stubGenerator_x86_64.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_stubGenerator_x86_64.cpp.incl"
27
28// Declaration and definition of StubGenerator (no .hpp file).
29// For a more detailed description of the stub routine structure
30// see the comment in stubRoutines.hpp
31
32#define __ _masm->
33#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
34#define a__ ((Assembler*)_masm)->
35
36#ifdef PRODUCT
37#define BLOCK_COMMENT(str) /* nothing */
38#else
39#define BLOCK_COMMENT(str) __ block_comment(str)
40#endif
41
42#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
43const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
44
45// Stub Code definitions
46
47static address handle_unsafe_access() {
48  JavaThread* thread = JavaThread::current();
49  address pc = thread->saved_exception_pc();
50  // pc is the instruction which we must emulate
51  // doing a no-op is fine:  return garbage from the load
52  // therefore, compute npc
53  address npc = Assembler::locate_next_instruction(pc);
54
55  // request an async exception
56  thread->set_pending_unsafe_access_error();
57
58  // return address of next instruction to execute
59  return npc;
60}
61
62class StubGenerator: public StubCodeGenerator {
63 private:
64
65#ifdef PRODUCT
66#define inc_counter_np(counter) (0)
67#else
68  void inc_counter_np_(int& counter) {
69    __ incrementl(ExternalAddress((address)&counter));
70  }
71#define inc_counter_np(counter) \
72  BLOCK_COMMENT("inc_counter " #counter); \
73  inc_counter_np_(counter);
74#endif
75
76  // Call stubs are used to call Java from C
77  //
78  // Linux Arguments:
79  //    c_rarg0:   call wrapper address                   address
80  //    c_rarg1:   result                                 address
81  //    c_rarg2:   result type                            BasicType
82  //    c_rarg3:   method                                 methodOop
83  //    c_rarg4:   (interpreter) entry point              address
84  //    c_rarg5:   parameters                             intptr_t*
85  //    16(rbp): parameter size (in words)              int
86  //    24(rbp): thread                                 Thread*
87  //
88  //     [ return_from_Java     ] <--- rsp
89  //     [ argument word n      ]
90  //      ...
91  // -12 [ argument word 1      ]
92  // -11 [ saved r15            ] <--- rsp_after_call
93  // -10 [ saved r14            ]
94  //  -9 [ saved r13            ]
95  //  -8 [ saved r12            ]
96  //  -7 [ saved rbx            ]
97  //  -6 [ call wrapper         ]
98  //  -5 [ result               ]
99  //  -4 [ result type          ]
100  //  -3 [ method               ]
101  //  -2 [ entry point          ]
102  //  -1 [ parameters           ]
103  //   0 [ saved rbp            ] <--- rbp
104  //   1 [ return address       ]
105  //   2 [ parameter size       ]
106  //   3 [ thread               ]
107  //
108  // Windows Arguments:
109  //    c_rarg0:   call wrapper address                   address
110  //    c_rarg1:   result                                 address
111  //    c_rarg2:   result type                            BasicType
112  //    c_rarg3:   method                                 methodOop
113  //    48(rbp): (interpreter) entry point              address
114  //    56(rbp): parameters                             intptr_t*
115  //    64(rbp): parameter size (in words)              int
116  //    72(rbp): thread                                 Thread*
117  //
118  //     [ return_from_Java     ] <--- rsp
119  //     [ argument word n      ]
120  //      ...
121  //  -8 [ argument word 1      ]
122  //  -7 [ saved r15            ] <--- rsp_after_call
123  //  -6 [ saved r14            ]
124  //  -5 [ saved r13            ]
125  //  -4 [ saved r12            ]
126  //  -3 [ saved rdi            ]
127  //  -2 [ saved rsi            ]
128  //  -1 [ saved rbx            ]
129  //   0 [ saved rbp            ] <--- rbp
130  //   1 [ return address       ]
131  //   2 [ call wrapper         ]
132  //   3 [ result               ]
133  //   4 [ result type          ]
134  //   5 [ method               ]
135  //   6 [ entry point          ]
136  //   7 [ parameters           ]
137  //   8 [ parameter size       ]
138  //   9 [ thread               ]
139  //
140  //    Windows reserves the callers stack space for arguments 1-4.
141  //    We spill c_rarg0-c_rarg3 to this space.
142
143  // Call stub stack layout word offsets from rbp
144  enum call_stub_layout {
145#ifdef _WIN64
146    rsp_after_call_off = -7,
147    r15_off            = rsp_after_call_off,
148    r14_off            = -6,
149    r13_off            = -5,
150    r12_off            = -4,
151    rdi_off            = -3,
152    rsi_off            = -2,
153    rbx_off            = -1,
154    rbp_off            =  0,
155    retaddr_off        =  1,
156    call_wrapper_off   =  2,
157    result_off         =  3,
158    result_type_off    =  4,
159    method_off         =  5,
160    entry_point_off    =  6,
161    parameters_off     =  7,
162    parameter_size_off =  8,
163    thread_off         =  9
164#else
165    rsp_after_call_off = -12,
166    mxcsr_off          = rsp_after_call_off,
167    r15_off            = -11,
168    r14_off            = -10,
169    r13_off            = -9,
170    r12_off            = -8,
171    rbx_off            = -7,
172    call_wrapper_off   = -6,
173    result_off         = -5,
174    result_type_off    = -4,
175    method_off         = -3,
176    entry_point_off    = -2,
177    parameters_off     = -1,
178    rbp_off            =  0,
179    retaddr_off        =  1,
180    parameter_size_off =  2,
181    thread_off         =  3
182#endif
183  };
184
185  address generate_call_stub(address& return_address) {
186    assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
187           (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
188           "adjust this code");
189    StubCodeMark mark(this, "StubRoutines", "call_stub");
190    address start = __ pc();
191
192    // same as in generate_catch_exception()!
193    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
194
195    const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
196    const Address result        (rbp, result_off         * wordSize);
197    const Address result_type   (rbp, result_type_off    * wordSize);
198    const Address method        (rbp, method_off         * wordSize);
199    const Address entry_point   (rbp, entry_point_off    * wordSize);
200    const Address parameters    (rbp, parameters_off     * wordSize);
201    const Address parameter_size(rbp, parameter_size_off * wordSize);
202
203    // same as in generate_catch_exception()!
204    const Address thread        (rbp, thread_off         * wordSize);
205
206    const Address r15_save(rbp, r15_off * wordSize);
207    const Address r14_save(rbp, r14_off * wordSize);
208    const Address r13_save(rbp, r13_off * wordSize);
209    const Address r12_save(rbp, r12_off * wordSize);
210    const Address rbx_save(rbp, rbx_off * wordSize);
211
212    // stub code
213    __ enter();
214    __ subptr(rsp, -rsp_after_call_off * wordSize);
215
216    // save register parameters
217#ifndef _WIN64
218    __ movptr(parameters,   c_rarg5); // parameters
219    __ movptr(entry_point,  c_rarg4); // entry_point
220#endif
221
222    __ movptr(method,       c_rarg3); // method
223    __ movl(result_type,  c_rarg2);   // result type
224    __ movptr(result,       c_rarg1); // result
225    __ movptr(call_wrapper, c_rarg0); // call wrapper
226
227    // save regs belonging to calling function
228    __ movptr(rbx_save, rbx);
229    __ movptr(r12_save, r12);
230    __ movptr(r13_save, r13);
231    __ movptr(r14_save, r14);
232    __ movptr(r15_save, r15);
233
234#ifdef _WIN64
235    const Address rdi_save(rbp, rdi_off * wordSize);
236    const Address rsi_save(rbp, rsi_off * wordSize);
237
238    __ movptr(rsi_save, rsi);
239    __ movptr(rdi_save, rdi);
240#else
241    const Address mxcsr_save(rbp, mxcsr_off * wordSize);
242    {
243      Label skip_ldmx;
244      __ stmxcsr(mxcsr_save);
245      __ movl(rax, mxcsr_save);
246      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
247      ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
248      __ cmp32(rax, mxcsr_std);
249      __ jcc(Assembler::equal, skip_ldmx);
250      __ ldmxcsr(mxcsr_std);
251      __ bind(skip_ldmx);
252    }
253#endif
254
255    // Load up thread register
256    __ movptr(r15_thread, thread);
257    __ reinit_heapbase();
258
259#ifdef ASSERT
260    // make sure we have no pending exceptions
261    {
262      Label L;
263      __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
264      __ jcc(Assembler::equal, L);
265      __ stop("StubRoutines::call_stub: entered with pending exception");
266      __ bind(L);
267    }
268#endif
269
270    // pass parameters if any
271    BLOCK_COMMENT("pass parameters if any");
272    Label parameters_done;
273    __ movl(c_rarg3, parameter_size);
274    __ testl(c_rarg3, c_rarg3);
275    __ jcc(Assembler::zero, parameters_done);
276
277    Label loop;
278    __ movptr(c_rarg2, parameters);       // parameter pointer
279    __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
280    __ BIND(loop);
281    __ movptr(rax, Address(c_rarg2, 0));// get parameter
282    __ addptr(c_rarg2, wordSize);       // advance to next parameter
283    __ decrementl(c_rarg1);             // decrement counter
284    __ push(rax);                       // pass parameter
285    __ jcc(Assembler::notZero, loop);
286
287    // call Java function
288    __ BIND(parameters_done);
289    __ movptr(rbx, method);             // get methodOop
290    __ movptr(c_rarg1, entry_point);    // get entry_point
291    __ mov(r13, rsp);                   // set sender sp
292    BLOCK_COMMENT("call Java function");
293    __ call(c_rarg1);
294
295    BLOCK_COMMENT("call_stub_return_address:");
296    return_address = __ pc();
297
298    // store result depending on type (everything that is not
299    // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
300    __ movptr(c_rarg0, result);
301    Label is_long, is_float, is_double, exit;
302    __ movl(c_rarg1, result_type);
303    __ cmpl(c_rarg1, T_OBJECT);
304    __ jcc(Assembler::equal, is_long);
305    __ cmpl(c_rarg1, T_LONG);
306    __ jcc(Assembler::equal, is_long);
307    __ cmpl(c_rarg1, T_FLOAT);
308    __ jcc(Assembler::equal, is_float);
309    __ cmpl(c_rarg1, T_DOUBLE);
310    __ jcc(Assembler::equal, is_double);
311
312    // handle T_INT case
313    __ movl(Address(c_rarg0, 0), rax);
314
315    __ BIND(exit);
316
317    // pop parameters
318    __ lea(rsp, rsp_after_call);
319
320#ifdef ASSERT
321    // verify that threads correspond
322    {
323      Label L, S;
324      __ cmpptr(r15_thread, thread);
325      __ jcc(Assembler::notEqual, S);
326      __ get_thread(rbx);
327      __ cmpptr(r15_thread, rbx);
328      __ jcc(Assembler::equal, L);
329      __ bind(S);
330      __ jcc(Assembler::equal, L);
331      __ stop("StubRoutines::call_stub: threads must correspond");
332      __ bind(L);
333    }
334#endif
335
336    // restore regs belonging to calling function
337    __ movptr(r15, r15_save);
338    __ movptr(r14, r14_save);
339    __ movptr(r13, r13_save);
340    __ movptr(r12, r12_save);
341    __ movptr(rbx, rbx_save);
342
343#ifdef _WIN64
344    __ movptr(rdi, rdi_save);
345    __ movptr(rsi, rsi_save);
346#else
347    __ ldmxcsr(mxcsr_save);
348#endif
349
350    // restore rsp
351    __ addptr(rsp, -rsp_after_call_off * wordSize);
352
353    // return
354    __ pop(rbp);
355    __ ret(0);
356
357    // handle return types different from T_INT
358    __ BIND(is_long);
359    __ movq(Address(c_rarg0, 0), rax);
360    __ jmp(exit);
361
362    __ BIND(is_float);
363    __ movflt(Address(c_rarg0, 0), xmm0);
364    __ jmp(exit);
365
366    __ BIND(is_double);
367    __ movdbl(Address(c_rarg0, 0), xmm0);
368    __ jmp(exit);
369
370    return start;
371  }
372
373  // Return point for a Java call if there's an exception thrown in
374  // Java code.  The exception is caught and transformed into a
375  // pending exception stored in JavaThread that can be tested from
376  // within the VM.
377  //
378  // Note: Usually the parameters are removed by the callee. In case
379  // of an exception crossing an activation frame boundary, that is
380  // not the case if the callee is compiled code => need to setup the
381  // rsp.
382  //
383  // rax: exception oop
384
385  address generate_catch_exception() {
386    StubCodeMark mark(this, "StubRoutines", "catch_exception");
387    address start = __ pc();
388
389    // same as in generate_call_stub():
390    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
391    const Address thread        (rbp, thread_off         * wordSize);
392
393#ifdef ASSERT
394    // verify that threads correspond
395    {
396      Label L, S;
397      __ cmpptr(r15_thread, thread);
398      __ jcc(Assembler::notEqual, S);
399      __ get_thread(rbx);
400      __ cmpptr(r15_thread, rbx);
401      __ jcc(Assembler::equal, L);
402      __ bind(S);
403      __ stop("StubRoutines::catch_exception: threads must correspond");
404      __ bind(L);
405    }
406#endif
407
408    // set pending exception
409    __ verify_oop(rax);
410
411    __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
412    __ lea(rscratch1, ExternalAddress((address)__FILE__));
413    __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
414    __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
415
416    // complete return to VM
417    assert(StubRoutines::_call_stub_return_address != NULL,
418           "_call_stub_return_address must have been generated before");
419    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
420
421    return start;
422  }
423
424  // Continuation point for runtime calls returning with a pending
425  // exception.  The pending exception check happened in the runtime
426  // or native call stub.  The pending exception in Thread is
427  // converted into a Java-level exception.
428  //
429  // Contract with Java-level exception handlers:
430  // rax: exception
431  // rdx: throwing pc
432  //
433  // NOTE: At entry of this stub, exception-pc must be on stack !!
434
435  address generate_forward_exception() {
436    StubCodeMark mark(this, "StubRoutines", "forward exception");
437    address start = __ pc();
438
439    // Upon entry, the sp points to the return address returning into
440    // Java (interpreted or compiled) code; i.e., the return address
441    // becomes the throwing pc.
442    //
443    // Arguments pushed before the runtime call are still on the stack
444    // but the exception handler will reset the stack pointer ->
445    // ignore them.  A potential result in registers can be ignored as
446    // well.
447
448#ifdef ASSERT
449    // make sure this code is only executed if there is a pending exception
450    {
451      Label L;
452      __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
453      __ jcc(Assembler::notEqual, L);
454      __ stop("StubRoutines::forward exception: no pending exception (1)");
455      __ bind(L);
456    }
457#endif
458
459    // compute exception handler into rbx
460    __ movptr(c_rarg0, Address(rsp, 0));
461    BLOCK_COMMENT("call exception_handler_for_return_address");
462    __ call_VM_leaf(CAST_FROM_FN_PTR(address,
463                         SharedRuntime::exception_handler_for_return_address),
464                    r15_thread, c_rarg0);
465    __ mov(rbx, rax);
466
467    // setup rax & rdx, remove return address & clear pending exception
468    __ pop(rdx);
469    __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
470    __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
471
472#ifdef ASSERT
473    // make sure exception is set
474    {
475      Label L;
476      __ testptr(rax, rax);
477      __ jcc(Assembler::notEqual, L);
478      __ stop("StubRoutines::forward exception: no pending exception (2)");
479      __ bind(L);
480    }
481#endif
482
483    // continue at exception handler (return address removed)
484    // rax: exception
485    // rbx: exception handler
486    // rdx: throwing pc
487    __ verify_oop(rax);
488    __ jmp(rbx);
489
490    return start;
491  }
492
493  // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
494  //
495  // Arguments :
496  //    c_rarg0: exchange_value
497  //    c_rarg0: dest
498  //
499  // Result:
500  //    *dest <- ex, return (orig *dest)
501  address generate_atomic_xchg() {
502    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
503    address start = __ pc();
504
505    __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
506    __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
507    __ ret(0);
508
509    return start;
510  }
511
512  // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
513  //
514  // Arguments :
515  //    c_rarg0: exchange_value
516  //    c_rarg1: dest
517  //
518  // Result:
519  //    *dest <- ex, return (orig *dest)
520  address generate_atomic_xchg_ptr() {
521    StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
522    address start = __ pc();
523
524    __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
525    __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
526    __ ret(0);
527
528    return start;
529  }
530
531  // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
532  //                                         jint compare_value)
533  //
534  // Arguments :
535  //    c_rarg0: exchange_value
536  //    c_rarg1: dest
537  //    c_rarg2: compare_value
538  //
539  // Result:
540  //    if ( compare_value == *dest ) {
541  //       *dest = exchange_value
542  //       return compare_value;
543  //    else
544  //       return *dest;
545  address generate_atomic_cmpxchg() {
546    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
547    address start = __ pc();
548
549    __ movl(rax, c_rarg2);
550   if ( os::is_MP() ) __ lock();
551    __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
552    __ ret(0);
553
554    return start;
555  }
556
557  // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
558  //                                             volatile jlong* dest,
559  //                                             jlong compare_value)
560  // Arguments :
561  //    c_rarg0: exchange_value
562  //    c_rarg1: dest
563  //    c_rarg2: compare_value
564  //
565  // Result:
566  //    if ( compare_value == *dest ) {
567  //       *dest = exchange_value
568  //       return compare_value;
569  //    else
570  //       return *dest;
571  address generate_atomic_cmpxchg_long() {
572    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
573    address start = __ pc();
574
575    __ movq(rax, c_rarg2);
576   if ( os::is_MP() ) __ lock();
577    __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
578    __ ret(0);
579
580    return start;
581  }
582
583  // Support for jint atomic::add(jint add_value, volatile jint* dest)
584  //
585  // Arguments :
586  //    c_rarg0: add_value
587  //    c_rarg1: dest
588  //
589  // Result:
590  //    *dest += add_value
591  //    return *dest;
592  address generate_atomic_add() {
593    StubCodeMark mark(this, "StubRoutines", "atomic_add");
594    address start = __ pc();
595
596    __ movl(rax, c_rarg0);
597   if ( os::is_MP() ) __ lock();
598    __ xaddl(Address(c_rarg1, 0), c_rarg0);
599    __ addl(rax, c_rarg0);
600    __ ret(0);
601
602    return start;
603  }
604
605  // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
606  //
607  // Arguments :
608  //    c_rarg0: add_value
609  //    c_rarg1: dest
610  //
611  // Result:
612  //    *dest += add_value
613  //    return *dest;
614  address generate_atomic_add_ptr() {
615    StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
616    address start = __ pc();
617
618    __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
619   if ( os::is_MP() ) __ lock();
620    __ xaddptr(Address(c_rarg1, 0), c_rarg0);
621    __ addptr(rax, c_rarg0);
622    __ ret(0);
623
624    return start;
625  }
626
627  // Support for intptr_t OrderAccess::fence()
628  //
629  // Arguments :
630  //
631  // Result:
632  address generate_orderaccess_fence() {
633    StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
634    address start = __ pc();
635    __ membar(Assembler::StoreLoad);
636    __ ret(0);
637
638    return start;
639  }
640
641  // Support for intptr_t get_previous_fp()
642  //
643  // This routine is used to find the previous frame pointer for the
644  // caller (current_frame_guess). This is used as part of debugging
645  // ps() is seemingly lost trying to find frames.
646  // This code assumes that caller current_frame_guess) has a frame.
647  address generate_get_previous_fp() {
648    StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
649    const Address old_fp(rbp, 0);
650    const Address older_fp(rax, 0);
651    address start = __ pc();
652
653    __ enter();
654    __ movptr(rax, old_fp); // callers fp
655    __ movptr(rax, older_fp); // the frame for ps()
656    __ pop(rbp);
657    __ ret(0);
658
659    return start;
660  }
661
662  //----------------------------------------------------------------------------------------------------
663  // Support for void verify_mxcsr()
664  //
665  // This routine is used with -Xcheck:jni to verify that native
666  // JNI code does not return to Java code without restoring the
667  // MXCSR register to our expected state.
668
669  address generate_verify_mxcsr() {
670    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
671    address start = __ pc();
672
673    const Address mxcsr_save(rsp, 0);
674
675    if (CheckJNICalls) {
676      Label ok_ret;
677      __ push(rax);
678      __ subptr(rsp, wordSize);      // allocate a temp location
679      __ stmxcsr(mxcsr_save);
680      __ movl(rax, mxcsr_save);
681      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
682      __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
683      __ jcc(Assembler::equal, ok_ret);
684
685      __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
686
687      __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
688
689      __ bind(ok_ret);
690      __ addptr(rsp, wordSize);
691      __ pop(rax);
692    }
693
694    __ ret(0);
695
696    return start;
697  }
698
699  address generate_f2i_fixup() {
700    StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
701    Address inout(rsp, 5 * wordSize); // return address + 4 saves
702
703    address start = __ pc();
704
705    Label L;
706
707    __ push(rax);
708    __ push(c_rarg3);
709    __ push(c_rarg2);
710    __ push(c_rarg1);
711
712    __ movl(rax, 0x7f800000);
713    __ xorl(c_rarg3, c_rarg3);
714    __ movl(c_rarg2, inout);
715    __ movl(c_rarg1, c_rarg2);
716    __ andl(c_rarg1, 0x7fffffff);
717    __ cmpl(rax, c_rarg1); // NaN? -> 0
718    __ jcc(Assembler::negative, L);
719    __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
720    __ movl(c_rarg3, 0x80000000);
721    __ movl(rax, 0x7fffffff);
722    __ cmovl(Assembler::positive, c_rarg3, rax);
723
724    __ bind(L);
725    __ movptr(inout, c_rarg3);
726
727    __ pop(c_rarg1);
728    __ pop(c_rarg2);
729    __ pop(c_rarg3);
730    __ pop(rax);
731
732    __ ret(0);
733
734    return start;
735  }
736
737  address generate_f2l_fixup() {
738    StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
739    Address inout(rsp, 5 * wordSize); // return address + 4 saves
740    address start = __ pc();
741
742    Label L;
743
744    __ push(rax);
745    __ push(c_rarg3);
746    __ push(c_rarg2);
747    __ push(c_rarg1);
748
749    __ movl(rax, 0x7f800000);
750    __ xorl(c_rarg3, c_rarg3);
751    __ movl(c_rarg2, inout);
752    __ movl(c_rarg1, c_rarg2);
753    __ andl(c_rarg1, 0x7fffffff);
754    __ cmpl(rax, c_rarg1); // NaN? -> 0
755    __ jcc(Assembler::negative, L);
756    __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
757    __ mov64(c_rarg3, 0x8000000000000000);
758    __ mov64(rax, 0x7fffffffffffffff);
759    __ cmov(Assembler::positive, c_rarg3, rax);
760
761    __ bind(L);
762    __ movptr(inout, c_rarg3);
763
764    __ pop(c_rarg1);
765    __ pop(c_rarg2);
766    __ pop(c_rarg3);
767    __ pop(rax);
768
769    __ ret(0);
770
771    return start;
772  }
773
774  address generate_d2i_fixup() {
775    StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
776    Address inout(rsp, 6 * wordSize); // return address + 5 saves
777
778    address start = __ pc();
779
780    Label L;
781
782    __ push(rax);
783    __ push(c_rarg3);
784    __ push(c_rarg2);
785    __ push(c_rarg1);
786    __ push(c_rarg0);
787
788    __ movl(rax, 0x7ff00000);
789    __ movq(c_rarg2, inout);
790    __ movl(c_rarg3, c_rarg2);
791    __ mov(c_rarg1, c_rarg2);
792    __ mov(c_rarg0, c_rarg2);
793    __ negl(c_rarg3);
794    __ shrptr(c_rarg1, 0x20);
795    __ orl(c_rarg3, c_rarg2);
796    __ andl(c_rarg1, 0x7fffffff);
797    __ xorl(c_rarg2, c_rarg2);
798    __ shrl(c_rarg3, 0x1f);
799    __ orl(c_rarg1, c_rarg3);
800    __ cmpl(rax, c_rarg1);
801    __ jcc(Assembler::negative, L); // NaN -> 0
802    __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
803    __ movl(c_rarg2, 0x80000000);
804    __ movl(rax, 0x7fffffff);
805    __ cmov(Assembler::positive, c_rarg2, rax);
806
807    __ bind(L);
808    __ movptr(inout, c_rarg2);
809
810    __ pop(c_rarg0);
811    __ pop(c_rarg1);
812    __ pop(c_rarg2);
813    __ pop(c_rarg3);
814    __ pop(rax);
815
816    __ ret(0);
817
818    return start;
819  }
820
821  address generate_d2l_fixup() {
822    StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
823    Address inout(rsp, 6 * wordSize); // return address + 5 saves
824
825    address start = __ pc();
826
827    Label L;
828
829    __ push(rax);
830    __ push(c_rarg3);
831    __ push(c_rarg2);
832    __ push(c_rarg1);
833    __ push(c_rarg0);
834
835    __ movl(rax, 0x7ff00000);
836    __ movq(c_rarg2, inout);
837    __ movl(c_rarg3, c_rarg2);
838    __ mov(c_rarg1, c_rarg2);
839    __ mov(c_rarg0, c_rarg2);
840    __ negl(c_rarg3);
841    __ shrptr(c_rarg1, 0x20);
842    __ orl(c_rarg3, c_rarg2);
843    __ andl(c_rarg1, 0x7fffffff);
844    __ xorl(c_rarg2, c_rarg2);
845    __ shrl(c_rarg3, 0x1f);
846    __ orl(c_rarg1, c_rarg3);
847    __ cmpl(rax, c_rarg1);
848    __ jcc(Assembler::negative, L); // NaN -> 0
849    __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
850    __ mov64(c_rarg2, 0x8000000000000000);
851    __ mov64(rax, 0x7fffffffffffffff);
852    __ cmovq(Assembler::positive, c_rarg2, rax);
853
854    __ bind(L);
855    __ movq(inout, c_rarg2);
856
857    __ pop(c_rarg0);
858    __ pop(c_rarg1);
859    __ pop(c_rarg2);
860    __ pop(c_rarg3);
861    __ pop(rax);
862
863    __ ret(0);
864
865    return start;
866  }
867
868  address generate_fp_mask(const char *stub_name, int64_t mask) {
869    __ align(CodeEntryAlignment);
870    StubCodeMark mark(this, "StubRoutines", stub_name);
871    address start = __ pc();
872
873    __ emit_data64( mask, relocInfo::none );
874    __ emit_data64( mask, relocInfo::none );
875
876    return start;
877  }
878
879  // The following routine generates a subroutine to throw an
880  // asynchronous UnknownError when an unsafe access gets a fault that
881  // could not be reasonably prevented by the programmer.  (Example:
882  // SIGBUS/OBJERR.)
883  address generate_handler_for_unsafe_access() {
884    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
885    address start = __ pc();
886
887    __ push(0);                       // hole for return address-to-be
888    __ pusha();                       // push registers
889    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
890
891    __ subptr(rsp, frame::arg_reg_save_area_bytes);
892    BLOCK_COMMENT("call handle_unsafe_access");
893    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
894    __ addptr(rsp, frame::arg_reg_save_area_bytes);
895
896    __ movptr(next_pc, rax);          // stuff next address
897    __ popa();
898    __ ret(0);                        // jump to next address
899
900    return start;
901  }
902
903  // Non-destructive plausibility checks for oops
904  //
905  // Arguments:
906  //    all args on stack!
907  //
908  // Stack after saving c_rarg3:
909  //    [tos + 0]: saved c_rarg3
910  //    [tos + 1]: saved c_rarg2
911  //    [tos + 2]: saved r12 (several TemplateTable methods use it)
912  //    [tos + 3]: saved flags
913  //    [tos + 4]: return address
914  //  * [tos + 5]: error message (char*)
915  //  * [tos + 6]: object to verify (oop)
916  //  * [tos + 7]: saved rax - saved by caller and bashed
917  //  * = popped on exit
918  address generate_verify_oop() {
919    StubCodeMark mark(this, "StubRoutines", "verify_oop");
920    address start = __ pc();
921
922    Label exit, error;
923
924    __ pushf();
925    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
926
927    __ push(r12);
928
929    // save c_rarg2 and c_rarg3
930    __ push(c_rarg2);
931    __ push(c_rarg3);
932
933    enum {
934           // After previous pushes.
935           oop_to_verify = 6 * wordSize,
936           saved_rax     = 7 * wordSize,
937
938           // Before the call to MacroAssembler::debug(), see below.
939           return_addr   = 16 * wordSize,
940           error_msg     = 17 * wordSize
941    };
942
943    // get object
944    __ movptr(rax, Address(rsp, oop_to_verify));
945
946    // make sure object is 'reasonable'
947    __ testptr(rax, rax);
948    __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
949    // Check if the oop is in the right area of memory
950    __ movptr(c_rarg2, rax);
951    __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
952    __ andptr(c_rarg2, c_rarg3);
953    __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
954    __ cmpptr(c_rarg2, c_rarg3);
955    __ jcc(Assembler::notZero, error);
956
957    // set r12 to heapbase for load_klass()
958    __ reinit_heapbase();
959
960    // make sure klass is 'reasonable'
961    __ load_klass(rax, rax);  // get klass
962    __ testptr(rax, rax);
963    __ jcc(Assembler::zero, error); // if klass is NULL it is broken
964    // Check if the klass is in the right area of memory
965    __ mov(c_rarg2, rax);
966    __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
967    __ andptr(c_rarg2, c_rarg3);
968    __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
969    __ cmpptr(c_rarg2, c_rarg3);
970    __ jcc(Assembler::notZero, error);
971
972    // make sure klass' klass is 'reasonable'
973    __ load_klass(rax, rax);
974    __ testptr(rax, rax);
975    __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
976    // Check if the klass' klass is in the right area of memory
977    __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
978    __ andptr(rax, c_rarg3);
979    __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
980    __ cmpptr(rax, c_rarg3);
981    __ jcc(Assembler::notZero, error);
982
983    // return if everything seems ok
984    __ bind(exit);
985    __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
986    __ pop(c_rarg3);                             // restore c_rarg3
987    __ pop(c_rarg2);                             // restore c_rarg2
988    __ pop(r12);                                 // restore r12
989    __ popf();                                   // restore flags
990    __ ret(3 * wordSize);                        // pop caller saved stuff
991
992    // handle errors
993    __ bind(error);
994    __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
995    __ pop(c_rarg3);                             // get saved c_rarg3 back
996    __ pop(c_rarg2);                             // get saved c_rarg2 back
997    __ pop(r12);                                 // get saved r12 back
998    __ popf();                                   // get saved flags off stack --
999                                                 // will be ignored
1000
1001    __ pusha();                                  // push registers
1002                                                 // (rip is already
1003                                                 // already pushed)
1004    // debug(char* msg, int64_t pc, int64_t regs[])
1005    // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1006    // pushed all the registers, so now the stack looks like:
1007    //     [tos +  0] 16 saved registers
1008    //     [tos + 16] return address
1009    //   * [tos + 17] error message (char*)
1010    //   * [tos + 18] object to verify (oop)
1011    //   * [tos + 19] saved rax - saved by caller and bashed
1012    //   * = popped on exit
1013
1014    __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1015    __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1016    __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1017    __ mov(r12, rsp);                               // remember rsp
1018    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1019    __ andptr(rsp, -16);                            // align stack as required by ABI
1020    BLOCK_COMMENT("call MacroAssembler::debug");
1021    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1022    __ mov(rsp, r12);                               // restore rsp
1023    __ popa();                                      // pop registers (includes r12)
1024    __ ret(3 * wordSize);                           // pop caller saved stuff
1025
1026    return start;
1027  }
1028
1029  static address disjoint_byte_copy_entry;
1030  static address disjoint_short_copy_entry;
1031  static address disjoint_int_copy_entry;
1032  static address disjoint_long_copy_entry;
1033  static address disjoint_oop_copy_entry;
1034
1035  static address byte_copy_entry;
1036  static address short_copy_entry;
1037  static address int_copy_entry;
1038  static address long_copy_entry;
1039  static address oop_copy_entry;
1040
1041  static address checkcast_copy_entry;
1042
1043  //
1044  // Verify that a register contains clean 32-bits positive value
1045  // (high 32-bits are 0) so it could be used in 64-bits shifts.
1046  //
1047  //  Input:
1048  //    Rint  -  32-bits value
1049  //    Rtmp  -  scratch
1050  //
1051  void assert_clean_int(Register Rint, Register Rtmp) {
1052#ifdef ASSERT
1053    Label L;
1054    assert_different_registers(Rtmp, Rint);
1055    __ movslq(Rtmp, Rint);
1056    __ cmpq(Rtmp, Rint);
1057    __ jcc(Assembler::equal, L);
1058    __ stop("high 32-bits of int value are not 0");
1059    __ bind(L);
1060#endif
1061  }
1062
1063  //  Generate overlap test for array copy stubs
1064  //
1065  //  Input:
1066  //     c_rarg0 - from
1067  //     c_rarg1 - to
1068  //     c_rarg2 - element count
1069  //
1070  //  Output:
1071  //     rax   - &from[element count - 1]
1072  //
1073  void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1074    assert(no_overlap_target != NULL, "must be generated");
1075    array_overlap_test(no_overlap_target, NULL, sf);
1076  }
1077  void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1078    array_overlap_test(NULL, &L_no_overlap, sf);
1079  }
1080  void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1081    const Register from     = c_rarg0;
1082    const Register to       = c_rarg1;
1083    const Register count    = c_rarg2;
1084    const Register end_from = rax;
1085
1086    __ cmpptr(to, from);
1087    __ lea(end_from, Address(from, count, sf, 0));
1088    if (NOLp == NULL) {
1089      ExternalAddress no_overlap(no_overlap_target);
1090      __ jump_cc(Assembler::belowEqual, no_overlap);
1091      __ cmpptr(to, end_from);
1092      __ jump_cc(Assembler::aboveEqual, no_overlap);
1093    } else {
1094      __ jcc(Assembler::belowEqual, (*NOLp));
1095      __ cmpptr(to, end_from);
1096      __ jcc(Assembler::aboveEqual, (*NOLp));
1097    }
1098  }
1099
1100  // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1101  //
1102  // Outputs:
1103  //    rdi - rcx
1104  //    rsi - rdx
1105  //    rdx - r8
1106  //    rcx - r9
1107  //
1108  // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1109  // are non-volatile.  r9 and r10 should not be used by the caller.
1110  //
1111  void setup_arg_regs(int nargs = 3) {
1112    const Register saved_rdi = r9;
1113    const Register saved_rsi = r10;
1114    assert(nargs == 3 || nargs == 4, "else fix");
1115#ifdef _WIN64
1116    assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1117           "unexpected argument registers");
1118    if (nargs >= 4)
1119      __ mov(rax, r9);  // r9 is also saved_rdi
1120    __ movptr(saved_rdi, rdi);
1121    __ movptr(saved_rsi, rsi);
1122    __ mov(rdi, rcx); // c_rarg0
1123    __ mov(rsi, rdx); // c_rarg1
1124    __ mov(rdx, r8);  // c_rarg2
1125    if (nargs >= 4)
1126      __ mov(rcx, rax); // c_rarg3 (via rax)
1127#else
1128    assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1129           "unexpected argument registers");
1130#endif
1131  }
1132
1133  void restore_arg_regs() {
1134    const Register saved_rdi = r9;
1135    const Register saved_rsi = r10;
1136#ifdef _WIN64
1137    __ movptr(rdi, saved_rdi);
1138    __ movptr(rsi, saved_rsi);
1139#endif
1140  }
1141
1142  // Generate code for an array write pre barrier
1143  //
1144  //     addr    -  starting address
1145  //     count    -  element count
1146  //
1147  //     Destroy no registers!
1148  //
1149  void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
1150    BarrierSet* bs = Universe::heap()->barrier_set();
1151    switch (bs->kind()) {
1152      case BarrierSet::G1SATBCT:
1153      case BarrierSet::G1SATBCTLogging:
1154        {
1155          __ pusha();                      // push registers
1156          if (count == c_rarg0) {
1157            if (addr == c_rarg1) {
1158              // exactly backwards!!
1159              __ xchgptr(c_rarg1, c_rarg0);
1160            } else {
1161              __ movptr(c_rarg1, count);
1162              __ movptr(c_rarg0, addr);
1163            }
1164
1165          } else {
1166            __ movptr(c_rarg0, addr);
1167            __ movptr(c_rarg1, count);
1168          }
1169          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1170          __ popa();
1171        }
1172        break;
1173      case BarrierSet::CardTableModRef:
1174      case BarrierSet::CardTableExtension:
1175      case BarrierSet::ModRef:
1176        break;
1177      default:
1178        ShouldNotReachHere();
1179
1180    }
1181  }
1182
1183  //
1184  // Generate code for an array write post barrier
1185  //
1186  //  Input:
1187  //     start    - register containing starting address of destination array
1188  //     end      - register containing ending address of destination array
1189  //     scratch  - scratch register
1190  //
1191  //  The input registers are overwritten.
1192  //  The ending address is inclusive.
1193  void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1194    assert_different_registers(start, end, scratch);
1195    BarrierSet* bs = Universe::heap()->barrier_set();
1196    switch (bs->kind()) {
1197      case BarrierSet::G1SATBCT:
1198      case BarrierSet::G1SATBCTLogging:
1199
1200        {
1201          __ pusha();                      // push registers (overkill)
1202          // must compute element count unless barrier set interface is changed (other platforms supply count)
1203          assert_different_registers(start, end, scratch);
1204          __ lea(scratch, Address(end, BytesPerHeapOop));
1205          __ subptr(scratch, start);               // subtract start to get #bytes
1206          __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
1207          __ mov(c_rarg0, start);
1208          __ mov(c_rarg1, scratch);
1209          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1210          __ popa();
1211        }
1212        break;
1213      case BarrierSet::CardTableModRef:
1214      case BarrierSet::CardTableExtension:
1215        {
1216          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1217          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1218
1219          Label L_loop;
1220
1221           __ shrptr(start, CardTableModRefBS::card_shift);
1222           __ addptr(end, BytesPerHeapOop);
1223           __ shrptr(end, CardTableModRefBS::card_shift);
1224           __ subptr(end, start); // number of bytes to copy
1225
1226          intptr_t disp = (intptr_t) ct->byte_map_base;
1227          if (__ is_simm32(disp)) {
1228            Address cardtable(noreg, noreg, Address::no_scale, disp);
1229            __ lea(scratch, cardtable);
1230          } else {
1231            ExternalAddress cardtable((address)disp);
1232            __ lea(scratch, cardtable);
1233          }
1234
1235          const Register count = end; // 'end' register contains bytes count now
1236          __ addptr(start, scratch);
1237        __ BIND(L_loop);
1238          __ movb(Address(start, count, Address::times_1), 0);
1239          __ decrement(count);
1240          __ jcc(Assembler::greaterEqual, L_loop);
1241        }
1242        break;
1243      default:
1244        ShouldNotReachHere();
1245
1246    }
1247  }
1248
1249
1250  // Copy big chunks forward
1251  //
1252  // Inputs:
1253  //   end_from     - source arrays end address
1254  //   end_to       - destination array end address
1255  //   qword_count  - 64-bits element count, negative
1256  //   to           - scratch
1257  //   L_copy_32_bytes - entry label
1258  //   L_copy_8_bytes  - exit  label
1259  //
1260  void copy_32_bytes_forward(Register end_from, Register end_to,
1261                             Register qword_count, Register to,
1262                             Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1263    DEBUG_ONLY(__ stop("enter at entry label, not here"));
1264    Label L_loop;
1265    __ align(OptoLoopAlignment);
1266  __ BIND(L_loop);
1267    if(UseUnalignedLoadStores) {
1268      __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1269      __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1270      __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1271      __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1272
1273    } else {
1274      __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1275      __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1276      __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1277      __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1278      __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1279      __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1280      __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1281      __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1282    }
1283  __ BIND(L_copy_32_bytes);
1284    __ addptr(qword_count, 4);
1285    __ jcc(Assembler::lessEqual, L_loop);
1286    __ subptr(qword_count, 4);
1287    __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1288  }
1289
1290
1291  // Copy big chunks backward
1292  //
1293  // Inputs:
1294  //   from         - source arrays address
1295  //   dest         - destination array address
1296  //   qword_count  - 64-bits element count
1297  //   to           - scratch
1298  //   L_copy_32_bytes - entry label
1299  //   L_copy_8_bytes  - exit  label
1300  //
1301  void copy_32_bytes_backward(Register from, Register dest,
1302                              Register qword_count, Register to,
1303                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1304    DEBUG_ONLY(__ stop("enter at entry label, not here"));
1305    Label L_loop;
1306    __ align(OptoLoopAlignment);
1307  __ BIND(L_loop);
1308    if(UseUnalignedLoadStores) {
1309      __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1310      __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1311      __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1312      __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1313
1314    } else {
1315      __ movq(to, Address(from, qword_count, Address::times_8, 24));
1316      __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1317      __ movq(to, Address(from, qword_count, Address::times_8, 16));
1318      __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1319      __ movq(to, Address(from, qword_count, Address::times_8,  8));
1320      __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1321      __ movq(to, Address(from, qword_count, Address::times_8,  0));
1322      __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1323    }
1324  __ BIND(L_copy_32_bytes);
1325    __ subptr(qword_count, 4);
1326    __ jcc(Assembler::greaterEqual, L_loop);
1327    __ addptr(qword_count, 4);
1328    __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1329  }
1330
1331
1332  // Arguments:
1333  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1334  //             ignored
1335  //   name    - stub name string
1336  //
1337  // Inputs:
1338  //   c_rarg0   - source array address
1339  //   c_rarg1   - destination array address
1340  //   c_rarg2   - element count, treated as ssize_t, can be zero
1341  //
1342  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1343  // we let the hardware handle it.  The one to eight bytes within words,
1344  // dwords or qwords that span cache line boundaries will still be loaded
1345  // and stored atomically.
1346  //
1347  // Side Effects:
1348  //   disjoint_byte_copy_entry is set to the no-overlap entry point
1349  //   used by generate_conjoint_byte_copy().
1350  //
1351  address generate_disjoint_byte_copy(bool aligned, const char *name) {
1352    __ align(CodeEntryAlignment);
1353    StubCodeMark mark(this, "StubRoutines", name);
1354    address start = __ pc();
1355
1356    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1357    Label L_copy_byte, L_exit;
1358    const Register from        = rdi;  // source array address
1359    const Register to          = rsi;  // destination array address
1360    const Register count       = rdx;  // elements count
1361    const Register byte_count  = rcx;
1362    const Register qword_count = count;
1363    const Register end_from    = from; // source array end address
1364    const Register end_to      = to;   // destination array end address
1365    // End pointers are inclusive, and if count is not zero they point
1366    // to the last unit copied:  end_to[0] := end_from[0]
1367
1368    __ enter(); // required for proper stackwalking of RuntimeStub frame
1369    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1370
1371    disjoint_byte_copy_entry = __ pc();
1372    BLOCK_COMMENT("Entry:");
1373    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1374
1375    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1376                      // r9 and r10 may be used to save non-volatile registers
1377
1378    // 'from', 'to' and 'count' are now valid
1379    __ movptr(byte_count, count);
1380    __ shrptr(count, 3); // count => qword_count
1381
1382    // Copy from low to high addresses.  Use 'to' as scratch.
1383    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1384    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1385    __ negptr(qword_count); // make the count negative
1386    __ jmp(L_copy_32_bytes);
1387
1388    // Copy trailing qwords
1389  __ BIND(L_copy_8_bytes);
1390    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1391    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1392    __ increment(qword_count);
1393    __ jcc(Assembler::notZero, L_copy_8_bytes);
1394
1395    // Check for and copy trailing dword
1396  __ BIND(L_copy_4_bytes);
1397    __ testl(byte_count, 4);
1398    __ jccb(Assembler::zero, L_copy_2_bytes);
1399    __ movl(rax, Address(end_from, 8));
1400    __ movl(Address(end_to, 8), rax);
1401
1402    __ addptr(end_from, 4);
1403    __ addptr(end_to, 4);
1404
1405    // Check for and copy trailing word
1406  __ BIND(L_copy_2_bytes);
1407    __ testl(byte_count, 2);
1408    __ jccb(Assembler::zero, L_copy_byte);
1409    __ movw(rax, Address(end_from, 8));
1410    __ movw(Address(end_to, 8), rax);
1411
1412    __ addptr(end_from, 2);
1413    __ addptr(end_to, 2);
1414
1415    // Check for and copy trailing byte
1416  __ BIND(L_copy_byte);
1417    __ testl(byte_count, 1);
1418    __ jccb(Assembler::zero, L_exit);
1419    __ movb(rax, Address(end_from, 8));
1420    __ movb(Address(end_to, 8), rax);
1421
1422  __ BIND(L_exit);
1423    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1424    restore_arg_regs();
1425    __ xorptr(rax, rax); // return 0
1426    __ leave(); // required for proper stackwalking of RuntimeStub frame
1427    __ ret(0);
1428
1429    // Copy in 32-bytes chunks
1430    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1431    __ jmp(L_copy_4_bytes);
1432
1433    return start;
1434  }
1435
1436  // Arguments:
1437  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1438  //             ignored
1439  //   name    - stub name string
1440  //
1441  // Inputs:
1442  //   c_rarg0   - source array address
1443  //   c_rarg1   - destination array address
1444  //   c_rarg2   - element count, treated as ssize_t, can be zero
1445  //
1446  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1447  // we let the hardware handle it.  The one to eight bytes within words,
1448  // dwords or qwords that span cache line boundaries will still be loaded
1449  // and stored atomically.
1450  //
1451  address generate_conjoint_byte_copy(bool aligned, const char *name) {
1452    __ align(CodeEntryAlignment);
1453    StubCodeMark mark(this, "StubRoutines", name);
1454    address start = __ pc();
1455
1456    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1457    const Register from        = rdi;  // source array address
1458    const Register to          = rsi;  // destination array address
1459    const Register count       = rdx;  // elements count
1460    const Register byte_count  = rcx;
1461    const Register qword_count = count;
1462
1463    __ enter(); // required for proper stackwalking of RuntimeStub frame
1464    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1465
1466    byte_copy_entry = __ pc();
1467    BLOCK_COMMENT("Entry:");
1468    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1469
1470    array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
1471    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1472                      // r9 and r10 may be used to save non-volatile registers
1473
1474    // 'from', 'to' and 'count' are now valid
1475    __ movptr(byte_count, count);
1476    __ shrptr(count, 3);   // count => qword_count
1477
1478    // Copy from high to low addresses.
1479
1480    // Check for and copy trailing byte
1481    __ testl(byte_count, 1);
1482    __ jcc(Assembler::zero, L_copy_2_bytes);
1483    __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1484    __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1485    __ decrement(byte_count); // Adjust for possible trailing word
1486
1487    // Check for and copy trailing word
1488  __ BIND(L_copy_2_bytes);
1489    __ testl(byte_count, 2);
1490    __ jcc(Assembler::zero, L_copy_4_bytes);
1491    __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1492    __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1493
1494    // Check for and copy trailing dword
1495  __ BIND(L_copy_4_bytes);
1496    __ testl(byte_count, 4);
1497    __ jcc(Assembler::zero, L_copy_32_bytes);
1498    __ movl(rax, Address(from, qword_count, Address::times_8));
1499    __ movl(Address(to, qword_count, Address::times_8), rax);
1500    __ jmp(L_copy_32_bytes);
1501
1502    // Copy trailing qwords
1503  __ BIND(L_copy_8_bytes);
1504    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1505    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1506    __ decrement(qword_count);
1507    __ jcc(Assembler::notZero, L_copy_8_bytes);
1508
1509    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1510    restore_arg_regs();
1511    __ xorptr(rax, rax); // return 0
1512    __ leave(); // required for proper stackwalking of RuntimeStub frame
1513    __ ret(0);
1514
1515    // Copy in 32-bytes chunks
1516    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1517
1518    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1519    restore_arg_regs();
1520    __ xorptr(rax, rax); // return 0
1521    __ leave(); // required for proper stackwalking of RuntimeStub frame
1522    __ ret(0);
1523
1524    return start;
1525  }
1526
1527  // Arguments:
1528  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1529  //             ignored
1530  //   name    - stub name string
1531  //
1532  // Inputs:
1533  //   c_rarg0   - source array address
1534  //   c_rarg1   - destination array address
1535  //   c_rarg2   - element count, treated as ssize_t, can be zero
1536  //
1537  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1538  // let the hardware handle it.  The two or four words within dwords
1539  // or qwords that span cache line boundaries will still be loaded
1540  // and stored atomically.
1541  //
1542  // Side Effects:
1543  //   disjoint_short_copy_entry is set to the no-overlap entry point
1544  //   used by generate_conjoint_short_copy().
1545  //
1546  address generate_disjoint_short_copy(bool aligned, const char *name) {
1547    __ align(CodeEntryAlignment);
1548    StubCodeMark mark(this, "StubRoutines", name);
1549    address start = __ pc();
1550
1551    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1552    const Register from        = rdi;  // source array address
1553    const Register to          = rsi;  // destination array address
1554    const Register count       = rdx;  // elements count
1555    const Register word_count  = rcx;
1556    const Register qword_count = count;
1557    const Register end_from    = from; // source array end address
1558    const Register end_to      = to;   // destination array end address
1559    // End pointers are inclusive, and if count is not zero they point
1560    // to the last unit copied:  end_to[0] := end_from[0]
1561
1562    __ enter(); // required for proper stackwalking of RuntimeStub frame
1563    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1564
1565    disjoint_short_copy_entry = __ pc();
1566    BLOCK_COMMENT("Entry:");
1567    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1568
1569    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1570                      // r9 and r10 may be used to save non-volatile registers
1571
1572    // 'from', 'to' and 'count' are now valid
1573    __ movptr(word_count, count);
1574    __ shrptr(count, 2); // count => qword_count
1575
1576    // Copy from low to high addresses.  Use 'to' as scratch.
1577    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1578    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1579    __ negptr(qword_count);
1580    __ jmp(L_copy_32_bytes);
1581
1582    // Copy trailing qwords
1583  __ BIND(L_copy_8_bytes);
1584    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1585    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1586    __ increment(qword_count);
1587    __ jcc(Assembler::notZero, L_copy_8_bytes);
1588
1589    // Original 'dest' is trashed, so we can't use it as a
1590    // base register for a possible trailing word copy
1591
1592    // Check for and copy trailing dword
1593  __ BIND(L_copy_4_bytes);
1594    __ testl(word_count, 2);
1595    __ jccb(Assembler::zero, L_copy_2_bytes);
1596    __ movl(rax, Address(end_from, 8));
1597    __ movl(Address(end_to, 8), rax);
1598
1599    __ addptr(end_from, 4);
1600    __ addptr(end_to, 4);
1601
1602    // Check for and copy trailing word
1603  __ BIND(L_copy_2_bytes);
1604    __ testl(word_count, 1);
1605    __ jccb(Assembler::zero, L_exit);
1606    __ movw(rax, Address(end_from, 8));
1607    __ movw(Address(end_to, 8), rax);
1608
1609  __ BIND(L_exit);
1610    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1611    restore_arg_regs();
1612    __ xorptr(rax, rax); // return 0
1613    __ leave(); // required for proper stackwalking of RuntimeStub frame
1614    __ ret(0);
1615
1616    // Copy in 32-bytes chunks
1617    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1618    __ jmp(L_copy_4_bytes);
1619
1620    return start;
1621  }
1622
1623  // Arguments:
1624  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1625  //             ignored
1626  //   name    - stub name string
1627  //
1628  // Inputs:
1629  //   c_rarg0   - source array address
1630  //   c_rarg1   - destination array address
1631  //   c_rarg2   - element count, treated as ssize_t, can be zero
1632  //
1633  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1634  // let the hardware handle it.  The two or four words within dwords
1635  // or qwords that span cache line boundaries will still be loaded
1636  // and stored atomically.
1637  //
1638  address generate_conjoint_short_copy(bool aligned, const char *name) {
1639    __ align(CodeEntryAlignment);
1640    StubCodeMark mark(this, "StubRoutines", name);
1641    address start = __ pc();
1642
1643    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1644    const Register from        = rdi;  // source array address
1645    const Register to          = rsi;  // destination array address
1646    const Register count       = rdx;  // elements count
1647    const Register word_count  = rcx;
1648    const Register qword_count = count;
1649
1650    __ enter(); // required for proper stackwalking of RuntimeStub frame
1651    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1652
1653    short_copy_entry = __ pc();
1654    BLOCK_COMMENT("Entry:");
1655    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1656
1657    array_overlap_test(disjoint_short_copy_entry, Address::times_2);
1658    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1659                      // r9 and r10 may be used to save non-volatile registers
1660
1661    // 'from', 'to' and 'count' are now valid
1662    __ movptr(word_count, count);
1663    __ shrptr(count, 2); // count => qword_count
1664
1665    // Copy from high to low addresses.  Use 'to' as scratch.
1666
1667    // Check for and copy trailing word
1668    __ testl(word_count, 1);
1669    __ jccb(Assembler::zero, L_copy_4_bytes);
1670    __ movw(rax, Address(from, word_count, Address::times_2, -2));
1671    __ movw(Address(to, word_count, Address::times_2, -2), rax);
1672
1673    // Check for and copy trailing dword
1674  __ BIND(L_copy_4_bytes);
1675    __ testl(word_count, 2);
1676    __ jcc(Assembler::zero, L_copy_32_bytes);
1677    __ movl(rax, Address(from, qword_count, Address::times_8));
1678    __ movl(Address(to, qword_count, Address::times_8), rax);
1679    __ jmp(L_copy_32_bytes);
1680
1681    // Copy trailing qwords
1682  __ BIND(L_copy_8_bytes);
1683    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1684    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1685    __ decrement(qword_count);
1686    __ jcc(Assembler::notZero, L_copy_8_bytes);
1687
1688    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1689    restore_arg_regs();
1690    __ xorptr(rax, rax); // return 0
1691    __ leave(); // required for proper stackwalking of RuntimeStub frame
1692    __ ret(0);
1693
1694    // Copy in 32-bytes chunks
1695    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1696
1697    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1698    restore_arg_regs();
1699    __ xorptr(rax, rax); // return 0
1700    __ leave(); // required for proper stackwalking of RuntimeStub frame
1701    __ ret(0);
1702
1703    return start;
1704  }
1705
1706  // Arguments:
1707  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1708  //             ignored
1709  //   is_oop  - true => oop array, so generate store check code
1710  //   name    - stub name string
1711  //
1712  // Inputs:
1713  //   c_rarg0   - source array address
1714  //   c_rarg1   - destination array address
1715  //   c_rarg2   - element count, treated as ssize_t, can be zero
1716  //
1717  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1718  // the hardware handle it.  The two dwords within qwords that span
1719  // cache line boundaries will still be loaded and stored atomicly.
1720  //
1721  // Side Effects:
1722  //   disjoint_int_copy_entry is set to the no-overlap entry point
1723  //   used by generate_conjoint_int_oop_copy().
1724  //
1725  address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1726    __ align(CodeEntryAlignment);
1727    StubCodeMark mark(this, "StubRoutines", name);
1728    address start = __ pc();
1729
1730    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1731    const Register from        = rdi;  // source array address
1732    const Register to          = rsi;  // destination array address
1733    const Register count       = rdx;  // elements count
1734    const Register dword_count = rcx;
1735    const Register qword_count = count;
1736    const Register end_from    = from; // source array end address
1737    const Register end_to      = to;   // destination array end address
1738    const Register saved_to    = r11;  // saved destination array address
1739    // End pointers are inclusive, and if count is not zero they point
1740    // to the last unit copied:  end_to[0] := end_from[0]
1741
1742    __ enter(); // required for proper stackwalking of RuntimeStub frame
1743    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1744
1745    (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
1746
1747    if (is_oop) {
1748      // no registers are destroyed by this call
1749      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1750    }
1751
1752    BLOCK_COMMENT("Entry:");
1753    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1754
1755    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1756                      // r9 and r10 may be used to save non-volatile registers
1757
1758    if (is_oop) {
1759      __ movq(saved_to, to);
1760    }
1761
1762    // 'from', 'to' and 'count' are now valid
1763    __ movptr(dword_count, count);
1764    __ shrptr(count, 1); // count => qword_count
1765
1766    // Copy from low to high addresses.  Use 'to' as scratch.
1767    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1768    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1769    __ negptr(qword_count);
1770    __ jmp(L_copy_32_bytes);
1771
1772    // Copy trailing qwords
1773  __ BIND(L_copy_8_bytes);
1774    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1775    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1776    __ increment(qword_count);
1777    __ jcc(Assembler::notZero, L_copy_8_bytes);
1778
1779    // Check for and copy trailing dword
1780  __ BIND(L_copy_4_bytes);
1781    __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1782    __ jccb(Assembler::zero, L_exit);
1783    __ movl(rax, Address(end_from, 8));
1784    __ movl(Address(end_to, 8), rax);
1785
1786  __ BIND(L_exit);
1787    if (is_oop) {
1788      __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1789      gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1790    }
1791    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1792    restore_arg_regs();
1793    __ xorptr(rax, rax); // return 0
1794    __ leave(); // required for proper stackwalking of RuntimeStub frame
1795    __ ret(0);
1796
1797    // Copy 32-bytes chunks
1798    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1799    __ jmp(L_copy_4_bytes);
1800
1801    return start;
1802  }
1803
1804  // Arguments:
1805  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1806  //             ignored
1807  //   is_oop  - true => oop array, so generate store check code
1808  //   name    - stub name string
1809  //
1810  // Inputs:
1811  //   c_rarg0   - source array address
1812  //   c_rarg1   - destination array address
1813  //   c_rarg2   - element count, treated as ssize_t, can be zero
1814  //
1815  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1816  // the hardware handle it.  The two dwords within qwords that span
1817  // cache line boundaries will still be loaded and stored atomicly.
1818  //
1819  address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1820    __ align(CodeEntryAlignment);
1821    StubCodeMark mark(this, "StubRoutines", name);
1822    address start = __ pc();
1823
1824    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1825    const Register from        = rdi;  // source array address
1826    const Register to          = rsi;  // destination array address
1827    const Register count       = rdx;  // elements count
1828    const Register dword_count = rcx;
1829    const Register qword_count = count;
1830
1831    __ enter(); // required for proper stackwalking of RuntimeStub frame
1832    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1833
1834    if (is_oop) {
1835      // no registers are destroyed by this call
1836      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1837    }
1838
1839    (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
1840    BLOCK_COMMENT("Entry:");
1841    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1842
1843    array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
1844                       Address::times_4);
1845    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1846                      // r9 and r10 may be used to save non-volatile registers
1847
1848    assert_clean_int(count, rax); // Make sure 'count' is clean int.
1849    // 'from', 'to' and 'count' are now valid
1850    __ movptr(dword_count, count);
1851    __ shrptr(count, 1); // count => qword_count
1852
1853    // Copy from high to low addresses.  Use 'to' as scratch.
1854
1855    // Check for and copy trailing dword
1856    __ testl(dword_count, 1);
1857    __ jcc(Assembler::zero, L_copy_32_bytes);
1858    __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1859    __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1860    __ jmp(L_copy_32_bytes);
1861
1862    // Copy trailing qwords
1863  __ BIND(L_copy_8_bytes);
1864    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1865    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1866    __ decrement(qword_count);
1867    __ jcc(Assembler::notZero, L_copy_8_bytes);
1868
1869    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1870    if (is_oop) {
1871      __ jmp(L_exit);
1872    }
1873    restore_arg_regs();
1874    __ xorptr(rax, rax); // return 0
1875    __ leave(); // required for proper stackwalking of RuntimeStub frame
1876    __ ret(0);
1877
1878    // Copy in 32-bytes chunks
1879    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1880
1881   inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1882   __ bind(L_exit);
1883     if (is_oop) {
1884       Register end_to = rdx;
1885       __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1886       gen_write_ref_array_post_barrier(to, end_to, rax);
1887     }
1888    restore_arg_regs();
1889    __ xorptr(rax, rax); // return 0
1890    __ leave(); // required for proper stackwalking of RuntimeStub frame
1891    __ ret(0);
1892
1893    return start;
1894  }
1895
1896  // Arguments:
1897  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1898  //             ignored
1899  //   is_oop  - true => oop array, so generate store check code
1900  //   name    - stub name string
1901  //
1902  // Inputs:
1903  //   c_rarg0   - source array address
1904  //   c_rarg1   - destination array address
1905  //   c_rarg2   - element count, treated as ssize_t, can be zero
1906  //
1907 // Side Effects:
1908  //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1909  //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1910  //
1911  address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1912    __ align(CodeEntryAlignment);
1913    StubCodeMark mark(this, "StubRoutines", name);
1914    address start = __ pc();
1915
1916    Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1917    const Register from        = rdi;  // source array address
1918    const Register to          = rsi;  // destination array address
1919    const Register qword_count = rdx;  // elements count
1920    const Register end_from    = from; // source array end address
1921    const Register end_to      = rcx;  // destination array end address
1922    const Register saved_to    = to;
1923    // End pointers are inclusive, and if count is not zero they point
1924    // to the last unit copied:  end_to[0] := end_from[0]
1925
1926    __ enter(); // required for proper stackwalking of RuntimeStub frame
1927    // Save no-overlap entry point for generate_conjoint_long_oop_copy()
1928    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1929
1930    if (is_oop) {
1931      disjoint_oop_copy_entry  = __ pc();
1932      // no registers are destroyed by this call
1933      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1934    } else {
1935      disjoint_long_copy_entry = __ pc();
1936    }
1937    BLOCK_COMMENT("Entry:");
1938    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1939
1940    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1941                      // r9 and r10 may be used to save non-volatile registers
1942
1943    // 'from', 'to' and 'qword_count' are now valid
1944
1945    // Copy from low to high addresses.  Use 'to' as scratch.
1946    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1947    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1948    __ negptr(qword_count);
1949    __ jmp(L_copy_32_bytes);
1950
1951    // Copy trailing qwords
1952  __ BIND(L_copy_8_bytes);
1953    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1954    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1955    __ increment(qword_count);
1956    __ jcc(Assembler::notZero, L_copy_8_bytes);
1957
1958    if (is_oop) {
1959      __ jmp(L_exit);
1960    } else {
1961      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1962      restore_arg_regs();
1963      __ xorptr(rax, rax); // return 0
1964      __ leave(); // required for proper stackwalking of RuntimeStub frame
1965      __ ret(0);
1966    }
1967
1968    // Copy 64-byte chunks
1969    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1970
1971    if (is_oop) {
1972    __ BIND(L_exit);
1973      gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1974      inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
1975    } else {
1976      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1977    }
1978    restore_arg_regs();
1979    __ xorptr(rax, rax); // return 0
1980    __ leave(); // required for proper stackwalking of RuntimeStub frame
1981    __ ret(0);
1982
1983    return start;
1984  }
1985
1986  // Arguments:
1987  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1988  //             ignored
1989  //   is_oop  - true => oop array, so generate store check code
1990  //   name    - stub name string
1991  //
1992  // Inputs:
1993  //   c_rarg0   - source array address
1994  //   c_rarg1   - destination array address
1995  //   c_rarg2   - element count, treated as ssize_t, can be zero
1996  //
1997  address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1998    __ align(CodeEntryAlignment);
1999    StubCodeMark mark(this, "StubRoutines", name);
2000    address start = __ pc();
2001
2002    Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
2003    const Register from        = rdi;  // source array address
2004    const Register to          = rsi;  // destination array address
2005    const Register qword_count = rdx;  // elements count
2006    const Register saved_count = rcx;
2007
2008    __ enter(); // required for proper stackwalking of RuntimeStub frame
2009    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2010
2011    address disjoint_copy_entry = NULL;
2012    if (is_oop) {
2013      assert(!UseCompressedOops, "shouldn't be called for compressed oops");
2014      disjoint_copy_entry = disjoint_oop_copy_entry;
2015      oop_copy_entry  = __ pc();
2016      array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
2017    } else {
2018      disjoint_copy_entry = disjoint_long_copy_entry;
2019      long_copy_entry = __ pc();
2020      array_overlap_test(disjoint_long_copy_entry, Address::times_8);
2021    }
2022    BLOCK_COMMENT("Entry:");
2023    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2024
2025    array_overlap_test(disjoint_copy_entry, Address::times_8);
2026    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2027                      // r9 and r10 may be used to save non-volatile registers
2028
2029    // 'from', 'to' and 'qword_count' are now valid
2030
2031    if (is_oop) {
2032      // Save to and count for store barrier
2033      __ movptr(saved_count, qword_count);
2034      // No registers are destroyed by this call
2035      gen_write_ref_array_pre_barrier(to, saved_count);
2036    }
2037
2038    __ jmp(L_copy_32_bytes);
2039
2040    // Copy trailing qwords
2041  __ BIND(L_copy_8_bytes);
2042    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2043    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2044    __ decrement(qword_count);
2045    __ jcc(Assembler::notZero, L_copy_8_bytes);
2046
2047    if (is_oop) {
2048      __ jmp(L_exit);
2049    } else {
2050      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2051      restore_arg_regs();
2052      __ xorptr(rax, rax); // return 0
2053      __ leave(); // required for proper stackwalking of RuntimeStub frame
2054      __ ret(0);
2055    }
2056
2057    // Copy in 32-bytes chunks
2058    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2059
2060    if (is_oop) {
2061    __ BIND(L_exit);
2062      __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
2063      gen_write_ref_array_post_barrier(to, rcx, rax);
2064      inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
2065    } else {
2066      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2067    }
2068    restore_arg_regs();
2069    __ xorptr(rax, rax); // return 0
2070    __ leave(); // required for proper stackwalking of RuntimeStub frame
2071    __ ret(0);
2072
2073    return start;
2074  }
2075
2076
2077  // Helper for generating a dynamic type check.
2078  // Smashes no registers.
2079  void generate_type_check(Register sub_klass,
2080                           Register super_check_offset,
2081                           Register super_klass,
2082                           Label& L_success) {
2083    assert_different_registers(sub_klass, super_check_offset, super_klass);
2084
2085    BLOCK_COMMENT("type_check:");
2086
2087    Label L_miss;
2088
2089    __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2090                                     super_check_offset);
2091    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2092
2093    // Fall through on failure!
2094    __ BIND(L_miss);
2095  }
2096
2097  //
2098  //  Generate checkcasting array copy stub
2099  //
2100  //  Input:
2101  //    c_rarg0   - source array address
2102  //    c_rarg1   - destination array address
2103  //    c_rarg2   - element count, treated as ssize_t, can be zero
2104  //    c_rarg3   - size_t ckoff (super_check_offset)
2105  // not Win64
2106  //    c_rarg4   - oop ckval (super_klass)
2107  // Win64
2108  //    rsp+40    - oop ckval (super_klass)
2109  //
2110  //  Output:
2111  //    rax ==  0  -  success
2112  //    rax == -1^K - failure, where K is partial transfer count
2113  //
2114  address generate_checkcast_copy(const char *name) {
2115
2116    Label L_load_element, L_store_element, L_do_card_marks, L_done;
2117
2118    // Input registers (after setup_arg_regs)
2119    const Register from        = rdi;   // source array address
2120    const Register to          = rsi;   // destination array address
2121    const Register length      = rdx;   // elements count
2122    const Register ckoff       = rcx;   // super_check_offset
2123    const Register ckval       = r8;    // super_klass
2124
2125    // Registers used as temps (r13, r14 are save-on-entry)
2126    const Register end_from    = from;  // source array end address
2127    const Register end_to      = r13;   // destination array end address
2128    const Register count       = rdx;   // -(count_remaining)
2129    const Register r14_length  = r14;   // saved copy of length
2130    // End pointers are inclusive, and if length is not zero they point
2131    // to the last unit copied:  end_to[0] := end_from[0]
2132
2133    const Register rax_oop    = rax;    // actual oop copied
2134    const Register r11_klass  = r11;    // oop._klass
2135
2136    //---------------------------------------------------------------
2137    // Assembler stub will be used for this call to arraycopy
2138    // if the two arrays are subtypes of Object[] but the
2139    // destination array type is not equal to or a supertype
2140    // of the source type.  Each element must be separately
2141    // checked.
2142
2143    __ align(CodeEntryAlignment);
2144    StubCodeMark mark(this, "StubRoutines", name);
2145    address start = __ pc();
2146
2147    __ enter(); // required for proper stackwalking of RuntimeStub frame
2148
2149    checkcast_copy_entry  = __ pc();
2150    BLOCK_COMMENT("Entry:");
2151
2152#ifdef ASSERT
2153    // caller guarantees that the arrays really are different
2154    // otherwise, we would have to make conjoint checks
2155    { Label L;
2156      array_overlap_test(L, TIMES_OOP);
2157      __ stop("checkcast_copy within a single array");
2158      __ bind(L);
2159    }
2160#endif //ASSERT
2161
2162    // allocate spill slots for r13, r14
2163    enum {
2164      saved_r13_offset,
2165      saved_r14_offset,
2166      saved_rbp_offset,
2167      saved_rip_offset,
2168      saved_rarg0_offset
2169    };
2170    __ subptr(rsp, saved_rbp_offset * wordSize);
2171    __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2172    __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2173    setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2174                       // ckoff => rcx, ckval => r8
2175                       // r9 and r10 may be used to save non-volatile registers
2176#ifdef _WIN64
2177    // last argument (#4) is on stack on Win64
2178    const int ckval_offset = saved_rarg0_offset + 4;
2179    __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
2180#endif
2181
2182    // check that int operands are properly extended to size_t
2183    assert_clean_int(length, rax);
2184    assert_clean_int(ckoff, rax);
2185
2186#ifdef ASSERT
2187    BLOCK_COMMENT("assert consistent ckoff/ckval");
2188    // The ckoff and ckval must be mutually consistent,
2189    // even though caller generates both.
2190    { Label L;
2191      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2192                        Klass::super_check_offset_offset_in_bytes());
2193      __ cmpl(ckoff, Address(ckval, sco_offset));
2194      __ jcc(Assembler::equal, L);
2195      __ stop("super_check_offset inconsistent");
2196      __ bind(L);
2197    }
2198#endif //ASSERT
2199
2200    // Loop-invariant addresses.  They are exclusive end pointers.
2201    Address end_from_addr(from, length, TIMES_OOP, 0);
2202    Address   end_to_addr(to,   length, TIMES_OOP, 0);
2203    // Loop-variant addresses.  They assume post-incremented count < 0.
2204    Address from_element_addr(end_from, count, TIMES_OOP, 0);
2205    Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2206
2207    gen_write_ref_array_pre_barrier(to, count);
2208
2209    // Copy from low to high addresses, indexed from the end of each array.
2210    __ lea(end_from, end_from_addr);
2211    __ lea(end_to,   end_to_addr);
2212    __ movptr(r14_length, length);        // save a copy of the length
2213    assert(length == count, "");          // else fix next line:
2214    __ negptr(count);                     // negate and test the length
2215    __ jcc(Assembler::notZero, L_load_element);
2216
2217    // Empty array:  Nothing to do.
2218    __ xorptr(rax, rax);                  // return 0 on (trivial) success
2219    __ jmp(L_done);
2220
2221    // ======== begin loop ========
2222    // (Loop is rotated; its entry is L_load_element.)
2223    // Loop control:
2224    //   for (count = -count; count != 0; count++)
2225    // Base pointers src, dst are biased by 8*(count-1),to last element.
2226    __ align(OptoLoopAlignment);
2227
2228    __ BIND(L_store_element);
2229    __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2230    __ increment(count);               // increment the count toward zero
2231    __ jcc(Assembler::zero, L_do_card_marks);
2232
2233    // ======== loop entry is here ========
2234    __ BIND(L_load_element);
2235    __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2236    __ testptr(rax_oop, rax_oop);
2237    __ jcc(Assembler::zero, L_store_element);
2238
2239    __ load_klass(r11_klass, rax_oop);// query the object klass
2240    generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2241    // ======== end loop ========
2242
2243    // It was a real error; we must depend on the caller to finish the job.
2244    // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2245    // Emit GC store barriers for the oops we have copied (r14 + rdx),
2246    // and report their number to the caller.
2247    assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2248    __ lea(end_to, to_element_addr);
2249    __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
2250    gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2251    __ movptr(rax, r14_length);           // original oops
2252    __ addptr(rax, count);                // K = (original - remaining) oops
2253    __ notptr(rax);                       // report (-1^K) to caller
2254    __ jmp(L_done);
2255
2256    // Come here on success only.
2257    __ BIND(L_do_card_marks);
2258    __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
2259    gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2260    __ xorptr(rax, rax);                  // return 0 on success
2261
2262    // Common exit point (success or failure).
2263    __ BIND(L_done);
2264    __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2265    __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2266    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
2267    restore_arg_regs();
2268    __ leave(); // required for proper stackwalking of RuntimeStub frame
2269    __ ret(0);
2270
2271    return start;
2272  }
2273
2274  //
2275  //  Generate 'unsafe' array copy stub
2276  //  Though just as safe as the other stubs, it takes an unscaled
2277  //  size_t argument instead of an element count.
2278  //
2279  //  Input:
2280  //    c_rarg0   - source array address
2281  //    c_rarg1   - destination array address
2282  //    c_rarg2   - byte count, treated as ssize_t, can be zero
2283  //
2284  // Examines the alignment of the operands and dispatches
2285  // to a long, int, short, or byte copy loop.
2286  //
2287  address generate_unsafe_copy(const char *name) {
2288
2289    Label L_long_aligned, L_int_aligned, L_short_aligned;
2290
2291    // Input registers (before setup_arg_regs)
2292    const Register from        = c_rarg0;  // source array address
2293    const Register to          = c_rarg1;  // destination array address
2294    const Register size        = c_rarg2;  // byte count (size_t)
2295
2296    // Register used as a temp
2297    const Register bits        = rax;      // test copy of low bits
2298
2299    __ align(CodeEntryAlignment);
2300    StubCodeMark mark(this, "StubRoutines", name);
2301    address start = __ pc();
2302
2303    __ enter(); // required for proper stackwalking of RuntimeStub frame
2304
2305    // bump this on entry, not on exit:
2306    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2307
2308    __ mov(bits, from);
2309    __ orptr(bits, to);
2310    __ orptr(bits, size);
2311
2312    __ testb(bits, BytesPerLong-1);
2313    __ jccb(Assembler::zero, L_long_aligned);
2314
2315    __ testb(bits, BytesPerInt-1);
2316    __ jccb(Assembler::zero, L_int_aligned);
2317
2318    __ testb(bits, BytesPerShort-1);
2319    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2320
2321    __ BIND(L_short_aligned);
2322    __ shrptr(size, LogBytesPerShort); // size => short_count
2323    __ jump(RuntimeAddress(short_copy_entry));
2324
2325    __ BIND(L_int_aligned);
2326    __ shrptr(size, LogBytesPerInt); // size => int_count
2327    __ jump(RuntimeAddress(int_copy_entry));
2328
2329    __ BIND(L_long_aligned);
2330    __ shrptr(size, LogBytesPerLong); // size => qword_count
2331    __ jump(RuntimeAddress(long_copy_entry));
2332
2333    return start;
2334  }
2335
2336  // Perform range checks on the proposed arraycopy.
2337  // Kills temp, but nothing else.
2338  // Also, clean the sign bits of src_pos and dst_pos.
2339  void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2340                              Register src_pos, // source position (c_rarg1)
2341                              Register dst,     // destination array oo (c_rarg2)
2342                              Register dst_pos, // destination position (c_rarg3)
2343                              Register length,
2344                              Register temp,
2345                              Label& L_failed) {
2346    BLOCK_COMMENT("arraycopy_range_checks:");
2347
2348    //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2349    __ movl(temp, length);
2350    __ addl(temp, src_pos);             // src_pos + length
2351    __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2352    __ jcc(Assembler::above, L_failed);
2353
2354    //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2355    __ movl(temp, length);
2356    __ addl(temp, dst_pos);             // dst_pos + length
2357    __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2358    __ jcc(Assembler::above, L_failed);
2359
2360    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2361    // Move with sign extension can be used since they are positive.
2362    __ movslq(src_pos, src_pos);
2363    __ movslq(dst_pos, dst_pos);
2364
2365    BLOCK_COMMENT("arraycopy_range_checks done");
2366  }
2367
2368  //
2369  //  Generate generic array copy stubs
2370  //
2371  //  Input:
2372  //    c_rarg0    -  src oop
2373  //    c_rarg1    -  src_pos (32-bits)
2374  //    c_rarg2    -  dst oop
2375  //    c_rarg3    -  dst_pos (32-bits)
2376  // not Win64
2377  //    c_rarg4    -  element count (32-bits)
2378  // Win64
2379  //    rsp+40     -  element count (32-bits)
2380  //
2381  //  Output:
2382  //    rax ==  0  -  success
2383  //    rax == -1^K - failure, where K is partial transfer count
2384  //
2385  address generate_generic_copy(const char *name) {
2386
2387    Label L_failed, L_failed_0, L_objArray;
2388    Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2389
2390    // Input registers
2391    const Register src        = c_rarg0;  // source array oop
2392    const Register src_pos    = c_rarg1;  // source position
2393    const Register dst        = c_rarg2;  // destination array oop
2394    const Register dst_pos    = c_rarg3;  // destination position
2395    // elements count is on stack on Win64
2396#ifdef _WIN64
2397#define C_RARG4 Address(rsp, 6 * wordSize)
2398#else
2399#define C_RARG4 c_rarg4
2400#endif
2401
2402    { int modulus = CodeEntryAlignment;
2403      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2404      int advance = target - (__ offset() % modulus);
2405      if (advance < 0)  advance += modulus;
2406      if (advance > 0)  __ nop(advance);
2407    }
2408    StubCodeMark mark(this, "StubRoutines", name);
2409
2410    // Short-hop target to L_failed.  Makes for denser prologue code.
2411    __ BIND(L_failed_0);
2412    __ jmp(L_failed);
2413    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2414
2415    __ align(CodeEntryAlignment);
2416    address start = __ pc();
2417
2418    __ enter(); // required for proper stackwalking of RuntimeStub frame
2419
2420    // bump this on entry, not on exit:
2421    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2422
2423    //-----------------------------------------------------------------------
2424    // Assembler stub will be used for this call to arraycopy
2425    // if the following conditions are met:
2426    //
2427    // (1) src and dst must not be null.
2428    // (2) src_pos must not be negative.
2429    // (3) dst_pos must not be negative.
2430    // (4) length  must not be negative.
2431    // (5) src klass and dst klass should be the same and not NULL.
2432    // (6) src and dst should be arrays.
2433    // (7) src_pos + length must not exceed length of src.
2434    // (8) dst_pos + length must not exceed length of dst.
2435    //
2436
2437    //  if (src == NULL) return -1;
2438    __ testptr(src, src);         // src oop
2439    size_t j1off = __ offset();
2440    __ jccb(Assembler::zero, L_failed_0);
2441
2442    //  if (src_pos < 0) return -1;
2443    __ testl(src_pos, src_pos); // src_pos (32-bits)
2444    __ jccb(Assembler::negative, L_failed_0);
2445
2446    //  if (dst == NULL) return -1;
2447    __ testptr(dst, dst);         // dst oop
2448    __ jccb(Assembler::zero, L_failed_0);
2449
2450    //  if (dst_pos < 0) return -1;
2451    __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2452    size_t j4off = __ offset();
2453    __ jccb(Assembler::negative, L_failed_0);
2454
2455    // The first four tests are very dense code,
2456    // but not quite dense enough to put four
2457    // jumps in a 16-byte instruction fetch buffer.
2458    // That's good, because some branch predicters
2459    // do not like jumps so close together.
2460    // Make sure of this.
2461    guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2462
2463    // registers used as temp
2464    const Register r11_length    = r11; // elements count to copy
2465    const Register r10_src_klass = r10; // array klass
2466    const Register r9_dst_klass  = r9;  // dest array klass
2467
2468    //  if (length < 0) return -1;
2469    __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
2470    __ testl(r11_length, r11_length);
2471    __ jccb(Assembler::negative, L_failed_0);
2472
2473    __ load_klass(r10_src_klass, src);
2474#ifdef ASSERT
2475    //  assert(src->klass() != NULL);
2476    BLOCK_COMMENT("assert klasses not null");
2477    { Label L1, L2;
2478      __ testptr(r10_src_klass, r10_src_klass);
2479      __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2480      __ bind(L1);
2481      __ stop("broken null klass");
2482      __ bind(L2);
2483      __ load_klass(r9_dst_klass, dst);
2484      __ cmpq(r9_dst_klass, 0);
2485      __ jcc(Assembler::equal, L1);     // this would be broken also
2486      BLOCK_COMMENT("assert done");
2487    }
2488#endif
2489
2490    // Load layout helper (32-bits)
2491    //
2492    //  |array_tag|     | header_size | element_type |     |log2_element_size|
2493    // 32        30    24            16              8     2                 0
2494    //
2495    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2496    //
2497
2498    int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2499                    Klass::layout_helper_offset_in_bytes();
2500
2501    const Register rax_lh = rax;  // layout helper
2502
2503    __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2504
2505    // Handle objArrays completely differently...
2506    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2507    __ cmpl(rax_lh, objArray_lh);
2508    __ jcc(Assembler::equal, L_objArray);
2509
2510    //  if (src->klass() != dst->klass()) return -1;
2511    __ load_klass(r9_dst_klass, dst);
2512    __ cmpq(r10_src_klass, r9_dst_klass);
2513    __ jcc(Assembler::notEqual, L_failed);
2514
2515    //  if (!src->is_Array()) return -1;
2516    __ cmpl(rax_lh, Klass::_lh_neutral_value);
2517    __ jcc(Assembler::greaterEqual, L_failed);
2518
2519    // At this point, it is known to be a typeArray (array_tag 0x3).
2520#ifdef ASSERT
2521    { Label L;
2522      __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2523      __ jcc(Assembler::greaterEqual, L);
2524      __ stop("must be a primitive array");
2525      __ bind(L);
2526    }
2527#endif
2528
2529    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2530                           r10, L_failed);
2531
2532    // typeArrayKlass
2533    //
2534    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2535    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2536    //
2537
2538    const Register r10_offset = r10;    // array offset
2539    const Register rax_elsize = rax_lh; // element size
2540
2541    __ movl(r10_offset, rax_lh);
2542    __ shrl(r10_offset, Klass::_lh_header_size_shift);
2543    __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2544    __ addptr(src, r10_offset);           // src array offset
2545    __ addptr(dst, r10_offset);           // dst array offset
2546    BLOCK_COMMENT("choose copy loop based on element size");
2547    __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2548
2549    // next registers should be set before the jump to corresponding stub
2550    const Register from     = c_rarg0;  // source array address
2551    const Register to       = c_rarg1;  // destination array address
2552    const Register count    = c_rarg2;  // elements count
2553
2554    // 'from', 'to', 'count' registers should be set in such order
2555    // since they are the same as 'src', 'src_pos', 'dst'.
2556
2557  __ BIND(L_copy_bytes);
2558    __ cmpl(rax_elsize, 0);
2559    __ jccb(Assembler::notEqual, L_copy_shorts);
2560    __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2561    __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2562    __ movl2ptr(count, r11_length); // length
2563    __ jump(RuntimeAddress(byte_copy_entry));
2564
2565  __ BIND(L_copy_shorts);
2566    __ cmpl(rax_elsize, LogBytesPerShort);
2567    __ jccb(Assembler::notEqual, L_copy_ints);
2568    __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2569    __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2570    __ movl2ptr(count, r11_length); // length
2571    __ jump(RuntimeAddress(short_copy_entry));
2572
2573  __ BIND(L_copy_ints);
2574    __ cmpl(rax_elsize, LogBytesPerInt);
2575    __ jccb(Assembler::notEqual, L_copy_longs);
2576    __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2577    __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2578    __ movl2ptr(count, r11_length); // length
2579    __ jump(RuntimeAddress(int_copy_entry));
2580
2581  __ BIND(L_copy_longs);
2582#ifdef ASSERT
2583    { Label L;
2584      __ cmpl(rax_elsize, LogBytesPerLong);
2585      __ jcc(Assembler::equal, L);
2586      __ stop("must be long copy, but elsize is wrong");
2587      __ bind(L);
2588    }
2589#endif
2590    __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2591    __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2592    __ movl2ptr(count, r11_length); // length
2593    __ jump(RuntimeAddress(long_copy_entry));
2594
2595    // objArrayKlass
2596  __ BIND(L_objArray);
2597    // live at this point:  r10_src_klass, src[_pos], dst[_pos]
2598
2599    Label L_plain_copy, L_checkcast_copy;
2600    //  test array classes for subtyping
2601    __ load_klass(r9_dst_klass, dst);
2602    __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
2603    __ jcc(Assembler::notEqual, L_checkcast_copy);
2604
2605    // Identically typed arrays can be copied without element-wise checks.
2606    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2607                           r10, L_failed);
2608
2609    __ lea(from, Address(src, src_pos, TIMES_OOP,
2610                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2611    __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2612                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2613    __ movl2ptr(count, r11_length); // length
2614  __ BIND(L_plain_copy);
2615    __ jump(RuntimeAddress(oop_copy_entry));
2616
2617  __ BIND(L_checkcast_copy);
2618    // live at this point:  r10_src_klass, !r11_length
2619    {
2620      // assert(r11_length == C_RARG4); // will reload from here
2621      Register r11_dst_klass = r11;
2622      __ load_klass(r11_dst_klass, dst);
2623
2624      // Before looking at dst.length, make sure dst is also an objArray.
2625      __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
2626      __ jcc(Assembler::notEqual, L_failed);
2627
2628      // It is safe to examine both src.length and dst.length.
2629#ifndef _WIN64
2630      arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
2631                             rax, L_failed);
2632#else
2633      __ movl(r11_length, C_RARG4);     // reload
2634      arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2635                             rax, L_failed);
2636      __ load_klass(r11_dst_klass, dst); // reload
2637#endif
2638
2639      // Marshal the base address arguments now, freeing registers.
2640      __ lea(from, Address(src, src_pos, TIMES_OOP,
2641                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2642      __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2643                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2644      __ movl(count, C_RARG4);          // length (reloaded)
2645      Register sco_temp = c_rarg3;      // this register is free now
2646      assert_different_registers(from, to, count, sco_temp,
2647                                 r11_dst_klass, r10_src_klass);
2648      assert_clean_int(count, sco_temp);
2649
2650      // Generate the type check.
2651      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2652                        Klass::super_check_offset_offset_in_bytes());
2653      __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2654      assert_clean_int(sco_temp, rax);
2655      generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2656
2657      // Fetch destination element klass from the objArrayKlass header.
2658      int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2659                       objArrayKlass::element_klass_offset_in_bytes());
2660      __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2661      __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
2662      assert_clean_int(sco_temp, rax);
2663
2664      // the checkcast_copy loop needs two extra arguments:
2665      assert(c_rarg3 == sco_temp, "#3 already in place");
2666      __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
2667      __ jump(RuntimeAddress(checkcast_copy_entry));
2668    }
2669
2670  __ BIND(L_failed);
2671    __ xorptr(rax, rax);
2672    __ notptr(rax); // return -1
2673    __ leave();   // required for proper stackwalking of RuntimeStub frame
2674    __ ret(0);
2675
2676    return start;
2677  }
2678
2679#undef length_arg
2680
2681  void generate_arraycopy_stubs() {
2682    // Call the conjoint generation methods immediately after
2683    // the disjoint ones so that short branches from the former
2684    // to the latter can be generated.
2685    StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
2686    StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
2687
2688    StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
2689    StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
2690
2691    StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
2692    StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
2693
2694    StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
2695    StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
2696
2697
2698    if (UseCompressedOops) {
2699      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
2700      StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
2701    } else {
2702      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
2703      StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
2704    }
2705
2706    StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
2707    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
2708    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
2709
2710    // We don't generate specialized code for HeapWord-aligned source
2711    // arrays, so just use the code we've already generated
2712    StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2713    StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2714
2715    StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2716    StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2717
2718    StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2719    StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2720
2721    StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2722    StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2723
2724    StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2725    StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2726  }
2727
2728  void generate_math_stubs() {
2729    {
2730      StubCodeMark mark(this, "StubRoutines", "log");
2731      StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2732
2733      __ subq(rsp, 8);
2734      __ movdbl(Address(rsp, 0), xmm0);
2735      __ fld_d(Address(rsp, 0));
2736      __ flog();
2737      __ fstp_d(Address(rsp, 0));
2738      __ movdbl(xmm0, Address(rsp, 0));
2739      __ addq(rsp, 8);
2740      __ ret(0);
2741    }
2742    {
2743      StubCodeMark mark(this, "StubRoutines", "log10");
2744      StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2745
2746      __ subq(rsp, 8);
2747      __ movdbl(Address(rsp, 0), xmm0);
2748      __ fld_d(Address(rsp, 0));
2749      __ flog10();
2750      __ fstp_d(Address(rsp, 0));
2751      __ movdbl(xmm0, Address(rsp, 0));
2752      __ addq(rsp, 8);
2753      __ ret(0);
2754    }
2755    {
2756      StubCodeMark mark(this, "StubRoutines", "sin");
2757      StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2758
2759      __ subq(rsp, 8);
2760      __ movdbl(Address(rsp, 0), xmm0);
2761      __ fld_d(Address(rsp, 0));
2762      __ trigfunc('s');
2763      __ fstp_d(Address(rsp, 0));
2764      __ movdbl(xmm0, Address(rsp, 0));
2765      __ addq(rsp, 8);
2766      __ ret(0);
2767    }
2768    {
2769      StubCodeMark mark(this, "StubRoutines", "cos");
2770      StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2771
2772      __ subq(rsp, 8);
2773      __ movdbl(Address(rsp, 0), xmm0);
2774      __ fld_d(Address(rsp, 0));
2775      __ trigfunc('c');
2776      __ fstp_d(Address(rsp, 0));
2777      __ movdbl(xmm0, Address(rsp, 0));
2778      __ addq(rsp, 8);
2779      __ ret(0);
2780    }
2781    {
2782      StubCodeMark mark(this, "StubRoutines", "tan");
2783      StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2784
2785      __ subq(rsp, 8);
2786      __ movdbl(Address(rsp, 0), xmm0);
2787      __ fld_d(Address(rsp, 0));
2788      __ trigfunc('t');
2789      __ fstp_d(Address(rsp, 0));
2790      __ movdbl(xmm0, Address(rsp, 0));
2791      __ addq(rsp, 8);
2792      __ ret(0);
2793    }
2794
2795    // The intrinsic version of these seem to return the same value as
2796    // the strict version.
2797    StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
2798    StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
2799  }
2800
2801#undef __
2802#define __ masm->
2803
2804  // Continuation point for throwing of implicit exceptions that are
2805  // not handled in the current activation. Fabricates an exception
2806  // oop and initiates normal exception dispatching in this
2807  // frame. Since we need to preserve callee-saved values (currently
2808  // only for C2, but done for C1 as well) we need a callee-saved oop
2809  // map and therefore have to make these stubs into RuntimeStubs
2810  // rather than BufferBlobs.  If the compiler needs all registers to
2811  // be preserved between the fault point and the exception handler
2812  // then it must assume responsibility for that in
2813  // AbstractCompiler::continuation_for_implicit_null_exception or
2814  // continuation_for_implicit_division_by_zero_exception. All other
2815  // implicit exceptions (e.g., NullPointerException or
2816  // AbstractMethodError on entry) are either at call sites or
2817  // otherwise assume that stack unwinding will be initiated, so
2818  // caller saved registers were assumed volatile in the compiler.
2819  address generate_throw_exception(const char* name,
2820                                   address runtime_entry,
2821                                   bool restore_saved_exception_pc) {
2822    // Information about frame layout at time of blocking runtime call.
2823    // Note that we only have to preserve callee-saved registers since
2824    // the compilers are responsible for supplying a continuation point
2825    // if they expect all registers to be preserved.
2826    enum layout {
2827      rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2828      rbp_off2,
2829      return_off,
2830      return_off2,
2831      framesize // inclusive of return address
2832    };
2833
2834    int insts_size = 512;
2835    int locs_size  = 64;
2836
2837    CodeBuffer code(name, insts_size, locs_size);
2838    OopMapSet* oop_maps  = new OopMapSet();
2839    MacroAssembler* masm = new MacroAssembler(&code);
2840
2841    address start = __ pc();
2842
2843    // This is an inlined and slightly modified version of call_VM
2844    // which has the ability to fetch the return PC out of
2845    // thread-local storage and also sets up last_Java_sp slightly
2846    // differently than the real call_VM
2847    if (restore_saved_exception_pc) {
2848      __ movptr(rax,
2849                Address(r15_thread,
2850                        in_bytes(JavaThread::saved_exception_pc_offset())));
2851      __ push(rax);
2852    }
2853
2854    __ enter(); // required for proper stackwalking of RuntimeStub frame
2855
2856    assert(is_even(framesize/2), "sp not 16-byte aligned");
2857
2858    // return address and rbp are already in place
2859    __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
2860
2861    int frame_complete = __ pc() - start;
2862
2863    // Set up last_Java_sp and last_Java_fp
2864    __ set_last_Java_frame(rsp, rbp, NULL);
2865
2866    // Call runtime
2867    __ movptr(c_rarg0, r15_thread);
2868    BLOCK_COMMENT("call runtime_entry");
2869    __ call(RuntimeAddress(runtime_entry));
2870
2871    // Generate oop map
2872    OopMap* map = new OopMap(framesize, 0);
2873
2874    oop_maps->add_gc_map(__ pc() - start, map);
2875
2876    __ reset_last_Java_frame(true, false);
2877
2878    __ leave(); // required for proper stackwalking of RuntimeStub frame
2879
2880    // check for pending exceptions
2881#ifdef ASSERT
2882    Label L;
2883    __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
2884            (int32_t) NULL_WORD);
2885    __ jcc(Assembler::notEqual, L);
2886    __ should_not_reach_here();
2887    __ bind(L);
2888#endif // ASSERT
2889    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2890
2891
2892    // codeBlob framesize is in words (not VMRegImpl::slot_size)
2893    RuntimeStub* stub =
2894      RuntimeStub::new_runtime_stub(name,
2895                                    &code,
2896                                    frame_complete,
2897                                    (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2898                                    oop_maps, false);
2899    return stub->entry_point();
2900  }
2901
2902  // Initialization
2903  void generate_initial() {
2904    // Generates all stubs and initializes the entry points
2905
2906    // This platform-specific stub is needed by generate_call_stub()
2907    StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
2908
2909    // entry points that exist in all platforms Note: This is code
2910    // that could be shared among different platforms - however the
2911    // benefit seems to be smaller than the disadvantage of having a
2912    // much more complicated generator structure. See also comment in
2913    // stubRoutines.hpp.
2914
2915    StubRoutines::_forward_exception_entry = generate_forward_exception();
2916
2917    StubRoutines::_call_stub_entry =
2918      generate_call_stub(StubRoutines::_call_stub_return_address);
2919
2920    // is referenced by megamorphic call
2921    StubRoutines::_catch_exception_entry = generate_catch_exception();
2922
2923    // atomic calls
2924    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
2925    StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
2926    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
2927    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
2928    StubRoutines::_atomic_add_entry          = generate_atomic_add();
2929    StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
2930    StubRoutines::_fence_entry               = generate_orderaccess_fence();
2931
2932    StubRoutines::_handler_for_unsafe_access_entry =
2933      generate_handler_for_unsafe_access();
2934
2935    // platform dependent
2936    StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
2937
2938    StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
2939  }
2940
2941  void generate_all() {
2942    // Generates all stubs and initializes the entry points
2943
2944    // These entry points require SharedInfo::stack0 to be set up in
2945    // non-core builds and need to be relocatable, so they each
2946    // fabricate a RuntimeStub internally.
2947    StubRoutines::_throw_AbstractMethodError_entry =
2948      generate_throw_exception("AbstractMethodError throw_exception",
2949                               CAST_FROM_FN_PTR(address,
2950                                                SharedRuntime::
2951                                                throw_AbstractMethodError),
2952                               false);
2953
2954    StubRoutines::_throw_IncompatibleClassChangeError_entry =
2955      generate_throw_exception("IncompatibleClassChangeError throw_exception",
2956                               CAST_FROM_FN_PTR(address,
2957                                                SharedRuntime::
2958                                                throw_IncompatibleClassChangeError),
2959                               false);
2960
2961    StubRoutines::_throw_ArithmeticException_entry =
2962      generate_throw_exception("ArithmeticException throw_exception",
2963                               CAST_FROM_FN_PTR(address,
2964                                                SharedRuntime::
2965                                                throw_ArithmeticException),
2966                               true);
2967
2968    StubRoutines::_throw_NullPointerException_entry =
2969      generate_throw_exception("NullPointerException throw_exception",
2970                               CAST_FROM_FN_PTR(address,
2971                                                SharedRuntime::
2972                                                throw_NullPointerException),
2973                               true);
2974
2975    StubRoutines::_throw_NullPointerException_at_call_entry =
2976      generate_throw_exception("NullPointerException at call throw_exception",
2977                               CAST_FROM_FN_PTR(address,
2978                                                SharedRuntime::
2979                                                throw_NullPointerException_at_call),
2980                               false);
2981
2982    StubRoutines::_throw_StackOverflowError_entry =
2983      generate_throw_exception("StackOverflowError throw_exception",
2984                               CAST_FROM_FN_PTR(address,
2985                                                SharedRuntime::
2986                                                throw_StackOverflowError),
2987                               false);
2988
2989    // entry points that are platform specific
2990    StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
2991    StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
2992    StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
2993    StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
2994
2995    StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
2996    StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
2997    StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
2998    StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
2999
3000    // support for verify_oop (must happen after universe_init)
3001    StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3002
3003    // arraycopy stubs used by compilers
3004    generate_arraycopy_stubs();
3005
3006    generate_math_stubs();
3007  }
3008
3009 public:
3010  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3011    if (all) {
3012      generate_all();
3013    } else {
3014      generate_initial();
3015    }
3016  }
3017}; // end class declaration
3018
3019address StubGenerator::disjoint_byte_copy_entry  = NULL;
3020address StubGenerator::disjoint_short_copy_entry = NULL;
3021address StubGenerator::disjoint_int_copy_entry   = NULL;
3022address StubGenerator::disjoint_long_copy_entry  = NULL;
3023address StubGenerator::disjoint_oop_copy_entry   = NULL;
3024
3025address StubGenerator::byte_copy_entry  = NULL;
3026address StubGenerator::short_copy_entry = NULL;
3027address StubGenerator::int_copy_entry   = NULL;
3028address StubGenerator::long_copy_entry  = NULL;
3029address StubGenerator::oop_copy_entry   = NULL;
3030
3031address StubGenerator::checkcast_copy_entry = NULL;
3032
3033void StubGenerator_generate(CodeBuffer* code, bool all) {
3034  StubGenerator g(code, all);
3035}
3036