stubGenerator_x86_64.cpp revision 342:37f87013dfd8
1/*
2 * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_stubGenerator_x86_64.cpp.incl"
27
28// Declaration and definition of StubGenerator (no .hpp file).
29// For a more detailed description of the stub routine structure
30// see the comment in stubRoutines.hpp
31
32#define __ _masm->
33#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
34
35#ifdef PRODUCT
36#define BLOCK_COMMENT(str) /* nothing */
37#else
38#define BLOCK_COMMENT(str) __ block_comment(str)
39#endif
40
41#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
42const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
43
44// Stub Code definitions
45
46static address handle_unsafe_access() {
47  JavaThread* thread = JavaThread::current();
48  address pc = thread->saved_exception_pc();
49  // pc is the instruction which we must emulate
50  // doing a no-op is fine:  return garbage from the load
51  // therefore, compute npc
52  address npc = Assembler::locate_next_instruction(pc);
53
54  // request an async exception
55  thread->set_pending_unsafe_access_error();
56
57  // return address of next instruction to execute
58  return npc;
59}
60
61class StubGenerator: public StubCodeGenerator {
62 private:
63
64#ifdef PRODUCT
65#define inc_counter_np(counter) (0)
66#else
67  void inc_counter_np_(int& counter) {
68    __ incrementl(ExternalAddress((address)&counter));
69  }
70#define inc_counter_np(counter) \
71  BLOCK_COMMENT("inc_counter " #counter); \
72  inc_counter_np_(counter);
73#endif
74
75  // Call stubs are used to call Java from C
76  //
77  // Linux Arguments:
78  //    c_rarg0:   call wrapper address                   address
79  //    c_rarg1:   result                                 address
80  //    c_rarg2:   result type                            BasicType
81  //    c_rarg3:   method                                 methodOop
82  //    c_rarg4:   (interpreter) entry point              address
83  //    c_rarg5:   parameters                             intptr_t*
84  //    16(rbp): parameter size (in words)              int
85  //    24(rbp): thread                                 Thread*
86  //
87  //     [ return_from_Java     ] <--- rsp
88  //     [ argument word n      ]
89  //      ...
90  // -12 [ argument word 1      ]
91  // -11 [ saved r15            ] <--- rsp_after_call
92  // -10 [ saved r14            ]
93  //  -9 [ saved r13            ]
94  //  -8 [ saved r12            ]
95  //  -7 [ saved rbx            ]
96  //  -6 [ call wrapper         ]
97  //  -5 [ result               ]
98  //  -4 [ result type          ]
99  //  -3 [ method               ]
100  //  -2 [ entry point          ]
101  //  -1 [ parameters           ]
102  //   0 [ saved rbp            ] <--- rbp
103  //   1 [ return address       ]
104  //   2 [ parameter size       ]
105  //   3 [ thread               ]
106  //
107  // Windows Arguments:
108  //    c_rarg0:   call wrapper address                   address
109  //    c_rarg1:   result                                 address
110  //    c_rarg2:   result type                            BasicType
111  //    c_rarg3:   method                                 methodOop
112  //    48(rbp): (interpreter) entry point              address
113  //    56(rbp): parameters                             intptr_t*
114  //    64(rbp): parameter size (in words)              int
115  //    72(rbp): thread                                 Thread*
116  //
117  //     [ return_from_Java     ] <--- rsp
118  //     [ argument word n      ]
119  //      ...
120  //  -8 [ argument word 1      ]
121  //  -7 [ saved r15            ] <--- rsp_after_call
122  //  -6 [ saved r14            ]
123  //  -5 [ saved r13            ]
124  //  -4 [ saved r12            ]
125  //  -3 [ saved rdi            ]
126  //  -2 [ saved rsi            ]
127  //  -1 [ saved rbx            ]
128  //   0 [ saved rbp            ] <--- rbp
129  //   1 [ return address       ]
130  //   2 [ call wrapper         ]
131  //   3 [ result               ]
132  //   4 [ result type          ]
133  //   5 [ method               ]
134  //   6 [ entry point          ]
135  //   7 [ parameters           ]
136  //   8 [ parameter size       ]
137  //   9 [ thread               ]
138  //
139  //    Windows reserves the callers stack space for arguments 1-4.
140  //    We spill c_rarg0-c_rarg3 to this space.
141
142  // Call stub stack layout word offsets from rbp
143  enum call_stub_layout {
144#ifdef _WIN64
145    rsp_after_call_off = -7,
146    r15_off            = rsp_after_call_off,
147    r14_off            = -6,
148    r13_off            = -5,
149    r12_off            = -4,
150    rdi_off            = -3,
151    rsi_off            = -2,
152    rbx_off            = -1,
153    rbp_off            =  0,
154    retaddr_off        =  1,
155    call_wrapper_off   =  2,
156    result_off         =  3,
157    result_type_off    =  4,
158    method_off         =  5,
159    entry_point_off    =  6,
160    parameters_off     =  7,
161    parameter_size_off =  8,
162    thread_off         =  9
163#else
164    rsp_after_call_off = -12,
165    mxcsr_off          = rsp_after_call_off,
166    r15_off            = -11,
167    r14_off            = -10,
168    r13_off            = -9,
169    r12_off            = -8,
170    rbx_off            = -7,
171    call_wrapper_off   = -6,
172    result_off         = -5,
173    result_type_off    = -4,
174    method_off         = -3,
175    entry_point_off    = -2,
176    parameters_off     = -1,
177    rbp_off            =  0,
178    retaddr_off        =  1,
179    parameter_size_off =  2,
180    thread_off         =  3
181#endif
182  };
183
184  address generate_call_stub(address& return_address) {
185    assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
186           (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
187           "adjust this code");
188    StubCodeMark mark(this, "StubRoutines", "call_stub");
189    address start = __ pc();
190
191    // same as in generate_catch_exception()!
192    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
193
194    const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
195    const Address result        (rbp, result_off         * wordSize);
196    const Address result_type   (rbp, result_type_off    * wordSize);
197    const Address method        (rbp, method_off         * wordSize);
198    const Address entry_point   (rbp, entry_point_off    * wordSize);
199    const Address parameters    (rbp, parameters_off     * wordSize);
200    const Address parameter_size(rbp, parameter_size_off * wordSize);
201
202    // same as in generate_catch_exception()!
203    const Address thread        (rbp, thread_off         * wordSize);
204
205    const Address r15_save(rbp, r15_off * wordSize);
206    const Address r14_save(rbp, r14_off * wordSize);
207    const Address r13_save(rbp, r13_off * wordSize);
208    const Address r12_save(rbp, r12_off * wordSize);
209    const Address rbx_save(rbp, rbx_off * wordSize);
210
211    // stub code
212    __ enter();
213    __ subq(rsp, -rsp_after_call_off * wordSize);
214
215    // save register parameters
216#ifndef _WIN64
217    __ movq(parameters,   c_rarg5); // parameters
218    __ movq(entry_point,  c_rarg4); // entry_point
219#endif
220
221    __ movq(method,       c_rarg3); // method
222    __ movl(result_type,  c_rarg2); // result type
223    __ movq(result,       c_rarg1); // result
224    __ movq(call_wrapper, c_rarg0); // call wrapper
225
226    // save regs belonging to calling function
227    __ movq(rbx_save, rbx);
228    __ movq(r12_save, r12);
229    __ movq(r13_save, r13);
230    __ movq(r14_save, r14);
231    __ movq(r15_save, r15);
232
233#ifdef _WIN64
234    const Address rdi_save(rbp, rdi_off * wordSize);
235    const Address rsi_save(rbp, rsi_off * wordSize);
236
237    __ movq(rsi_save, rsi);
238    __ movq(rdi_save, rdi);
239#else
240    const Address mxcsr_save(rbp, mxcsr_off * wordSize);
241    {
242      Label skip_ldmx;
243      __ stmxcsr(mxcsr_save);
244      __ movl(rax, mxcsr_save);
245      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
246      ExternalAddress mxcsr_std(StubRoutines::amd64::mxcsr_std());
247      __ cmp32(rax, mxcsr_std);
248      __ jcc(Assembler::equal, skip_ldmx);
249      __ ldmxcsr(mxcsr_std);
250      __ bind(skip_ldmx);
251    }
252#endif
253
254    // Load up thread register
255    __ movq(r15_thread, thread);
256    __ reinit_heapbase();
257
258#ifdef ASSERT
259    // make sure we have no pending exceptions
260    {
261      Label L;
262      __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
263      __ jcc(Assembler::equal, L);
264      __ stop("StubRoutines::call_stub: entered with pending exception");
265      __ bind(L);
266    }
267#endif
268
269    // pass parameters if any
270    BLOCK_COMMENT("pass parameters if any");
271    Label parameters_done;
272    __ movl(c_rarg3, parameter_size);
273    __ testl(c_rarg3, c_rarg3);
274    __ jcc(Assembler::zero, parameters_done);
275
276    Label loop;
277    __ movq(c_rarg2, parameters);     // parameter pointer
278    __ movl(c_rarg1, c_rarg3);        // parameter counter is in c_rarg1
279    __ BIND(loop);
280    if (TaggedStackInterpreter) {
281      __ movq(rax, Address(c_rarg2, 0)); // get tag
282      __ addq(c_rarg2, wordSize);     // advance to next tag
283      __ pushq(rax);                  // pass tag
284    }
285    __ movq(rax, Address(c_rarg2, 0));  // get parameter
286    __ addq(c_rarg2, wordSize);       // advance to next parameter
287    __ decrementl(c_rarg1);           // decrement counter
288    __ pushq(rax);                    // pass parameter
289    __ jcc(Assembler::notZero, loop);
290
291    // call Java function
292    __ BIND(parameters_done);
293    __ movq(rbx, method);             // get methodOop
294    __ movq(c_rarg1, entry_point);    // get entry_point
295    __ movq(r13, rsp);                // set sender sp
296    BLOCK_COMMENT("call Java function");
297    __ call(c_rarg1);
298
299    BLOCK_COMMENT("call_stub_return_address:");
300    return_address = __ pc();
301
302    // store result depending on type (everything that is not
303    // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
304    __ movq(c_rarg0, result);
305    Label is_long, is_float, is_double, exit;
306    __ movl(c_rarg1, result_type);
307    __ cmpl(c_rarg1, T_OBJECT);
308    __ jcc(Assembler::equal, is_long);
309    __ cmpl(c_rarg1, T_LONG);
310    __ jcc(Assembler::equal, is_long);
311    __ cmpl(c_rarg1, T_FLOAT);
312    __ jcc(Assembler::equal, is_float);
313    __ cmpl(c_rarg1, T_DOUBLE);
314    __ jcc(Assembler::equal, is_double);
315
316    // handle T_INT case
317    __ movl(Address(c_rarg0, 0), rax);
318
319    __ BIND(exit);
320
321    // pop parameters
322    __ leaq(rsp, rsp_after_call);
323
324#ifdef ASSERT
325    // verify that threads correspond
326    {
327      Label L, S;
328      __ cmpq(r15_thread, thread);
329      __ jcc(Assembler::notEqual, S);
330      __ get_thread(rbx);
331      __ cmpq(r15_thread, rbx);
332      __ jcc(Assembler::equal, L);
333      __ bind(S);
334      __ jcc(Assembler::equal, L);
335      __ stop("StubRoutines::call_stub: threads must correspond");
336      __ bind(L);
337    }
338#endif
339
340    // restore regs belonging to calling function
341    __ movq(r15, r15_save);
342    __ movq(r14, r14_save);
343    __ movq(r13, r13_save);
344    __ movq(r12, r12_save);
345    __ movq(rbx, rbx_save);
346
347#ifdef _WIN64
348    __ movq(rdi, rdi_save);
349    __ movq(rsi, rsi_save);
350#else
351    __ ldmxcsr(mxcsr_save);
352#endif
353
354    // restore rsp
355    __ addq(rsp, -rsp_after_call_off * wordSize);
356
357    // return
358    __ popq(rbp);
359    __ ret(0);
360
361    // handle return types different from T_INT
362    __ BIND(is_long);
363    __ movq(Address(c_rarg0, 0), rax);
364    __ jmp(exit);
365
366    __ BIND(is_float);
367    __ movflt(Address(c_rarg0, 0), xmm0);
368    __ jmp(exit);
369
370    __ BIND(is_double);
371    __ movdbl(Address(c_rarg0, 0), xmm0);
372    __ jmp(exit);
373
374    return start;
375  }
376
377  // Return point for a Java call if there's an exception thrown in
378  // Java code.  The exception is caught and transformed into a
379  // pending exception stored in JavaThread that can be tested from
380  // within the VM.
381  //
382  // Note: Usually the parameters are removed by the callee. In case
383  // of an exception crossing an activation frame boundary, that is
384  // not the case if the callee is compiled code => need to setup the
385  // rsp.
386  //
387  // rax: exception oop
388
389  address generate_catch_exception() {
390    StubCodeMark mark(this, "StubRoutines", "catch_exception");
391    address start = __ pc();
392
393    // same as in generate_call_stub():
394    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
395    const Address thread        (rbp, thread_off         * wordSize);
396
397#ifdef ASSERT
398    // verify that threads correspond
399    {
400      Label L, S;
401      __ cmpq(r15_thread, thread);
402      __ jcc(Assembler::notEqual, S);
403      __ get_thread(rbx);
404      __ cmpq(r15_thread, rbx);
405      __ jcc(Assembler::equal, L);
406      __ bind(S);
407      __ stop("StubRoutines::catch_exception: threads must correspond");
408      __ bind(L);
409    }
410#endif
411
412    // set pending exception
413    __ verify_oop(rax);
414
415    __ movq(Address(r15_thread, Thread::pending_exception_offset()), rax);
416    __ lea(rscratch1, ExternalAddress((address)__FILE__));
417    __ movq(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
418    __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
419
420    // complete return to VM
421    assert(StubRoutines::_call_stub_return_address != NULL,
422           "_call_stub_return_address must have been generated before");
423    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
424
425    return start;
426  }
427
428  // Continuation point for runtime calls returning with a pending
429  // exception.  The pending exception check happened in the runtime
430  // or native call stub.  The pending exception in Thread is
431  // converted into a Java-level exception.
432  //
433  // Contract with Java-level exception handlers:
434  // rax: exception
435  // rdx: throwing pc
436  //
437  // NOTE: At entry of this stub, exception-pc must be on stack !!
438
439  address generate_forward_exception() {
440    StubCodeMark mark(this, "StubRoutines", "forward exception");
441    address start = __ pc();
442
443    // Upon entry, the sp points to the return address returning into
444    // Java (interpreted or compiled) code; i.e., the return address
445    // becomes the throwing pc.
446    //
447    // Arguments pushed before the runtime call are still on the stack
448    // but the exception handler will reset the stack pointer ->
449    // ignore them.  A potential result in registers can be ignored as
450    // well.
451
452#ifdef ASSERT
453    // make sure this code is only executed if there is a pending exception
454    {
455      Label L;
456      __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
457      __ jcc(Assembler::notEqual, L);
458      __ stop("StubRoutines::forward exception: no pending exception (1)");
459      __ bind(L);
460    }
461#endif
462
463    // compute exception handler into rbx
464    __ movq(c_rarg0, Address(rsp, 0));
465    BLOCK_COMMENT("call exception_handler_for_return_address");
466    __ call_VM_leaf(CAST_FROM_FN_PTR(address,
467                         SharedRuntime::exception_handler_for_return_address),
468                    c_rarg0);
469    __ movq(rbx, rax);
470
471    // setup rax & rdx, remove return address & clear pending exception
472    __ popq(rdx);
473    __ movq(rax, Address(r15_thread, Thread::pending_exception_offset()));
474    __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
475
476#ifdef ASSERT
477    // make sure exception is set
478    {
479      Label L;
480      __ testq(rax, rax);
481      __ jcc(Assembler::notEqual, L);
482      __ stop("StubRoutines::forward exception: no pending exception (2)");
483      __ bind(L);
484    }
485#endif
486
487    // continue at exception handler (return address removed)
488    // rax: exception
489    // rbx: exception handler
490    // rdx: throwing pc
491    __ verify_oop(rax);
492    __ jmp(rbx);
493
494    return start;
495  }
496
497  // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
498  //
499  // Arguments :
500  //    c_rarg0: exchange_value
501  //    c_rarg0: dest
502  //
503  // Result:
504  //    *dest <- ex, return (orig *dest)
505  address generate_atomic_xchg() {
506    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
507    address start = __ pc();
508
509    __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
510    __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
511    __ ret(0);
512
513    return start;
514  }
515
516  // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
517  //
518  // Arguments :
519  //    c_rarg0: exchange_value
520  //    c_rarg1: dest
521  //
522  // Result:
523  //    *dest <- ex, return (orig *dest)
524  address generate_atomic_xchg_ptr() {
525    StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
526    address start = __ pc();
527
528    __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
529    __ xchgq(rax, Address(c_rarg1, 0)); // automatic LOCK
530    __ ret(0);
531
532    return start;
533  }
534
535  // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
536  //                                         jint compare_value)
537  //
538  // Arguments :
539  //    c_rarg0: exchange_value
540  //    c_rarg1: dest
541  //    c_rarg2: compare_value
542  //
543  // Result:
544  //    if ( compare_value == *dest ) {
545  //       *dest = exchange_value
546  //       return compare_value;
547  //    else
548  //       return *dest;
549  address generate_atomic_cmpxchg() {
550    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
551    address start = __ pc();
552
553    __ movl(rax, c_rarg2);
554   if ( os::is_MP() ) __ lock();
555    __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
556    __ ret(0);
557
558    return start;
559  }
560
561  // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
562  //                                             volatile jlong* dest,
563  //                                             jlong compare_value)
564  // Arguments :
565  //    c_rarg0: exchange_value
566  //    c_rarg1: dest
567  //    c_rarg2: compare_value
568  //
569  // Result:
570  //    if ( compare_value == *dest ) {
571  //       *dest = exchange_value
572  //       return compare_value;
573  //    else
574  //       return *dest;
575  address generate_atomic_cmpxchg_long() {
576    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
577    address start = __ pc();
578
579    __ movq(rax, c_rarg2);
580   if ( os::is_MP() ) __ lock();
581    __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
582    __ ret(0);
583
584    return start;
585  }
586
587  // Support for jint atomic::add(jint add_value, volatile jint* dest)
588  //
589  // Arguments :
590  //    c_rarg0: add_value
591  //    c_rarg1: dest
592  //
593  // Result:
594  //    *dest += add_value
595  //    return *dest;
596  address generate_atomic_add() {
597    StubCodeMark mark(this, "StubRoutines", "atomic_add");
598    address start = __ pc();
599
600    __ movl(rax, c_rarg0);
601   if ( os::is_MP() ) __ lock();
602    __ xaddl(Address(c_rarg1, 0), c_rarg0);
603    __ addl(rax, c_rarg0);
604    __ ret(0);
605
606    return start;
607  }
608
609  // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
610  //
611  // Arguments :
612  //    c_rarg0: add_value
613  //    c_rarg1: dest
614  //
615  // Result:
616  //    *dest += add_value
617  //    return *dest;
618  address generate_atomic_add_ptr() {
619    StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
620    address start = __ pc();
621
622    __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
623   if ( os::is_MP() ) __ lock();
624    __ xaddl(Address(c_rarg1, 0), c_rarg0);
625    __ addl(rax, c_rarg0);
626    __ ret(0);
627
628    return start;
629  }
630
631  // Support for intptr_t OrderAccess::fence()
632  //
633  // Arguments :
634  //
635  // Result:
636  address generate_orderaccess_fence() {
637    StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
638    address start = __ pc();
639    __ mfence();
640    __ ret(0);
641
642    return start;
643  }
644
645  // Support for intptr_t get_previous_fp()
646  //
647  // This routine is used to find the previous frame pointer for the
648  // caller (current_frame_guess). This is used as part of debugging
649  // ps() is seemingly lost trying to find frames.
650  // This code assumes that caller current_frame_guess) has a frame.
651  address generate_get_previous_fp() {
652    StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
653    const Address old_fp(rbp, 0);
654    const Address older_fp(rax, 0);
655    address start = __ pc();
656
657    __ enter();
658    __ movq(rax, old_fp); // callers fp
659    __ movq(rax, older_fp); // the frame for ps()
660    __ popq(rbp);
661    __ ret(0);
662
663    return start;
664  }
665
666  //----------------------------------------------------------------------------------------------------
667  // Support for void verify_mxcsr()
668  //
669  // This routine is used with -Xcheck:jni to verify that native
670  // JNI code does not return to Java code without restoring the
671  // MXCSR register to our expected state.
672
673  address generate_verify_mxcsr() {
674    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
675    address start = __ pc();
676
677    const Address mxcsr_save(rsp, 0);
678
679    if (CheckJNICalls) {
680      Label ok_ret;
681      __ pushq(rax);
682      __ subq(rsp, wordSize);      // allocate a temp location
683      __ stmxcsr(mxcsr_save);
684      __ movl(rax, mxcsr_save);
685      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
686      __ cmpl(rax, *(int *)(StubRoutines::amd64::mxcsr_std()));
687      __ jcc(Assembler::equal, ok_ret);
688
689      __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
690
691      __ ldmxcsr(ExternalAddress(StubRoutines::amd64::mxcsr_std()));
692
693      __ bind(ok_ret);
694      __ addq(rsp, wordSize);
695      __ popq(rax);
696    }
697
698    __ ret(0);
699
700    return start;
701  }
702
703  address generate_f2i_fixup() {
704    StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
705    Address inout(rsp, 5 * wordSize); // return address + 4 saves
706
707    address start = __ pc();
708
709    Label L;
710
711    __ pushq(rax);
712    __ pushq(c_rarg3);
713    __ pushq(c_rarg2);
714    __ pushq(c_rarg1);
715
716    __ movl(rax, 0x7f800000);
717    __ xorl(c_rarg3, c_rarg3);
718    __ movl(c_rarg2, inout);
719    __ movl(c_rarg1, c_rarg2);
720    __ andl(c_rarg1, 0x7fffffff);
721    __ cmpl(rax, c_rarg1); // NaN? -> 0
722    __ jcc(Assembler::negative, L);
723    __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
724    __ movl(c_rarg3, 0x80000000);
725    __ movl(rax, 0x7fffffff);
726    __ cmovl(Assembler::positive, c_rarg3, rax);
727
728    __ bind(L);
729    __ movq(inout, c_rarg3);
730
731    __ popq(c_rarg1);
732    __ popq(c_rarg2);
733    __ popq(c_rarg3);
734    __ popq(rax);
735
736    __ ret(0);
737
738    return start;
739  }
740
741  address generate_f2l_fixup() {
742    StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
743    Address inout(rsp, 5 * wordSize); // return address + 4 saves
744    address start = __ pc();
745
746    Label L;
747
748    __ pushq(rax);
749    __ pushq(c_rarg3);
750    __ pushq(c_rarg2);
751    __ pushq(c_rarg1);
752
753    __ movl(rax, 0x7f800000);
754    __ xorl(c_rarg3, c_rarg3);
755    __ movl(c_rarg2, inout);
756    __ movl(c_rarg1, c_rarg2);
757    __ andl(c_rarg1, 0x7fffffff);
758    __ cmpl(rax, c_rarg1); // NaN? -> 0
759    __ jcc(Assembler::negative, L);
760    __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
761    __ mov64(c_rarg3, 0x8000000000000000);
762    __ mov64(rax, 0x7fffffffffffffff);
763    __ cmovq(Assembler::positive, c_rarg3, rax);
764
765    __ bind(L);
766    __ movq(inout, c_rarg3);
767
768    __ popq(c_rarg1);
769    __ popq(c_rarg2);
770    __ popq(c_rarg3);
771    __ popq(rax);
772
773    __ ret(0);
774
775    return start;
776  }
777
778  address generate_d2i_fixup() {
779    StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
780    Address inout(rsp, 6 * wordSize); // return address + 5 saves
781
782    address start = __ pc();
783
784    Label L;
785
786    __ pushq(rax);
787    __ pushq(c_rarg3);
788    __ pushq(c_rarg2);
789    __ pushq(c_rarg1);
790    __ pushq(c_rarg0);
791
792    __ movl(rax, 0x7ff00000);
793    __ movq(c_rarg2, inout);
794    __ movl(c_rarg3, c_rarg2);
795    __ movq(c_rarg1, c_rarg2);
796    __ movq(c_rarg0, c_rarg2);
797    __ negl(c_rarg3);
798    __ shrq(c_rarg1, 0x20);
799    __ orl(c_rarg3, c_rarg2);
800    __ andl(c_rarg1, 0x7fffffff);
801    __ xorl(c_rarg2, c_rarg2);
802    __ shrl(c_rarg3, 0x1f);
803    __ orl(c_rarg1, c_rarg3);
804    __ cmpl(rax, c_rarg1);
805    __ jcc(Assembler::negative, L); // NaN -> 0
806    __ testq(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
807    __ movl(c_rarg2, 0x80000000);
808    __ movl(rax, 0x7fffffff);
809    __ cmovl(Assembler::positive, c_rarg2, rax);
810
811    __ bind(L);
812    __ movq(inout, c_rarg2);
813
814    __ popq(c_rarg0);
815    __ popq(c_rarg1);
816    __ popq(c_rarg2);
817    __ popq(c_rarg3);
818    __ popq(rax);
819
820    __ ret(0);
821
822    return start;
823  }
824
825  address generate_d2l_fixup() {
826    StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
827    Address inout(rsp, 6 * wordSize); // return address + 5 saves
828
829    address start = __ pc();
830
831    Label L;
832
833    __ pushq(rax);
834    __ pushq(c_rarg3);
835    __ pushq(c_rarg2);
836    __ pushq(c_rarg1);
837    __ pushq(c_rarg0);
838
839    __ movl(rax, 0x7ff00000);
840    __ movq(c_rarg2, inout);
841    __ movl(c_rarg3, c_rarg2);
842    __ movq(c_rarg1, c_rarg2);
843    __ movq(c_rarg0, c_rarg2);
844    __ negl(c_rarg3);
845    __ shrq(c_rarg1, 0x20);
846    __ orl(c_rarg3, c_rarg2);
847    __ andl(c_rarg1, 0x7fffffff);
848    __ xorl(c_rarg2, c_rarg2);
849    __ shrl(c_rarg3, 0x1f);
850    __ orl(c_rarg1, c_rarg3);
851    __ cmpl(rax, c_rarg1);
852    __ jcc(Assembler::negative, L); // NaN -> 0
853    __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
854    __ mov64(c_rarg2, 0x8000000000000000);
855    __ mov64(rax, 0x7fffffffffffffff);
856    __ cmovq(Assembler::positive, c_rarg2, rax);
857
858    __ bind(L);
859    __ movq(inout, c_rarg2);
860
861    __ popq(c_rarg0);
862    __ popq(c_rarg1);
863    __ popq(c_rarg2);
864    __ popq(c_rarg3);
865    __ popq(rax);
866
867    __ ret(0);
868
869    return start;
870  }
871
872  address generate_fp_mask(const char *stub_name, int64_t mask) {
873    StubCodeMark mark(this, "StubRoutines", stub_name);
874
875    __ align(16);
876    address start = __ pc();
877
878    __ emit_data64( mask, relocInfo::none );
879    __ emit_data64( mask, relocInfo::none );
880
881    return start;
882  }
883
884  // The following routine generates a subroutine to throw an
885  // asynchronous UnknownError when an unsafe access gets a fault that
886  // could not be reasonably prevented by the programmer.  (Example:
887  // SIGBUS/OBJERR.)
888  address generate_handler_for_unsafe_access() {
889    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
890    address start = __ pc();
891
892    __ pushq(0);                      // hole for return address-to-be
893    __ pushaq();                      // push registers
894    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
895
896    __ subq(rsp, frame::arg_reg_save_area_bytes);
897    BLOCK_COMMENT("call handle_unsafe_access");
898    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
899    __ addq(rsp, frame::arg_reg_save_area_bytes);
900
901    __ movq(next_pc, rax);            // stuff next address
902    __ popaq();
903    __ ret(0);                        // jump to next address
904
905    return start;
906  }
907
908  // Non-destructive plausibility checks for oops
909  //
910  // Arguments:
911  //    all args on stack!
912  //
913  // Stack after saving c_rarg3:
914  //    [tos + 0]: saved c_rarg3
915  //    [tos + 1]: saved c_rarg2
916  //    [tos + 2]: saved r12 (several TemplateTable methods use it)
917  //    [tos + 3]: saved flags
918  //    [tos + 4]: return address
919  //  * [tos + 5]: error message (char*)
920  //  * [tos + 6]: object to verify (oop)
921  //  * [tos + 7]: saved rax - saved by caller and bashed
922  //  * = popped on exit
923  address generate_verify_oop() {
924    StubCodeMark mark(this, "StubRoutines", "verify_oop");
925    address start = __ pc();
926
927    Label exit, error;
928
929    __ pushfq();
930    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
931
932    __ pushq(r12);
933
934    // save c_rarg2 and c_rarg3
935    __ pushq(c_rarg2);
936    __ pushq(c_rarg3);
937
938    enum {
939           // After previous pushes.
940           oop_to_verify = 6 * wordSize,
941           saved_rax     = 7 * wordSize,
942
943           // Before the call to MacroAssembler::debug(), see below.
944           return_addr   = 16 * wordSize,
945           error_msg     = 17 * wordSize
946    };
947
948    // get object
949    __ movq(rax, Address(rsp, oop_to_verify));
950
951    // make sure object is 'reasonable'
952    __ testq(rax, rax);
953    __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
954    // Check if the oop is in the right area of memory
955    __ movq(c_rarg2, rax);
956    __ movptr(c_rarg3, (int64_t) Universe::verify_oop_mask());
957    __ andq(c_rarg2, c_rarg3);
958    __ movptr(c_rarg3, (int64_t) Universe::verify_oop_bits());
959    __ cmpq(c_rarg2, c_rarg3);
960    __ jcc(Assembler::notZero, error);
961
962    // set r12 to heapbase for load_klass()
963    __ reinit_heapbase();
964
965    // make sure klass is 'reasonable'
966    __ load_klass(rax, rax);  // get klass
967    __ testq(rax, rax);
968    __ jcc(Assembler::zero, error); // if klass is NULL it is broken
969    // Check if the klass is in the right area of memory
970    __ movq(c_rarg2, rax);
971    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
972    __ andq(c_rarg2, c_rarg3);
973    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
974    __ cmpq(c_rarg2, c_rarg3);
975    __ jcc(Assembler::notZero, error);
976
977    // make sure klass' klass is 'reasonable'
978    __ load_klass(rax, rax);
979    __ testq(rax, rax);
980    __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
981    // Check if the klass' klass is in the right area of memory
982    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
983    __ andq(rax, c_rarg3);
984    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
985    __ cmpq(rax, c_rarg3);
986    __ jcc(Assembler::notZero, error);
987
988    // return if everything seems ok
989    __ bind(exit);
990    __ movq(rax, Address(rsp, saved_rax));       // get saved rax back
991    __ popq(c_rarg3);                            // restore c_rarg3
992    __ popq(c_rarg2);                            // restore c_rarg2
993    __ popq(r12);                                // restore r12
994    __ popfq();                                  // restore flags
995    __ ret(3 * wordSize);                        // pop caller saved stuff
996
997    // handle errors
998    __ bind(error);
999    __ movq(rax, Address(rsp, saved_rax));       // get saved rax back
1000    __ popq(c_rarg3);                            // get saved c_rarg3 back
1001    __ popq(c_rarg2);                            // get saved c_rarg2 back
1002    __ popq(r12);                                // get saved r12 back
1003    __ popfq();                                  // get saved flags off stack --
1004                                                 // will be ignored
1005
1006    __ pushaq();                                 // push registers
1007                                                 // (rip is already
1008                                                 // already pushed)
1009    // debug(char* msg, int64_t pc, int64_t regs[])
1010    // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1011    // pushed all the registers, so now the stack looks like:
1012    //     [tos +  0] 16 saved registers
1013    //     [tos + 16] return address
1014    //   * [tos + 17] error message (char*)
1015    //   * [tos + 18] object to verify (oop)
1016    //   * [tos + 19] saved rax - saved by caller and bashed
1017    //   * = popped on exit
1018
1019    __ movq(c_rarg0, Address(rsp, error_msg));   // pass address of error message
1020    __ movq(c_rarg1, Address(rsp, return_addr)); // pass return address
1021    __ movq(c_rarg2, rsp);                       // pass address of regs on stack
1022    __ movq(r12, rsp);                           // remember rsp
1023    __ subq(rsp, frame::arg_reg_save_area_bytes);// windows
1024    __ andq(rsp, -16);                           // align stack as required by ABI
1025    BLOCK_COMMENT("call MacroAssembler::debug");
1026    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
1027    __ movq(rsp, r12);                           // restore rsp
1028    __ popaq();                                  // pop registers (includes r12)
1029    __ ret(3 * wordSize);                        // pop caller saved stuff
1030
1031    return start;
1032  }
1033
1034  static address disjoint_byte_copy_entry;
1035  static address disjoint_short_copy_entry;
1036  static address disjoint_int_copy_entry;
1037  static address disjoint_long_copy_entry;
1038  static address disjoint_oop_copy_entry;
1039
1040  static address byte_copy_entry;
1041  static address short_copy_entry;
1042  static address int_copy_entry;
1043  static address long_copy_entry;
1044  static address oop_copy_entry;
1045
1046  static address checkcast_copy_entry;
1047
1048  //
1049  // Verify that a register contains clean 32-bits positive value
1050  // (high 32-bits are 0) so it could be used in 64-bits shifts.
1051  //
1052  //  Input:
1053  //    Rint  -  32-bits value
1054  //    Rtmp  -  scratch
1055  //
1056  void assert_clean_int(Register Rint, Register Rtmp) {
1057#ifdef ASSERT
1058    Label L;
1059    assert_different_registers(Rtmp, Rint);
1060    __ movslq(Rtmp, Rint);
1061    __ cmpq(Rtmp, Rint);
1062    __ jcc(Assembler::equal, L);
1063    __ stop("high 32-bits of int value are not 0");
1064    __ bind(L);
1065#endif
1066  }
1067
1068  //  Generate overlap test for array copy stubs
1069  //
1070  //  Input:
1071  //     c_rarg0 - from
1072  //     c_rarg1 - to
1073  //     c_rarg2 - element count
1074  //
1075  //  Output:
1076  //     rax   - &from[element count - 1]
1077  //
1078  void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1079    assert(no_overlap_target != NULL, "must be generated");
1080    array_overlap_test(no_overlap_target, NULL, sf);
1081  }
1082  void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1083    array_overlap_test(NULL, &L_no_overlap, sf);
1084  }
1085  void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1086    const Register from     = c_rarg0;
1087    const Register to       = c_rarg1;
1088    const Register count    = c_rarg2;
1089    const Register end_from = rax;
1090
1091    __ cmpq(to, from);
1092    __ leaq(end_from, Address(from, count, sf, 0));
1093    if (NOLp == NULL) {
1094      ExternalAddress no_overlap(no_overlap_target);
1095      __ jump_cc(Assembler::belowEqual, no_overlap);
1096      __ cmpq(to, end_from);
1097      __ jump_cc(Assembler::aboveEqual, no_overlap);
1098    } else {
1099      __ jcc(Assembler::belowEqual, (*NOLp));
1100      __ cmpq(to, end_from);
1101      __ jcc(Assembler::aboveEqual, (*NOLp));
1102    }
1103  }
1104
1105  // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1106  //
1107  // Outputs:
1108  //    rdi - rcx
1109  //    rsi - rdx
1110  //    rdx - r8
1111  //    rcx - r9
1112  //
1113  // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1114  // are non-volatile.  r9 and r10 should not be used by the caller.
1115  //
1116  void setup_arg_regs(int nargs = 3) {
1117    const Register saved_rdi = r9;
1118    const Register saved_rsi = r10;
1119    assert(nargs == 3 || nargs == 4, "else fix");
1120#ifdef _WIN64
1121    assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1122           "unexpected argument registers");
1123    if (nargs >= 4)
1124      __ movq(rax, r9);  // r9 is also saved_rdi
1125    __ movq(saved_rdi, rdi);
1126    __ movq(saved_rsi, rsi);
1127    __ movq(rdi, rcx); // c_rarg0
1128    __ movq(rsi, rdx); // c_rarg1
1129    __ movq(rdx, r8);  // c_rarg2
1130    if (nargs >= 4)
1131      __ movq(rcx, rax); // c_rarg3 (via rax)
1132#else
1133    assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1134           "unexpected argument registers");
1135#endif
1136  }
1137
1138  void restore_arg_regs() {
1139    const Register saved_rdi = r9;
1140    const Register saved_rsi = r10;
1141#ifdef _WIN64
1142    __ movq(rdi, saved_rdi);
1143    __ movq(rsi, saved_rsi);
1144#endif
1145  }
1146
1147  // Generate code for an array write pre barrier
1148  //
1149  //     addr    -  starting address
1150  //     count    -  element count
1151  //
1152  //     Destroy no registers!
1153  //
1154  void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
1155    BarrierSet* bs = Universe::heap()->barrier_set();
1156    switch (bs->kind()) {
1157      case BarrierSet::G1SATBCT:
1158      case BarrierSet::G1SATBCTLogging:
1159        {
1160          __ pushaq();                      // push registers
1161          if (count == c_rarg0) {
1162            if (addr == c_rarg1) {
1163              // exactly backwards!!
1164              __ xchgq(c_rarg1, c_rarg0);
1165            } else {
1166              __ movq(c_rarg1, count);
1167              __ movq(c_rarg0, addr);
1168            }
1169
1170          } else {
1171            __ movq(c_rarg0, addr);
1172            __ movq(c_rarg1, count);
1173          }
1174          __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)));
1175          __ popaq();
1176        }
1177        break;
1178      case BarrierSet::CardTableModRef:
1179      case BarrierSet::CardTableExtension:
1180      case BarrierSet::ModRef:
1181        break;
1182      default:
1183        ShouldNotReachHere();
1184
1185    }
1186  }
1187
1188  //
1189  // Generate code for an array write post barrier
1190  //
1191  //  Input:
1192  //     start    - register containing starting address of destination array
1193  //     end      - register containing ending address of destination array
1194  //     scratch  - scratch register
1195  //
1196  //  The input registers are overwritten.
1197  //  The ending address is inclusive.
1198  void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1199    assert_different_registers(start, end, scratch);
1200    BarrierSet* bs = Universe::heap()->barrier_set();
1201    switch (bs->kind()) {
1202      case BarrierSet::G1SATBCT:
1203      case BarrierSet::G1SATBCTLogging:
1204
1205        {
1206          __ pushaq();                      // push registers (overkill)
1207          // must compute element count unless barrier set interface is changed (other platforms supply count)
1208          assert_different_registers(start, end, scratch);
1209          __ leaq(scratch, Address(end, wordSize));
1210          __ subq(scratch, start);
1211          __ shrq(scratch, LogBytesPerWord);
1212          __ movq(c_rarg0, start);
1213          __ movq(c_rarg1, scratch);
1214          __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)));
1215          __ popaq();
1216        }
1217        break;
1218      case BarrierSet::CardTableModRef:
1219      case BarrierSet::CardTableExtension:
1220        {
1221          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1222          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1223
1224          Label L_loop;
1225
1226           __ shrq(start, CardTableModRefBS::card_shift);
1227           __ shrq(end, CardTableModRefBS::card_shift);
1228           __ subq(end, start); // number of bytes to copy
1229
1230          const Register count = end; // 'end' register contains bytes count now
1231          __ lea(scratch, ExternalAddress((address)ct->byte_map_base));
1232          __ addq(start, scratch);
1233        __ BIND(L_loop);
1234          __ movb(Address(start, count, Address::times_1), 0);
1235          __ decrementq(count);
1236          __ jcc(Assembler::greaterEqual, L_loop);
1237        }
1238        break;
1239      default:
1240        ShouldNotReachHere();
1241
1242    }
1243  }
1244
1245  // Copy big chunks forward
1246  //
1247  // Inputs:
1248  //   end_from     - source arrays end address
1249  //   end_to       - destination array end address
1250  //   qword_count  - 64-bits element count, negative
1251  //   to           - scratch
1252  //   L_copy_32_bytes - entry label
1253  //   L_copy_8_bytes  - exit  label
1254  //
1255  void copy_32_bytes_forward(Register end_from, Register end_to,
1256                             Register qword_count, Register to,
1257                             Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1258    DEBUG_ONLY(__ stop("enter at entry label, not here"));
1259    Label L_loop;
1260    __ align(16);
1261  __ BIND(L_loop);
1262    __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1263    __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1264    __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1265    __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1266    __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1267    __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1268    __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1269    __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1270  __ BIND(L_copy_32_bytes);
1271    __ addq(qword_count, 4);
1272    __ jcc(Assembler::lessEqual, L_loop);
1273    __ subq(qword_count, 4);
1274    __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1275  }
1276
1277
1278  // Copy big chunks backward
1279  //
1280  // Inputs:
1281  //   from         - source arrays address
1282  //   dest         - destination array address
1283  //   qword_count  - 64-bits element count
1284  //   to           - scratch
1285  //   L_copy_32_bytes - entry label
1286  //   L_copy_8_bytes  - exit  label
1287  //
1288  void copy_32_bytes_backward(Register from, Register dest,
1289                              Register qword_count, Register to,
1290                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1291    DEBUG_ONLY(__ stop("enter at entry label, not here"));
1292    Label L_loop;
1293    __ align(16);
1294  __ BIND(L_loop);
1295    __ movq(to, Address(from, qword_count, Address::times_8, 24));
1296    __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1297    __ movq(to, Address(from, qword_count, Address::times_8, 16));
1298    __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1299    __ movq(to, Address(from, qword_count, Address::times_8,  8));
1300    __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1301    __ movq(to, Address(from, qword_count, Address::times_8,  0));
1302    __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1303  __ BIND(L_copy_32_bytes);
1304    __ subq(qword_count, 4);
1305    __ jcc(Assembler::greaterEqual, L_loop);
1306    __ addq(qword_count, 4);
1307    __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1308  }
1309
1310
1311  // Arguments:
1312  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1313  //             ignored
1314  //   name    - stub name string
1315  //
1316  // Inputs:
1317  //   c_rarg0   - source array address
1318  //   c_rarg1   - destination array address
1319  //   c_rarg2   - element count, treated as ssize_t, can be zero
1320  //
1321  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1322  // we let the hardware handle it.  The one to eight bytes within words,
1323  // dwords or qwords that span cache line boundaries will still be loaded
1324  // and stored atomically.
1325  //
1326  // Side Effects:
1327  //   disjoint_byte_copy_entry is set to the no-overlap entry point
1328  //   used by generate_conjoint_byte_copy().
1329  //
1330  address generate_disjoint_byte_copy(bool aligned, const char *name) {
1331    __ align(CodeEntryAlignment);
1332    StubCodeMark mark(this, "StubRoutines", name);
1333    address start = __ pc();
1334
1335    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1336    Label L_copy_byte, L_exit;
1337    const Register from        = rdi;  // source array address
1338    const Register to          = rsi;  // destination array address
1339    const Register count       = rdx;  // elements count
1340    const Register byte_count  = rcx;
1341    const Register qword_count = count;
1342    const Register end_from    = from; // source array end address
1343    const Register end_to      = to;   // destination array end address
1344    // End pointers are inclusive, and if count is not zero they point
1345    // to the last unit copied:  end_to[0] := end_from[0]
1346
1347    __ enter(); // required for proper stackwalking of RuntimeStub frame
1348    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1349
1350    disjoint_byte_copy_entry = __ pc();
1351    BLOCK_COMMENT("Entry:");
1352    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1353
1354    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1355                      // r9 and r10 may be used to save non-volatile registers
1356
1357    // 'from', 'to' and 'count' are now valid
1358    __ movq(byte_count, count);
1359    __ shrq(count, 3); // count => qword_count
1360
1361    // Copy from low to high addresses.  Use 'to' as scratch.
1362    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1363    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1364    __ negq(qword_count); // make the count negative
1365    __ jmp(L_copy_32_bytes);
1366
1367    // Copy trailing qwords
1368  __ BIND(L_copy_8_bytes);
1369    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1370    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1371    __ incrementq(qword_count);
1372    __ jcc(Assembler::notZero, L_copy_8_bytes);
1373
1374    // Check for and copy trailing dword
1375  __ BIND(L_copy_4_bytes);
1376    __ testq(byte_count, 4);
1377    __ jccb(Assembler::zero, L_copy_2_bytes);
1378    __ movl(rax, Address(end_from, 8));
1379    __ movl(Address(end_to, 8), rax);
1380
1381    __ addq(end_from, 4);
1382    __ addq(end_to, 4);
1383
1384    // Check for and copy trailing word
1385  __ BIND(L_copy_2_bytes);
1386    __ testq(byte_count, 2);
1387    __ jccb(Assembler::zero, L_copy_byte);
1388    __ movw(rax, Address(end_from, 8));
1389    __ movw(Address(end_to, 8), rax);
1390
1391    __ addq(end_from, 2);
1392    __ addq(end_to, 2);
1393
1394    // Check for and copy trailing byte
1395  __ BIND(L_copy_byte);
1396    __ testq(byte_count, 1);
1397    __ jccb(Assembler::zero, L_exit);
1398    __ movb(rax, Address(end_from, 8));
1399    __ movb(Address(end_to, 8), rax);
1400
1401  __ BIND(L_exit);
1402    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1403    restore_arg_regs();
1404    __ xorq(rax, rax); // return 0
1405    __ leave(); // required for proper stackwalking of RuntimeStub frame
1406    __ ret(0);
1407
1408    // Copy in 32-bytes chunks
1409    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1410    __ jmp(L_copy_4_bytes);
1411
1412    return start;
1413  }
1414
1415  // Arguments:
1416  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1417  //             ignored
1418  //   name    - stub name string
1419  //
1420  // Inputs:
1421  //   c_rarg0   - source array address
1422  //   c_rarg1   - destination array address
1423  //   c_rarg2   - element count, treated as ssize_t, can be zero
1424  //
1425  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1426  // we let the hardware handle it.  The one to eight bytes within words,
1427  // dwords or qwords that span cache line boundaries will still be loaded
1428  // and stored atomically.
1429  //
1430  address generate_conjoint_byte_copy(bool aligned, const char *name) {
1431    __ align(CodeEntryAlignment);
1432    StubCodeMark mark(this, "StubRoutines", name);
1433    address start = __ pc();
1434
1435    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1436    const Register from        = rdi;  // source array address
1437    const Register to          = rsi;  // destination array address
1438    const Register count       = rdx;  // elements count
1439    const Register byte_count  = rcx;
1440    const Register qword_count = count;
1441
1442    __ enter(); // required for proper stackwalking of RuntimeStub frame
1443    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1444
1445    byte_copy_entry = __ pc();
1446    BLOCK_COMMENT("Entry:");
1447    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1448
1449    array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
1450    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1451                      // r9 and r10 may be used to save non-volatile registers
1452
1453    // 'from', 'to' and 'count' are now valid
1454    __ movq(byte_count, count);
1455    __ shrq(count, 3);   // count => qword_count
1456
1457    // Copy from high to low addresses.
1458
1459    // Check for and copy trailing byte
1460    __ testq(byte_count, 1);
1461    __ jcc(Assembler::zero, L_copy_2_bytes);
1462    __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1463    __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1464    __ decrementq(byte_count); // Adjust for possible trailing word
1465
1466    // Check for and copy trailing word
1467  __ BIND(L_copy_2_bytes);
1468    __ testq(byte_count, 2);
1469    __ jcc(Assembler::zero, L_copy_4_bytes);
1470    __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1471    __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1472
1473    // Check for and copy trailing dword
1474  __ BIND(L_copy_4_bytes);
1475    __ testq(byte_count, 4);
1476    __ jcc(Assembler::zero, L_copy_32_bytes);
1477    __ movl(rax, Address(from, qword_count, Address::times_8));
1478    __ movl(Address(to, qword_count, Address::times_8), rax);
1479    __ jmp(L_copy_32_bytes);
1480
1481    // Copy trailing qwords
1482  __ BIND(L_copy_8_bytes);
1483    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1484    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1485    __ decrementq(qword_count);
1486    __ jcc(Assembler::notZero, L_copy_8_bytes);
1487
1488    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1489    restore_arg_regs();
1490    __ xorq(rax, rax); // return 0
1491    __ leave(); // required for proper stackwalking of RuntimeStub frame
1492    __ ret(0);
1493
1494    // Copy in 32-bytes chunks
1495    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1496
1497    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1498    restore_arg_regs();
1499    __ xorq(rax, rax); // return 0
1500    __ leave(); // required for proper stackwalking of RuntimeStub frame
1501    __ ret(0);
1502
1503    return start;
1504  }
1505
1506  // Arguments:
1507  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1508  //             ignored
1509  //   name    - stub name string
1510  //
1511  // Inputs:
1512  //   c_rarg0   - source array address
1513  //   c_rarg1   - destination array address
1514  //   c_rarg2   - element count, treated as ssize_t, can be zero
1515  //
1516  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1517  // let the hardware handle it.  The two or four words within dwords
1518  // or qwords that span cache line boundaries will still be loaded
1519  // and stored atomically.
1520  //
1521  // Side Effects:
1522  //   disjoint_short_copy_entry is set to the no-overlap entry point
1523  //   used by generate_conjoint_short_copy().
1524  //
1525  address generate_disjoint_short_copy(bool aligned, const char *name) {
1526    __ align(CodeEntryAlignment);
1527    StubCodeMark mark(this, "StubRoutines", name);
1528    address start = __ pc();
1529
1530    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1531    const Register from        = rdi;  // source array address
1532    const Register to          = rsi;  // destination array address
1533    const Register count       = rdx;  // elements count
1534    const Register word_count  = rcx;
1535    const Register qword_count = count;
1536    const Register end_from    = from; // source array end address
1537    const Register end_to      = to;   // destination array end address
1538    // End pointers are inclusive, and if count is not zero they point
1539    // to the last unit copied:  end_to[0] := end_from[0]
1540
1541    __ enter(); // required for proper stackwalking of RuntimeStub frame
1542    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1543
1544    disjoint_short_copy_entry = __ pc();
1545    BLOCK_COMMENT("Entry:");
1546    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1547
1548    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1549                      // r9 and r10 may be used to save non-volatile registers
1550
1551    // 'from', 'to' and 'count' are now valid
1552    __ movq(word_count, count);
1553    __ shrq(count, 2); // count => qword_count
1554
1555    // Copy from low to high addresses.  Use 'to' as scratch.
1556    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1557    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1558    __ negq(qword_count);
1559    __ jmp(L_copy_32_bytes);
1560
1561    // Copy trailing qwords
1562  __ BIND(L_copy_8_bytes);
1563    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1564    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1565    __ incrementq(qword_count);
1566    __ jcc(Assembler::notZero, L_copy_8_bytes);
1567
1568    // Original 'dest' is trashed, so we can't use it as a
1569    // base register for a possible trailing word copy
1570
1571    // Check for and copy trailing dword
1572  __ BIND(L_copy_4_bytes);
1573    __ testq(word_count, 2);
1574    __ jccb(Assembler::zero, L_copy_2_bytes);
1575    __ movl(rax, Address(end_from, 8));
1576    __ movl(Address(end_to, 8), rax);
1577
1578    __ addq(end_from, 4);
1579    __ addq(end_to, 4);
1580
1581    // Check for and copy trailing word
1582  __ BIND(L_copy_2_bytes);
1583    __ testq(word_count, 1);
1584    __ jccb(Assembler::zero, L_exit);
1585    __ movw(rax, Address(end_from, 8));
1586    __ movw(Address(end_to, 8), rax);
1587
1588  __ BIND(L_exit);
1589    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1590    restore_arg_regs();
1591    __ xorq(rax, rax); // return 0
1592    __ leave(); // required for proper stackwalking of RuntimeStub frame
1593    __ ret(0);
1594
1595    // Copy in 32-bytes chunks
1596    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1597    __ jmp(L_copy_4_bytes);
1598
1599    return start;
1600  }
1601
1602  // Arguments:
1603  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1604  //             ignored
1605  //   name    - stub name string
1606  //
1607  // Inputs:
1608  //   c_rarg0   - source array address
1609  //   c_rarg1   - destination array address
1610  //   c_rarg2   - element count, treated as ssize_t, can be zero
1611  //
1612  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1613  // let the hardware handle it.  The two or four words within dwords
1614  // or qwords that span cache line boundaries will still be loaded
1615  // and stored atomically.
1616  //
1617  address generate_conjoint_short_copy(bool aligned, const char *name) {
1618    __ align(CodeEntryAlignment);
1619    StubCodeMark mark(this, "StubRoutines", name);
1620    address start = __ pc();
1621
1622    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1623    const Register from        = rdi;  // source array address
1624    const Register to          = rsi;  // destination array address
1625    const Register count       = rdx;  // elements count
1626    const Register word_count  = rcx;
1627    const Register qword_count = count;
1628
1629    __ enter(); // required for proper stackwalking of RuntimeStub frame
1630    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1631
1632    short_copy_entry = __ pc();
1633    BLOCK_COMMENT("Entry:");
1634    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1635
1636    array_overlap_test(disjoint_short_copy_entry, Address::times_2);
1637    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1638                      // r9 and r10 may be used to save non-volatile registers
1639
1640    // 'from', 'to' and 'count' are now valid
1641    __ movq(word_count, count);
1642    __ shrq(count, 2); // count => qword_count
1643
1644    // Copy from high to low addresses.  Use 'to' as scratch.
1645
1646    // Check for and copy trailing word
1647    __ testq(word_count, 1);
1648    __ jccb(Assembler::zero, L_copy_4_bytes);
1649    __ movw(rax, Address(from, word_count, Address::times_2, -2));
1650    __ movw(Address(to, word_count, Address::times_2, -2), rax);
1651
1652    // Check for and copy trailing dword
1653  __ BIND(L_copy_4_bytes);
1654    __ testq(word_count, 2);
1655    __ jcc(Assembler::zero, L_copy_32_bytes);
1656    __ movl(rax, Address(from, qword_count, Address::times_8));
1657    __ movl(Address(to, qword_count, Address::times_8), rax);
1658    __ jmp(L_copy_32_bytes);
1659
1660    // Copy trailing qwords
1661  __ BIND(L_copy_8_bytes);
1662    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1663    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1664    __ decrementq(qword_count);
1665    __ jcc(Assembler::notZero, L_copy_8_bytes);
1666
1667    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1668    restore_arg_regs();
1669    __ xorq(rax, rax); // return 0
1670    __ leave(); // required for proper stackwalking of RuntimeStub frame
1671    __ ret(0);
1672
1673    // Copy in 32-bytes chunks
1674    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1675
1676    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1677    restore_arg_regs();
1678    __ xorq(rax, rax); // return 0
1679    __ leave(); // required for proper stackwalking of RuntimeStub frame
1680    __ ret(0);
1681
1682    return start;
1683  }
1684
1685  // Arguments:
1686  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1687  //             ignored
1688  //   is_oop  - true => oop array, so generate store check code
1689  //   name    - stub name string
1690  //
1691  // Inputs:
1692  //   c_rarg0   - source array address
1693  //   c_rarg1   - destination array address
1694  //   c_rarg2   - element count, treated as ssize_t, can be zero
1695  //
1696  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1697  // the hardware handle it.  The two dwords within qwords that span
1698  // cache line boundaries will still be loaded and stored atomicly.
1699  //
1700  // Side Effects:
1701  //   disjoint_int_copy_entry is set to the no-overlap entry point
1702  //   used by generate_conjoint_int_oop_copy().
1703  //
1704  address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1705    __ align(CodeEntryAlignment);
1706    StubCodeMark mark(this, "StubRoutines", name);
1707    address start = __ pc();
1708
1709    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1710    const Register from        = rdi;  // source array address
1711    const Register to          = rsi;  // destination array address
1712    const Register count       = rdx;  // elements count
1713    const Register dword_count = rcx;
1714    const Register qword_count = count;
1715    const Register end_from    = from; // source array end address
1716    const Register end_to      = to;   // destination array end address
1717    const Register saved_to    = r11;  // saved destination array address
1718    // End pointers are inclusive, and if count is not zero they point
1719    // to the last unit copied:  end_to[0] := end_from[0]
1720
1721    __ enter(); // required for proper stackwalking of RuntimeStub frame
1722    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1723
1724    (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
1725
1726    if (is_oop) {
1727      // no registers are destroyed by this call
1728      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1729    }
1730
1731    BLOCK_COMMENT("Entry:");
1732    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1733
1734    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1735                      // r9 and r10 may be used to save non-volatile registers
1736
1737    if (is_oop) {
1738      __ movq(saved_to, to);
1739    }
1740
1741    // 'from', 'to' and 'count' are now valid
1742    __ movq(dword_count, count);
1743    __ shrq(count, 1); // count => qword_count
1744
1745    // Copy from low to high addresses.  Use 'to' as scratch.
1746    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1747    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1748    __ negq(qword_count);
1749    __ jmp(L_copy_32_bytes);
1750
1751    // Copy trailing qwords
1752  __ BIND(L_copy_8_bytes);
1753    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1754    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1755    __ incrementq(qword_count);
1756    __ jcc(Assembler::notZero, L_copy_8_bytes);
1757
1758    // Check for and copy trailing dword
1759  __ BIND(L_copy_4_bytes);
1760    __ testq(dword_count, 1); // Only byte test since the value is 0 or 1
1761    __ jccb(Assembler::zero, L_exit);
1762    __ movl(rax, Address(end_from, 8));
1763    __ movl(Address(end_to, 8), rax);
1764
1765  __ BIND(L_exit);
1766    if (is_oop) {
1767      __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1768      gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1769    }
1770    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1771    restore_arg_regs();
1772    __ xorq(rax, rax); // return 0
1773    __ leave(); // required for proper stackwalking of RuntimeStub frame
1774    __ ret(0);
1775
1776    // Copy 32-bytes chunks
1777    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1778    __ jmp(L_copy_4_bytes);
1779
1780    return start;
1781  }
1782
1783  // Arguments:
1784  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1785  //             ignored
1786  //   is_oop  - true => oop array, so generate store check code
1787  //   name    - stub name string
1788  //
1789  // Inputs:
1790  //   c_rarg0   - source array address
1791  //   c_rarg1   - destination array address
1792  //   c_rarg2   - element count, treated as ssize_t, can be zero
1793  //
1794  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1795  // the hardware handle it.  The two dwords within qwords that span
1796  // cache line boundaries will still be loaded and stored atomicly.
1797  //
1798  address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1799    __ align(CodeEntryAlignment);
1800    StubCodeMark mark(this, "StubRoutines", name);
1801    address start = __ pc();
1802
1803    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1804    const Register from        = rdi;  // source array address
1805    const Register to          = rsi;  // destination array address
1806    const Register count       = rdx;  // elements count
1807    const Register dword_count = rcx;
1808    const Register qword_count = count;
1809
1810    __ enter(); // required for proper stackwalking of RuntimeStub frame
1811    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1812
1813    if (is_oop) {
1814      // no registers are destroyed by this call
1815      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1816    }
1817
1818    (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
1819    BLOCK_COMMENT("Entry:");
1820    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1821
1822    array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
1823                       Address::times_4);
1824    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1825                      // r9 and r10 may be used to save non-volatile registers
1826
1827    assert_clean_int(count, rax); // Make sure 'count' is clean int.
1828    // 'from', 'to' and 'count' are now valid
1829    __ movq(dword_count, count);
1830    __ shrq(count, 1); // count => qword_count
1831
1832    // Copy from high to low addresses.  Use 'to' as scratch.
1833
1834    // Check for and copy trailing dword
1835    __ testq(dword_count, 1);
1836    __ jcc(Assembler::zero, L_copy_32_bytes);
1837    __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1838    __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1839    __ jmp(L_copy_32_bytes);
1840
1841    // Copy trailing qwords
1842  __ BIND(L_copy_8_bytes);
1843    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1844    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1845    __ decrementq(qword_count);
1846    __ jcc(Assembler::notZero, L_copy_8_bytes);
1847
1848    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1849    if (is_oop) {
1850      __ jmp(L_exit);
1851    }
1852    restore_arg_regs();
1853    __ xorq(rax, rax); // return 0
1854    __ leave(); // required for proper stackwalking of RuntimeStub frame
1855    __ ret(0);
1856
1857    // Copy in 32-bytes chunks
1858    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1859
1860   inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1861   __ bind(L_exit);
1862     if (is_oop) {
1863       Register end_to = rdx;
1864       __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1865       gen_write_ref_array_post_barrier(to, end_to, rax);
1866     }
1867    restore_arg_regs();
1868    __ xorq(rax, rax); // return 0
1869    __ leave(); // required for proper stackwalking of RuntimeStub frame
1870    __ ret(0);
1871
1872    return start;
1873  }
1874
1875  // Arguments:
1876  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1877  //             ignored
1878  //   is_oop  - true => oop array, so generate store check code
1879  //   name    - stub name string
1880  //
1881  // Inputs:
1882  //   c_rarg0   - source array address
1883  //   c_rarg1   - destination array address
1884  //   c_rarg2   - element count, treated as ssize_t, can be zero
1885  //
1886 // Side Effects:
1887  //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1888  //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1889  //
1890  address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1891    __ align(CodeEntryAlignment);
1892    StubCodeMark mark(this, "StubRoutines", name);
1893    address start = __ pc();
1894
1895    Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1896    const Register from        = rdi;  // source array address
1897    const Register to          = rsi;  // destination array address
1898    const Register qword_count = rdx;  // elements count
1899    const Register end_from    = from; // source array end address
1900    const Register end_to      = rcx;  // destination array end address
1901    const Register saved_to    = to;
1902    // End pointers are inclusive, and if count is not zero they point
1903    // to the last unit copied:  end_to[0] := end_from[0]
1904
1905    __ enter(); // required for proper stackwalking of RuntimeStub frame
1906    // Save no-overlap entry point for generate_conjoint_long_oop_copy()
1907    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1908
1909    if (is_oop) {
1910      disjoint_oop_copy_entry  = __ pc();
1911      // no registers are destroyed by this call
1912      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1913    } else {
1914      disjoint_long_copy_entry = __ pc();
1915    }
1916    BLOCK_COMMENT("Entry:");
1917    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1918
1919    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1920                      // r9 and r10 may be used to save non-volatile registers
1921
1922    // 'from', 'to' and 'qword_count' are now valid
1923
1924    // Copy from low to high addresses.  Use 'to' as scratch.
1925    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1926    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1927    __ negq(qword_count);
1928    __ jmp(L_copy_32_bytes);
1929
1930    // Copy trailing qwords
1931  __ BIND(L_copy_8_bytes);
1932    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1933    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1934    __ incrementq(qword_count);
1935    __ jcc(Assembler::notZero, L_copy_8_bytes);
1936
1937    if (is_oop) {
1938      __ jmp(L_exit);
1939    } else {
1940      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1941      restore_arg_regs();
1942      __ xorq(rax, rax); // return 0
1943      __ leave(); // required for proper stackwalking of RuntimeStub frame
1944      __ ret(0);
1945    }
1946
1947    // Copy 64-byte chunks
1948    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1949
1950    if (is_oop) {
1951    __ BIND(L_exit);
1952      gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1953      inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
1954    } else {
1955      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1956    }
1957    restore_arg_regs();
1958    __ xorq(rax, rax); // return 0
1959    __ leave(); // required for proper stackwalking of RuntimeStub frame
1960    __ ret(0);
1961
1962    return start;
1963  }
1964
1965  // Arguments:
1966  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1967  //             ignored
1968  //   is_oop  - true => oop array, so generate store check code
1969  //   name    - stub name string
1970  //
1971  // Inputs:
1972  //   c_rarg0   - source array address
1973  //   c_rarg1   - destination array address
1974  //   c_rarg2   - element count, treated as ssize_t, can be zero
1975  //
1976  address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1977    __ align(CodeEntryAlignment);
1978    StubCodeMark mark(this, "StubRoutines", name);
1979    address start = __ pc();
1980
1981    Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1982    const Register from        = rdi;  // source array address
1983    const Register to          = rsi;  // destination array address
1984    const Register qword_count = rdx;  // elements count
1985    const Register saved_count = rcx;
1986
1987    __ enter(); // required for proper stackwalking of RuntimeStub frame
1988    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1989
1990    address disjoint_copy_entry = NULL;
1991    if (is_oop) {
1992      assert(!UseCompressedOops, "shouldn't be called for compressed oops");
1993      disjoint_copy_entry = disjoint_oop_copy_entry;
1994      oop_copy_entry  = __ pc();
1995      array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
1996    } else {
1997      disjoint_copy_entry = disjoint_long_copy_entry;
1998      long_copy_entry = __ pc();
1999      array_overlap_test(disjoint_long_copy_entry, Address::times_8);
2000    }
2001    BLOCK_COMMENT("Entry:");
2002    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2003
2004    array_overlap_test(disjoint_copy_entry, Address::times_8);
2005    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2006                      // r9 and r10 may be used to save non-volatile registers
2007
2008    // 'from', 'to' and 'qword_count' are now valid
2009
2010    if (is_oop) {
2011      // Save to and count for store barrier
2012      __ movq(saved_count, qword_count);
2013      // No registers are destroyed by this call
2014      gen_write_ref_array_pre_barrier(to, saved_count);
2015    }
2016
2017    __ jmp(L_copy_32_bytes);
2018
2019    // Copy trailing qwords
2020  __ BIND(L_copy_8_bytes);
2021    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2022    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2023    __ decrementq(qword_count);
2024    __ jcc(Assembler::notZero, L_copy_8_bytes);
2025
2026    if (is_oop) {
2027      __ jmp(L_exit);
2028    } else {
2029      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2030      restore_arg_regs();
2031      __ xorq(rax, rax); // return 0
2032      __ leave(); // required for proper stackwalking of RuntimeStub frame
2033      __ ret(0);
2034    }
2035
2036    // Copy in 32-bytes chunks
2037    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2038
2039    if (is_oop) {
2040    __ BIND(L_exit);
2041      __ leaq(rcx, Address(to, saved_count, Address::times_8, -8));
2042      gen_write_ref_array_post_barrier(to, rcx, rax);
2043      inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
2044    } else {
2045      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2046    }
2047    restore_arg_regs();
2048    __ xorq(rax, rax); // return 0
2049    __ leave(); // required for proper stackwalking of RuntimeStub frame
2050    __ ret(0);
2051
2052    return start;
2053  }
2054
2055
2056  // Helper for generating a dynamic type check.
2057  // Smashes no registers.
2058  void generate_type_check(Register sub_klass,
2059                           Register super_check_offset,
2060                           Register super_klass,
2061                           Label& L_success) {
2062    assert_different_registers(sub_klass, super_check_offset, super_klass);
2063
2064    BLOCK_COMMENT("type_check:");
2065
2066    Label L_miss;
2067
2068    // a couple of useful fields in sub_klass:
2069    int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
2070                     Klass::secondary_supers_offset_in_bytes());
2071    int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
2072                     Klass::secondary_super_cache_offset_in_bytes());
2073    Address secondary_supers_addr(sub_klass, ss_offset);
2074    Address super_cache_addr(     sub_klass, sc_offset);
2075
2076    // if the pointers are equal, we are done (e.g., String[] elements)
2077    __ cmpq(super_klass, sub_klass);
2078    __ jcc(Assembler::equal, L_success);
2079
2080    // check the supertype display:
2081    Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
2082    __ cmpq(super_klass, super_check_addr); // test the super type
2083    __ jcc(Assembler::equal, L_success);
2084
2085    // if it was a primary super, we can just fail immediately
2086    __ cmpl(super_check_offset, sc_offset);
2087    __ jcc(Assembler::notEqual, L_miss);
2088
2089    // Now do a linear scan of the secondary super-klass chain.
2090    // The repne_scan instruction uses fixed registers, which we must spill.
2091    // (We need a couple more temps in any case.)
2092    // This code is rarely used, so simplicity is a virtue here.
2093    inc_counter_np(SharedRuntime::_partial_subtype_ctr);
2094    {
2095      __ pushq(rax);
2096      __ pushq(rcx);
2097      __ pushq(rdi);
2098      assert_different_registers(sub_klass, super_klass, rax, rcx, rdi);
2099
2100      __ movq(rdi, secondary_supers_addr);
2101      // Load the array length.
2102      __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
2103      // Skip to start of data.
2104      __ addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
2105      // Scan rcx words at [rdi] for occurance of rax
2106      // Set NZ/Z based on last compare
2107      __ movq(rax, super_klass);
2108      if (UseCompressedOops) {
2109        // Compare against compressed form.  Don't need to uncompress because
2110        // looks like orig rax is restored in popq below.
2111        __ encode_heap_oop(rax);
2112        __ repne_scanl();
2113      } else {
2114         __ repne_scanq();
2115      }
2116
2117      // Unspill the temp. registers:
2118      __ popq(rdi);
2119      __ popq(rcx);
2120      __ popq(rax);
2121
2122      __ jcc(Assembler::notEqual, L_miss);
2123    }
2124
2125    // Success.  Cache the super we found and proceed in triumph.
2126    __ movq(super_cache_addr, super_klass); // note: rax is dead
2127    __ jmp(L_success);
2128
2129    // Fall through on failure!
2130    __ BIND(L_miss);
2131  }
2132
2133  //
2134  //  Generate checkcasting array copy stub
2135  //
2136  //  Input:
2137  //    c_rarg0   - source array address
2138  //    c_rarg1   - destination array address
2139  //    c_rarg2   - element count, treated as ssize_t, can be zero
2140  //    c_rarg3   - size_t ckoff (super_check_offset)
2141  // not Win64
2142  //    c_rarg4   - oop ckval (super_klass)
2143  // Win64
2144  //    rsp+40    - oop ckval (super_klass)
2145  //
2146  //  Output:
2147  //    rax ==  0  -  success
2148  //    rax == -1^K - failure, where K is partial transfer count
2149  //
2150  address generate_checkcast_copy(const char *name) {
2151
2152    Label L_load_element, L_store_element, L_do_card_marks, L_done;
2153
2154    // Input registers (after setup_arg_regs)
2155    const Register from        = rdi;   // source array address
2156    const Register to          = rsi;   // destination array address
2157    const Register length      = rdx;   // elements count
2158    const Register ckoff       = rcx;   // super_check_offset
2159    const Register ckval       = r8;    // super_klass
2160
2161    // Registers used as temps (r13, r14 are save-on-entry)
2162    const Register end_from    = from;  // source array end address
2163    const Register end_to      = r13;   // destination array end address
2164    const Register count       = rdx;   // -(count_remaining)
2165    const Register r14_length  = r14;   // saved copy of length
2166    // End pointers are inclusive, and if length is not zero they point
2167    // to the last unit copied:  end_to[0] := end_from[0]
2168
2169    const Register rax_oop    = rax;    // actual oop copied
2170    const Register r11_klass  = r11;    // oop._klass
2171
2172    //---------------------------------------------------------------
2173    // Assembler stub will be used for this call to arraycopy
2174    // if the two arrays are subtypes of Object[] but the
2175    // destination array type is not equal to or a supertype
2176    // of the source type.  Each element must be separately
2177    // checked.
2178
2179    __ align(CodeEntryAlignment);
2180    StubCodeMark mark(this, "StubRoutines", name);
2181    address start = __ pc();
2182
2183    __ enter(); // required for proper stackwalking of RuntimeStub frame
2184
2185    checkcast_copy_entry  = __ pc();
2186    BLOCK_COMMENT("Entry:");
2187
2188#ifdef ASSERT
2189    // caller guarantees that the arrays really are different
2190    // otherwise, we would have to make conjoint checks
2191    { Label L;
2192      array_overlap_test(L, TIMES_OOP);
2193      __ stop("checkcast_copy within a single array");
2194      __ bind(L);
2195    }
2196#endif //ASSERT
2197
2198    // allocate spill slots for r13, r14
2199    enum {
2200      saved_r13_offset,
2201      saved_r14_offset,
2202      saved_rbp_offset,
2203      saved_rip_offset,
2204      saved_rarg0_offset
2205    };
2206    __ subq(rsp, saved_rbp_offset * wordSize);
2207    __ movq(Address(rsp, saved_r13_offset * wordSize), r13);
2208    __ movq(Address(rsp, saved_r14_offset * wordSize), r14);
2209    setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2210                       // ckoff => rcx, ckval => r8
2211                       // r9 and r10 may be used to save non-volatile registers
2212#ifdef _WIN64
2213    // last argument (#4) is on stack on Win64
2214    const int ckval_offset = saved_rarg0_offset + 4;
2215    __ movq(ckval, Address(rsp, ckval_offset * wordSize));
2216#endif
2217
2218    // check that int operands are properly extended to size_t
2219    assert_clean_int(length, rax);
2220    assert_clean_int(ckoff, rax);
2221
2222#ifdef ASSERT
2223    BLOCK_COMMENT("assert consistent ckoff/ckval");
2224    // The ckoff and ckval must be mutually consistent,
2225    // even though caller generates both.
2226    { Label L;
2227      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2228                        Klass::super_check_offset_offset_in_bytes());
2229      __ cmpl(ckoff, Address(ckval, sco_offset));
2230      __ jcc(Assembler::equal, L);
2231      __ stop("super_check_offset inconsistent");
2232      __ bind(L);
2233    }
2234#endif //ASSERT
2235
2236    // Loop-invariant addresses.  They are exclusive end pointers.
2237    Address end_from_addr(from, length, TIMES_OOP, 0);
2238    Address   end_to_addr(to,   length, TIMES_OOP, 0);
2239    // Loop-variant addresses.  They assume post-incremented count < 0.
2240    Address from_element_addr(end_from, count, TIMES_OOP, 0);
2241    Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2242
2243    gen_write_ref_array_pre_barrier(to, count);
2244
2245    // Copy from low to high addresses, indexed from the end of each array.
2246    __ leaq(end_from, end_from_addr);
2247    __ leaq(end_to,   end_to_addr);
2248    __ movq(r14_length, length);        // save a copy of the length
2249    assert(length == count, "");        // else fix next line:
2250    __ negq(count);                     // negate and test the length
2251    __ jcc(Assembler::notZero, L_load_element);
2252
2253    // Empty array:  Nothing to do.
2254    __ xorq(rax, rax);                  // return 0 on (trivial) success
2255    __ jmp(L_done);
2256
2257    // ======== begin loop ========
2258    // (Loop is rotated; its entry is L_load_element.)
2259    // Loop control:
2260    //   for (count = -count; count != 0; count++)
2261    // Base pointers src, dst are biased by 8*(count-1),to last element.
2262    __ align(16);
2263
2264    __ BIND(L_store_element);
2265    __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2266    __ incrementq(count);               // increment the count toward zero
2267    __ jcc(Assembler::zero, L_do_card_marks);
2268
2269    // ======== loop entry is here ========
2270    __ BIND(L_load_element);
2271    __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2272    __ testq(rax_oop, rax_oop);
2273    __ jcc(Assembler::zero, L_store_element);
2274
2275    __ load_klass(r11_klass, rax_oop);// query the object klass
2276    generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2277    // ======== end loop ========
2278
2279    // It was a real error; we must depend on the caller to finish the job.
2280    // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2281    // Emit GC store barriers for the oops we have copied (r14 + rdx),
2282    // and report their number to the caller.
2283    assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2284    __ leaq(end_to, to_element_addr);
2285    gen_write_ref_array_post_barrier(to, end_to, rcx);
2286    __ movq(rax, r14_length);           // original oops
2287    __ addq(rax, count);                // K = (original - remaining) oops
2288    __ notq(rax);                       // report (-1^K) to caller
2289    __ jmp(L_done);
2290
2291    // Come here on success only.
2292    __ BIND(L_do_card_marks);
2293    __ addq(end_to, -wordSize);         // make an inclusive end pointer
2294    gen_write_ref_array_post_barrier(to, end_to, rcx);
2295    __ xorq(rax, rax);                  // return 0 on success
2296
2297    // Common exit point (success or failure).
2298    __ BIND(L_done);
2299    __ movq(r13, Address(rsp, saved_r13_offset * wordSize));
2300    __ movq(r14, Address(rsp, saved_r14_offset * wordSize));
2301    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
2302    restore_arg_regs();
2303    __ leave(); // required for proper stackwalking of RuntimeStub frame
2304    __ ret(0);
2305
2306    return start;
2307  }
2308
2309  //
2310  //  Generate 'unsafe' array copy stub
2311  //  Though just as safe as the other stubs, it takes an unscaled
2312  //  size_t argument instead of an element count.
2313  //
2314  //  Input:
2315  //    c_rarg0   - source array address
2316  //    c_rarg1   - destination array address
2317  //    c_rarg2   - byte count, treated as ssize_t, can be zero
2318  //
2319  // Examines the alignment of the operands and dispatches
2320  // to a long, int, short, or byte copy loop.
2321  //
2322  address generate_unsafe_copy(const char *name) {
2323
2324    Label L_long_aligned, L_int_aligned, L_short_aligned;
2325
2326    // Input registers (before setup_arg_regs)
2327    const Register from        = c_rarg0;  // source array address
2328    const Register to          = c_rarg1;  // destination array address
2329    const Register size        = c_rarg2;  // byte count (size_t)
2330
2331    // Register used as a temp
2332    const Register bits        = rax;      // test copy of low bits
2333
2334    __ align(CodeEntryAlignment);
2335    StubCodeMark mark(this, "StubRoutines", name);
2336    address start = __ pc();
2337
2338    __ enter(); // required for proper stackwalking of RuntimeStub frame
2339
2340    // bump this on entry, not on exit:
2341    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2342
2343    __ movq(bits, from);
2344    __ orq(bits, to);
2345    __ orq(bits, size);
2346
2347    __ testb(bits, BytesPerLong-1);
2348    __ jccb(Assembler::zero, L_long_aligned);
2349
2350    __ testb(bits, BytesPerInt-1);
2351    __ jccb(Assembler::zero, L_int_aligned);
2352
2353    __ testb(bits, BytesPerShort-1);
2354    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2355
2356    __ BIND(L_short_aligned);
2357    __ shrq(size, LogBytesPerShort); // size => short_count
2358    __ jump(RuntimeAddress(short_copy_entry));
2359
2360    __ BIND(L_int_aligned);
2361    __ shrq(size, LogBytesPerInt); // size => int_count
2362    __ jump(RuntimeAddress(int_copy_entry));
2363
2364    __ BIND(L_long_aligned);
2365    __ shrq(size, LogBytesPerLong); // size => qword_count
2366    __ jump(RuntimeAddress(long_copy_entry));
2367
2368    return start;
2369  }
2370
2371  // Perform range checks on the proposed arraycopy.
2372  // Kills temp, but nothing else.
2373  // Also, clean the sign bits of src_pos and dst_pos.
2374  void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2375                              Register src_pos, // source position (c_rarg1)
2376                              Register dst,     // destination array oo (c_rarg2)
2377                              Register dst_pos, // destination position (c_rarg3)
2378                              Register length,
2379                              Register temp,
2380                              Label& L_failed) {
2381    BLOCK_COMMENT("arraycopy_range_checks:");
2382
2383    //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2384    __ movl(temp, length);
2385    __ addl(temp, src_pos);             // src_pos + length
2386    __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2387    __ jcc(Assembler::above, L_failed);
2388
2389    //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2390    __ movl(temp, length);
2391    __ addl(temp, dst_pos);             // dst_pos + length
2392    __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2393    __ jcc(Assembler::above, L_failed);
2394
2395    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2396    // Move with sign extension can be used since they are positive.
2397    __ movslq(src_pos, src_pos);
2398    __ movslq(dst_pos, dst_pos);
2399
2400    BLOCK_COMMENT("arraycopy_range_checks done");
2401  }
2402
2403  //
2404  //  Generate generic array copy stubs
2405  //
2406  //  Input:
2407  //    c_rarg0    -  src oop
2408  //    c_rarg1    -  src_pos (32-bits)
2409  //    c_rarg2    -  dst oop
2410  //    c_rarg3    -  dst_pos (32-bits)
2411  // not Win64
2412  //    c_rarg4    -  element count (32-bits)
2413  // Win64
2414  //    rsp+40     -  element count (32-bits)
2415  //
2416  //  Output:
2417  //    rax ==  0  -  success
2418  //    rax == -1^K - failure, where K is partial transfer count
2419  //
2420  address generate_generic_copy(const char *name) {
2421
2422    Label L_failed, L_failed_0, L_objArray;
2423    Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2424
2425    // Input registers
2426    const Register src        = c_rarg0;  // source array oop
2427    const Register src_pos    = c_rarg1;  // source position
2428    const Register dst        = c_rarg2;  // destination array oop
2429    const Register dst_pos    = c_rarg3;  // destination position
2430    // elements count is on stack on Win64
2431#ifdef _WIN64
2432#define C_RARG4 Address(rsp, 6 * wordSize)
2433#else
2434#define C_RARG4 c_rarg4
2435#endif
2436
2437    { int modulus = CodeEntryAlignment;
2438      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2439      int advance = target - (__ offset() % modulus);
2440      if (advance < 0)  advance += modulus;
2441      if (advance > 0)  __ nop(advance);
2442    }
2443    StubCodeMark mark(this, "StubRoutines", name);
2444
2445    // Short-hop target to L_failed.  Makes for denser prologue code.
2446    __ BIND(L_failed_0);
2447    __ jmp(L_failed);
2448    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2449
2450    __ align(CodeEntryAlignment);
2451    address start = __ pc();
2452
2453    __ enter(); // required for proper stackwalking of RuntimeStub frame
2454
2455    // bump this on entry, not on exit:
2456    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2457
2458    //-----------------------------------------------------------------------
2459    // Assembler stub will be used for this call to arraycopy
2460    // if the following conditions are met:
2461    //
2462    // (1) src and dst must not be null.
2463    // (2) src_pos must not be negative.
2464    // (3) dst_pos must not be negative.
2465    // (4) length  must not be negative.
2466    // (5) src klass and dst klass should be the same and not NULL.
2467    // (6) src and dst should be arrays.
2468    // (7) src_pos + length must not exceed length of src.
2469    // (8) dst_pos + length must not exceed length of dst.
2470    //
2471
2472    //  if (src == NULL) return -1;
2473    __ testq(src, src);         // src oop
2474    size_t j1off = __ offset();
2475    __ jccb(Assembler::zero, L_failed_0);
2476
2477    //  if (src_pos < 0) return -1;
2478    __ testl(src_pos, src_pos); // src_pos (32-bits)
2479    __ jccb(Assembler::negative, L_failed_0);
2480
2481    //  if (dst == NULL) return -1;
2482    __ testq(dst, dst);         // dst oop
2483    __ jccb(Assembler::zero, L_failed_0);
2484
2485    //  if (dst_pos < 0) return -1;
2486    __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2487    size_t j4off = __ offset();
2488    __ jccb(Assembler::negative, L_failed_0);
2489
2490    // The first four tests are very dense code,
2491    // but not quite dense enough to put four
2492    // jumps in a 16-byte instruction fetch buffer.
2493    // That's good, because some branch predicters
2494    // do not like jumps so close together.
2495    // Make sure of this.
2496    guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2497
2498    // registers used as temp
2499    const Register r11_length    = r11; // elements count to copy
2500    const Register r10_src_klass = r10; // array klass
2501    const Register r9_dst_klass  = r9;  // dest array klass
2502
2503    //  if (length < 0) return -1;
2504    __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
2505    __ testl(r11_length, r11_length);
2506    __ jccb(Assembler::negative, L_failed_0);
2507
2508    __ load_klass(r10_src_klass, src);
2509#ifdef ASSERT
2510    //  assert(src->klass() != NULL);
2511    BLOCK_COMMENT("assert klasses not null");
2512    { Label L1, L2;
2513      __ testq(r10_src_klass, r10_src_klass);
2514      __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2515      __ bind(L1);
2516      __ stop("broken null klass");
2517      __ bind(L2);
2518      __ load_klass(r9_dst_klass, dst);
2519      __ cmpq(r9_dst_klass, 0);
2520      __ jcc(Assembler::equal, L1);     // this would be broken also
2521      BLOCK_COMMENT("assert done");
2522    }
2523#endif
2524
2525    // Load layout helper (32-bits)
2526    //
2527    //  |array_tag|     | header_size | element_type |     |log2_element_size|
2528    // 32        30    24            16              8     2                 0
2529    //
2530    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2531    //
2532
2533    int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2534                    Klass::layout_helper_offset_in_bytes();
2535
2536    const Register rax_lh = rax;  // layout helper
2537
2538    __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2539
2540    // Handle objArrays completely differently...
2541    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2542    __ cmpl(rax_lh, objArray_lh);
2543    __ jcc(Assembler::equal, L_objArray);
2544
2545    //  if (src->klass() != dst->klass()) return -1;
2546    __ load_klass(r9_dst_klass, dst);
2547    __ cmpq(r10_src_klass, r9_dst_klass);
2548    __ jcc(Assembler::notEqual, L_failed);
2549
2550    //  if (!src->is_Array()) return -1;
2551    __ cmpl(rax_lh, Klass::_lh_neutral_value);
2552    __ jcc(Assembler::greaterEqual, L_failed);
2553
2554    // At this point, it is known to be a typeArray (array_tag 0x3).
2555#ifdef ASSERT
2556    { Label L;
2557      __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2558      __ jcc(Assembler::greaterEqual, L);
2559      __ stop("must be a primitive array");
2560      __ bind(L);
2561    }
2562#endif
2563
2564    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2565                           r10, L_failed);
2566
2567    // typeArrayKlass
2568    //
2569    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2570    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2571    //
2572
2573    const Register r10_offset = r10;    // array offset
2574    const Register rax_elsize = rax_lh; // element size
2575
2576    __ movl(r10_offset, rax_lh);
2577    __ shrl(r10_offset, Klass::_lh_header_size_shift);
2578    __ andq(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2579    __ addq(src, r10_offset);           // src array offset
2580    __ addq(dst, r10_offset);           // dst array offset
2581    BLOCK_COMMENT("choose copy loop based on element size");
2582    __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2583
2584    // next registers should be set before the jump to corresponding stub
2585    const Register from     = c_rarg0;  // source array address
2586    const Register to       = c_rarg1;  // destination array address
2587    const Register count    = c_rarg2;  // elements count
2588
2589    // 'from', 'to', 'count' registers should be set in such order
2590    // since they are the same as 'src', 'src_pos', 'dst'.
2591
2592  __ BIND(L_copy_bytes);
2593    __ cmpl(rax_elsize, 0);
2594    __ jccb(Assembler::notEqual, L_copy_shorts);
2595    __ leaq(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2596    __ leaq(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2597    __ movslq(count, r11_length); // length
2598    __ jump(RuntimeAddress(byte_copy_entry));
2599
2600  __ BIND(L_copy_shorts);
2601    __ cmpl(rax_elsize, LogBytesPerShort);
2602    __ jccb(Assembler::notEqual, L_copy_ints);
2603    __ leaq(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2604    __ leaq(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2605    __ movslq(count, r11_length); // length
2606    __ jump(RuntimeAddress(short_copy_entry));
2607
2608  __ BIND(L_copy_ints);
2609    __ cmpl(rax_elsize, LogBytesPerInt);
2610    __ jccb(Assembler::notEqual, L_copy_longs);
2611    __ leaq(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2612    __ leaq(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2613    __ movslq(count, r11_length); // length
2614    __ jump(RuntimeAddress(int_copy_entry));
2615
2616  __ BIND(L_copy_longs);
2617#ifdef ASSERT
2618    { Label L;
2619      __ cmpl(rax_elsize, LogBytesPerLong);
2620      __ jcc(Assembler::equal, L);
2621      __ stop("must be long copy, but elsize is wrong");
2622      __ bind(L);
2623    }
2624#endif
2625    __ leaq(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2626    __ leaq(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2627    __ movslq(count, r11_length); // length
2628    __ jump(RuntimeAddress(long_copy_entry));
2629
2630    // objArrayKlass
2631  __ BIND(L_objArray);
2632    // live at this point:  r10_src_klass, src[_pos], dst[_pos]
2633
2634    Label L_plain_copy, L_checkcast_copy;
2635    //  test array classes for subtyping
2636    __ load_klass(r9_dst_klass, dst);
2637    __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
2638    __ jcc(Assembler::notEqual, L_checkcast_copy);
2639
2640    // Identically typed arrays can be copied without element-wise checks.
2641    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2642                           r10, L_failed);
2643
2644    __ leaq(from, Address(src, src_pos, TIMES_OOP,
2645                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2646    __ leaq(to,   Address(dst, dst_pos, TIMES_OOP,
2647                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2648    __ movslq(count, r11_length); // length
2649  __ BIND(L_plain_copy);
2650    __ jump(RuntimeAddress(oop_copy_entry));
2651
2652  __ BIND(L_checkcast_copy);
2653    // live at this point:  r10_src_klass, !r11_length
2654    {
2655      // assert(r11_length == C_RARG4); // will reload from here
2656      Register r11_dst_klass = r11;
2657      __ load_klass(r11_dst_klass, dst);
2658
2659      // Before looking at dst.length, make sure dst is also an objArray.
2660      __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
2661      __ jcc(Assembler::notEqual, L_failed);
2662
2663      // It is safe to examine both src.length and dst.length.
2664#ifndef _WIN64
2665      arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
2666                             rax, L_failed);
2667#else
2668      __ movl(r11_length, C_RARG4);     // reload
2669      arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2670                             rax, L_failed);
2671      __ load_klass(r11_dst_klass, dst); // reload
2672#endif
2673
2674      // Marshal the base address arguments now, freeing registers.
2675      __ leaq(from, Address(src, src_pos, TIMES_OOP,
2676                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2677      __ leaq(to,   Address(dst, dst_pos, TIMES_OOP,
2678                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2679      __ movl(count, C_RARG4);          // length (reloaded)
2680      Register sco_temp = c_rarg3;      // this register is free now
2681      assert_different_registers(from, to, count, sco_temp,
2682                                 r11_dst_klass, r10_src_klass);
2683      assert_clean_int(count, sco_temp);
2684
2685      // Generate the type check.
2686      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2687                        Klass::super_check_offset_offset_in_bytes());
2688      __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2689      assert_clean_int(sco_temp, rax);
2690      generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2691
2692      // Fetch destination element klass from the objArrayKlass header.
2693      int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2694                       objArrayKlass::element_klass_offset_in_bytes());
2695      __ movq(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2696      __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
2697      assert_clean_int(sco_temp, rax);
2698
2699      // the checkcast_copy loop needs two extra arguments:
2700      assert(c_rarg3 == sco_temp, "#3 already in place");
2701      __ movq(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
2702      __ jump(RuntimeAddress(checkcast_copy_entry));
2703    }
2704
2705  __ BIND(L_failed);
2706    __ xorq(rax, rax);
2707    __ notq(rax); // return -1
2708    __ leave();   // required for proper stackwalking of RuntimeStub frame
2709    __ ret(0);
2710
2711    return start;
2712  }
2713
2714#undef length_arg
2715
2716  void generate_arraycopy_stubs() {
2717    // Call the conjoint generation methods immediately after
2718    // the disjoint ones so that short branches from the former
2719    // to the latter can be generated.
2720    StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
2721    StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
2722
2723    StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
2724    StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
2725
2726    StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
2727    StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
2728
2729    StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
2730    StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
2731
2732
2733    if (UseCompressedOops) {
2734      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
2735      StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
2736    } else {
2737      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
2738      StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
2739    }
2740
2741    StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
2742    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
2743    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
2744
2745    // We don't generate specialized code for HeapWord-aligned source
2746    // arrays, so just use the code we've already generated
2747    StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2748    StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2749
2750    StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2751    StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2752
2753    StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2754    StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2755
2756    StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2757    StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2758
2759    StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2760    StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2761  }
2762
2763#undef __
2764#define __ masm->
2765
2766  // Continuation point for throwing of implicit exceptions that are
2767  // not handled in the current activation. Fabricates an exception
2768  // oop and initiates normal exception dispatching in this
2769  // frame. Since we need to preserve callee-saved values (currently
2770  // only for C2, but done for C1 as well) we need a callee-saved oop
2771  // map and therefore have to make these stubs into RuntimeStubs
2772  // rather than BufferBlobs.  If the compiler needs all registers to
2773  // be preserved between the fault point and the exception handler
2774  // then it must assume responsibility for that in
2775  // AbstractCompiler::continuation_for_implicit_null_exception or
2776  // continuation_for_implicit_division_by_zero_exception. All other
2777  // implicit exceptions (e.g., NullPointerException or
2778  // AbstractMethodError on entry) are either at call sites or
2779  // otherwise assume that stack unwinding will be initiated, so
2780  // caller saved registers were assumed volatile in the compiler.
2781  address generate_throw_exception(const char* name,
2782                                   address runtime_entry,
2783                                   bool restore_saved_exception_pc) {
2784    // Information about frame layout at time of blocking runtime call.
2785    // Note that we only have to preserve callee-saved registers since
2786    // the compilers are responsible for supplying a continuation point
2787    // if they expect all registers to be preserved.
2788    enum layout {
2789      rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2790      rbp_off2,
2791      return_off,
2792      return_off2,
2793      framesize // inclusive of return address
2794    };
2795
2796    int insts_size = 512;
2797    int locs_size  = 64;
2798
2799    CodeBuffer code(name, insts_size, locs_size);
2800    OopMapSet* oop_maps  = new OopMapSet();
2801    MacroAssembler* masm = new MacroAssembler(&code);
2802
2803    address start = __ pc();
2804
2805    // This is an inlined and slightly modified version of call_VM
2806    // which has the ability to fetch the return PC out of
2807    // thread-local storage and also sets up last_Java_sp slightly
2808    // differently than the real call_VM
2809    if (restore_saved_exception_pc) {
2810      __ movq(rax,
2811              Address(r15_thread,
2812                      in_bytes(JavaThread::saved_exception_pc_offset())));
2813      __ pushq(rax);
2814    }
2815
2816    __ enter(); // required for proper stackwalking of RuntimeStub frame
2817
2818    assert(is_even(framesize/2), "sp not 16-byte aligned");
2819
2820    // return address and rbp are already in place
2821    __ subq(rsp, (framesize-4) << LogBytesPerInt); // prolog
2822
2823    int frame_complete = __ pc() - start;
2824
2825    // Set up last_Java_sp and last_Java_fp
2826    __ set_last_Java_frame(rsp, rbp, NULL);
2827
2828    // Call runtime
2829    __ movq(c_rarg0, r15_thread);
2830    BLOCK_COMMENT("call runtime_entry");
2831    __ call(RuntimeAddress(runtime_entry));
2832
2833    // Generate oop map
2834    OopMap* map = new OopMap(framesize, 0);
2835
2836    oop_maps->add_gc_map(__ pc() - start, map);
2837
2838    __ reset_last_Java_frame(true, false);
2839
2840    __ leave(); // required for proper stackwalking of RuntimeStub frame
2841
2842    // check for pending exceptions
2843#ifdef ASSERT
2844    Label L;
2845    __ cmpq(Address(r15_thread, Thread::pending_exception_offset()),
2846            (int) NULL);
2847    __ jcc(Assembler::notEqual, L);
2848    __ should_not_reach_here();
2849    __ bind(L);
2850#endif // ASSERT
2851    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2852
2853
2854    // codeBlob framesize is in words (not VMRegImpl::slot_size)
2855    RuntimeStub* stub =
2856      RuntimeStub::new_runtime_stub(name,
2857                                    &code,
2858                                    frame_complete,
2859                                    (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2860                                    oop_maps, false);
2861    return stub->entry_point();
2862  }
2863
2864  // Initialization
2865  void generate_initial() {
2866    // Generates all stubs and initializes the entry points
2867
2868    // This platform-specific stub is needed by generate_call_stub()
2869    StubRoutines::amd64::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
2870
2871    // entry points that exist in all platforms Note: This is code
2872    // that could be shared among different platforms - however the
2873    // benefit seems to be smaller than the disadvantage of having a
2874    // much more complicated generator structure. See also comment in
2875    // stubRoutines.hpp.
2876
2877    StubRoutines::_forward_exception_entry = generate_forward_exception();
2878
2879    StubRoutines::_call_stub_entry =
2880      generate_call_stub(StubRoutines::_call_stub_return_address);
2881
2882    // is referenced by megamorphic call
2883    StubRoutines::_catch_exception_entry = generate_catch_exception();
2884
2885    // atomic calls
2886    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
2887    StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
2888    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
2889    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
2890    StubRoutines::_atomic_add_entry          = generate_atomic_add();
2891    StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
2892    StubRoutines::_fence_entry               = generate_orderaccess_fence();
2893
2894    StubRoutines::_handler_for_unsafe_access_entry =
2895      generate_handler_for_unsafe_access();
2896
2897    // platform dependent
2898    StubRoutines::amd64::_get_previous_fp_entry = generate_get_previous_fp();
2899
2900    StubRoutines::amd64::_verify_mxcsr_entry    = generate_verify_mxcsr();
2901  }
2902
2903  void generate_all() {
2904    // Generates all stubs and initializes the entry points
2905
2906    // These entry points require SharedInfo::stack0 to be set up in
2907    // non-core builds and need to be relocatable, so they each
2908    // fabricate a RuntimeStub internally.
2909    StubRoutines::_throw_AbstractMethodError_entry =
2910      generate_throw_exception("AbstractMethodError throw_exception",
2911                               CAST_FROM_FN_PTR(address,
2912                                                SharedRuntime::
2913                                                throw_AbstractMethodError),
2914                               false);
2915
2916    StubRoutines::_throw_IncompatibleClassChangeError_entry =
2917      generate_throw_exception("IncompatibleClassChangeError throw_exception",
2918                               CAST_FROM_FN_PTR(address,
2919                                                SharedRuntime::
2920                                                throw_IncompatibleClassChangeError),
2921                               false);
2922
2923    StubRoutines::_throw_ArithmeticException_entry =
2924      generate_throw_exception("ArithmeticException throw_exception",
2925                               CAST_FROM_FN_PTR(address,
2926                                                SharedRuntime::
2927                                                throw_ArithmeticException),
2928                               true);
2929
2930    StubRoutines::_throw_NullPointerException_entry =
2931      generate_throw_exception("NullPointerException throw_exception",
2932                               CAST_FROM_FN_PTR(address,
2933                                                SharedRuntime::
2934                                                throw_NullPointerException),
2935                               true);
2936
2937    StubRoutines::_throw_NullPointerException_at_call_entry =
2938      generate_throw_exception("NullPointerException at call throw_exception",
2939                               CAST_FROM_FN_PTR(address,
2940                                                SharedRuntime::
2941                                                throw_NullPointerException_at_call),
2942                               false);
2943
2944    StubRoutines::_throw_StackOverflowError_entry =
2945      generate_throw_exception("StackOverflowError throw_exception",
2946                               CAST_FROM_FN_PTR(address,
2947                                                SharedRuntime::
2948                                                throw_StackOverflowError),
2949                               false);
2950
2951    // entry points that are platform specific
2952    StubRoutines::amd64::_f2i_fixup = generate_f2i_fixup();
2953    StubRoutines::amd64::_f2l_fixup = generate_f2l_fixup();
2954    StubRoutines::amd64::_d2i_fixup = generate_d2i_fixup();
2955    StubRoutines::amd64::_d2l_fixup = generate_d2l_fixup();
2956
2957    StubRoutines::amd64::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
2958    StubRoutines::amd64::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
2959    StubRoutines::amd64::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
2960    StubRoutines::amd64::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
2961
2962    // support for verify_oop (must happen after universe_init)
2963    StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
2964
2965    // arraycopy stubs used by compilers
2966    generate_arraycopy_stubs();
2967  }
2968
2969 public:
2970  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2971    if (all) {
2972      generate_all();
2973    } else {
2974      generate_initial();
2975    }
2976  }
2977}; // end class declaration
2978
2979address StubGenerator::disjoint_byte_copy_entry  = NULL;
2980address StubGenerator::disjoint_short_copy_entry = NULL;
2981address StubGenerator::disjoint_int_copy_entry   = NULL;
2982address StubGenerator::disjoint_long_copy_entry  = NULL;
2983address StubGenerator::disjoint_oop_copy_entry   = NULL;
2984
2985address StubGenerator::byte_copy_entry  = NULL;
2986address StubGenerator::short_copy_entry = NULL;
2987address StubGenerator::int_copy_entry   = NULL;
2988address StubGenerator::long_copy_entry  = NULL;
2989address StubGenerator::oop_copy_entry   = NULL;
2990
2991address StubGenerator::checkcast_copy_entry = NULL;
2992
2993void StubGenerator_generate(CodeBuffer* code, bool all) {
2994  StubGenerator g(code, all);
2995}
2996