stubGenerator_x86_32.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "assembler_x86.inline.hpp"
28#include "interpreter/interpreter.hpp"
29#include "nativeInst_x86.hpp"
30#include "oops/instanceOop.hpp"
31#include "oops/method.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/methodHandles.hpp"
35#include "runtime/frame.inline.hpp"
36#include "runtime/handles.inline.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubCodeGenerator.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "utilities/top.hpp"
41#ifdef TARGET_OS_FAMILY_linux
42# include "thread_linux.inline.hpp"
43#endif
44#ifdef TARGET_OS_FAMILY_solaris
45# include "thread_solaris.inline.hpp"
46#endif
47#ifdef TARGET_OS_FAMILY_windows
48# include "thread_windows.inline.hpp"
49#endif
50#ifdef TARGET_OS_FAMILY_bsd
51# include "thread_bsd.inline.hpp"
52#endif
53#ifdef COMPILER2
54#include "opto/runtime.hpp"
55#endif
56
57// Declaration and definition of StubGenerator (no .hpp file).
58// For a more detailed description of the stub routine structure
59// see the comment in stubRoutines.hpp
60
61#define __ _masm->
62#define a__ ((Assembler*)_masm)->
63
64#ifdef PRODUCT
65#define BLOCK_COMMENT(str) /* nothing */
66#else
67#define BLOCK_COMMENT(str) __ block_comment(str)
68#endif
69
70#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
71
72const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
73const int FPU_CNTRL_WRD_MASK = 0xFFFF;
74
75// -------------------------------------------------------------------------------------------------------------------------
76// Stub Code definitions
77
78static address handle_unsafe_access() {
79  JavaThread* thread = JavaThread::current();
80  address pc  = thread->saved_exception_pc();
81  // pc is the instruction which we must emulate
82  // doing a no-op is fine:  return garbage from the load
83  // therefore, compute npc
84  address npc = Assembler::locate_next_instruction(pc);
85
86  // request an async exception
87  thread->set_pending_unsafe_access_error();
88
89  // return address of next instruction to execute
90  return npc;
91}
92
93class StubGenerator: public StubCodeGenerator {
94 private:
95
96#ifdef PRODUCT
97#define inc_counter_np(counter) (0)
98#else
99  void inc_counter_np_(int& counter) {
100    __ incrementl(ExternalAddress((address)&counter));
101  }
102#define inc_counter_np(counter) \
103  BLOCK_COMMENT("inc_counter " #counter); \
104  inc_counter_np_(counter);
105#endif //PRODUCT
106
107  void inc_copy_counter_np(BasicType t) {
108#ifndef PRODUCT
109    switch (t) {
110    case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
111    case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
112    case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
113    case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
114    case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
115    }
116    ShouldNotReachHere();
117#endif //PRODUCT
118  }
119
120  //------------------------------------------------------------------------------------------------------------------------
121  // Call stubs are used to call Java from C
122  //
123  //    [ return_from_Java     ] <--- rsp
124  //    [ argument word n      ]
125  //      ...
126  // -N [ argument word 1      ]
127  // -7 [ Possible padding for stack alignment ]
128  // -6 [ Possible padding for stack alignment ]
129  // -5 [ Possible padding for stack alignment ]
130  // -4 [ mxcsr save           ] <--- rsp_after_call
131  // -3 [ saved rbx,            ]
132  // -2 [ saved rsi            ]
133  // -1 [ saved rdi            ]
134  //  0 [ saved rbp,            ] <--- rbp,
135  //  1 [ return address       ]
136  //  2 [ ptr. to call wrapper ]
137  //  3 [ result               ]
138  //  4 [ result_type          ]
139  //  5 [ method               ]
140  //  6 [ entry_point          ]
141  //  7 [ parameters           ]
142  //  8 [ parameter_size       ]
143  //  9 [ thread               ]
144
145
146  address generate_call_stub(address& return_address) {
147    StubCodeMark mark(this, "StubRoutines", "call_stub");
148    address start = __ pc();
149
150    // stub code parameters / addresses
151    assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
152    bool  sse_save = false;
153    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
154    const int     locals_count_in_bytes  (4*wordSize);
155    const Address mxcsr_save    (rbp, -4 * wordSize);
156    const Address saved_rbx     (rbp, -3 * wordSize);
157    const Address saved_rsi     (rbp, -2 * wordSize);
158    const Address saved_rdi     (rbp, -1 * wordSize);
159    const Address result        (rbp,  3 * wordSize);
160    const Address result_type   (rbp,  4 * wordSize);
161    const Address method        (rbp,  5 * wordSize);
162    const Address entry_point   (rbp,  6 * wordSize);
163    const Address parameters    (rbp,  7 * wordSize);
164    const Address parameter_size(rbp,  8 * wordSize);
165    const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
166    sse_save =  UseSSE > 0;
167
168    // stub code
169    __ enter();
170    __ movptr(rcx, parameter_size);              // parameter counter
171    __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
172    __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
173    __ subptr(rsp, rcx);
174    __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
175
176    // save rdi, rsi, & rbx, according to C calling conventions
177    __ movptr(saved_rdi, rdi);
178    __ movptr(saved_rsi, rsi);
179    __ movptr(saved_rbx, rbx);
180    // save and initialize %mxcsr
181    if (sse_save) {
182      Label skip_ldmx;
183      __ stmxcsr(mxcsr_save);
184      __ movl(rax, mxcsr_save);
185      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
186      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
187      __ cmp32(rax, mxcsr_std);
188      __ jcc(Assembler::equal, skip_ldmx);
189      __ ldmxcsr(mxcsr_std);
190      __ bind(skip_ldmx);
191    }
192
193    // make sure the control word is correct.
194    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
195
196#ifdef ASSERT
197    // make sure we have no pending exceptions
198    { Label L;
199      __ movptr(rcx, thread);
200      __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
201      __ jcc(Assembler::equal, L);
202      __ stop("StubRoutines::call_stub: entered with pending exception");
203      __ bind(L);
204    }
205#endif
206
207    // pass parameters if any
208    BLOCK_COMMENT("pass parameters if any");
209    Label parameters_done;
210    __ movl(rcx, parameter_size);  // parameter counter
211    __ testl(rcx, rcx);
212    __ jcc(Assembler::zero, parameters_done);
213
214    // parameter passing loop
215
216    Label loop;
217    // Copy Java parameters in reverse order (receiver last)
218    // Note that the argument order is inverted in the process
219    // source is rdx[rcx: N-1..0]
220    // dest   is rsp[rbx: 0..N-1]
221
222    __ movptr(rdx, parameters);          // parameter pointer
223    __ xorptr(rbx, rbx);
224
225    __ BIND(loop);
226
227    // get parameter
228    __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
229    __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
230                    Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
231    __ increment(rbx);
232    __ decrement(rcx);
233    __ jcc(Assembler::notZero, loop);
234
235    // call Java function
236    __ BIND(parameters_done);
237    __ movptr(rbx, method);           // get Method*
238    __ movptr(rax, entry_point);      // get entry_point
239    __ mov(rsi, rsp);                 // set sender sp
240    BLOCK_COMMENT("call Java function");
241    __ call(rax);
242
243    BLOCK_COMMENT("call_stub_return_address:");
244    return_address = __ pc();
245
246#ifdef COMPILER2
247    {
248      Label L_skip;
249      if (UseSSE >= 2) {
250        __ verify_FPU(0, "call_stub_return");
251      } else {
252        for (int i = 1; i < 8; i++) {
253          __ ffree(i);
254        }
255
256        // UseSSE <= 1 so double result should be left on TOS
257        __ movl(rsi, result_type);
258        __ cmpl(rsi, T_DOUBLE);
259        __ jcc(Assembler::equal, L_skip);
260        if (UseSSE == 0) {
261          // UseSSE == 0 so float result should be left on TOS
262          __ cmpl(rsi, T_FLOAT);
263          __ jcc(Assembler::equal, L_skip);
264        }
265        __ ffree(0);
266      }
267      __ BIND(L_skip);
268    }
269#endif // COMPILER2
270
271    // store result depending on type
272    // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
273    __ movptr(rdi, result);
274    Label is_long, is_float, is_double, exit;
275    __ movl(rsi, result_type);
276    __ cmpl(rsi, T_LONG);
277    __ jcc(Assembler::equal, is_long);
278    __ cmpl(rsi, T_FLOAT);
279    __ jcc(Assembler::equal, is_float);
280    __ cmpl(rsi, T_DOUBLE);
281    __ jcc(Assembler::equal, is_double);
282
283    // handle T_INT case
284    __ movl(Address(rdi, 0), rax);
285    __ BIND(exit);
286
287    // check that FPU stack is empty
288    __ verify_FPU(0, "generate_call_stub");
289
290    // pop parameters
291    __ lea(rsp, rsp_after_call);
292
293    // restore %mxcsr
294    if (sse_save) {
295      __ ldmxcsr(mxcsr_save);
296    }
297
298    // restore rdi, rsi and rbx,
299    __ movptr(rbx, saved_rbx);
300    __ movptr(rsi, saved_rsi);
301    __ movptr(rdi, saved_rdi);
302    __ addptr(rsp, 4*wordSize);
303
304    // return
305    __ pop(rbp);
306    __ ret(0);
307
308    // handle return types different from T_INT
309    __ BIND(is_long);
310    __ movl(Address(rdi, 0 * wordSize), rax);
311    __ movl(Address(rdi, 1 * wordSize), rdx);
312    __ jmp(exit);
313
314    __ BIND(is_float);
315    // interpreter uses xmm0 for return values
316    if (UseSSE >= 1) {
317      __ movflt(Address(rdi, 0), xmm0);
318    } else {
319      __ fstp_s(Address(rdi, 0));
320    }
321    __ jmp(exit);
322
323    __ BIND(is_double);
324    // interpreter uses xmm0 for return values
325    if (UseSSE >= 2) {
326      __ movdbl(Address(rdi, 0), xmm0);
327    } else {
328      __ fstp_d(Address(rdi, 0));
329    }
330    __ jmp(exit);
331
332    return start;
333  }
334
335
336  //------------------------------------------------------------------------------------------------------------------------
337  // Return point for a Java call if there's an exception thrown in Java code.
338  // The exception is caught and transformed into a pending exception stored in
339  // JavaThread that can be tested from within the VM.
340  //
341  // Note: Usually the parameters are removed by the callee. In case of an exception
342  //       crossing an activation frame boundary, that is not the case if the callee
343  //       is compiled code => need to setup the rsp.
344  //
345  // rax,: exception oop
346
347  address generate_catch_exception() {
348    StubCodeMark mark(this, "StubRoutines", "catch_exception");
349    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
350    const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
351    address start = __ pc();
352
353    // get thread directly
354    __ movptr(rcx, thread);
355#ifdef ASSERT
356    // verify that threads correspond
357    { Label L;
358      __ get_thread(rbx);
359      __ cmpptr(rbx, rcx);
360      __ jcc(Assembler::equal, L);
361      __ stop("StubRoutines::catch_exception: threads must correspond");
362      __ bind(L);
363    }
364#endif
365    // set pending exception
366    __ verify_oop(rax);
367    __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
368    __ lea(Address(rcx, Thread::exception_file_offset   ()),
369           ExternalAddress((address)__FILE__));
370    __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
371    // complete return to VM
372    assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
373    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
374
375    return start;
376  }
377
378
379  //------------------------------------------------------------------------------------------------------------------------
380  // Continuation point for runtime calls returning with a pending exception.
381  // The pending exception check happened in the runtime or native call stub.
382  // The pending exception in Thread is converted into a Java-level exception.
383  //
384  // Contract with Java-level exception handlers:
385  // rax: exception
386  // rdx: throwing pc
387  //
388  // NOTE: At entry of this stub, exception-pc must be on stack !!
389
390  address generate_forward_exception() {
391    StubCodeMark mark(this, "StubRoutines", "forward exception");
392    address start = __ pc();
393    const Register thread = rcx;
394
395    // other registers used in this stub
396    const Register exception_oop = rax;
397    const Register handler_addr  = rbx;
398    const Register exception_pc  = rdx;
399
400    // Upon entry, the sp points to the return address returning into Java
401    // (interpreted or compiled) code; i.e., the return address becomes the
402    // throwing pc.
403    //
404    // Arguments pushed before the runtime call are still on the stack but
405    // the exception handler will reset the stack pointer -> ignore them.
406    // A potential result in registers can be ignored as well.
407
408#ifdef ASSERT
409    // make sure this code is only executed if there is a pending exception
410    { Label L;
411      __ get_thread(thread);
412      __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
413      __ jcc(Assembler::notEqual, L);
414      __ stop("StubRoutines::forward exception: no pending exception (1)");
415      __ bind(L);
416    }
417#endif
418
419    // compute exception handler into rbx,
420    __ get_thread(thread);
421    __ movptr(exception_pc, Address(rsp, 0));
422    BLOCK_COMMENT("call exception_handler_for_return_address");
423    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
424    __ mov(handler_addr, rax);
425
426    // setup rax & rdx, remove return address & clear pending exception
427    __ get_thread(thread);
428    __ pop(exception_pc);
429    __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
430    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
431
432#ifdef ASSERT
433    // make sure exception is set
434    { Label L;
435      __ testptr(exception_oop, exception_oop);
436      __ jcc(Assembler::notEqual, L);
437      __ stop("StubRoutines::forward exception: no pending exception (2)");
438      __ bind(L);
439    }
440#endif
441
442    // Verify that there is really a valid exception in RAX.
443    __ verify_oop(exception_oop);
444
445    // continue at exception handler (return address removed)
446    // rax: exception
447    // rbx: exception handler
448    // rdx: throwing pc
449    __ jmp(handler_addr);
450
451    return start;
452  }
453
454
455  //----------------------------------------------------------------------------------------------------
456  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
457  //
458  // xchg exists as far back as 8086, lock needed for MP only
459  // Stack layout immediately after call:
460  //
461  // 0 [ret addr ] <--- rsp
462  // 1 [  ex     ]
463  // 2 [  dest   ]
464  //
465  // Result:   *dest <- ex, return (old *dest)
466  //
467  // Note: win32 does not currently use this code
468
469  address generate_atomic_xchg() {
470    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
471    address start = __ pc();
472
473    __ push(rdx);
474    Address exchange(rsp, 2 * wordSize);
475    Address dest_addr(rsp, 3 * wordSize);
476    __ movl(rax, exchange);
477    __ movptr(rdx, dest_addr);
478    __ xchgl(rax, Address(rdx, 0));
479    __ pop(rdx);
480    __ ret(0);
481
482    return start;
483  }
484
485  //----------------------------------------------------------------------------------------------------
486  // Support for void verify_mxcsr()
487  //
488  // This routine is used with -Xcheck:jni to verify that native
489  // JNI code does not return to Java code without restoring the
490  // MXCSR register to our expected state.
491
492
493  address generate_verify_mxcsr() {
494    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
495    address start = __ pc();
496
497    const Address mxcsr_save(rsp, 0);
498
499    if (CheckJNICalls && UseSSE > 0 ) {
500      Label ok_ret;
501      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
502      __ push(rax);
503      __ subptr(rsp, wordSize);      // allocate a temp location
504      __ stmxcsr(mxcsr_save);
505      __ movl(rax, mxcsr_save);
506      __ andl(rax, MXCSR_MASK);
507      __ cmp32(rax, mxcsr_std);
508      __ jcc(Assembler::equal, ok_ret);
509
510      __ warn("MXCSR changed by native JNI code.");
511
512      __ ldmxcsr(mxcsr_std);
513
514      __ bind(ok_ret);
515      __ addptr(rsp, wordSize);
516      __ pop(rax);
517    }
518
519    __ ret(0);
520
521    return start;
522  }
523
524
525  //---------------------------------------------------------------------------
526  // Support for void verify_fpu_cntrl_wrd()
527  //
528  // This routine is used with -Xcheck:jni to verify that native
529  // JNI code does not return to Java code without restoring the
530  // FP control word to our expected state.
531
532  address generate_verify_fpu_cntrl_wrd() {
533    StubCodeMark mark(this, "StubRoutines", "verify_spcw");
534    address start = __ pc();
535
536    const Address fpu_cntrl_wrd_save(rsp, 0);
537
538    if (CheckJNICalls) {
539      Label ok_ret;
540      __ push(rax);
541      __ subptr(rsp, wordSize);      // allocate a temp location
542      __ fnstcw(fpu_cntrl_wrd_save);
543      __ movl(rax, fpu_cntrl_wrd_save);
544      __ andl(rax, FPU_CNTRL_WRD_MASK);
545      ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
546      __ cmp32(rax, fpu_std);
547      __ jcc(Assembler::equal, ok_ret);
548
549      __ warn("Floating point control word changed by native JNI code.");
550
551      __ fldcw(fpu_std);
552
553      __ bind(ok_ret);
554      __ addptr(rsp, wordSize);
555      __ pop(rax);
556    }
557
558    __ ret(0);
559
560    return start;
561  }
562
563  //---------------------------------------------------------------------------
564  // Wrapper for slow-case handling of double-to-integer conversion
565  // d2i or f2i fast case failed either because it is nan or because
566  // of under/overflow.
567  // Input:  FPU TOS: float value
568  // Output: rax, (rdx): integer (long) result
569
570  address generate_d2i_wrapper(BasicType t, address fcn) {
571    StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
572    address start = __ pc();
573
574  // Capture info about frame layout
575  enum layout { FPUState_off         = 0,
576                rbp_off              = FPUStateSizeInWords,
577                rdi_off,
578                rsi_off,
579                rcx_off,
580                rbx_off,
581                saved_argument_off,
582                saved_argument_off2, // 2nd half of double
583                framesize
584  };
585
586  assert(FPUStateSizeInWords == 27, "update stack layout");
587
588    // Save outgoing argument to stack across push_FPU_state()
589    __ subptr(rsp, wordSize * 2);
590    __ fstp_d(Address(rsp, 0));
591
592    // Save CPU & FPU state
593    __ push(rbx);
594    __ push(rcx);
595    __ push(rsi);
596    __ push(rdi);
597    __ push(rbp);
598    __ push_FPU_state();
599
600    // push_FPU_state() resets the FP top of stack
601    // Load original double into FP top of stack
602    __ fld_d(Address(rsp, saved_argument_off * wordSize));
603    // Store double into stack as outgoing argument
604    __ subptr(rsp, wordSize*2);
605    __ fst_d(Address(rsp, 0));
606
607    // Prepare FPU for doing math in C-land
608    __ empty_FPU_stack();
609    // Call the C code to massage the double.  Result in EAX
610    if (t == T_INT)
611      { BLOCK_COMMENT("SharedRuntime::d2i"); }
612    else if (t == T_LONG)
613      { BLOCK_COMMENT("SharedRuntime::d2l"); }
614    __ call_VM_leaf( fcn, 2 );
615
616    // Restore CPU & FPU state
617    __ pop_FPU_state();
618    __ pop(rbp);
619    __ pop(rdi);
620    __ pop(rsi);
621    __ pop(rcx);
622    __ pop(rbx);
623    __ addptr(rsp, wordSize * 2);
624
625    __ ret(0);
626
627    return start;
628  }
629
630
631  //---------------------------------------------------------------------------
632  // The following routine generates a subroutine to throw an asynchronous
633  // UnknownError when an unsafe access gets a fault that could not be
634  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
635  address generate_handler_for_unsafe_access() {
636    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
637    address start = __ pc();
638
639    __ push(0);                       // hole for return address-to-be
640    __ pusha();                       // push registers
641    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
642    BLOCK_COMMENT("call handle_unsafe_access");
643    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
644    __ movptr(next_pc, rax);          // stuff next address
645    __ popa();
646    __ ret(0);                        // jump to next address
647
648    return start;
649  }
650
651
652  //----------------------------------------------------------------------------------------------------
653  // Non-destructive plausibility checks for oops
654
655  address generate_verify_oop() {
656    StubCodeMark mark(this, "StubRoutines", "verify_oop");
657    address start = __ pc();
658
659    // Incoming arguments on stack after saving rax,:
660    //
661    // [tos    ]: saved rdx
662    // [tos + 1]: saved EFLAGS
663    // [tos + 2]: return address
664    // [tos + 3]: char* error message
665    // [tos + 4]: oop   object to verify
666    // [tos + 5]: saved rax, - saved by caller and bashed
667
668    Label exit, error;
669    __ pushf();
670    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
671    __ push(rdx);                                // save rdx
672    // make sure object is 'reasonable'
673    __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
674    __ testptr(rax, rax);
675    __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
676
677    // Check if the oop is in the right area of memory
678    const int oop_mask = Universe::verify_oop_mask();
679    const int oop_bits = Universe::verify_oop_bits();
680    __ mov(rdx, rax);
681    __ andptr(rdx, oop_mask);
682    __ cmpptr(rdx, oop_bits);
683    __ jcc(Assembler::notZero, error);
684
685    // make sure klass is 'reasonable', which is not zero.
686    __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
687    __ testptr(rax, rax);
688    __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
689    // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
690
691    // return if everything seems ok
692    __ bind(exit);
693    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
694    __ pop(rdx);                                 // restore rdx
695    __ popf();                                   // restore EFLAGS
696    __ ret(3 * wordSize);                        // pop arguments
697
698    // handle errors
699    __ bind(error);
700    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
701    __ pop(rdx);                                 // get saved rdx back
702    __ popf();                                   // get saved EFLAGS off stack -- will be ignored
703    __ pusha();                                  // push registers (eip = return address & msg are already pushed)
704    BLOCK_COMMENT("call MacroAssembler::debug");
705    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
706    __ popa();
707    __ ret(3 * wordSize);                        // pop arguments
708    return start;
709  }
710
711  //
712  //  Generate pre-barrier for array stores
713  //
714  //  Input:
715  //     start   -  starting address
716  //     count   -  element count
717  void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
718    assert_different_registers(start, count);
719    BarrierSet* bs = Universe::heap()->barrier_set();
720    switch (bs->kind()) {
721      case BarrierSet::G1SATBCT:
722      case BarrierSet::G1SATBCTLogging:
723        // With G1, don't generate the call if we statically know that the target in uninitialized
724        if (!uninitialized_target) {
725           __ pusha();                      // push registers
726           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
727                           start, count);
728           __ popa();
729         }
730        break;
731      case BarrierSet::CardTableModRef:
732      case BarrierSet::CardTableExtension:
733      case BarrierSet::ModRef:
734        break;
735      default      :
736        ShouldNotReachHere();
737
738    }
739  }
740
741
742  //
743  // Generate a post-barrier for an array store
744  //
745  //     start    -  starting address
746  //     count    -  element count
747  //
748  //  The two input registers are overwritten.
749  //
750  void  gen_write_ref_array_post_barrier(Register start, Register count) {
751    BarrierSet* bs = Universe::heap()->barrier_set();
752    assert_different_registers(start, count);
753    switch (bs->kind()) {
754      case BarrierSet::G1SATBCT:
755      case BarrierSet::G1SATBCTLogging:
756        {
757          __ pusha();                      // push registers
758          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
759                          start, count);
760          __ popa();
761        }
762        break;
763
764      case BarrierSet::CardTableModRef:
765      case BarrierSet::CardTableExtension:
766        {
767          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
768          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
769
770          Label L_loop;
771          const Register end = count;  // elements count; end == start+count-1
772          assert_different_registers(start, end);
773
774          __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
775          __ shrptr(start, CardTableModRefBS::card_shift);
776          __ shrptr(end,   CardTableModRefBS::card_shift);
777          __ subptr(end, start); // end --> count
778        __ BIND(L_loop);
779          intptr_t disp = (intptr_t) ct->byte_map_base;
780          Address cardtable(start, count, Address::times_1, disp);
781          __ movb(cardtable, 0);
782          __ decrement(count);
783          __ jcc(Assembler::greaterEqual, L_loop);
784        }
785        break;
786      case BarrierSet::ModRef:
787        break;
788      default      :
789        ShouldNotReachHere();
790
791    }
792  }
793
794
795  // Copy 64 bytes chunks
796  //
797  // Inputs:
798  //   from        - source array address
799  //   to_from     - destination array address - from
800  //   qword_count - 8-bytes element count, negative
801  //
802  void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
803    assert( UseSSE >= 2, "supported cpu only" );
804    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
805    // Copy 64-byte chunks
806    __ jmpb(L_copy_64_bytes);
807    __ align(OptoLoopAlignment);
808  __ BIND(L_copy_64_bytes_loop);
809
810    if(UseUnalignedLoadStores) {
811      __ movdqu(xmm0, Address(from, 0));
812      __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
813      __ movdqu(xmm1, Address(from, 16));
814      __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
815      __ movdqu(xmm2, Address(from, 32));
816      __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
817      __ movdqu(xmm3, Address(from, 48));
818      __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
819
820    } else {
821      __ movq(xmm0, Address(from, 0));
822      __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
823      __ movq(xmm1, Address(from, 8));
824      __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
825      __ movq(xmm2, Address(from, 16));
826      __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
827      __ movq(xmm3, Address(from, 24));
828      __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
829      __ movq(xmm4, Address(from, 32));
830      __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
831      __ movq(xmm5, Address(from, 40));
832      __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
833      __ movq(xmm6, Address(from, 48));
834      __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
835      __ movq(xmm7, Address(from, 56));
836      __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
837    }
838
839    __ addl(from, 64);
840  __ BIND(L_copy_64_bytes);
841    __ subl(qword_count, 8);
842    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
843    __ addl(qword_count, 8);
844    __ jccb(Assembler::zero, L_exit);
845    //
846    // length is too short, just copy qwords
847    //
848  __ BIND(L_copy_8_bytes);
849    __ movq(xmm0, Address(from, 0));
850    __ movq(Address(from, to_from, Address::times_1), xmm0);
851    __ addl(from, 8);
852    __ decrement(qword_count);
853    __ jcc(Assembler::greater, L_copy_8_bytes);
854  __ BIND(L_exit);
855  }
856
857  // Copy 64 bytes chunks
858  //
859  // Inputs:
860  //   from        - source array address
861  //   to_from     - destination array address - from
862  //   qword_count - 8-bytes element count, negative
863  //
864  void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
865    assert( VM_Version::supports_mmx(), "supported cpu only" );
866    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
867    // Copy 64-byte chunks
868    __ jmpb(L_copy_64_bytes);
869    __ align(OptoLoopAlignment);
870  __ BIND(L_copy_64_bytes_loop);
871    __ movq(mmx0, Address(from, 0));
872    __ movq(mmx1, Address(from, 8));
873    __ movq(mmx2, Address(from, 16));
874    __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
875    __ movq(mmx3, Address(from, 24));
876    __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
877    __ movq(mmx4, Address(from, 32));
878    __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
879    __ movq(mmx5, Address(from, 40));
880    __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
881    __ movq(mmx6, Address(from, 48));
882    __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
883    __ movq(mmx7, Address(from, 56));
884    __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
885    __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
886    __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
887    __ addptr(from, 64);
888  __ BIND(L_copy_64_bytes);
889    __ subl(qword_count, 8);
890    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
891    __ addl(qword_count, 8);
892    __ jccb(Assembler::zero, L_exit);
893    //
894    // length is too short, just copy qwords
895    //
896  __ BIND(L_copy_8_bytes);
897    __ movq(mmx0, Address(from, 0));
898    __ movq(Address(from, to_from, Address::times_1), mmx0);
899    __ addptr(from, 8);
900    __ decrement(qword_count);
901    __ jcc(Assembler::greater, L_copy_8_bytes);
902  __ BIND(L_exit);
903    __ emms();
904  }
905
906  address generate_disjoint_copy(BasicType t, bool aligned,
907                                 Address::ScaleFactor sf,
908                                 address* entry, const char *name,
909                                 bool dest_uninitialized = false) {
910    __ align(CodeEntryAlignment);
911    StubCodeMark mark(this, "StubRoutines", name);
912    address start = __ pc();
913
914    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
915    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
916
917    int shift = Address::times_ptr - sf;
918
919    const Register from     = rsi;  // source array address
920    const Register to       = rdi;  // destination array address
921    const Register count    = rcx;  // elements count
922    const Register to_from  = to;   // (to - from)
923    const Register saved_to = rdx;  // saved destination array address
924
925    __ enter(); // required for proper stackwalking of RuntimeStub frame
926    __ push(rsi);
927    __ push(rdi);
928    __ movptr(from , Address(rsp, 12+ 4));
929    __ movptr(to   , Address(rsp, 12+ 8));
930    __ movl(count, Address(rsp, 12+ 12));
931
932    if (entry != NULL) {
933      *entry = __ pc(); // Entry point from conjoint arraycopy stub.
934      BLOCK_COMMENT("Entry:");
935    }
936
937    if (t == T_OBJECT) {
938      __ testl(count, count);
939      __ jcc(Assembler::zero, L_0_count);
940      gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
941      __ mov(saved_to, to);          // save 'to'
942    }
943
944    __ subptr(to, from); // to --> to_from
945    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
946    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
947    if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
948      // align source address at 4 bytes address boundary
949      if (t == T_BYTE) {
950        // One byte misalignment happens only for byte arrays
951        __ testl(from, 1);
952        __ jccb(Assembler::zero, L_skip_align1);
953        __ movb(rax, Address(from, 0));
954        __ movb(Address(from, to_from, Address::times_1, 0), rax);
955        __ increment(from);
956        __ decrement(count);
957      __ BIND(L_skip_align1);
958      }
959      // Two bytes misalignment happens only for byte and short (char) arrays
960      __ testl(from, 2);
961      __ jccb(Assembler::zero, L_skip_align2);
962      __ movw(rax, Address(from, 0));
963      __ movw(Address(from, to_from, Address::times_1, 0), rax);
964      __ addptr(from, 2);
965      __ subl(count, 1<<(shift-1));
966    __ BIND(L_skip_align2);
967    }
968    if (!VM_Version::supports_mmx()) {
969      __ mov(rax, count);      // save 'count'
970      __ shrl(count, shift); // bytes count
971      __ addptr(to_from, from);// restore 'to'
972      __ rep_mov();
973      __ subptr(to_from, from);// restore 'to_from'
974      __ mov(count, rax);      // restore 'count'
975      __ jmpb(L_copy_2_bytes); // all dwords were copied
976    } else {
977      if (!UseUnalignedLoadStores) {
978        // align to 8 bytes, we know we are 4 byte aligned to start
979        __ testptr(from, 4);
980        __ jccb(Assembler::zero, L_copy_64_bytes);
981        __ movl(rax, Address(from, 0));
982        __ movl(Address(from, to_from, Address::times_1, 0), rax);
983        __ addptr(from, 4);
984        __ subl(count, 1<<shift);
985      }
986    __ BIND(L_copy_64_bytes);
987      __ mov(rax, count);
988      __ shrl(rax, shift+1);  // 8 bytes chunk count
989      //
990      // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
991      //
992      if (UseXMMForArrayCopy) {
993        xmm_copy_forward(from, to_from, rax);
994      } else {
995        mmx_copy_forward(from, to_from, rax);
996      }
997    }
998    // copy tailing dword
999  __ BIND(L_copy_4_bytes);
1000    __ testl(count, 1<<shift);
1001    __ jccb(Assembler::zero, L_copy_2_bytes);
1002    __ movl(rax, Address(from, 0));
1003    __ movl(Address(from, to_from, Address::times_1, 0), rax);
1004    if (t == T_BYTE || t == T_SHORT) {
1005      __ addptr(from, 4);
1006    __ BIND(L_copy_2_bytes);
1007      // copy tailing word
1008      __ testl(count, 1<<(shift-1));
1009      __ jccb(Assembler::zero, L_copy_byte);
1010      __ movw(rax, Address(from, 0));
1011      __ movw(Address(from, to_from, Address::times_1, 0), rax);
1012      if (t == T_BYTE) {
1013        __ addptr(from, 2);
1014      __ BIND(L_copy_byte);
1015        // copy tailing byte
1016        __ testl(count, 1);
1017        __ jccb(Assembler::zero, L_exit);
1018        __ movb(rax, Address(from, 0));
1019        __ movb(Address(from, to_from, Address::times_1, 0), rax);
1020      __ BIND(L_exit);
1021      } else {
1022      __ BIND(L_copy_byte);
1023      }
1024    } else {
1025    __ BIND(L_copy_2_bytes);
1026    }
1027
1028    if (t == T_OBJECT) {
1029      __ movl(count, Address(rsp, 12+12)); // reread 'count'
1030      __ mov(to, saved_to); // restore 'to'
1031      gen_write_ref_array_post_barrier(to, count);
1032    __ BIND(L_0_count);
1033    }
1034    inc_copy_counter_np(t);
1035    __ pop(rdi);
1036    __ pop(rsi);
1037    __ leave(); // required for proper stackwalking of RuntimeStub frame
1038    __ xorptr(rax, rax); // return 0
1039    __ ret(0);
1040    return start;
1041  }
1042
1043
1044  address generate_fill(BasicType t, bool aligned, const char *name) {
1045    __ align(CodeEntryAlignment);
1046    StubCodeMark mark(this, "StubRoutines", name);
1047    address start = __ pc();
1048
1049    BLOCK_COMMENT("Entry:");
1050
1051    const Register to       = rdi;  // source array address
1052    const Register value    = rdx;  // value
1053    const Register count    = rsi;  // elements count
1054
1055    __ enter(); // required for proper stackwalking of RuntimeStub frame
1056    __ push(rsi);
1057    __ push(rdi);
1058    __ movptr(to   , Address(rsp, 12+ 4));
1059    __ movl(value, Address(rsp, 12+ 8));
1060    __ movl(count, Address(rsp, 12+ 12));
1061
1062    __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1063
1064    __ pop(rdi);
1065    __ pop(rsi);
1066    __ leave(); // required for proper stackwalking of RuntimeStub frame
1067    __ ret(0);
1068    return start;
1069  }
1070
1071  address generate_conjoint_copy(BasicType t, bool aligned,
1072                                 Address::ScaleFactor sf,
1073                                 address nooverlap_target,
1074                                 address* entry, const char *name,
1075                                 bool dest_uninitialized = false) {
1076    __ align(CodeEntryAlignment);
1077    StubCodeMark mark(this, "StubRoutines", name);
1078    address start = __ pc();
1079
1080    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1081    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1082
1083    int shift = Address::times_ptr - sf;
1084
1085    const Register src   = rax;  // source array address
1086    const Register dst   = rdx;  // destination array address
1087    const Register from  = rsi;  // source array address
1088    const Register to    = rdi;  // destination array address
1089    const Register count = rcx;  // elements count
1090    const Register end   = rax;  // array end address
1091
1092    __ enter(); // required for proper stackwalking of RuntimeStub frame
1093    __ push(rsi);
1094    __ push(rdi);
1095    __ movptr(src  , Address(rsp, 12+ 4));   // from
1096    __ movptr(dst  , Address(rsp, 12+ 8));   // to
1097    __ movl2ptr(count, Address(rsp, 12+12)); // count
1098
1099    if (entry != NULL) {
1100      *entry = __ pc(); // Entry point from generic arraycopy stub.
1101      BLOCK_COMMENT("Entry:");
1102    }
1103
1104    // nooverlap_target expects arguments in rsi and rdi.
1105    __ mov(from, src);
1106    __ mov(to  , dst);
1107
1108    // arrays overlap test: dispatch to disjoint stub if necessary.
1109    RuntimeAddress nooverlap(nooverlap_target);
1110    __ cmpptr(dst, src);
1111    __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1112    __ jump_cc(Assembler::belowEqual, nooverlap);
1113    __ cmpptr(dst, end);
1114    __ jump_cc(Assembler::aboveEqual, nooverlap);
1115
1116    if (t == T_OBJECT) {
1117      __ testl(count, count);
1118      __ jcc(Assembler::zero, L_0_count);
1119      gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1120    }
1121
1122    // copy from high to low
1123    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1124    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1125    if (t == T_BYTE || t == T_SHORT) {
1126      // Align the end of destination array at 4 bytes address boundary
1127      __ lea(end, Address(dst, count, sf, 0));
1128      if (t == T_BYTE) {
1129        // One byte misalignment happens only for byte arrays
1130        __ testl(end, 1);
1131        __ jccb(Assembler::zero, L_skip_align1);
1132        __ decrement(count);
1133        __ movb(rdx, Address(from, count, sf, 0));
1134        __ movb(Address(to, count, sf, 0), rdx);
1135      __ BIND(L_skip_align1);
1136      }
1137      // Two bytes misalignment happens only for byte and short (char) arrays
1138      __ testl(end, 2);
1139      __ jccb(Assembler::zero, L_skip_align2);
1140      __ subptr(count, 1<<(shift-1));
1141      __ movw(rdx, Address(from, count, sf, 0));
1142      __ movw(Address(to, count, sf, 0), rdx);
1143    __ BIND(L_skip_align2);
1144      __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1145      __ jcc(Assembler::below, L_copy_4_bytes);
1146    }
1147
1148    if (!VM_Version::supports_mmx()) {
1149      __ std();
1150      __ mov(rax, count); // Save 'count'
1151      __ mov(rdx, to);    // Save 'to'
1152      __ lea(rsi, Address(from, count, sf, -4));
1153      __ lea(rdi, Address(to  , count, sf, -4));
1154      __ shrptr(count, shift); // bytes count
1155      __ rep_mov();
1156      __ cld();
1157      __ mov(count, rax); // restore 'count'
1158      __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1159      __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1160      __ mov(to, rdx);   // restore 'to'
1161      __ jmpb(L_copy_2_bytes); // all dword were copied
1162   } else {
1163      // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1164      __ testptr(end, 4);
1165      __ jccb(Assembler::zero, L_copy_8_bytes);
1166      __ subl(count, 1<<shift);
1167      __ movl(rdx, Address(from, count, sf, 0));
1168      __ movl(Address(to, count, sf, 0), rdx);
1169      __ jmpb(L_copy_8_bytes);
1170
1171      __ align(OptoLoopAlignment);
1172      // Move 8 bytes
1173    __ BIND(L_copy_8_bytes_loop);
1174      if (UseXMMForArrayCopy) {
1175        __ movq(xmm0, Address(from, count, sf, 0));
1176        __ movq(Address(to, count, sf, 0), xmm0);
1177      } else {
1178        __ movq(mmx0, Address(from, count, sf, 0));
1179        __ movq(Address(to, count, sf, 0), mmx0);
1180      }
1181    __ BIND(L_copy_8_bytes);
1182      __ subl(count, 2<<shift);
1183      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1184      __ addl(count, 2<<shift);
1185      if (!UseXMMForArrayCopy) {
1186        __ emms();
1187      }
1188    }
1189  __ BIND(L_copy_4_bytes);
1190    // copy prefix qword
1191    __ testl(count, 1<<shift);
1192    __ jccb(Assembler::zero, L_copy_2_bytes);
1193    __ movl(rdx, Address(from, count, sf, -4));
1194    __ movl(Address(to, count, sf, -4), rdx);
1195
1196    if (t == T_BYTE || t == T_SHORT) {
1197        __ subl(count, (1<<shift));
1198      __ BIND(L_copy_2_bytes);
1199        // copy prefix dword
1200        __ testl(count, 1<<(shift-1));
1201        __ jccb(Assembler::zero, L_copy_byte);
1202        __ movw(rdx, Address(from, count, sf, -2));
1203        __ movw(Address(to, count, sf, -2), rdx);
1204        if (t == T_BYTE) {
1205          __ subl(count, 1<<(shift-1));
1206        __ BIND(L_copy_byte);
1207          // copy prefix byte
1208          __ testl(count, 1);
1209          __ jccb(Assembler::zero, L_exit);
1210          __ movb(rdx, Address(from, 0));
1211          __ movb(Address(to, 0), rdx);
1212        __ BIND(L_exit);
1213        } else {
1214        __ BIND(L_copy_byte);
1215        }
1216    } else {
1217    __ BIND(L_copy_2_bytes);
1218    }
1219    if (t == T_OBJECT) {
1220      __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1221      gen_write_ref_array_post_barrier(to, count);
1222    __ BIND(L_0_count);
1223    }
1224    inc_copy_counter_np(t);
1225    __ pop(rdi);
1226    __ pop(rsi);
1227    __ leave(); // required for proper stackwalking of RuntimeStub frame
1228    __ xorptr(rax, rax); // return 0
1229    __ ret(0);
1230    return start;
1231  }
1232
1233
1234  address generate_disjoint_long_copy(address* entry, const char *name) {
1235    __ align(CodeEntryAlignment);
1236    StubCodeMark mark(this, "StubRoutines", name);
1237    address start = __ pc();
1238
1239    Label L_copy_8_bytes, L_copy_8_bytes_loop;
1240    const Register from       = rax;  // source array address
1241    const Register to         = rdx;  // destination array address
1242    const Register count      = rcx;  // elements count
1243    const Register to_from    = rdx;  // (to - from)
1244
1245    __ enter(); // required for proper stackwalking of RuntimeStub frame
1246    __ movptr(from , Address(rsp, 8+0));       // from
1247    __ movptr(to   , Address(rsp, 8+4));       // to
1248    __ movl2ptr(count, Address(rsp, 8+8));     // count
1249
1250    *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1251    BLOCK_COMMENT("Entry:");
1252
1253    __ subptr(to, from); // to --> to_from
1254    if (VM_Version::supports_mmx()) {
1255      if (UseXMMForArrayCopy) {
1256        xmm_copy_forward(from, to_from, count);
1257      } else {
1258        mmx_copy_forward(from, to_from, count);
1259      }
1260    } else {
1261      __ jmpb(L_copy_8_bytes);
1262      __ align(OptoLoopAlignment);
1263    __ BIND(L_copy_8_bytes_loop);
1264      __ fild_d(Address(from, 0));
1265      __ fistp_d(Address(from, to_from, Address::times_1));
1266      __ addptr(from, 8);
1267    __ BIND(L_copy_8_bytes);
1268      __ decrement(count);
1269      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1270    }
1271    inc_copy_counter_np(T_LONG);
1272    __ leave(); // required for proper stackwalking of RuntimeStub frame
1273    __ xorptr(rax, rax); // return 0
1274    __ ret(0);
1275    return start;
1276  }
1277
1278  address generate_conjoint_long_copy(address nooverlap_target,
1279                                      address* entry, const char *name) {
1280    __ align(CodeEntryAlignment);
1281    StubCodeMark mark(this, "StubRoutines", name);
1282    address start = __ pc();
1283
1284    Label L_copy_8_bytes, L_copy_8_bytes_loop;
1285    const Register from       = rax;  // source array address
1286    const Register to         = rdx;  // destination array address
1287    const Register count      = rcx;  // elements count
1288    const Register end_from   = rax;  // source array end address
1289
1290    __ enter(); // required for proper stackwalking of RuntimeStub frame
1291    __ movptr(from , Address(rsp, 8+0));       // from
1292    __ movptr(to   , Address(rsp, 8+4));       // to
1293    __ movl2ptr(count, Address(rsp, 8+8));     // count
1294
1295    *entry = __ pc(); // Entry point from generic arraycopy stub.
1296    BLOCK_COMMENT("Entry:");
1297
1298    // arrays overlap test
1299    __ cmpptr(to, from);
1300    RuntimeAddress nooverlap(nooverlap_target);
1301    __ jump_cc(Assembler::belowEqual, nooverlap);
1302    __ lea(end_from, Address(from, count, Address::times_8, 0));
1303    __ cmpptr(to, end_from);
1304    __ movptr(from, Address(rsp, 8));  // from
1305    __ jump_cc(Assembler::aboveEqual, nooverlap);
1306
1307    __ jmpb(L_copy_8_bytes);
1308
1309    __ align(OptoLoopAlignment);
1310  __ BIND(L_copy_8_bytes_loop);
1311    if (VM_Version::supports_mmx()) {
1312      if (UseXMMForArrayCopy) {
1313        __ movq(xmm0, Address(from, count, Address::times_8));
1314        __ movq(Address(to, count, Address::times_8), xmm0);
1315      } else {
1316        __ movq(mmx0, Address(from, count, Address::times_8));
1317        __ movq(Address(to, count, Address::times_8), mmx0);
1318      }
1319    } else {
1320      __ fild_d(Address(from, count, Address::times_8));
1321      __ fistp_d(Address(to, count, Address::times_8));
1322    }
1323  __ BIND(L_copy_8_bytes);
1324    __ decrement(count);
1325    __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1326
1327    if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1328      __ emms();
1329    }
1330    inc_copy_counter_np(T_LONG);
1331    __ leave(); // required for proper stackwalking of RuntimeStub frame
1332    __ xorptr(rax, rax); // return 0
1333    __ ret(0);
1334    return start;
1335  }
1336
1337
1338  // Helper for generating a dynamic type check.
1339  // The sub_klass must be one of {rbx, rdx, rsi}.
1340  // The temp is killed.
1341  void generate_type_check(Register sub_klass,
1342                           Address& super_check_offset_addr,
1343                           Address& super_klass_addr,
1344                           Register temp,
1345                           Label* L_success, Label* L_failure) {
1346    BLOCK_COMMENT("type_check:");
1347
1348    Label L_fallthrough;
1349#define LOCAL_JCC(assembler_con, label_ptr)                             \
1350    if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1351    else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1352
1353    // The following is a strange variation of the fast path which requires
1354    // one less register, because needed values are on the argument stack.
1355    // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1356    //                                  L_success, L_failure, NULL);
1357    assert_different_registers(sub_klass, temp);
1358
1359    int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1360
1361    // if the pointers are equal, we are done (e.g., String[] elements)
1362    __ cmpptr(sub_klass, super_klass_addr);
1363    LOCAL_JCC(Assembler::equal, L_success);
1364
1365    // check the supertype display:
1366    __ movl2ptr(temp, super_check_offset_addr);
1367    Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1368    __ movptr(temp, super_check_addr); // load displayed supertype
1369    __ cmpptr(temp, super_klass_addr); // test the super type
1370    LOCAL_JCC(Assembler::equal, L_success);
1371
1372    // if it was a primary super, we can just fail immediately
1373    __ cmpl(super_check_offset_addr, sc_offset);
1374    LOCAL_JCC(Assembler::notEqual, L_failure);
1375
1376    // The repne_scan instruction uses fixed registers, which will get spilled.
1377    // We happen to know this works best when super_klass is in rax.
1378    Register super_klass = temp;
1379    __ movptr(super_klass, super_klass_addr);
1380    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1381                                     L_success, L_failure);
1382
1383    __ bind(L_fallthrough);
1384
1385    if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1386    if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1387
1388#undef LOCAL_JCC
1389  }
1390
1391  //
1392  //  Generate checkcasting array copy stub
1393  //
1394  //  Input:
1395  //    4(rsp)   - source array address
1396  //    8(rsp)   - destination array address
1397  //   12(rsp)   - element count, can be zero
1398  //   16(rsp)   - size_t ckoff (super_check_offset)
1399  //   20(rsp)   - oop ckval (super_klass)
1400  //
1401  //  Output:
1402  //    rax, ==  0  -  success
1403  //    rax, == -1^K - failure, where K is partial transfer count
1404  //
1405  address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1406    __ align(CodeEntryAlignment);
1407    StubCodeMark mark(this, "StubRoutines", name);
1408    address start = __ pc();
1409
1410    Label L_load_element, L_store_element, L_do_card_marks, L_done;
1411
1412    // register use:
1413    //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1414    //  rdi, rsi      -- element access (oop, klass)
1415    //  rbx,           -- temp
1416    const Register from       = rax;    // source array address
1417    const Register to         = rdx;    // destination array address
1418    const Register length     = rcx;    // elements count
1419    const Register elem       = rdi;    // each oop copied
1420    const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1421    const Register temp       = rbx;    // lone remaining temp
1422
1423    __ enter(); // required for proper stackwalking of RuntimeStub frame
1424
1425    __ push(rsi);
1426    __ push(rdi);
1427    __ push(rbx);
1428
1429    Address   from_arg(rsp, 16+ 4);     // from
1430    Address     to_arg(rsp, 16+ 8);     // to
1431    Address length_arg(rsp, 16+12);     // elements count
1432    Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1433    Address  ckval_arg(rsp, 16+20);     // super_klass
1434
1435    // Load up:
1436    __ movptr(from,     from_arg);
1437    __ movptr(to,         to_arg);
1438    __ movl2ptr(length, length_arg);
1439
1440    if (entry != NULL) {
1441      *entry = __ pc(); // Entry point from generic arraycopy stub.
1442      BLOCK_COMMENT("Entry:");
1443    }
1444
1445    //---------------------------------------------------------------
1446    // Assembler stub will be used for this call to arraycopy
1447    // if the two arrays are subtypes of Object[] but the
1448    // destination array type is not equal to or a supertype
1449    // of the source type.  Each element must be separately
1450    // checked.
1451
1452    // Loop-invariant addresses.  They are exclusive end pointers.
1453    Address end_from_addr(from, length, Address::times_ptr, 0);
1454    Address   end_to_addr(to,   length, Address::times_ptr, 0);
1455
1456    Register end_from = from;           // re-use
1457    Register end_to   = to;             // re-use
1458    Register count    = length;         // re-use
1459
1460    // Loop-variant addresses.  They assume post-incremented count < 0.
1461    Address from_element_addr(end_from, count, Address::times_ptr, 0);
1462    Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1463    Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1464
1465    // Copy from low to high addresses, indexed from the end of each array.
1466    gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1467    __ lea(end_from, end_from_addr);
1468    __ lea(end_to,   end_to_addr);
1469    assert(length == count, "");        // else fix next line:
1470    __ negptr(count);                   // negate and test the length
1471    __ jccb(Assembler::notZero, L_load_element);
1472
1473    // Empty array:  Nothing to do.
1474    __ xorptr(rax, rax);                  // return 0 on (trivial) success
1475    __ jmp(L_done);
1476
1477    // ======== begin loop ========
1478    // (Loop is rotated; its entry is L_load_element.)
1479    // Loop control:
1480    //   for (count = -count; count != 0; count++)
1481    // Base pointers src, dst are biased by 8*count,to last element.
1482    __ align(OptoLoopAlignment);
1483
1484    __ BIND(L_store_element);
1485    __ movptr(to_element_addr, elem);     // store the oop
1486    __ increment(count);                // increment the count toward zero
1487    __ jccb(Assembler::zero, L_do_card_marks);
1488
1489    // ======== loop entry is here ========
1490    __ BIND(L_load_element);
1491    __ movptr(elem, from_element_addr);   // load the oop
1492    __ testptr(elem, elem);
1493    __ jccb(Assembler::zero, L_store_element);
1494
1495    // (Could do a trick here:  Remember last successful non-null
1496    // element stored and make a quick oop equality check on it.)
1497
1498    __ movptr(elem_klass, elem_klass_addr); // query the object klass
1499    generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1500                        &L_store_element, NULL);
1501      // (On fall-through, we have failed the element type check.)
1502    // ======== end loop ========
1503
1504    // It was a real error; we must depend on the caller to finish the job.
1505    // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1506    // Emit GC store barriers for the oops we have copied (length_arg + count),
1507    // and report their number to the caller.
1508    __ addl(count, length_arg);         // transfers = (length - remaining)
1509    __ movl2ptr(rax, count);            // save the value
1510    __ notptr(rax);                     // report (-1^K) to caller
1511    __ movptr(to, to_arg);              // reload
1512    assert_different_registers(to, count, rax);
1513    gen_write_ref_array_post_barrier(to, count);
1514    __ jmpb(L_done);
1515
1516    // Come here on success only.
1517    __ BIND(L_do_card_marks);
1518    __ movl2ptr(count, length_arg);
1519    __ movptr(to, to_arg);                // reload
1520    gen_write_ref_array_post_barrier(to, count);
1521    __ xorptr(rax, rax);                  // return 0 on success
1522
1523    // Common exit point (success or failure).
1524    __ BIND(L_done);
1525    __ pop(rbx);
1526    __ pop(rdi);
1527    __ pop(rsi);
1528    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1529    __ leave(); // required for proper stackwalking of RuntimeStub frame
1530    __ ret(0);
1531
1532    return start;
1533  }
1534
1535  //
1536  //  Generate 'unsafe' array copy stub
1537  //  Though just as safe as the other stubs, it takes an unscaled
1538  //  size_t argument instead of an element count.
1539  //
1540  //  Input:
1541  //    4(rsp)   - source array address
1542  //    8(rsp)   - destination array address
1543  //   12(rsp)   - byte count, can be zero
1544  //
1545  //  Output:
1546  //    rax, ==  0  -  success
1547  //    rax, == -1  -  need to call System.arraycopy
1548  //
1549  // Examines the alignment of the operands and dispatches
1550  // to a long, int, short, or byte copy loop.
1551  //
1552  address generate_unsafe_copy(const char *name,
1553                               address byte_copy_entry,
1554                               address short_copy_entry,
1555                               address int_copy_entry,
1556                               address long_copy_entry) {
1557
1558    Label L_long_aligned, L_int_aligned, L_short_aligned;
1559
1560    __ align(CodeEntryAlignment);
1561    StubCodeMark mark(this, "StubRoutines", name);
1562    address start = __ pc();
1563
1564    const Register from       = rax;  // source array address
1565    const Register to         = rdx;  // destination array address
1566    const Register count      = rcx;  // elements count
1567
1568    __ enter(); // required for proper stackwalking of RuntimeStub frame
1569    __ push(rsi);
1570    __ push(rdi);
1571    Address  from_arg(rsp, 12+ 4);      // from
1572    Address    to_arg(rsp, 12+ 8);      // to
1573    Address count_arg(rsp, 12+12);      // byte count
1574
1575    // Load up:
1576    __ movptr(from ,  from_arg);
1577    __ movptr(to   ,    to_arg);
1578    __ movl2ptr(count, count_arg);
1579
1580    // bump this on entry, not on exit:
1581    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1582
1583    const Register bits = rsi;
1584    __ mov(bits, from);
1585    __ orptr(bits, to);
1586    __ orptr(bits, count);
1587
1588    __ testl(bits, BytesPerLong-1);
1589    __ jccb(Assembler::zero, L_long_aligned);
1590
1591    __ testl(bits, BytesPerInt-1);
1592    __ jccb(Assembler::zero, L_int_aligned);
1593
1594    __ testl(bits, BytesPerShort-1);
1595    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1596
1597    __ BIND(L_short_aligned);
1598    __ shrptr(count, LogBytesPerShort); // size => short_count
1599    __ movl(count_arg, count);          // update 'count'
1600    __ jump(RuntimeAddress(short_copy_entry));
1601
1602    __ BIND(L_int_aligned);
1603    __ shrptr(count, LogBytesPerInt); // size => int_count
1604    __ movl(count_arg, count);          // update 'count'
1605    __ jump(RuntimeAddress(int_copy_entry));
1606
1607    __ BIND(L_long_aligned);
1608    __ shrptr(count, LogBytesPerLong); // size => qword_count
1609    __ movl(count_arg, count);          // update 'count'
1610    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1611    __ pop(rsi);
1612    __ jump(RuntimeAddress(long_copy_entry));
1613
1614    return start;
1615  }
1616
1617
1618  // Perform range checks on the proposed arraycopy.
1619  // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1620  void arraycopy_range_checks(Register src,
1621                              Register src_pos,
1622                              Register dst,
1623                              Register dst_pos,
1624                              Address& length,
1625                              Label& L_failed) {
1626    BLOCK_COMMENT("arraycopy_range_checks:");
1627    const Register src_end = src_pos;   // source array end position
1628    const Register dst_end = dst_pos;   // destination array end position
1629    __ addl(src_end, length); // src_pos + length
1630    __ addl(dst_end, length); // dst_pos + length
1631
1632    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1633    __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1634    __ jcc(Assembler::above, L_failed);
1635
1636    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1637    __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1638    __ jcc(Assembler::above, L_failed);
1639
1640    BLOCK_COMMENT("arraycopy_range_checks done");
1641  }
1642
1643
1644  //
1645  //  Generate generic array copy stubs
1646  //
1647  //  Input:
1648  //     4(rsp)    -  src oop
1649  //     8(rsp)    -  src_pos
1650  //    12(rsp)    -  dst oop
1651  //    16(rsp)    -  dst_pos
1652  //    20(rsp)    -  element count
1653  //
1654  //  Output:
1655  //    rax, ==  0  -  success
1656  //    rax, == -1^K - failure, where K is partial transfer count
1657  //
1658  address generate_generic_copy(const char *name,
1659                                address entry_jbyte_arraycopy,
1660                                address entry_jshort_arraycopy,
1661                                address entry_jint_arraycopy,
1662                                address entry_oop_arraycopy,
1663                                address entry_jlong_arraycopy,
1664                                address entry_checkcast_arraycopy) {
1665    Label L_failed, L_failed_0, L_objArray;
1666
1667    { int modulus = CodeEntryAlignment;
1668      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1669      int advance = target - (__ offset() % modulus);
1670      if (advance < 0)  advance += modulus;
1671      if (advance > 0)  __ nop(advance);
1672    }
1673    StubCodeMark mark(this, "StubRoutines", name);
1674
1675    // Short-hop target to L_failed.  Makes for denser prologue code.
1676    __ BIND(L_failed_0);
1677    __ jmp(L_failed);
1678    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1679
1680    __ align(CodeEntryAlignment);
1681    address start = __ pc();
1682
1683    __ enter(); // required for proper stackwalking of RuntimeStub frame
1684    __ push(rsi);
1685    __ push(rdi);
1686
1687    // bump this on entry, not on exit:
1688    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1689
1690    // Input values
1691    Address SRC     (rsp, 12+ 4);
1692    Address SRC_POS (rsp, 12+ 8);
1693    Address DST     (rsp, 12+12);
1694    Address DST_POS (rsp, 12+16);
1695    Address LENGTH  (rsp, 12+20);
1696
1697    //-----------------------------------------------------------------------
1698    // Assembler stub will be used for this call to arraycopy
1699    // if the following conditions are met:
1700    //
1701    // (1) src and dst must not be null.
1702    // (2) src_pos must not be negative.
1703    // (3) dst_pos must not be negative.
1704    // (4) length  must not be negative.
1705    // (5) src klass and dst klass should be the same and not NULL.
1706    // (6) src and dst should be arrays.
1707    // (7) src_pos + length must not exceed length of src.
1708    // (8) dst_pos + length must not exceed length of dst.
1709    //
1710
1711    const Register src     = rax;       // source array oop
1712    const Register src_pos = rsi;
1713    const Register dst     = rdx;       // destination array oop
1714    const Register dst_pos = rdi;
1715    const Register length  = rcx;       // transfer count
1716
1717    //  if (src == NULL) return -1;
1718    __ movptr(src, SRC);      // src oop
1719    __ testptr(src, src);
1720    __ jccb(Assembler::zero, L_failed_0);
1721
1722    //  if (src_pos < 0) return -1;
1723    __ movl2ptr(src_pos, SRC_POS);  // src_pos
1724    __ testl(src_pos, src_pos);
1725    __ jccb(Assembler::negative, L_failed_0);
1726
1727    //  if (dst == NULL) return -1;
1728    __ movptr(dst, DST);      // dst oop
1729    __ testptr(dst, dst);
1730    __ jccb(Assembler::zero, L_failed_0);
1731
1732    //  if (dst_pos < 0) return -1;
1733    __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1734    __ testl(dst_pos, dst_pos);
1735    __ jccb(Assembler::negative, L_failed_0);
1736
1737    //  if (length < 0) return -1;
1738    __ movl2ptr(length, LENGTH);   // length
1739    __ testl(length, length);
1740    __ jccb(Assembler::negative, L_failed_0);
1741
1742    //  if (src->klass() == NULL) return -1;
1743    Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1744    Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1745    const Register rcx_src_klass = rcx;    // array klass
1746    __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1747
1748#ifdef ASSERT
1749    //  assert(src->klass() != NULL);
1750    BLOCK_COMMENT("assert klasses not null");
1751    { Label L1, L2;
1752      __ testptr(rcx_src_klass, rcx_src_klass);
1753      __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1754      __ bind(L1);
1755      __ stop("broken null klass");
1756      __ bind(L2);
1757      __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1758      __ jccb(Assembler::equal, L1);      // this would be broken also
1759      BLOCK_COMMENT("assert done");
1760    }
1761#endif //ASSERT
1762
1763    // Load layout helper (32-bits)
1764    //
1765    //  |array_tag|     | header_size | element_type |     |log2_element_size|
1766    // 32        30    24            16              8     2                 0
1767    //
1768    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1769    //
1770
1771    int lh_offset = in_bytes(Klass::layout_helper_offset());
1772    Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1773
1774    // Handle objArrays completely differently...
1775    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1776    __ cmpl(src_klass_lh_addr, objArray_lh);
1777    __ jcc(Assembler::equal, L_objArray);
1778
1779    //  if (src->klass() != dst->klass()) return -1;
1780    __ cmpptr(rcx_src_klass, dst_klass_addr);
1781    __ jccb(Assembler::notEqual, L_failed_0);
1782
1783    const Register rcx_lh = rcx;  // layout helper
1784    assert(rcx_lh == rcx_src_klass, "known alias");
1785    __ movl(rcx_lh, src_klass_lh_addr);
1786
1787    //  if (!src->is_Array()) return -1;
1788    __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1789    __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1790
1791    // At this point, it is known to be a typeArray (array_tag 0x3).
1792#ifdef ASSERT
1793    { Label L;
1794      __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1795      __ jcc(Assembler::greaterEqual, L); // signed cmp
1796      __ stop("must be a primitive array");
1797      __ bind(L);
1798    }
1799#endif
1800
1801    assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1802    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1803
1804    // typeArrayKlass
1805    //
1806    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1807    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1808    //
1809    const Register rsi_offset = rsi; // array offset
1810    const Register src_array  = src; // src array offset
1811    const Register dst_array  = dst; // dst array offset
1812    const Register rdi_elsize = rdi; // log2 element size
1813
1814    __ mov(rsi_offset, rcx_lh);
1815    __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1816    __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1817    __ addptr(src_array, rsi_offset);  // src array offset
1818    __ addptr(dst_array, rsi_offset);  // dst array offset
1819    __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1820
1821    // next registers should be set before the jump to corresponding stub
1822    const Register from       = src; // source array address
1823    const Register to         = dst; // destination array address
1824    const Register count      = rcx; // elements count
1825    // some of them should be duplicated on stack
1826#define FROM   Address(rsp, 12+ 4)
1827#define TO     Address(rsp, 12+ 8)   // Not used now
1828#define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1829
1830    BLOCK_COMMENT("scale indexes to element size");
1831    __ movl2ptr(rsi, SRC_POS);  // src_pos
1832    __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1833    assert(src_array == from, "");
1834    __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1835    __ movl2ptr(rdi, DST_POS);  // dst_pos
1836    __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1837    assert(dst_array == to, "");
1838    __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1839    __ movptr(FROM, from);      // src_addr
1840    __ mov(rdi_elsize, rcx_lh); // log2 elsize
1841    __ movl2ptr(count, LENGTH); // elements count
1842
1843    BLOCK_COMMENT("choose copy loop based on element size");
1844    __ cmpl(rdi_elsize, 0);
1845
1846    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1847    __ cmpl(rdi_elsize, LogBytesPerShort);
1848    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1849    __ cmpl(rdi_elsize, LogBytesPerInt);
1850    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1851#ifdef ASSERT
1852    __ cmpl(rdi_elsize, LogBytesPerLong);
1853    __ jccb(Assembler::notEqual, L_failed);
1854#endif
1855    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1856    __ pop(rsi);
1857    __ jump(RuntimeAddress(entry_jlong_arraycopy));
1858
1859  __ BIND(L_failed);
1860    __ xorptr(rax, rax);
1861    __ notptr(rax); // return -1
1862    __ pop(rdi);
1863    __ pop(rsi);
1864    __ leave(); // required for proper stackwalking of RuntimeStub frame
1865    __ ret(0);
1866
1867    // objArrayKlass
1868  __ BIND(L_objArray);
1869    // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1870
1871    Label L_plain_copy, L_checkcast_copy;
1872    //  test array classes for subtyping
1873    __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1874    __ jccb(Assembler::notEqual, L_checkcast_copy);
1875
1876    // Identically typed arrays can be copied without element-wise checks.
1877    assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1878    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1879
1880  __ BIND(L_plain_copy);
1881    __ movl2ptr(count, LENGTH); // elements count
1882    __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1883    __ lea(from, Address(src, src_pos, Address::times_ptr,
1884                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1885    __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1886    __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1887                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1888    __ movptr(FROM,  from);   // src_addr
1889    __ movptr(TO,    to);     // dst_addr
1890    __ movl(COUNT, count);  // count
1891    __ jump(RuntimeAddress(entry_oop_arraycopy));
1892
1893  __ BIND(L_checkcast_copy);
1894    // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1895    {
1896      // Handy offsets:
1897      int  ek_offset = in_bytes(objArrayKlass::element_klass_offset());
1898      int sco_offset = in_bytes(Klass::super_check_offset_offset());
1899
1900      Register rsi_dst_klass = rsi;
1901      Register rdi_temp      = rdi;
1902      assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1903      assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1904      Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1905
1906      // Before looking at dst.length, make sure dst is also an objArray.
1907      __ movptr(rsi_dst_klass, dst_klass_addr);
1908      __ cmpl(dst_klass_lh_addr, objArray_lh);
1909      __ jccb(Assembler::notEqual, L_failed);
1910
1911      // It is safe to examine both src.length and dst.length.
1912      __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1913      arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1914      // (Now src_pos and dst_pos are killed, but not src and dst.)
1915
1916      // We'll need this temp (don't forget to pop it after the type check).
1917      __ push(rbx);
1918      Register rbx_src_klass = rbx;
1919
1920      __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1921      __ movptr(rsi_dst_klass, dst_klass_addr);
1922      Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1923      Label L_fail_array_check;
1924      generate_type_check(rbx_src_klass,
1925                          super_check_offset_addr, dst_klass_addr,
1926                          rdi_temp, NULL, &L_fail_array_check);
1927      // (On fall-through, we have passed the array type check.)
1928      __ pop(rbx);
1929      __ jmp(L_plain_copy);
1930
1931      __ BIND(L_fail_array_check);
1932      // Reshuffle arguments so we can call checkcast_arraycopy:
1933
1934      // match initial saves for checkcast_arraycopy
1935      // push(rsi);    // already done; see above
1936      // push(rdi);    // already done; see above
1937      // push(rbx);    // already done; see above
1938
1939      // Marshal outgoing arguments now, freeing registers.
1940      Address   from_arg(rsp, 16+ 4);   // from
1941      Address     to_arg(rsp, 16+ 8);   // to
1942      Address length_arg(rsp, 16+12);   // elements count
1943      Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1944      Address  ckval_arg(rsp, 16+20);   // super_klass
1945
1946      Address SRC_POS_arg(rsp, 16+ 8);
1947      Address DST_POS_arg(rsp, 16+16);
1948      Address  LENGTH_arg(rsp, 16+20);
1949      // push rbx, changed the incoming offsets (why not just use rbp,??)
1950      // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1951
1952      __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1953      __ movl2ptr(length, LENGTH_arg);    // reload elements count
1954      __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1955      __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1956
1957      __ movptr(ckval_arg, rbx);          // destination element type
1958      __ movl(rbx, Address(rbx, sco_offset));
1959      __ movl(ckoff_arg, rbx);          // corresponding class check offset
1960
1961      __ movl(length_arg, length);      // outgoing length argument
1962
1963      __ lea(from, Address(src, src_pos, Address::times_ptr,
1964                            arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1965      __ movptr(from_arg, from);
1966
1967      __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1968                          arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1969      __ movptr(to_arg, to);
1970      __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1971    }
1972
1973    return start;
1974  }
1975
1976  void generate_arraycopy_stubs() {
1977    address entry;
1978    address entry_jbyte_arraycopy;
1979    address entry_jshort_arraycopy;
1980    address entry_jint_arraycopy;
1981    address entry_oop_arraycopy;
1982    address entry_jlong_arraycopy;
1983    address entry_checkcast_arraycopy;
1984
1985    StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
1986        generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
1987                               "arrayof_jbyte_disjoint_arraycopy");
1988    StubRoutines::_arrayof_jbyte_arraycopy =
1989        generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
1990                               NULL, "arrayof_jbyte_arraycopy");
1991    StubRoutines::_jbyte_disjoint_arraycopy =
1992        generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
1993                               "jbyte_disjoint_arraycopy");
1994    StubRoutines::_jbyte_arraycopy =
1995        generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
1996                               &entry_jbyte_arraycopy, "jbyte_arraycopy");
1997
1998    StubRoutines::_arrayof_jshort_disjoint_arraycopy =
1999        generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
2000                               "arrayof_jshort_disjoint_arraycopy");
2001    StubRoutines::_arrayof_jshort_arraycopy =
2002        generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
2003                               NULL, "arrayof_jshort_arraycopy");
2004    StubRoutines::_jshort_disjoint_arraycopy =
2005        generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
2006                               "jshort_disjoint_arraycopy");
2007    StubRoutines::_jshort_arraycopy =
2008        generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
2009                               &entry_jshort_arraycopy, "jshort_arraycopy");
2010
2011    // Next arrays are always aligned on 4 bytes at least.
2012    StubRoutines::_jint_disjoint_arraycopy =
2013        generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2014                               "jint_disjoint_arraycopy");
2015    StubRoutines::_jint_arraycopy =
2016        generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2017                               &entry_jint_arraycopy, "jint_arraycopy");
2018
2019    StubRoutines::_oop_disjoint_arraycopy =
2020        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2021                               "oop_disjoint_arraycopy");
2022    StubRoutines::_oop_arraycopy =
2023        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2024                               &entry_oop_arraycopy, "oop_arraycopy");
2025
2026    StubRoutines::_oop_disjoint_arraycopy_uninit =
2027        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2028                               "oop_disjoint_arraycopy_uninit",
2029                               /*dest_uninitialized*/true);
2030    StubRoutines::_oop_arraycopy_uninit =
2031        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2032                               NULL, "oop_arraycopy_uninit",
2033                               /*dest_uninitialized*/true);
2034
2035    StubRoutines::_jlong_disjoint_arraycopy =
2036        generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2037    StubRoutines::_jlong_arraycopy =
2038        generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2039                                    "jlong_arraycopy");
2040
2041    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2042    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2043    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2044    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2045    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2046    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2047
2048    StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2049    StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2050    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2051    StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2052
2053    StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2054    StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2055    StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2056    StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2057
2058    StubRoutines::_checkcast_arraycopy =
2059        generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2060    StubRoutines::_checkcast_arraycopy_uninit =
2061        generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2062
2063    StubRoutines::_unsafe_arraycopy =
2064        generate_unsafe_copy("unsafe_arraycopy",
2065                               entry_jbyte_arraycopy,
2066                               entry_jshort_arraycopy,
2067                               entry_jint_arraycopy,
2068                               entry_jlong_arraycopy);
2069
2070    StubRoutines::_generic_arraycopy =
2071        generate_generic_copy("generic_arraycopy",
2072                               entry_jbyte_arraycopy,
2073                               entry_jshort_arraycopy,
2074                               entry_jint_arraycopy,
2075                               entry_oop_arraycopy,
2076                               entry_jlong_arraycopy,
2077                               entry_checkcast_arraycopy);
2078  }
2079
2080  void generate_math_stubs() {
2081    {
2082      StubCodeMark mark(this, "StubRoutines", "log");
2083      StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2084
2085      __ fld_d(Address(rsp, 4));
2086      __ flog();
2087      __ ret(0);
2088    }
2089    {
2090      StubCodeMark mark(this, "StubRoutines", "log10");
2091      StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2092
2093      __ fld_d(Address(rsp, 4));
2094      __ flog10();
2095      __ ret(0);
2096    }
2097    {
2098      StubCodeMark mark(this, "StubRoutines", "sin");
2099      StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2100
2101      __ fld_d(Address(rsp, 4));
2102      __ trigfunc('s');
2103      __ ret(0);
2104    }
2105    {
2106      StubCodeMark mark(this, "StubRoutines", "cos");
2107      StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2108
2109      __ fld_d(Address(rsp, 4));
2110      __ trigfunc('c');
2111      __ ret(0);
2112    }
2113    {
2114      StubCodeMark mark(this, "StubRoutines", "tan");
2115      StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2116
2117      __ fld_d(Address(rsp, 4));
2118      __ trigfunc('t');
2119      __ ret(0);
2120    }
2121    {
2122      StubCodeMark mark(this, "StubRoutines", "exp");
2123      StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2124
2125      __ fld_d(Address(rsp, 4));
2126      __ exp_with_fallback(0);
2127      __ ret(0);
2128    }
2129    {
2130      StubCodeMark mark(this, "StubRoutines", "pow");
2131      StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2132
2133      __ fld_d(Address(rsp, 12));
2134      __ fld_d(Address(rsp, 4));
2135      __ pow_with_fallback(0);
2136      __ ret(0);
2137    }
2138  }
2139
2140 public:
2141  // Information about frame layout at time of blocking runtime call.
2142  // Note that we only have to preserve callee-saved registers since
2143  // the compilers are responsible for supplying a continuation point
2144  // if they expect all registers to be preserved.
2145  enum layout {
2146    thread_off,    // last_java_sp
2147    arg1_off,
2148    arg2_off,
2149    rbp_off,       // callee saved register
2150    ret_pc,
2151    framesize
2152  };
2153
2154 private:
2155
2156#undef  __
2157#define __ masm->
2158
2159  //------------------------------------------------------------------------------------------------------------------------
2160  // Continuation point for throwing of implicit exceptions that are not handled in
2161  // the current activation. Fabricates an exception oop and initiates normal
2162  // exception dispatching in this frame.
2163  //
2164  // Previously the compiler (c2) allowed for callee save registers on Java calls.
2165  // This is no longer true after adapter frames were removed but could possibly
2166  // be brought back in the future if the interpreter code was reworked and it
2167  // was deemed worthwhile. The comment below was left to describe what must
2168  // happen here if callee saves were resurrected. As it stands now this stub
2169  // could actually be a vanilla BufferBlob and have now oopMap at all.
2170  // Since it doesn't make much difference we've chosen to leave it the
2171  // way it was in the callee save days and keep the comment.
2172
2173  // If we need to preserve callee-saved values we need a callee-saved oop map and
2174  // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2175  // If the compiler needs all registers to be preserved between the fault
2176  // point and the exception handler then it must assume responsibility for that in
2177  // AbstractCompiler::continuation_for_implicit_null_exception or
2178  // continuation_for_implicit_division_by_zero_exception. All other implicit
2179  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2180  // either at call sites or otherwise assume that stack unwinding will be initiated,
2181  // so caller saved registers were assumed volatile in the compiler.
2182  address generate_throw_exception(const char* name, address runtime_entry,
2183                                   Register arg1 = noreg, Register arg2 = noreg) {
2184
2185    int insts_size = 256;
2186    int locs_size  = 32;
2187
2188    CodeBuffer code(name, insts_size, locs_size);
2189    OopMapSet* oop_maps  = new OopMapSet();
2190    MacroAssembler* masm = new MacroAssembler(&code);
2191
2192    address start = __ pc();
2193
2194    // This is an inlined and slightly modified version of call_VM
2195    // which has the ability to fetch the return PC out of
2196    // thread-local storage and also sets up last_Java_sp slightly
2197    // differently than the real call_VM
2198    Register java_thread = rbx;
2199    __ get_thread(java_thread);
2200
2201    __ enter(); // required for proper stackwalking of RuntimeStub frame
2202
2203    // pc and rbp, already pushed
2204    __ subptr(rsp, (framesize-2) * wordSize); // prolog
2205
2206    // Frame is now completed as far as size and linkage.
2207
2208    int frame_complete = __ pc() - start;
2209
2210    // push java thread (becomes first argument of C function)
2211    __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2212    if (arg1 != noreg) {
2213      __ movptr(Address(rsp, arg1_off * wordSize), arg1);
2214    }
2215    if (arg2 != noreg) {
2216      assert(arg1 != noreg, "missing reg arg");
2217      __ movptr(Address(rsp, arg2_off * wordSize), arg2);
2218    }
2219
2220    // Set up last_Java_sp and last_Java_fp
2221    __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
2222
2223    // Call runtime
2224    BLOCK_COMMENT("call runtime_entry");
2225    __ call(RuntimeAddress(runtime_entry));
2226    // Generate oop map
2227    OopMap* map =  new OopMap(framesize, 0);
2228    oop_maps->add_gc_map(__ pc() - start, map);
2229
2230    // restore the thread (cannot use the pushed argument since arguments
2231    // may be overwritten by C code generated by an optimizing compiler);
2232    // however can use the register value directly if it is callee saved.
2233    __ get_thread(java_thread);
2234
2235    __ reset_last_Java_frame(java_thread, true, false);
2236
2237    __ leave(); // required for proper stackwalking of RuntimeStub frame
2238
2239    // check for pending exceptions
2240#ifdef ASSERT
2241    Label L;
2242    __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2243    __ jcc(Assembler::notEqual, L);
2244    __ should_not_reach_here();
2245    __ bind(L);
2246#endif /* ASSERT */
2247    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2248
2249
2250    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2251    return stub->entry_point();
2252  }
2253
2254
2255  void create_control_words() {
2256    // Round to nearest, 53-bit mode, exceptions masked
2257    StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
2258    // Round to zero, 53-bit mode, exception mased
2259    StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
2260    // Round to nearest, 24-bit mode, exceptions masked
2261    StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
2262    // Round to nearest, 64-bit mode, exceptions masked
2263    StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
2264    // Round to nearest, 64-bit mode, exceptions masked
2265    StubRoutines::_mxcsr_std           = 0x1F80;
2266    // Note: the following two constants are 80-bit values
2267    //       layout is critical for correct loading by FPU.
2268    // Bias for strict fp multiply/divide
2269    StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
2270    StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
2271    StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
2272    // Un-Bias for strict fp multiply/divide
2273    StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
2274    StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
2275    StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
2276  }
2277
2278  //---------------------------------------------------------------------------
2279  // Initialization
2280
2281  void generate_initial() {
2282    // Generates all stubs and initializes the entry points
2283
2284    //------------------------------------------------------------------------------------------------------------------------
2285    // entry points that exist in all platforms
2286    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
2287    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
2288    StubRoutines::_forward_exception_entry      = generate_forward_exception();
2289
2290    StubRoutines::_call_stub_entry              =
2291      generate_call_stub(StubRoutines::_call_stub_return_address);
2292    // is referenced by megamorphic call
2293    StubRoutines::_catch_exception_entry        = generate_catch_exception();
2294
2295    // These are currently used by Solaris/Intel
2296    StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
2297
2298    StubRoutines::_handler_for_unsafe_access_entry =
2299      generate_handler_for_unsafe_access();
2300
2301    // platform dependent
2302    create_control_words();
2303
2304    StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
2305    StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
2306    StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
2307                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
2308    StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
2309                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2310
2311    // Build this early so it's available for the interpreter
2312    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
2313  }
2314
2315
2316  void generate_all() {
2317    // Generates all stubs and initializes the entry points
2318
2319    // These entry points require SharedInfo::stack0 to be set up in non-core builds
2320    // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2321    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
2322    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
2323    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
2324
2325    //------------------------------------------------------------------------------------------------------------------------
2326    // entry points that are platform specific
2327
2328    // support for verify_oop (must happen after universe_init)
2329    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
2330
2331    // arraycopy stubs used by compilers
2332    generate_arraycopy_stubs();
2333
2334    generate_math_stubs();
2335  }
2336
2337
2338 public:
2339  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2340    if (all) {
2341      generate_all();
2342    } else {
2343      generate_initial();
2344    }
2345  }
2346}; // end class declaration
2347
2348
2349void StubGenerator_generate(CodeBuffer* code, bool all) {
2350  StubGenerator g(code, all);
2351}
2352