get_processor_features() {
293
294  _cpu = 4; // 486 by default
295  _model = 0;
296  _stepping = 0;
297  _cpuFeatures = 0;
298  _logical_processors_per_package = 1;
299
300  if (!Use486InstrsOnly) {
301    // Get raw processor info
302    getPsrInfo_stub(&_cpuid_info);
303    assert_is_initialized();
304    _cpu = extended_cpu_family();
305    _model = extended_cpu_model();
306    _stepping = cpu_stepping();
307
308    if (cpu_family() > 4) { // it supports CPUID
309      _cpuFeatures = feature_flags();
310      // Logical processors are only available on P4s and above,
311      // and only if hyperthreading is available.
312      _logical_processors_per_package = logical_processor_count();
313    }
314  }
315
316  _supports_cx8 = supports_cmpxchg8();
317
318#ifdef _LP64
319  // OS should support SSE for x64 and hardware should support at least SSE2.
320  if (!VM_Version::supports_sse2()) {
321    vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
322  }
323  // in 64 bit the use of SSE2 is the minimum
324  if (UseSSE < 2) UseSSE = 2;
325#endif
326
327#ifdef AMD64
328  // flush_icache_stub have to be generated first.
329  // That is why Icache line size is hard coded in ICache class,
330  // see icache_x86.hpp. It is also the reason why we can't use
331  // clflush instruction in 32-bit VM since it could be running
332  // on CPU which does not support it.
333  //
334  // The only thing we can do is to verify that flushed
335  // ICache::line_size has correct value.
336  guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
337  // clflush_size is size in quadwords (8 bytes).
338  guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
339#endif
340
341  // If the OS doesn't support SSE, we can't use this feature even if the HW does
342  if (!os::supports_sse())
343    _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
344
345  if (UseSSE < 4) {
346    _cpuFeatures &= ~CPU_SSE4_1;
347    _cpuFeatures &= ~CPU_SSE4_2;
348  }
349
350  if (UseSSE < 3) {
351    _cpuFeatures &= ~CPU_SSE3;
352    _cpuFeatures &= ~CPU_SSSE3;
353    _cpuFeatures &= ~CPU_SSE4A;
354  }
355
356  if (UseSSE < 2)
357    _cpuFeatures &= ~CPU_SSE2;
358
359  if (UseSSE < 1)
360    _cpuFeatures &= ~CPU_SSE;
361
362  if (logical_processors_per_package() == 1) {
363    // HT processor could be installed on a system which doesn't support HT.
364    _cpuFeatures &= ~CPU_HT;
365  }
366
367  char buf[256];
368  jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
369               cores_per_cpu(), threads_per_core(),
370               cpu_family(), _model, _stepping,
371               (supports_cmov() ? ", cmov" : ""),
372               (supports_cmpxchg8() ? ", cx8" : ""),
373               (supports_fxsr() ? ", fxsr" : ""),
374               (supports_mmx()  ? ", mmx"  : ""),
375               (supports_sse()  ? ", sse"  : ""),
376               (supports_sse2() ? ", sse2" : ""),
377               (supports_sse3() ? ", sse3" : ""),
378               (supports_ssse3()? ", ssse3": ""),
379               (supports_sse4_1() ? ", sse4.1" : ""),
380               (supports_sse4_2() ? ", sse4.2" : ""),
381               (supports_popcnt() ? ", popcnt" : ""),
382               (supports_mmx_ext() ? ", mmxext" : ""),
383               (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
384               (supports_lzcnt()   ? ", lzcnt": ""),
385               (supports_sse4a()   ? ", sse4a": ""),
386               (supports_ht() ? ", ht": ""));
387  _features_str = strdup(buf);
388
389  // UseSSE is set to the smaller of what hardware supports and what
390  // the command line requires.  I.e., you cannot set UseSSE to 2 on
391  // older Pentiums which do not support it.
392  if( UseSSE > 4 ) UseSSE=4;
393  if( UseSSE < 0 ) UseSSE=0;
394  if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
395    UseSSE = MIN2((intx)3,UseSSE);
396  if( !supports_sse3() ) // Drop to 2 if no SSE3 support
397    UseSSE = MIN2((intx)2,UseSSE);
398  if( !supports_sse2() ) // Drop to 1 if no SSE2 support
399    UseSSE = MIN2((intx)1,UseSSE);
400  if( !supports_sse () ) // Drop to 0 if no SSE  support
401    UseSSE = 0;
402
403  // On new cpus instructions which update whole XMM register should be used
404  // to prevent partial register stall due to dependencies on high half.
405  //
406  // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
407  // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
408  // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
409  // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
410
411  if( is_amd() ) { // AMD cpus specific settings
412    if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
413      // Use it on new AMD cpus starting from Opteron.
414      UseAddressNop = true;
415    }
416    if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
417      // Use it on new AMD cpus starting from Opteron.
418      UseNewLongLShift = true;
419    }
420    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
421      if( supports_sse4a() ) {
422        UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
423      } else {
424        UseXmmLoadAndClearUpper = false;
425      }
426    }
427    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
428      if( supports_sse4a() ) {
429        UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
430      } else {
431        UseXmmRegToRegMoveAll = false;
432      }
433    }
434    if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
435      if( supports_sse4a() ) {
436        UseXmmI2F = true;
437      } else {
438        UseXmmI2F = false;
439      }
440    }
441    if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
442      if( supports_sse4a() ) {
443        UseXmmI2D = true;
444      } else {
445        UseXmmI2D = false;
446      }
447    }
448    if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
449      if( supports_sse4_2() && UseSSE >= 4 ) {
450        UseSSE42Intrinsics = true;
451      }
452    }
453
454    // Use count leading zeros count instruction if available.
455    if (supports_lzcnt()) {
456      if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
457        UseCountLeadingZerosInstruction = true;
458      }
459    }
460
461    // some defaults for AMD family 15h
462    if ( cpu_family() == 0x15 ) {
463      // On family 15h processors default is no sw prefetch
464      if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
465        AllocatePrefetchStyle = 0;
466      }
467      // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
468      if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
469        AllocatePrefetchInstr = 3;
470      }
471      // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
472      if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
473        UseXMMForArrayCopy = true;
474      }
475      if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
476        UseUnalignedLoadStores = true;
477      }
478    }
479
480  }
481
482  if( is_intel() ) { // Intel cpus specific settings
483    if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
484      UseStoreImmI16 = false; // don't use it on Intel cpus
485    }
486    if( cpu_family() == 6 || cpu_family() == 15 ) {
487      if( FLAG_IS_DEFAULT(UseAddressNop) ) {
488        // Use it on all Intel cpus starting from PentiumPro
489        UseAddressNop = true;
490      }
491    }
492    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
493      UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
494    }
495    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
496      if( supports_sse3() ) {
497        UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
498      } else {
499        UseXmmRegToRegMoveAll = false;
500      }
501    }
502    if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
503#ifdef COMPILER2
504      if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
505        // For new Intel cpus do the next optimization:
506        // don't align the beginning of a loop if there are enough instructions
507        // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
508        // in current fetch line (OptoLoopAlignment) or the padding
509        // is big (> MaxLoopPad).
510        // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
511        // generated NOP instructions. 11 is the largest size of one
512        // address NOP instruction '0F 1F' (see Assembler::nop(i)).
513        MaxLoopPad = 11;
514      }
515#endif // COMPILER2
516      if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
517        UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
518      }
519      if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
520        if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
521          UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
522        }
523      }
524      if( supports_sse4_2() && UseSSE >= 4 ) {
525        if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
526          UseSSE42Intrinsics = true;
527        }
528      }
529    }
530  }
531
532  // Use population count instruction if available.
533  if (supports_popcnt()) {
534    if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
535      UsePopCountInstruction = true;
536    }
537  }
538
539#ifdef COMPILER2
540  if (UseFPUForSpilling) {
541    if (UseSSE < 2) {
542      // Only supported with SSE2+
543      FLAG_SET_DEFAULT(UseFPUForSpilling, false);
544    }
545  }
546#endif
547
548  assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
549  assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
550
551  // set valid Prefetch instruction
552  if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
553  if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
554  if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
555  if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
556
557  if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
558  if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
559  if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
560  if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
561
562  // Allocation prefetch settings
563  intx cache_line_size = prefetch_data_size();
564  if( cache_line_size > AllocatePrefetchStepSize )
565    AllocatePrefetchStepSize = cache_line_size;
566
567  assert(AllocatePrefetchLines > 0, "invalid value");
568  if( AllocatePrefetchLines < 1 )     // set valid value in product VM
569    AllocatePrefetchLines = 3;
570  assert(AllocateInstancePrefetchLines > 0, "invalid value");
571  if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
572    AllocateInstancePrefetchLines = 1;
573
574  AllocatePrefetchDistance = allocate_prefetch_distance();
575  AllocatePrefetchStyle    = allocate_prefetch_style();
576
577  if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
578    if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
579#ifdef _LP64
580      AllocatePrefetchDistance = 384;
581#else
582      AllocatePrefetchDistance = 320;
583#endif
584    }
585    if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
586      AllocatePrefetchDistance = 192;
587      AllocatePrefetchLines = 4;
588#ifdef COMPILER2
589      if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
590        FLAG_SET_DEFAULT(UseFPUForSpilling, true);
591      }
592#endif
593    }
594  }
595  assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
596
597#ifdef _LP64
598  // Prefetch settings
599  PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
600  PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
601  PrefetchFieldsAhead         = prefetch_fields_ahead();
602#endif
603
604#ifndef PRODUCT
605  if (PrintMiscellaneous && Verbose) {
606    tty->print_cr("Logical CPUs per core: %u",
607                  logical_processors_per_package());
608    tty->print_cr("UseSSE=%d",UseSSE);
609    tty->print("Allocation");
610    if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
611      tty->print_cr(": no prefetching");
612    } else {
613      tty->print(" prefetching: ");
614      if (UseSSE == 0 && supports_3dnow_prefetch()) {
615        tty->print("PREFETCHW");
616      } else if (UseSSE >= 1) {
617        if (AllocatePrefetchInstr == 0) {
618          tty->print("PREFETCHNTA");
619        } else if (AllocatePrefetchInstr == 1) {
620          tty->print("PREFETCHT0");
621        } else if (AllocatePrefetchInstr == 2) {
622          tty->print("PREFETCHT2");
623        } else if (AllocatePrefetchInstr == 3) {
624          tty->print("PREFETCHW");
625        }
626      }
627      if (AllocatePrefetchLines > 1) {
628        tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
629      } else {
630        tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
631      }
632    }
633
634    if (PrefetchCopyIntervalInBytes > 0) {
635      tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
636    }
637    if (PrefetchScanIntervalInBytes > 0) {
638      tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
639    }
640    if (PrefetchFieldsAhead > 0) {
641      tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
642    }
643  }
644#endif // !PRODUCT
645}
646
647void VM_Version::initialize() {
648  ResourceMark rm;
649  // Making this stub must be FIRST use of assembler
650
651  stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
652  if (stub_blob == NULL) {
653    vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
654  }
655  CodeBuffer c(stub_blob);
656  VM_Version_StubGenerator g(&c);
657  getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
658                                   g.generate_getPsrInfo());
659
660  get_processor_features();
661}
662