sharedRuntime_x86_64.cpp revision 3883:cd3d6a6b95d9
1/*
2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "interpreter/interpreter.hpp"
32#include "oops/compiledICHolder.hpp"
33#include "prims/jvmtiRedefineClassesTrace.hpp"
34#include "runtime/sharedRuntime.hpp"
35#include "runtime/vframeArray.hpp"
36#include "vmreg_x86.inline.hpp"
37#ifdef COMPILER1
38#include "c1/c1_Runtime1.hpp"
39#endif
40#ifdef COMPILER2
41#include "opto/runtime.hpp"
42#endif
43
44#define __ masm->
45
46const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
47
48class SimpleRuntimeFrame {
49
50  public:
51
52  // Most of the runtime stubs have this simple frame layout.
53  // This class exists to make the layout shared in one place.
54  // Offsets are for compiler stack slots, which are jints.
55  enum layout {
56    // The frame sender code expects that rbp will be in the "natural" place and
57    // will override any oopMap setting for it. We must therefore force the layout
58    // so that it agrees with the frame sender code.
59    rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
60    rbp_off2,
61    return_off, return_off2,
62    framesize
63  };
64};
65
66class RegisterSaver {
67  // Capture info about frame layout.  Layout offsets are in jint
68  // units because compiler frame slots are jints.
69#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
70  enum layout {
71    fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
72    xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
73    DEF_XMM_OFFS(0),
74    DEF_XMM_OFFS(1),
75    DEF_XMM_OFFS(2),
76    DEF_XMM_OFFS(3),
77    DEF_XMM_OFFS(4),
78    DEF_XMM_OFFS(5),
79    DEF_XMM_OFFS(6),
80    DEF_XMM_OFFS(7),
81    DEF_XMM_OFFS(8),
82    DEF_XMM_OFFS(9),
83    DEF_XMM_OFFS(10),
84    DEF_XMM_OFFS(11),
85    DEF_XMM_OFFS(12),
86    DEF_XMM_OFFS(13),
87    DEF_XMM_OFFS(14),
88    DEF_XMM_OFFS(15),
89    fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
90    fpu_stateH_end,
91    r15_off, r15H_off,
92    r14_off, r14H_off,
93    r13_off, r13H_off,
94    r12_off, r12H_off,
95    r11_off, r11H_off,
96    r10_off, r10H_off,
97    r9_off,  r9H_off,
98    r8_off,  r8H_off,
99    rdi_off, rdiH_off,
100    rsi_off, rsiH_off,
101    ignore_off, ignoreH_off,  // extra copy of rbp
102    rsp_off, rspH_off,
103    rbx_off, rbxH_off,
104    rdx_off, rdxH_off,
105    rcx_off, rcxH_off,
106    rax_off, raxH_off,
107    // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
108    align_off, alignH_off,
109    flags_off, flagsH_off,
110    // The frame sender code expects that rbp will be in the "natural" place and
111    // will override any oopMap setting for it. We must therefore force the layout
112    // so that it agrees with the frame sender code.
113    rbp_off, rbpH_off,        // copy of rbp we will restore
114    return_off, returnH_off,  // slot for return address
115    reg_save_size             // size in compiler stack slots
116  };
117
118 public:
119  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
120  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
121
122  // Offsets into the register save area
123  // Used by deoptimization when it is managing result register
124  // values on its own
125
126  static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
127  static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
128  static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
129  static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
130  static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
131
132  // During deoptimization only the result registers need to be restored,
133  // all the other values have already been extracted.
134  static void restore_result_registers(MacroAssembler* masm);
135};
136
137OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
138  int vect_words = 0;
139#ifdef COMPILER2
140  if (save_vectors) {
141    assert(UseAVX > 0, "256bit vectors are supported only with AVX");
142    assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
143    // Save upper half of YMM registes
144    vect_words = 16 * 16 / wordSize;
145    additional_frame_words += vect_words;
146  }
147#else
148  assert(!save_vectors, "vectors are generated only by C2");
149#endif
150
151  // Always make the frame size 16-byte aligned
152  int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
153                                     reg_save_size*BytesPerInt, 16);
154  // OopMap frame size is in compiler stack slots (jint's) not bytes or words
155  int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
156  // The caller will allocate additional_frame_words
157  int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
158  // CodeBlob frame size is in words.
159  int frame_size_in_words = frame_size_in_bytes / wordSize;
160  *total_frame_words = frame_size_in_words;
161
162  // Save registers, fpu state, and flags.
163  // We assume caller has already pushed the return address onto the
164  // stack, so rsp is 8-byte aligned here.
165  // We push rpb twice in this sequence because we want the real rbp
166  // to be under the return like a normal enter.
167
168  __ enter();          // rsp becomes 16-byte aligned here
169  __ push_CPU_state(); // Push a multiple of 16 bytes
170
171  if (vect_words > 0) {
172    assert(vect_words*wordSize == 256, "");
173    __ subptr(rsp, 256); // Save upper half of YMM registes
174    __ vextractf128h(Address(rsp,  0),xmm0);
175    __ vextractf128h(Address(rsp, 16),xmm1);
176    __ vextractf128h(Address(rsp, 32),xmm2);
177    __ vextractf128h(Address(rsp, 48),xmm3);
178    __ vextractf128h(Address(rsp, 64),xmm4);
179    __ vextractf128h(Address(rsp, 80),xmm5);
180    __ vextractf128h(Address(rsp, 96),xmm6);
181    __ vextractf128h(Address(rsp,112),xmm7);
182    __ vextractf128h(Address(rsp,128),xmm8);
183    __ vextractf128h(Address(rsp,144),xmm9);
184    __ vextractf128h(Address(rsp,160),xmm10);
185    __ vextractf128h(Address(rsp,176),xmm11);
186    __ vextractf128h(Address(rsp,192),xmm12);
187    __ vextractf128h(Address(rsp,208),xmm13);
188    __ vextractf128h(Address(rsp,224),xmm14);
189    __ vextractf128h(Address(rsp,240),xmm15);
190  }
191  if (frame::arg_reg_save_area_bytes != 0) {
192    // Allocate argument register save area
193    __ subptr(rsp, frame::arg_reg_save_area_bytes);
194  }
195
196  // Set an oopmap for the call site.  This oopmap will map all
197  // oop-registers and debug-info registers as callee-saved.  This
198  // will allow deoptimization at this safepoint to find all possible
199  // debug-info recordings, as well as let GC find all oops.
200
201  OopMapSet *oop_maps = new OopMapSet();
202  OopMap* map = new OopMap(frame_size_in_slots, 0);
203
204#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
205
206  map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
207  map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
208  map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
209  map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
210  // rbp location is known implicitly by the frame sender code, needs no oopmap
211  // and the location where rbp was saved by is ignored
212  map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
213  map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
214  map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
215  map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
216  map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
217  map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
218  map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
219  map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
220  map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
221  map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
222  map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
223  map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
224  map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
225  map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
226  map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
227  map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
228  map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
229  map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
230  map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
231  map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
232  map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
233  map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
234  map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
235  map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
236  map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
237  map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
238
239  // %%% These should all be a waste but we'll keep things as they were for now
240  if (true) {
241    map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
242    map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
243    map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
244    map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
245    // rbp location is known implicitly by the frame sender code, needs no oopmap
246    map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
247    map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
248    map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
249    map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
250    map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
251    map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
252    map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
253    map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
254    map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
255    map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
256    map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
257    map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
258    map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
259    map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
260    map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
261    map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
262    map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
263    map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
264    map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
265    map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
266    map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
267    map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
268    map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
269    map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
270    map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
271    map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
272  }
273
274  return map;
275}
276
277void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
278  if (frame::arg_reg_save_area_bytes != 0) {
279    // Pop arg register save area
280    __ addptr(rsp, frame::arg_reg_save_area_bytes);
281  }
282#ifdef COMPILER2
283  if (restore_vectors) {
284    // Restore upper half of YMM registes.
285    assert(UseAVX > 0, "256bit vectors are supported only with AVX");
286    assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
287    __ vinsertf128h(xmm0, Address(rsp,  0));
288    __ vinsertf128h(xmm1, Address(rsp, 16));
289    __ vinsertf128h(xmm2, Address(rsp, 32));
290    __ vinsertf128h(xmm3, Address(rsp, 48));
291    __ vinsertf128h(xmm4, Address(rsp, 64));
292    __ vinsertf128h(xmm5, Address(rsp, 80));
293    __ vinsertf128h(xmm6, Address(rsp, 96));
294    __ vinsertf128h(xmm7, Address(rsp,112));
295    __ vinsertf128h(xmm8, Address(rsp,128));
296    __ vinsertf128h(xmm9, Address(rsp,144));
297    __ vinsertf128h(xmm10, Address(rsp,160));
298    __ vinsertf128h(xmm11, Address(rsp,176));
299    __ vinsertf128h(xmm12, Address(rsp,192));
300    __ vinsertf128h(xmm13, Address(rsp,208));
301    __ vinsertf128h(xmm14, Address(rsp,224));
302    __ vinsertf128h(xmm15, Address(rsp,240));
303    __ addptr(rsp, 256);
304  }
305#else
306  assert(!restore_vectors, "vectors are generated only by C2");
307#endif
308  // Recover CPU state
309  __ pop_CPU_state();
310  // Get the rbp described implicitly by the calling convention (no oopMap)
311  __ pop(rbp);
312}
313
314void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
315
316  // Just restore result register. Only used by deoptimization. By
317  // now any callee save register that needs to be restored to a c2
318  // caller of the deoptee has been extracted into the vframeArray
319  // and will be stuffed into the c2i adapter we create for later
320  // restoration so only result registers need to be restored here.
321
322  // Restore fp result register
323  __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
324  // Restore integer result register
325  __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
326  __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
327
328  // Pop all of the register save are off the stack except the return address
329  __ addptr(rsp, return_offset_in_bytes());
330}
331
332// Is vector's size (in bytes) bigger than a size saved by default?
333// 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
334bool SharedRuntime::is_wide_vector(int size) {
335  return size > 16;
336}
337
338// The java_calling_convention describes stack locations as ideal slots on
339// a frame with no abi restrictions. Since we must observe abi restrictions
340// (like the placement of the register window) the slots must be biased by
341// the following value.
342static int reg2offset_in(VMReg r) {
343  // Account for saved rbp and return address
344  // This should really be in_preserve_stack_slots
345  return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
346}
347
348static int reg2offset_out(VMReg r) {
349  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
350}
351
352// ---------------------------------------------------------------------------
353// Read the array of BasicTypes from a signature, and compute where the
354// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
355// quantities.  Values less than VMRegImpl::stack0 are registers, those above
356// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
357// as framesizes are fixed.
358// VMRegImpl::stack0 refers to the first slot 0(sp).
359// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
360// up to RegisterImpl::number_of_registers) are the 64-bit
361// integer registers.
362
363// Note: the INPUTS in sig_bt are in units of Java argument words, which are
364// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
365// units regardless of build. Of course for i486 there is no 64 bit build
366
367// The Java calling convention is a "shifted" version of the C ABI.
368// By skipping the first C ABI register we can call non-static jni methods
369// with small numbers of arguments without having to shuffle the arguments
370// at all. Since we control the java ABI we ought to at least get some
371// advantage out of it.
372
373int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
374                                           VMRegPair *regs,
375                                           int total_args_passed,
376                                           int is_outgoing) {
377
378  // Create the mapping between argument positions and
379  // registers.
380  static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
381    j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
382  };
383  static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
384    j_farg0, j_farg1, j_farg2, j_farg3,
385    j_farg4, j_farg5, j_farg6, j_farg7
386  };
387
388
389  uint int_args = 0;
390  uint fp_args = 0;
391  uint stk_args = 0; // inc by 2 each time
392
393  for (int i = 0; i < total_args_passed; i++) {
394    switch (sig_bt[i]) {
395    case T_BOOLEAN:
396    case T_CHAR:
397    case T_BYTE:
398    case T_SHORT:
399    case T_INT:
400      if (int_args < Argument::n_int_register_parameters_j) {
401        regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
402      } else {
403        regs[i].set1(VMRegImpl::stack2reg(stk_args));
404        stk_args += 2;
405      }
406      break;
407    case T_VOID:
408      // halves of T_LONG or T_DOUBLE
409      assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
410      regs[i].set_bad();
411      break;
412    case T_LONG:
413      assert(sig_bt[i + 1] == T_VOID, "expecting half");
414      // fall through
415    case T_OBJECT:
416    case T_ARRAY:
417    case T_ADDRESS:
418      if (int_args < Argument::n_int_register_parameters_j) {
419        regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
420      } else {
421        regs[i].set2(VMRegImpl::stack2reg(stk_args));
422        stk_args += 2;
423      }
424      break;
425    case T_FLOAT:
426      if (fp_args < Argument::n_float_register_parameters_j) {
427        regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
428      } else {
429        regs[i].set1(VMRegImpl::stack2reg(stk_args));
430        stk_args += 2;
431      }
432      break;
433    case T_DOUBLE:
434      assert(sig_bt[i + 1] == T_VOID, "expecting half");
435      if (fp_args < Argument::n_float_register_parameters_j) {
436        regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
437      } else {
438        regs[i].set2(VMRegImpl::stack2reg(stk_args));
439        stk_args += 2;
440      }
441      break;
442    default:
443      ShouldNotReachHere();
444      break;
445    }
446  }
447
448  return round_to(stk_args, 2);
449}
450
451// Patch the callers callsite with entry to compiled code if it exists.
452static void patch_callers_callsite(MacroAssembler *masm) {
453  Label L;
454  __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
455  __ jcc(Assembler::equal, L);
456
457  // Save the current stack pointer
458  __ mov(r13, rsp);
459  // Schedule the branch target address early.
460  // Call into the VM to patch the caller, then jump to compiled callee
461  // rax isn't live so capture return address while we easily can
462  __ movptr(rax, Address(rsp, 0));
463
464  // align stack so push_CPU_state doesn't fault
465  __ andptr(rsp, -(StackAlignmentInBytes));
466  __ push_CPU_state();
467
468  // VM needs caller's callsite
469  // VM needs target method
470  // This needs to be a long call since we will relocate this adapter to
471  // the codeBuffer and it may not reach
472
473  // Allocate argument register save area
474  if (frame::arg_reg_save_area_bytes != 0) {
475    __ subptr(rsp, frame::arg_reg_save_area_bytes);
476  }
477  __ mov(c_rarg0, rbx);
478  __ mov(c_rarg1, rax);
479  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
480
481  // De-allocate argument register save area
482  if (frame::arg_reg_save_area_bytes != 0) {
483    __ addptr(rsp, frame::arg_reg_save_area_bytes);
484  }
485
486  __ pop_CPU_state();
487  // restore sp
488  __ mov(rsp, r13);
489  __ bind(L);
490}
491
492
493static void gen_c2i_adapter(MacroAssembler *masm,
494                            int total_args_passed,
495                            int comp_args_on_stack,
496                            const BasicType *sig_bt,
497                            const VMRegPair *regs,
498                            Label& skip_fixup) {
499  // Before we get into the guts of the C2I adapter, see if we should be here
500  // at all.  We've come from compiled code and are attempting to jump to the
501  // interpreter, which means the caller made a static call to get here
502  // (vcalls always get a compiled target if there is one).  Check for a
503  // compiled target.  If there is one, we need to patch the caller's call.
504  patch_callers_callsite(masm);
505
506  __ bind(skip_fixup);
507
508  // Since all args are passed on the stack, total_args_passed *
509  // Interpreter::stackElementSize is the space we need. Plus 1 because
510  // we also account for the return address location since
511  // we store it first rather than hold it in rax across all the shuffling
512
513  int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
514
515  // stack is aligned, keep it that way
516  extraspace = round_to(extraspace, 2*wordSize);
517
518  // Get return address
519  __ pop(rax);
520
521  // set senderSP value
522  __ mov(r13, rsp);
523
524  __ subptr(rsp, extraspace);
525
526  // Store the return address in the expected location
527  __ movptr(Address(rsp, 0), rax);
528
529  // Now write the args into the outgoing interpreter space
530  for (int i = 0; i < total_args_passed; i++) {
531    if (sig_bt[i] == T_VOID) {
532      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
533      continue;
534    }
535
536    // offset to start parameters
537    int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
538    int next_off = st_off - Interpreter::stackElementSize;
539
540    // Say 4 args:
541    // i   st_off
542    // 0   32 T_LONG
543    // 1   24 T_VOID
544    // 2   16 T_OBJECT
545    // 3    8 T_BOOL
546    // -    0 return address
547    //
548    // However to make thing extra confusing. Because we can fit a long/double in
549    // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
550    // leaves one slot empty and only stores to a single slot. In this case the
551    // slot that is occupied is the T_VOID slot. See I said it was confusing.
552
553    VMReg r_1 = regs[i].first();
554    VMReg r_2 = regs[i].second();
555    if (!r_1->is_valid()) {
556      assert(!r_2->is_valid(), "");
557      continue;
558    }
559    if (r_1->is_stack()) {
560      // memory to memory use rax
561      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
562      if (!r_2->is_valid()) {
563        // sign extend??
564        __ movl(rax, Address(rsp, ld_off));
565        __ movptr(Address(rsp, st_off), rax);
566
567      } else {
568
569        __ movq(rax, Address(rsp, ld_off));
570
571        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
572        // T_DOUBLE and T_LONG use two slots in the interpreter
573        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
574          // ld_off == LSW, ld_off+wordSize == MSW
575          // st_off == MSW, next_off == LSW
576          __ movq(Address(rsp, next_off), rax);
577#ifdef ASSERT
578          // Overwrite the unused slot with known junk
579          __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
580          __ movptr(Address(rsp, st_off), rax);
581#endif /* ASSERT */
582        } else {
583          __ movq(Address(rsp, st_off), rax);
584        }
585      }
586    } else if (r_1->is_Register()) {
587      Register r = r_1->as_Register();
588      if (!r_2->is_valid()) {
589        // must be only an int (or less ) so move only 32bits to slot
590        // why not sign extend??
591        __ movl(Address(rsp, st_off), r);
592      } else {
593        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
594        // T_DOUBLE and T_LONG use two slots in the interpreter
595        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
596          // long/double in gpr
597#ifdef ASSERT
598          // Overwrite the unused slot with known junk
599          __ mov64(rax, CONST64(0xdeadffffdeadaaab));
600          __ movptr(Address(rsp, st_off), rax);
601#endif /* ASSERT */
602          __ movq(Address(rsp, next_off), r);
603        } else {
604          __ movptr(Address(rsp, st_off), r);
605        }
606      }
607    } else {
608      assert(r_1->is_XMMRegister(), "");
609      if (!r_2->is_valid()) {
610        // only a float use just part of the slot
611        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
612      } else {
613#ifdef ASSERT
614        // Overwrite the unused slot with known junk
615        __ mov64(rax, CONST64(0xdeadffffdeadaaac));
616        __ movptr(Address(rsp, st_off), rax);
617#endif /* ASSERT */
618        __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
619      }
620    }
621  }
622
623  // Schedule the branch target address early.
624  __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
625  __ jmp(rcx);
626}
627
628static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
629                        address code_start, address code_end,
630                        Label& L_ok) {
631  Label L_fail;
632  __ lea(temp_reg, ExternalAddress(code_start));
633  __ cmpptr(pc_reg, temp_reg);
634  __ jcc(Assembler::belowEqual, L_fail);
635  __ lea(temp_reg, ExternalAddress(code_end));
636  __ cmpptr(pc_reg, temp_reg);
637  __ jcc(Assembler::below, L_ok);
638  __ bind(L_fail);
639}
640
641static void gen_i2c_adapter(MacroAssembler *masm,
642                            int total_args_passed,
643                            int comp_args_on_stack,
644                            const BasicType *sig_bt,
645                            const VMRegPair *regs) {
646
647  // Note: r13 contains the senderSP on entry. We must preserve it since
648  // we may do a i2c -> c2i transition if we lose a race where compiled
649  // code goes non-entrant while we get args ready.
650  // In addition we use r13 to locate all the interpreter args as
651  // we must align the stack to 16 bytes on an i2c entry else we
652  // lose alignment we expect in all compiled code and register
653  // save code can segv when fxsave instructions find improperly
654  // aligned stack pointer.
655
656  // Adapters can be frameless because they do not require the caller
657  // to perform additional cleanup work, such as correcting the stack pointer.
658  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
659  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
660  // even if a callee has modified the stack pointer.
661  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
662  // routinely repairs its caller's stack pointer (from sender_sp, which is set
663  // up via the senderSP register).
664  // In other words, if *either* the caller or callee is interpreted, we can
665  // get the stack pointer repaired after a call.
666  // This is why c2i and i2c adapters cannot be indefinitely composed.
667  // In particular, if a c2i adapter were to somehow call an i2c adapter,
668  // both caller and callee would be compiled methods, and neither would
669  // clean up the stack pointer changes performed by the two adapters.
670  // If this happens, control eventually transfers back to the compiled
671  // caller, but with an uncorrected stack, causing delayed havoc.
672
673  // Pick up the return address
674  __ movptr(rax, Address(rsp, 0));
675
676  if (VerifyAdapterCalls &&
677      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
678    // So, let's test for cascading c2i/i2c adapters right now.
679    //  assert(Interpreter::contains($return_addr) ||
680    //         StubRoutines::contains($return_addr),
681    //         "i2c adapter must return to an interpreter frame");
682    __ block_comment("verify_i2c { ");
683    Label L_ok;
684    if (Interpreter::code() != NULL)
685      range_check(masm, rax, r11,
686                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
687                  L_ok);
688    if (StubRoutines::code1() != NULL)
689      range_check(masm, rax, r11,
690                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
691                  L_ok);
692    if (StubRoutines::code2() != NULL)
693      range_check(masm, rax, r11,
694                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
695                  L_ok);
696    const char* msg = "i2c adapter must return to an interpreter frame";
697    __ block_comment(msg);
698    __ stop(msg);
699    __ bind(L_ok);
700    __ block_comment("} verify_i2ce ");
701  }
702
703  // Must preserve original SP for loading incoming arguments because
704  // we need to align the outgoing SP for compiled code.
705  __ movptr(r11, rsp);
706
707  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
708  // in registers, we will occasionally have no stack args.
709  int comp_words_on_stack = 0;
710  if (comp_args_on_stack) {
711    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
712    // registers are below.  By subtracting stack0, we either get a negative
713    // number (all values in registers) or the maximum stack slot accessed.
714
715    // Convert 4-byte c2 stack slots to words.
716    comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
717    // Round up to miminum stack alignment, in wordSize
718    comp_words_on_stack = round_to(comp_words_on_stack, 2);
719    __ subptr(rsp, comp_words_on_stack * wordSize);
720  }
721
722
723  // Ensure compiled code always sees stack at proper alignment
724  __ andptr(rsp, -16);
725
726  // push the return address and misalign the stack that youngest frame always sees
727  // as far as the placement of the call instruction
728  __ push(rax);
729
730  // Put saved SP in another register
731  const Register saved_sp = rax;
732  __ movptr(saved_sp, r11);
733
734  // Will jump to the compiled code just as if compiled code was doing it.
735  // Pre-load the register-jump target early, to schedule it better.
736  __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
737
738  // Now generate the shuffle code.  Pick up all register args and move the
739  // rest through the floating point stack top.
740  for (int i = 0; i < total_args_passed; i++) {
741    if (sig_bt[i] == T_VOID) {
742      // Longs and doubles are passed in native word order, but misaligned
743      // in the 32-bit build.
744      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
745      continue;
746    }
747
748    // Pick up 0, 1 or 2 words from SP+offset.
749
750    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
751            "scrambled load targets?");
752    // Load in argument order going down.
753    int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
754    // Point to interpreter value (vs. tag)
755    int next_off = ld_off - Interpreter::stackElementSize;
756    //
757    //
758    //
759    VMReg r_1 = regs[i].first();
760    VMReg r_2 = regs[i].second();
761    if (!r_1->is_valid()) {
762      assert(!r_2->is_valid(), "");
763      continue;
764    }
765    if (r_1->is_stack()) {
766      // Convert stack slot to an SP offset (+ wordSize to account for return address )
767      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
768
769      // We can use r13 as a temp here because compiled code doesn't need r13 as an input
770      // and if we end up going thru a c2i because of a miss a reasonable value of r13
771      // will be generated.
772      if (!r_2->is_valid()) {
773        // sign extend???
774        __ movl(r13, Address(saved_sp, ld_off));
775        __ movptr(Address(rsp, st_off), r13);
776      } else {
777        //
778        // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
779        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
780        // So we must adjust where to pick up the data to match the interpreter.
781        //
782        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
783        // are accessed as negative so LSW is at LOW address
784
785        // ld_off is MSW so get LSW
786        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
787                           next_off : ld_off;
788        __ movq(r13, Address(saved_sp, offset));
789        // st_off is LSW (i.e. reg.first())
790        __ movq(Address(rsp, st_off), r13);
791      }
792    } else if (r_1->is_Register()) {  // Register argument
793      Register r = r_1->as_Register();
794      assert(r != rax, "must be different");
795      if (r_2->is_valid()) {
796        //
797        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
798        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
799        // So we must adjust where to pick up the data to match the interpreter.
800
801        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
802                           next_off : ld_off;
803
804        // this can be a misaligned move
805        __ movq(r, Address(saved_sp, offset));
806      } else {
807        // sign extend and use a full word?
808        __ movl(r, Address(saved_sp, ld_off));
809      }
810    } else {
811      if (!r_2->is_valid()) {
812        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
813      } else {
814        __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
815      }
816    }
817  }
818
819  // 6243940 We might end up in handle_wrong_method if
820  // the callee is deoptimized as we race thru here. If that
821  // happens we don't want to take a safepoint because the
822  // caller frame will look interpreted and arguments are now
823  // "compiled" so it is much better to make this transition
824  // invisible to the stack walking code. Unfortunately if
825  // we try and find the callee by normal means a safepoint
826  // is possible. So we stash the desired callee in the thread
827  // and the vm will find there should this case occur.
828
829  __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
830
831  // put Method* where a c2i would expect should we end up there
832  // only needed becaus eof c2 resolve stubs return Method* as a result in
833  // rax
834  __ mov(rax, rbx);
835  __ jmp(r11);
836}
837
838// ---------------------------------------------------------------
839AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
840                                                            int total_args_passed,
841                                                            int comp_args_on_stack,
842                                                            const BasicType *sig_bt,
843                                                            const VMRegPair *regs,
844                                                            AdapterFingerPrint* fingerprint) {
845  address i2c_entry = __ pc();
846
847  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
848
849  // -------------------------------------------------------------------------
850  // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
851  // to the interpreter.  The args start out packed in the compiled layout.  They
852  // need to be unpacked into the interpreter layout.  This will almost always
853  // require some stack space.  We grow the current (compiled) stack, then repack
854  // the args.  We  finally end in a jump to the generic interpreter entry point.
855  // On exit from the interpreter, the interpreter will restore our SP (lest the
856  // compiled code, which relys solely on SP and not RBP, get sick).
857
858  address c2i_unverified_entry = __ pc();
859  Label skip_fixup;
860  Label ok;
861
862  Register holder = rax;
863  Register receiver = j_rarg0;
864  Register temp = rbx;
865
866  {
867    __ load_klass(temp, receiver);
868    __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
869    __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
870    __ jcc(Assembler::equal, ok);
871    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
872
873    __ bind(ok);
874    // Method might have been compiled since the call site was patched to
875    // interpreted if that is the case treat it as a miss so we can get
876    // the call site corrected.
877    __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
878    __ jcc(Assembler::equal, skip_fixup);
879    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
880  }
881
882  address c2i_entry = __ pc();
883
884  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
885
886  __ flush();
887  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
888}
889
890int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
891                                         VMRegPair *regs,
892                                         int total_args_passed) {
893// We return the amount of VMRegImpl stack slots we need to reserve for all
894// the arguments NOT counting out_preserve_stack_slots.
895
896// NOTE: These arrays will have to change when c1 is ported
897#ifdef _WIN64
898    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
899      c_rarg0, c_rarg1, c_rarg2, c_rarg3
900    };
901    static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
902      c_farg0, c_farg1, c_farg2, c_farg3
903    };
904#else
905    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
906      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
907    };
908    static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
909      c_farg0, c_farg1, c_farg2, c_farg3,
910      c_farg4, c_farg5, c_farg6, c_farg7
911    };
912#endif // _WIN64
913
914
915    uint int_args = 0;
916    uint fp_args = 0;
917    uint stk_args = 0; // inc by 2 each time
918
919    for (int i = 0; i < total_args_passed; i++) {
920      switch (sig_bt[i]) {
921      case T_BOOLEAN:
922      case T_CHAR:
923      case T_BYTE:
924      case T_SHORT:
925      case T_INT:
926        if (int_args < Argument::n_int_register_parameters_c) {
927          regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
928#ifdef _WIN64
929          fp_args++;
930          // Allocate slots for callee to stuff register args the stack.
931          stk_args += 2;
932#endif
933        } else {
934          regs[i].set1(VMRegImpl::stack2reg(stk_args));
935          stk_args += 2;
936        }
937        break;
938      case T_LONG:
939        assert(sig_bt[i + 1] == T_VOID, "expecting half");
940        // fall through
941      case T_OBJECT:
942      case T_ARRAY:
943      case T_ADDRESS:
944      case T_METADATA:
945        if (int_args < Argument::n_int_register_parameters_c) {
946          regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
947#ifdef _WIN64
948          fp_args++;
949          stk_args += 2;
950#endif
951        } else {
952          regs[i].set2(VMRegImpl::stack2reg(stk_args));
953          stk_args += 2;
954        }
955        break;
956      case T_FLOAT:
957        if (fp_args < Argument::n_float_register_parameters_c) {
958          regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
959#ifdef _WIN64
960          int_args++;
961          // Allocate slots for callee to stuff register args the stack.
962          stk_args += 2;
963#endif
964        } else {
965          regs[i].set1(VMRegImpl::stack2reg(stk_args));
966          stk_args += 2;
967        }
968        break;
969      case T_DOUBLE:
970        assert(sig_bt[i + 1] == T_VOID, "expecting half");
971        if (fp_args < Argument::n_float_register_parameters_c) {
972          regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
973#ifdef _WIN64
974          int_args++;
975          // Allocate slots for callee to stuff register args the stack.
976          stk_args += 2;
977#endif
978        } else {
979          regs[i].set2(VMRegImpl::stack2reg(stk_args));
980          stk_args += 2;
981        }
982        break;
983      case T_VOID: // Halves of longs and doubles
984        assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
985        regs[i].set_bad();
986        break;
987      default:
988        ShouldNotReachHere();
989        break;
990      }
991    }
992#ifdef _WIN64
993  // windows abi requires that we always allocate enough stack space
994  // for 4 64bit registers to be stored down.
995  if (stk_args < 8) {
996    stk_args = 8;
997  }
998#endif // _WIN64
999
1000  return stk_args;
1001}
1002
1003// On 64 bit we will store integer like items to the stack as
1004// 64 bits items (sparc abi) even though java would only store
1005// 32bits for a parameter. On 32bit it will simply be 32 bits
1006// So this routine will do 32->32 on 32bit and 32->64 on 64bit
1007static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1008  if (src.first()->is_stack()) {
1009    if (dst.first()->is_stack()) {
1010      // stack to stack
1011      __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1012      __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1013    } else {
1014      // stack to reg
1015      __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1016    }
1017  } else if (dst.first()->is_stack()) {
1018    // reg to stack
1019    // Do we really have to sign extend???
1020    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1021    __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1022  } else {
1023    // Do we really have to sign extend???
1024    // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1025    if (dst.first() != src.first()) {
1026      __ movq(dst.first()->as_Register(), src.first()->as_Register());
1027    }
1028  }
1029}
1030
1031static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1032  if (src.first()->is_stack()) {
1033    if (dst.first()->is_stack()) {
1034      // stack to stack
1035      __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1036      __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1037    } else {
1038      // stack to reg
1039      __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1040    }
1041  } else if (dst.first()->is_stack()) {
1042    // reg to stack
1043    __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1044  } else {
1045    if (dst.first() != src.first()) {
1046      __ movq(dst.first()->as_Register(), src.first()->as_Register());
1047    }
1048  }
1049}
1050
1051// An oop arg. Must pass a handle not the oop itself
1052static void object_move(MacroAssembler* masm,
1053                        OopMap* map,
1054                        int oop_handle_offset,
1055                        int framesize_in_slots,
1056                        VMRegPair src,
1057                        VMRegPair dst,
1058                        bool is_receiver,
1059                        int* receiver_offset) {
1060
1061  // must pass a handle. First figure out the location we use as a handle
1062
1063  Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1064
1065  // See if oop is NULL if it is we need no handle
1066
1067  if (src.first()->is_stack()) {
1068
1069    // Oop is already on the stack as an argument
1070    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1071    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1072    if (is_receiver) {
1073      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1074    }
1075
1076    __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1077    __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1078    // conditionally move a NULL
1079    __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1080  } else {
1081
1082    // Oop is in an a register we must store it to the space we reserve
1083    // on the stack for oop_handles and pass a handle if oop is non-NULL
1084
1085    const Register rOop = src.first()->as_Register();
1086    int oop_slot;
1087    if (rOop == j_rarg0)
1088      oop_slot = 0;
1089    else if (rOop == j_rarg1)
1090      oop_slot = 1;
1091    else if (rOop == j_rarg2)
1092      oop_slot = 2;
1093    else if (rOop == j_rarg3)
1094      oop_slot = 3;
1095    else if (rOop == j_rarg4)
1096      oop_slot = 4;
1097    else {
1098      assert(rOop == j_rarg5, "wrong register");
1099      oop_slot = 5;
1100    }
1101
1102    oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1103    int offset = oop_slot*VMRegImpl::stack_slot_size;
1104
1105    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1106    // Store oop in handle area, may be NULL
1107    __ movptr(Address(rsp, offset), rOop);
1108    if (is_receiver) {
1109      *receiver_offset = offset;
1110    }
1111
1112    __ cmpptr(rOop, (int32_t)NULL_WORD);
1113    __ lea(rHandle, Address(rsp, offset));
1114    // conditionally move a NULL from the handle area where it was just stored
1115    __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1116  }
1117
1118  // If arg is on the stack then place it otherwise it is already in correct reg.
1119  if (dst.first()->is_stack()) {
1120    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1121  }
1122}
1123
1124// A float arg may have to do float reg int reg conversion
1125static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1126  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1127
1128  // The calling conventions assures us that each VMregpair is either
1129  // all really one physical register or adjacent stack slots.
1130  // This greatly simplifies the cases here compared to sparc.
1131
1132  if (src.first()->is_stack()) {
1133    if (dst.first()->is_stack()) {
1134      __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1135      __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1136    } else {
1137      // stack to reg
1138      assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1139      __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1140    }
1141  } else if (dst.first()->is_stack()) {
1142    // reg to stack
1143    assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1144    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1145  } else {
1146    // reg to reg
1147    // In theory these overlap but the ordering is such that this is likely a nop
1148    if ( src.first() != dst.first()) {
1149      __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1150    }
1151  }
1152}
1153
1154// A long move
1155static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1156
1157  // The calling conventions assures us that each VMregpair is either
1158  // all really one physical register or adjacent stack slots.
1159  // This greatly simplifies the cases here compared to sparc.
1160
1161  if (src.is_single_phys_reg() ) {
1162    if (dst.is_single_phys_reg()) {
1163      if (dst.first() != src.first()) {
1164        __ mov(dst.first()->as_Register(), src.first()->as_Register());
1165      }
1166    } else {
1167      assert(dst.is_single_reg(), "not a stack pair");
1168      __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1169    }
1170  } else if (dst.is_single_phys_reg()) {
1171    assert(src.is_single_reg(),  "not a stack pair");
1172    __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1173  } else {
1174    assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1175    __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1176    __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1177  }
1178}
1179
1180// A double move
1181static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1182
1183  // The calling conventions assures us that each VMregpair is either
1184  // all really one physical register or adjacent stack slots.
1185  // This greatly simplifies the cases here compared to sparc.
1186
1187  if (src.is_single_phys_reg() ) {
1188    if (dst.is_single_phys_reg()) {
1189      // In theory these overlap but the ordering is such that this is likely a nop
1190      if ( src.first() != dst.first()) {
1191        __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1192      }
1193    } else {
1194      assert(dst.is_single_reg(), "not a stack pair");
1195      __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1196    }
1197  } else if (dst.is_single_phys_reg()) {
1198    assert(src.is_single_reg(),  "not a stack pair");
1199    __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1200  } else {
1201    assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1202    __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1203    __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1204  }
1205}
1206
1207
1208void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1209  // We always ignore the frame_slots arg and just use the space just below frame pointer
1210  // which by this time is free to use
1211  switch (ret_type) {
1212  case T_FLOAT:
1213    __ movflt(Address(rbp, -wordSize), xmm0);
1214    break;
1215  case T_DOUBLE:
1216    __ movdbl(Address(rbp, -wordSize), xmm0);
1217    break;
1218  case T_VOID:  break;
1219  default: {
1220    __ movptr(Address(rbp, -wordSize), rax);
1221    }
1222  }
1223}
1224
1225void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1226  // We always ignore the frame_slots arg and just use the space just below frame pointer
1227  // which by this time is free to use
1228  switch (ret_type) {
1229  case T_FLOAT:
1230    __ movflt(xmm0, Address(rbp, -wordSize));
1231    break;
1232  case T_DOUBLE:
1233    __ movdbl(xmm0, Address(rbp, -wordSize));
1234    break;
1235  case T_VOID:  break;
1236  default: {
1237    __ movptr(rax, Address(rbp, -wordSize));
1238    }
1239  }
1240}
1241
1242static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1243    for ( int i = first_arg ; i < arg_count ; i++ ) {
1244      if (args[i].first()->is_Register()) {
1245        __ push(args[i].first()->as_Register());
1246      } else if (args[i].first()->is_XMMRegister()) {
1247        __ subptr(rsp, 2*wordSize);
1248        __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1249      }
1250    }
1251}
1252
1253static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1254    for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1255      if (args[i].first()->is_Register()) {
1256        __ pop(args[i].first()->as_Register());
1257      } else if (args[i].first()->is_XMMRegister()) {
1258        __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1259        __ addptr(rsp, 2*wordSize);
1260      }
1261    }
1262}
1263
1264
1265static void save_or_restore_arguments(MacroAssembler* masm,
1266                                      const int stack_slots,
1267                                      const int total_in_args,
1268                                      const int arg_save_area,
1269                                      OopMap* map,
1270                                      VMRegPair* in_regs,
1271                                      BasicType* in_sig_bt) {
1272  // if map is non-NULL then the code should store the values,
1273  // otherwise it should load them.
1274  int slot = arg_save_area;
1275  // Save down double word first
1276  for ( int i = 0; i < total_in_args; i++) {
1277    if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1278      int offset = slot * VMRegImpl::stack_slot_size;
1279      slot += VMRegImpl::slots_per_word;
1280      assert(slot <= stack_slots, "overflow");
1281      if (map != NULL) {
1282        __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1283      } else {
1284        __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1285      }
1286    }
1287    if (in_regs[i].first()->is_Register() &&
1288        (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1289      int offset = slot * VMRegImpl::stack_slot_size;
1290      if (map != NULL) {
1291        __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1292        if (in_sig_bt[i] == T_ARRAY) {
1293          map->set_oop(VMRegImpl::stack2reg(slot));;
1294        }
1295      } else {
1296        __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1297      }
1298      slot += VMRegImpl::slots_per_word;
1299    }
1300  }
1301  // Save or restore single word registers
1302  for ( int i = 0; i < total_in_args; i++) {
1303    if (in_regs[i].first()->is_Register()) {
1304      int offset = slot * VMRegImpl::stack_slot_size;
1305      slot++;
1306      assert(slot <= stack_slots, "overflow");
1307
1308      // Value is in an input register pass we must flush it to the stack
1309      const Register reg = in_regs[i].first()->as_Register();
1310      switch (in_sig_bt[i]) {
1311        case T_BOOLEAN:
1312        case T_CHAR:
1313        case T_BYTE:
1314        case T_SHORT:
1315        case T_INT:
1316          if (map != NULL) {
1317            __ movl(Address(rsp, offset), reg);
1318          } else {
1319            __ movl(reg, Address(rsp, offset));
1320          }
1321          break;
1322        case T_ARRAY:
1323        case T_LONG:
1324          // handled above
1325          break;
1326        case T_OBJECT:
1327        default: ShouldNotReachHere();
1328      }
1329    } else if (in_regs[i].first()->is_XMMRegister()) {
1330      if (in_sig_bt[i] == T_FLOAT) {
1331        int offset = slot * VMRegImpl::stack_slot_size;
1332        slot++;
1333        assert(slot <= stack_slots, "overflow");
1334        if (map != NULL) {
1335          __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1336        } else {
1337          __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1338        }
1339      }
1340    } else if (in_regs[i].first()->is_stack()) {
1341      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1342        int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1343        map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1344      }
1345    }
1346  }
1347}
1348
1349
1350// Check GC_locker::needs_gc and enter the runtime if it's true.  This
1351// keeps a new JNI critical region from starting until a GC has been
1352// forced.  Save down any oops in registers and describe them in an
1353// OopMap.
1354static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1355                                               int stack_slots,
1356                                               int total_c_args,
1357                                               int total_in_args,
1358                                               int arg_save_area,
1359                                               OopMapSet* oop_maps,
1360                                               VMRegPair* in_regs,
1361                                               BasicType* in_sig_bt) {
1362  __ block_comment("check GC_locker::needs_gc");
1363  Label cont;
1364  __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1365  __ jcc(Assembler::equal, cont);
1366
1367  // Save down any incoming oops and call into the runtime to halt for a GC
1368
1369  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1370  save_or_restore_arguments(masm, stack_slots, total_in_args,
1371                            arg_save_area, map, in_regs, in_sig_bt);
1372
1373  address the_pc = __ pc();
1374  oop_maps->add_gc_map( __ offset(), map);
1375  __ set_last_Java_frame(rsp, noreg, the_pc);
1376
1377  __ block_comment("block_for_jni_critical");
1378  __ movptr(c_rarg0, r15_thread);
1379  __ mov(r12, rsp); // remember sp
1380  __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1381  __ andptr(rsp, -16); // align stack as required by ABI
1382  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1383  __ mov(rsp, r12); // restore sp
1384  __ reinit_heapbase();
1385
1386  __ reset_last_Java_frame(false, true);
1387
1388  save_or_restore_arguments(masm, stack_slots, total_in_args,
1389                            arg_save_area, NULL, in_regs, in_sig_bt);
1390
1391  __ bind(cont);
1392#ifdef ASSERT
1393  if (StressCriticalJNINatives) {
1394    // Stress register saving
1395    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1396    save_or_restore_arguments(masm, stack_slots, total_in_args,
1397                              arg_save_area, map, in_regs, in_sig_bt);
1398    // Destroy argument registers
1399    for (int i = 0; i < total_in_args - 1; i++) {
1400      if (in_regs[i].first()->is_Register()) {
1401        const Register reg = in_regs[i].first()->as_Register();
1402        __ xorptr(reg, reg);
1403      } else if (in_regs[i].first()->is_XMMRegister()) {
1404        __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1405      } else if (in_regs[i].first()->is_FloatRegister()) {
1406        ShouldNotReachHere();
1407      } else if (in_regs[i].first()->is_stack()) {
1408        // Nothing to do
1409      } else {
1410        ShouldNotReachHere();
1411      }
1412      if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1413        i++;
1414      }
1415    }
1416
1417    save_or_restore_arguments(masm, stack_slots, total_in_args,
1418                              arg_save_area, NULL, in_regs, in_sig_bt);
1419  }
1420#endif
1421}
1422
1423// Unpack an array argument into a pointer to the body and the length
1424// if the array is non-null, otherwise pass 0 for both.
1425static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1426  Register tmp_reg = rax;
1427  assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1428         "possible collision");
1429  assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1430         "possible collision");
1431
1432  // Pass the length, ptr pair
1433  Label is_null, done;
1434  VMRegPair tmp;
1435  tmp.set_ptr(tmp_reg->as_VMReg());
1436  if (reg.first()->is_stack()) {
1437    // Load the arg up from the stack
1438    move_ptr(masm, reg, tmp);
1439    reg = tmp;
1440  }
1441  __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1442  __ jccb(Assembler::equal, is_null);
1443  __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1444  move_ptr(masm, tmp, body_arg);
1445  // load the length relative to the body.
1446  __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1447                           arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1448  move32_64(masm, tmp, length_arg);
1449  __ jmpb(done);
1450  __ bind(is_null);
1451  // Pass zeros
1452  __ xorptr(tmp_reg, tmp_reg);
1453  move_ptr(masm, tmp, body_arg);
1454  move32_64(masm, tmp, length_arg);
1455  __ bind(done);
1456}
1457
1458
1459// Different signatures may require very different orders for the move
1460// to avoid clobbering other arguments.  There's no simple way to
1461// order them safely.  Compute a safe order for issuing stores and
1462// break any cycles in those stores.  This code is fairly general but
1463// it's not necessary on the other platforms so we keep it in the
1464// platform dependent code instead of moving it into a shared file.
1465// (See bugs 7013347 & 7145024.)
1466// Note that this code is specific to LP64.
1467class ComputeMoveOrder: public StackObj {
1468  class MoveOperation: public ResourceObj {
1469    friend class ComputeMoveOrder;
1470   private:
1471    VMRegPair        _src;
1472    VMRegPair        _dst;
1473    int              _src_index;
1474    int              _dst_index;
1475    bool             _processed;
1476    MoveOperation*  _next;
1477    MoveOperation*  _prev;
1478
1479    static int get_id(VMRegPair r) {
1480      return r.first()->value();
1481    }
1482
1483   public:
1484    MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1485      _src(src)
1486    , _src_index(src_index)
1487    , _dst(dst)
1488    , _dst_index(dst_index)
1489    , _next(NULL)
1490    , _prev(NULL)
1491    , _processed(false) {
1492    }
1493
1494    VMRegPair src() const              { return _src; }
1495    int src_id() const                 { return get_id(src()); }
1496    int src_index() const              { return _src_index; }
1497    VMRegPair dst() const              { return _dst; }
1498    void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1499    int dst_index() const              { return _dst_index; }
1500    int dst_id() const                 { return get_id(dst()); }
1501    MoveOperation* next() const       { return _next; }
1502    MoveOperation* prev() const       { return _prev; }
1503    void set_processed()               { _processed = true; }
1504    bool is_processed() const          { return _processed; }
1505
1506    // insert
1507    void break_cycle(VMRegPair temp_register) {
1508      // create a new store following the last store
1509      // to move from the temp_register to the original
1510      MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1511
1512      // break the cycle of links and insert new_store at the end
1513      // break the reverse link.
1514      MoveOperation* p = prev();
1515      assert(p->next() == this, "must be");
1516      _prev = NULL;
1517      p->_next = new_store;
1518      new_store->_prev = p;
1519
1520      // change the original store to save it's value in the temp.
1521      set_dst(-1, temp_register);
1522    }
1523
1524    void link(GrowableArray<MoveOperation*>& killer) {
1525      // link this store in front the store that it depends on
1526      MoveOperation* n = killer.at_grow(src_id(), NULL);
1527      if (n != NULL) {
1528        assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1529        _next = n;
1530        n->_prev = this;
1531      }
1532    }
1533  };
1534
1535 private:
1536  GrowableArray<MoveOperation*> edges;
1537
1538 public:
1539  ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1540                    BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1541    // Move operations where the dest is the stack can all be
1542    // scheduled first since they can't interfere with the other moves.
1543    for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1544      if (in_sig_bt[i] == T_ARRAY) {
1545        c_arg--;
1546        if (out_regs[c_arg].first()->is_stack() &&
1547            out_regs[c_arg + 1].first()->is_stack()) {
1548          arg_order.push(i);
1549          arg_order.push(c_arg);
1550        } else {
1551          if (out_regs[c_arg].first()->is_stack() ||
1552              in_regs[i].first() == out_regs[c_arg].first()) {
1553            add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1554          } else {
1555            add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1556          }
1557        }
1558      } else if (in_sig_bt[i] == T_VOID) {
1559        arg_order.push(i);
1560        arg_order.push(c_arg);
1561      } else {
1562        if (out_regs[c_arg].first()->is_stack() ||
1563            in_regs[i].first() == out_regs[c_arg].first()) {
1564          arg_order.push(i);
1565          arg_order.push(c_arg);
1566        } else {
1567          add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1568        }
1569      }
1570    }
1571    // Break any cycles in the register moves and emit the in the
1572    // proper order.
1573    GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1574    for (int i = 0; i < stores->length(); i++) {
1575      arg_order.push(stores->at(i)->src_index());
1576      arg_order.push(stores->at(i)->dst_index());
1577    }
1578 }
1579
1580  // Collected all the move operations
1581  void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1582    if (src.first() == dst.first()) return;
1583    edges.append(new MoveOperation(src_index, src, dst_index, dst));
1584  }
1585
1586  // Walk the edges breaking cycles between moves.  The result list
1587  // can be walked in order to produce the proper set of loads
1588  GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1589    // Record which moves kill which values
1590    GrowableArray<MoveOperation*> killer;
1591    for (int i = 0; i < edges.length(); i++) {
1592      MoveOperation* s = edges.at(i);
1593      assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1594      killer.at_put_grow(s->dst_id(), s, NULL);
1595    }
1596    assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1597           "make sure temp isn't in the registers that are killed");
1598
1599    // create links between loads and stores
1600    for (int i = 0; i < edges.length(); i++) {
1601      edges.at(i)->link(killer);
1602    }
1603
1604    // at this point, all the move operations are chained together
1605    // in a doubly linked list.  Processing it backwards finds
1606    // the beginning of the chain, forwards finds the end.  If there's
1607    // a cycle it can be broken at any point,  so pick an edge and walk
1608    // backward until the list ends or we end where we started.
1609    GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1610    for (int e = 0; e < edges.length(); e++) {
1611      MoveOperation* s = edges.at(e);
1612      if (!s->is_processed()) {
1613        MoveOperation* start = s;
1614        // search for the beginning of the chain or cycle
1615        while (start->prev() != NULL && start->prev() != s) {
1616          start = start->prev();
1617        }
1618        if (start->prev() == s) {
1619          start->break_cycle(temp_register);
1620        }
1621        // walk the chain forward inserting to store list
1622        while (start != NULL) {
1623          stores->append(start);
1624          start->set_processed();
1625          start = start->next();
1626        }
1627      }
1628    }
1629    return stores;
1630  }
1631};
1632
1633static void verify_oop_args(MacroAssembler* masm,
1634                            methodHandle method,
1635                            const BasicType* sig_bt,
1636                            const VMRegPair* regs) {
1637  Register temp_reg = rbx;  // not part of any compiled calling seq
1638  if (VerifyOops) {
1639    for (int i = 0; i < method->size_of_parameters(); i++) {
1640      if (sig_bt[i] == T_OBJECT ||
1641          sig_bt[i] == T_ARRAY) {
1642        VMReg r = regs[i].first();
1643        assert(r->is_valid(), "bad oop arg");
1644        if (r->is_stack()) {
1645          __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1646          __ verify_oop(temp_reg);
1647        } else {
1648          __ verify_oop(r->as_Register());
1649        }
1650      }
1651    }
1652  }
1653}
1654
1655static void gen_special_dispatch(MacroAssembler* masm,
1656                                 methodHandle method,
1657                                 const BasicType* sig_bt,
1658                                 const VMRegPair* regs) {
1659  verify_oop_args(masm, method, sig_bt, regs);
1660  vmIntrinsics::ID iid = method->intrinsic_id();
1661
1662  // Now write the args into the outgoing interpreter space
1663  bool     has_receiver   = false;
1664  Register receiver_reg   = noreg;
1665  int      member_arg_pos = -1;
1666  Register member_reg     = noreg;
1667  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1668  if (ref_kind != 0) {
1669    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1670    member_reg = rbx;  // known to be free at this point
1671    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1672  } else if (iid == vmIntrinsics::_invokeBasic) {
1673    has_receiver = true;
1674  } else {
1675    fatal(err_msg_res("unexpected intrinsic id %d", iid));
1676  }
1677
1678  if (member_reg != noreg) {
1679    // Load the member_arg into register, if necessary.
1680    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1681    VMReg r = regs[member_arg_pos].first();
1682    if (r->is_stack()) {
1683      __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1684    } else {
1685      // no data motion is needed
1686      member_reg = r->as_Register();
1687    }
1688  }
1689
1690  if (has_receiver) {
1691    // Make sure the receiver is loaded into a register.
1692    assert(method->size_of_parameters() > 0, "oob");
1693    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1694    VMReg r = regs[0].first();
1695    assert(r->is_valid(), "bad receiver arg");
1696    if (r->is_stack()) {
1697      // Porting note:  This assumes that compiled calling conventions always
1698      // pass the receiver oop in a register.  If this is not true on some
1699      // platform, pick a temp and load the receiver from stack.
1700      fatal("receiver always in a register");
1701      receiver_reg = j_rarg0;  // known to be free at this point
1702      __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1703    } else {
1704      // no data motion is needed
1705      receiver_reg = r->as_Register();
1706    }
1707  }
1708
1709  // Figure out which address we are really jumping to:
1710  MethodHandles::generate_method_handle_dispatch(masm, iid,
1711                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1712}
1713
1714// ---------------------------------------------------------------------------
1715// Generate a native wrapper for a given method.  The method takes arguments
1716// in the Java compiled code convention, marshals them to the native
1717// convention (handlizes oops, etc), transitions to native, makes the call,
1718// returns to java state (possibly blocking), unhandlizes any result and
1719// returns.
1720//
1721// Critical native functions are a shorthand for the use of
1722// GetPrimtiveArrayCritical and disallow the use of any other JNI
1723// functions.  The wrapper is expected to unpack the arguments before
1724// passing them to the callee and perform checks before and after the
1725// native call to ensure that they GC_locker
1726// lock_critical/unlock_critical semantics are followed.  Some other
1727// parts of JNI setup are skipped like the tear down of the JNI handle
1728// block and the check for pending exceptions it's impossible for them
1729// to be thrown.
1730//
1731// They are roughly structured like this:
1732//    if (GC_locker::needs_gc())
1733//      SharedRuntime::block_for_jni_critical();
1734//    tranistion to thread_in_native
1735//    unpack arrray arguments and call native entry point
1736//    check for safepoint in progress
1737//    check if any thread suspend flags are set
1738//      call into JVM and possible unlock the JNI critical
1739//      if a GC was suppressed while in the critical native.
1740//    transition back to thread_in_Java
1741//    return to caller
1742//
1743nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1744                                                methodHandle method,
1745                                                int compile_id,
1746                                                BasicType* in_sig_bt,
1747                                                VMRegPair* in_regs,
1748                                                BasicType ret_type) {
1749  if (method->is_method_handle_intrinsic()) {
1750    vmIntrinsics::ID iid = method->intrinsic_id();
1751    intptr_t start = (intptr_t)__ pc();
1752    int vep_offset = ((intptr_t)__ pc()) - start;
1753    gen_special_dispatch(masm,
1754                         method,
1755                         in_sig_bt,
1756                         in_regs);
1757    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1758    __ flush();
1759    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1760    return nmethod::new_native_nmethod(method,
1761                                       compile_id,
1762                                       masm->code(),
1763                                       vep_offset,
1764                                       frame_complete,
1765                                       stack_slots / VMRegImpl::slots_per_word,
1766                                       in_ByteSize(-1),
1767                                       in_ByteSize(-1),
1768                                       (OopMapSet*)NULL);
1769  }
1770  bool is_critical_native = true;
1771  address native_func = method->critical_native_function();
1772  if (native_func == NULL) {
1773    native_func = method->native_function();
1774    is_critical_native = false;
1775  }
1776  assert(native_func != NULL, "must have function");
1777
1778  // An OopMap for lock (and class if static)
1779  OopMapSet *oop_maps = new OopMapSet();
1780  intptr_t start = (intptr_t)__ pc();
1781
1782  // We have received a description of where all the java arg are located
1783  // on entry to the wrapper. We need to convert these args to where
1784  // the jni function will expect them. To figure out where they go
1785  // we convert the java signature to a C signature by inserting
1786  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1787
1788  const int total_in_args = method->size_of_parameters();
1789  int total_c_args = total_in_args;
1790  if (!is_critical_native) {
1791    total_c_args += 1;
1792    if (method->is_static()) {
1793      total_c_args++;
1794    }
1795  } else {
1796    for (int i = 0; i < total_in_args; i++) {
1797      if (in_sig_bt[i] == T_ARRAY) {
1798        total_c_args++;
1799      }
1800    }
1801  }
1802
1803  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1804  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1805  BasicType* in_elem_bt = NULL;
1806
1807  int argc = 0;
1808  if (!is_critical_native) {
1809    out_sig_bt[argc++] = T_ADDRESS;
1810    if (method->is_static()) {
1811      out_sig_bt[argc++] = T_OBJECT;
1812    }
1813
1814    for (int i = 0; i < total_in_args ; i++ ) {
1815      out_sig_bt[argc++] = in_sig_bt[i];
1816    }
1817  } else {
1818    Thread* THREAD = Thread::current();
1819    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1820    SignatureStream ss(method->signature());
1821    for (int i = 0; i < total_in_args ; i++ ) {
1822      if (in_sig_bt[i] == T_ARRAY) {
1823        // Arrays are passed as int, elem* pair
1824        out_sig_bt[argc++] = T_INT;
1825        out_sig_bt[argc++] = T_ADDRESS;
1826        Symbol* atype = ss.as_symbol(CHECK_NULL);
1827        const char* at = atype->as_C_string();
1828        if (strlen(at) == 2) {
1829          assert(at[0] == '[', "must be");
1830          switch (at[1]) {
1831            case 'B': in_elem_bt[i]  = T_BYTE; break;
1832            case 'C': in_elem_bt[i]  = T_CHAR; break;
1833            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1834            case 'F': in_elem_bt[i]  = T_FLOAT; break;
1835            case 'I': in_elem_bt[i]  = T_INT; break;
1836            case 'J': in_elem_bt[i]  = T_LONG; break;
1837            case 'S': in_elem_bt[i]  = T_SHORT; break;
1838            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1839            default: ShouldNotReachHere();
1840          }
1841        }
1842      } else {
1843        out_sig_bt[argc++] = in_sig_bt[i];
1844        in_elem_bt[i] = T_VOID;
1845      }
1846      if (in_sig_bt[i] != T_VOID) {
1847        assert(in_sig_bt[i] == ss.type(), "must match");
1848        ss.next();
1849      }
1850    }
1851  }
1852
1853  // Now figure out where the args must be stored and how much stack space
1854  // they require.
1855  int out_arg_slots;
1856  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1857
1858  // Compute framesize for the wrapper.  We need to handlize all oops in
1859  // incoming registers
1860
1861  // Calculate the total number of stack slots we will need.
1862
1863  // First count the abi requirement plus all of the outgoing args
1864  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1865
1866  // Now the space for the inbound oop handle area
1867  int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1868  if (is_critical_native) {
1869    // Critical natives may have to call out so they need a save area
1870    // for register arguments.
1871    int double_slots = 0;
1872    int single_slots = 0;
1873    for ( int i = 0; i < total_in_args; i++) {
1874      if (in_regs[i].first()->is_Register()) {
1875        const Register reg = in_regs[i].first()->as_Register();
1876        switch (in_sig_bt[i]) {
1877          case T_BOOLEAN:
1878          case T_BYTE:
1879          case T_SHORT:
1880          case T_CHAR:
1881          case T_INT:  single_slots++; break;
1882          case T_ARRAY:  // specific to LP64 (7145024)
1883          case T_LONG: double_slots++; break;
1884          default:  ShouldNotReachHere();
1885        }
1886      } else if (in_regs[i].first()->is_XMMRegister()) {
1887        switch (in_sig_bt[i]) {
1888          case T_FLOAT:  single_slots++; break;
1889          case T_DOUBLE: double_slots++; break;
1890          default:  ShouldNotReachHere();
1891        }
1892      } else if (in_regs[i].first()->is_FloatRegister()) {
1893        ShouldNotReachHere();
1894      }
1895    }
1896    total_save_slots = double_slots * 2 + single_slots;
1897    // align the save area
1898    if (double_slots != 0) {
1899      stack_slots = round_to(stack_slots, 2);
1900    }
1901  }
1902
1903  int oop_handle_offset = stack_slots;
1904  stack_slots += total_save_slots;
1905
1906  // Now any space we need for handlizing a klass if static method
1907
1908  int klass_slot_offset = 0;
1909  int klass_offset = -1;
1910  int lock_slot_offset = 0;
1911  bool is_static = false;
1912
1913  if (method->is_static()) {
1914    klass_slot_offset = stack_slots;
1915    stack_slots += VMRegImpl::slots_per_word;
1916    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1917    is_static = true;
1918  }
1919
1920  // Plus a lock if needed
1921
1922  if (method->is_synchronized()) {
1923    lock_slot_offset = stack_slots;
1924    stack_slots += VMRegImpl::slots_per_word;
1925  }
1926
1927  // Now a place (+2) to save return values or temp during shuffling
1928  // + 4 for return address (which we own) and saved rbp
1929  stack_slots += 6;
1930
1931  // Ok The space we have allocated will look like:
1932  //
1933  //
1934  // FP-> |                     |
1935  //      |---------------------|
1936  //      | 2 slots for moves   |
1937  //      |---------------------|
1938  //      | lock box (if sync)  |
1939  //      |---------------------| <- lock_slot_offset
1940  //      | klass (if static)   |
1941  //      |---------------------| <- klass_slot_offset
1942  //      | oopHandle area      |
1943  //      |---------------------| <- oop_handle_offset (6 java arg registers)
1944  //      | outbound memory     |
1945  //      | based arguments     |
1946  //      |                     |
1947  //      |---------------------|
1948  //      |                     |
1949  // SP-> | out_preserved_slots |
1950  //
1951  //
1952
1953
1954  // Now compute actual number of stack words we need rounding to make
1955  // stack properly aligned.
1956  stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1957
1958  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1959
1960  // First thing make an ic check to see if we should even be here
1961
1962  // We are free to use all registers as temps without saving them and
1963  // restoring them except rbp. rbp is the only callee save register
1964  // as far as the interpreter and the compiler(s) are concerned.
1965
1966
1967  const Register ic_reg = rax;
1968  const Register receiver = j_rarg0;
1969
1970  Label hit;
1971  Label exception_pending;
1972
1973  assert_different_registers(ic_reg, receiver, rscratch1);
1974  __ verify_oop(receiver);
1975  __ load_klass(rscratch1, receiver);
1976  __ cmpq(ic_reg, rscratch1);
1977  __ jcc(Assembler::equal, hit);
1978
1979  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1980
1981  // Verified entry point must be aligned
1982  __ align(8);
1983
1984  __ bind(hit);
1985
1986  int vep_offset = ((intptr_t)__ pc()) - start;
1987
1988  // The instruction at the verified entry point must be 5 bytes or longer
1989  // because it can be patched on the fly by make_non_entrant. The stack bang
1990  // instruction fits that requirement.
1991
1992  // Generate stack overflow check
1993
1994  if (UseStackBanging) {
1995    __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1996  } else {
1997    // need a 5 byte instruction to allow MT safe patching to non-entrant
1998    __ fat_nop();
1999  }
2000
2001  // Generate a new frame for the wrapper.
2002  __ enter();
2003  // -2 because return address is already present and so is saved rbp
2004  __ subptr(rsp, stack_size - 2*wordSize);
2005
2006  // Frame is now completed as far as size and linkage.
2007  int frame_complete = ((intptr_t)__ pc()) - start;
2008
2009#ifdef ASSERT
2010    {
2011      Label L;
2012      __ mov(rax, rsp);
2013      __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2014      __ cmpptr(rax, rsp);
2015      __ jcc(Assembler::equal, L);
2016      __ stop("improperly aligned stack");
2017      __ bind(L);
2018    }
2019#endif /* ASSERT */
2020
2021
2022  // We use r14 as the oop handle for the receiver/klass
2023  // It is callee save so it survives the call to native
2024
2025  const Register oop_handle_reg = r14;
2026
2027  if (is_critical_native) {
2028    check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2029                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2030  }
2031
2032  //
2033  // We immediately shuffle the arguments so that any vm call we have to
2034  // make from here on out (sync slow path, jvmti, etc.) we will have
2035  // captured the oops from our caller and have a valid oopMap for
2036  // them.
2037
2038  // -----------------
2039  // The Grand Shuffle
2040
2041  // The Java calling convention is either equal (linux) or denser (win64) than the
2042  // c calling convention. However the because of the jni_env argument the c calling
2043  // convention always has at least one more (and two for static) arguments than Java.
2044  // Therefore if we move the args from java -> c backwards then we will never have
2045  // a register->register conflict and we don't have to build a dependency graph
2046  // and figure out how to break any cycles.
2047  //
2048
2049  // Record esp-based slot for receiver on stack for non-static methods
2050  int receiver_offset = -1;
2051
2052  // This is a trick. We double the stack slots so we can claim
2053  // the oops in the caller's frame. Since we are sure to have
2054  // more args than the caller doubling is enough to make
2055  // sure we can capture all the incoming oop args from the
2056  // caller.
2057  //
2058  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2059
2060  // Mark location of rbp (someday)
2061  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2062
2063  // Use eax, ebx as temporaries during any memory-memory moves we have to do
2064  // All inbound args are referenced based on rbp and all outbound args via rsp.
2065
2066
2067#ifdef ASSERT
2068  bool reg_destroyed[RegisterImpl::number_of_registers];
2069  bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2070  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2071    reg_destroyed[r] = false;
2072  }
2073  for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2074    freg_destroyed[f] = false;
2075  }
2076
2077#endif /* ASSERT */
2078
2079  // This may iterate in two different directions depending on the
2080  // kind of native it is.  The reason is that for regular JNI natives
2081  // the incoming and outgoing registers are offset upwards and for
2082  // critical natives they are offset down.
2083  GrowableArray<int> arg_order(2 * total_in_args);
2084  VMRegPair tmp_vmreg;
2085  tmp_vmreg.set1(rbx->as_VMReg());
2086
2087  if (!is_critical_native) {
2088    for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2089      arg_order.push(i);
2090      arg_order.push(c_arg);
2091    }
2092  } else {
2093    // Compute a valid move order, using tmp_vmreg to break any cycles
2094    ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2095  }
2096
2097  int temploc = -1;
2098  for (int ai = 0; ai < arg_order.length(); ai += 2) {
2099    int i = arg_order.at(ai);
2100    int c_arg = arg_order.at(ai + 1);
2101    __ block_comment(err_msg("move %d -> %d", i, c_arg));
2102    if (c_arg == -1) {
2103      assert(is_critical_native, "should only be required for critical natives");
2104      // This arg needs to be moved to a temporary
2105      __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2106      in_regs[i] = tmp_vmreg;
2107      temploc = i;
2108      continue;
2109    } else if (i == -1) {
2110      assert(is_critical_native, "should only be required for critical natives");
2111      // Read from the temporary location
2112      assert(temploc != -1, "must be valid");
2113      i = temploc;
2114      temploc = -1;
2115    }
2116#ifdef ASSERT
2117    if (in_regs[i].first()->is_Register()) {
2118      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2119    } else if (in_regs[i].first()->is_XMMRegister()) {
2120      assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2121    }
2122    if (out_regs[c_arg].first()->is_Register()) {
2123      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2124    } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2125      freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2126    }
2127#endif /* ASSERT */
2128    switch (in_sig_bt[i]) {
2129      case T_ARRAY:
2130        if (is_critical_native) {
2131          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2132          c_arg++;
2133#ifdef ASSERT
2134          if (out_regs[c_arg].first()->is_Register()) {
2135            reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2136          } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2137            freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2138          }
2139#endif
2140          break;
2141        }
2142      case T_OBJECT:
2143        assert(!is_critical_native, "no oop arguments");
2144        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2145                    ((i == 0) && (!is_static)),
2146                    &receiver_offset);
2147        break;
2148      case T_VOID:
2149        break;
2150
2151      case T_FLOAT:
2152        float_move(masm, in_regs[i], out_regs[c_arg]);
2153          break;
2154
2155      case T_DOUBLE:
2156        assert( i + 1 < total_in_args &&
2157                in_sig_bt[i + 1] == T_VOID &&
2158                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2159        double_move(masm, in_regs[i], out_regs[c_arg]);
2160        break;
2161
2162      case T_LONG :
2163        long_move(masm, in_regs[i], out_regs[c_arg]);
2164        break;
2165
2166      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2167
2168      default:
2169        move32_64(masm, in_regs[i], out_regs[c_arg]);
2170    }
2171  }
2172
2173  // point c_arg at the first arg that is already loaded in case we
2174  // need to spill before we call out
2175  int c_arg = total_c_args - total_in_args;
2176
2177  // Pre-load a static method's oop into r14.  Used both by locking code and
2178  // the normal JNI call code.
2179  if (method->is_static() && !is_critical_native) {
2180
2181    //  load oop into a register
2182    __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2183
2184    // Now handlize the static class mirror it's known not-null.
2185    __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2186    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2187
2188    // Now get the handle
2189    __ lea(oop_handle_reg, Address(rsp, klass_offset));
2190    // store the klass handle as second argument
2191    __ movptr(c_rarg1, oop_handle_reg);
2192    // and protect the arg if we must spill
2193    c_arg--;
2194  }
2195
2196  // Change state to native (we save the return address in the thread, since it might not
2197  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2198  // points into the right code segment. It does not have to be the correct return pc.
2199  // We use the same pc/oopMap repeatedly when we call out
2200
2201  intptr_t the_pc = (intptr_t) __ pc();
2202  oop_maps->add_gc_map(the_pc - start, map);
2203
2204  __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2205
2206
2207  // We have all of the arguments setup at this point. We must not touch any register
2208  // argument registers at this point (what if we save/restore them there are no oop?
2209
2210  {
2211    SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2212    // protect the args we've loaded
2213    save_args(masm, total_c_args, c_arg, out_regs);
2214    __ mov_metadata(c_rarg1, method());
2215    __ call_VM_leaf(
2216      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2217      r15_thread, c_rarg1);
2218    restore_args(masm, total_c_args, c_arg, out_regs);
2219  }
2220
2221  // RedefineClasses() tracing support for obsolete method entry
2222  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2223    // protect the args we've loaded
2224    save_args(masm, total_c_args, c_arg, out_regs);
2225    __ mov_metadata(c_rarg1, method());
2226    __ call_VM_leaf(
2227      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2228      r15_thread, c_rarg1);
2229    restore_args(masm, total_c_args, c_arg, out_regs);
2230  }
2231
2232  // Lock a synchronized method
2233
2234  // Register definitions used by locking and unlocking
2235
2236  const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2237  const Register obj_reg  = rbx;  // Will contain the oop
2238  const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2239  const Register old_hdr  = r13;  // value of old header at unlock time
2240
2241  Label slow_path_lock;
2242  Label lock_done;
2243
2244  if (method->is_synchronized()) {
2245    assert(!is_critical_native, "unhandled");
2246
2247
2248    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2249
2250    // Get the handle (the 2nd argument)
2251    __ mov(oop_handle_reg, c_rarg1);
2252
2253    // Get address of the box
2254
2255    __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2256
2257    // Load the oop from the handle
2258    __ movptr(obj_reg, Address(oop_handle_reg, 0));
2259
2260    if (UseBiasedLocking) {
2261      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2262    }
2263
2264    // Load immediate 1 into swap_reg %rax
2265    __ movl(swap_reg, 1);
2266
2267    // Load (object->mark() | 1) into swap_reg %rax
2268    __ orptr(swap_reg, Address(obj_reg, 0));
2269
2270    // Save (object->mark() | 1) into BasicLock's displaced header
2271    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2272
2273    if (os::is_MP()) {
2274      __ lock();
2275    }
2276
2277    // src -> dest iff dest == rax else rax <- dest
2278    __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2279    __ jcc(Assembler::equal, lock_done);
2280
2281    // Hmm should this move to the slow path code area???
2282
2283    // Test if the oopMark is an obvious stack pointer, i.e.,
2284    //  1) (mark & 3) == 0, and
2285    //  2) rsp <= mark < mark + os::pagesize()
2286    // These 3 tests can be done by evaluating the following
2287    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2288    // assuming both stack pointer and pagesize have their
2289    // least significant 2 bits clear.
2290    // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2291
2292    __ subptr(swap_reg, rsp);
2293    __ andptr(swap_reg, 3 - os::vm_page_size());
2294
2295    // Save the test result, for recursive case, the result is zero
2296    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2297    __ jcc(Assembler::notEqual, slow_path_lock);
2298
2299    // Slow path will re-enter here
2300
2301    __ bind(lock_done);
2302  }
2303
2304
2305  // Finally just about ready to make the JNI call
2306
2307
2308  // get JNIEnv* which is first argument to native
2309  if (!is_critical_native) {
2310    __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2311  }
2312
2313  // Now set thread in native
2314  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2315
2316  __ call(RuntimeAddress(native_func));
2317
2318    // Either restore the MXCSR register after returning from the JNI Call
2319    // or verify that it wasn't changed.
2320    if (RestoreMXCSROnJNICalls) {
2321      __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
2322
2323    }
2324    else if (CheckJNICalls ) {
2325      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
2326    }
2327
2328
2329  // Unpack native results.
2330  switch (ret_type) {
2331  case T_BOOLEAN: __ c2bool(rax);            break;
2332  case T_CHAR   : __ movzwl(rax, rax);      break;
2333  case T_BYTE   : __ sign_extend_byte (rax); break;
2334  case T_SHORT  : __ sign_extend_short(rax); break;
2335  case T_INT    : /* nothing to do */        break;
2336  case T_DOUBLE :
2337  case T_FLOAT  :
2338    // Result is in xmm0 we'll save as needed
2339    break;
2340  case T_ARRAY:                 // Really a handle
2341  case T_OBJECT:                // Really a handle
2342      break; // can't de-handlize until after safepoint check
2343  case T_VOID: break;
2344  case T_LONG: break;
2345  default       : ShouldNotReachHere();
2346  }
2347
2348  // Switch thread to "native transition" state before reading the synchronization state.
2349  // This additional state is necessary because reading and testing the synchronization
2350  // state is not atomic w.r.t. GC, as this scenario demonstrates:
2351  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2352  //     VM thread changes sync state to synchronizing and suspends threads for GC.
2353  //     Thread A is resumed to finish this native method, but doesn't block here since it
2354  //     didn't see any synchronization is progress, and escapes.
2355  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2356
2357  if(os::is_MP()) {
2358    if (UseMembar) {
2359      // Force this write out before the read below
2360      __ membar(Assembler::Membar_mask_bits(
2361           Assembler::LoadLoad | Assembler::LoadStore |
2362           Assembler::StoreLoad | Assembler::StoreStore));
2363    } else {
2364      // Write serialization page so VM thread can do a pseudo remote membar.
2365      // We use the current thread pointer to calculate a thread specific
2366      // offset to write to within the page. This minimizes bus traffic
2367      // due to cache line collision.
2368      __ serialize_memory(r15_thread, rcx);
2369    }
2370  }
2371
2372  Label after_transition;
2373
2374  // check for safepoint operation in progress and/or pending suspend requests
2375  {
2376    Label Continue;
2377
2378    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2379             SafepointSynchronize::_not_synchronized);
2380
2381    Label L;
2382    __ jcc(Assembler::notEqual, L);
2383    __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2384    __ jcc(Assembler::equal, Continue);
2385    __ bind(L);
2386
2387    // Don't use call_VM as it will see a possible pending exception and forward it
2388    // and never return here preventing us from clearing _last_native_pc down below.
2389    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2390    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2391    // by hand.
2392    //
2393    save_native_result(masm, ret_type, stack_slots);
2394    __ mov(c_rarg0, r15_thread);
2395    __ mov(r12, rsp); // remember sp
2396    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2397    __ andptr(rsp, -16); // align stack as required by ABI
2398    if (!is_critical_native) {
2399      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2400    } else {
2401      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2402    }
2403    __ mov(rsp, r12); // restore sp
2404    __ reinit_heapbase();
2405    // Restore any method result value
2406    restore_native_result(masm, ret_type, stack_slots);
2407
2408    if (is_critical_native) {
2409      // The call above performed the transition to thread_in_Java so
2410      // skip the transition logic below.
2411      __ jmpb(after_transition);
2412    }
2413
2414    __ bind(Continue);
2415  }
2416
2417  // change thread state
2418  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2419  __ bind(after_transition);
2420
2421  Label reguard;
2422  Label reguard_done;
2423  __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2424  __ jcc(Assembler::equal, reguard);
2425  __ bind(reguard_done);
2426
2427  // native result if any is live
2428
2429  // Unlock
2430  Label unlock_done;
2431  Label slow_path_unlock;
2432  if (method->is_synchronized()) {
2433
2434    // Get locked oop from the handle we passed to jni
2435    __ movptr(obj_reg, Address(oop_handle_reg, 0));
2436
2437    Label done;
2438
2439    if (UseBiasedLocking) {
2440      __ biased_locking_exit(obj_reg, old_hdr, done);
2441    }
2442
2443    // Simple recursive lock?
2444
2445    __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2446    __ jcc(Assembler::equal, done);
2447
2448    // Must save rax if if it is live now because cmpxchg must use it
2449    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2450      save_native_result(masm, ret_type, stack_slots);
2451    }
2452
2453
2454    // get address of the stack lock
2455    __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2456    //  get old displaced header
2457    __ movptr(old_hdr, Address(rax, 0));
2458
2459    // Atomic swap old header if oop still contains the stack lock
2460    if (os::is_MP()) {
2461      __ lock();
2462    }
2463    __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2464    __ jcc(Assembler::notEqual, slow_path_unlock);
2465
2466    // slow path re-enters here
2467    __ bind(unlock_done);
2468    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2469      restore_native_result(masm, ret_type, stack_slots);
2470    }
2471
2472    __ bind(done);
2473
2474  }
2475  {
2476    SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2477    save_native_result(masm, ret_type, stack_slots);
2478    __ mov_metadata(c_rarg1, method());
2479    __ call_VM_leaf(
2480         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2481         r15_thread, c_rarg1);
2482    restore_native_result(masm, ret_type, stack_slots);
2483  }
2484
2485  __ reset_last_Java_frame(false, true);
2486
2487  // Unpack oop result
2488  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2489      Label L;
2490      __ testptr(rax, rax);
2491      __ jcc(Assembler::zero, L);
2492      __ movptr(rax, Address(rax, 0));
2493      __ bind(L);
2494      __ verify_oop(rax);
2495  }
2496
2497  if (!is_critical_native) {
2498    // reset handle block
2499    __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2500    __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2501  }
2502
2503  // pop our frame
2504
2505  __ leave();
2506
2507  if (!is_critical_native) {
2508    // Any exception pending?
2509    __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2510    __ jcc(Assembler::notEqual, exception_pending);
2511  }
2512
2513  // Return
2514
2515  __ ret(0);
2516
2517  // Unexpected paths are out of line and go here
2518
2519  if (!is_critical_native) {
2520    // forward the exception
2521    __ bind(exception_pending);
2522
2523    // and forward the exception
2524    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2525  }
2526
2527  // Slow path locking & unlocking
2528  if (method->is_synchronized()) {
2529
2530    // BEGIN Slow path lock
2531    __ bind(slow_path_lock);
2532
2533    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2534    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2535
2536    // protect the args we've loaded
2537    save_args(masm, total_c_args, c_arg, out_regs);
2538
2539    __ mov(c_rarg0, obj_reg);
2540    __ mov(c_rarg1, lock_reg);
2541    __ mov(c_rarg2, r15_thread);
2542
2543    // Not a leaf but we have last_Java_frame setup as we want
2544    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2545    restore_args(masm, total_c_args, c_arg, out_regs);
2546
2547#ifdef ASSERT
2548    { Label L;
2549    __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2550    __ jcc(Assembler::equal, L);
2551    __ stop("no pending exception allowed on exit from monitorenter");
2552    __ bind(L);
2553    }
2554#endif
2555    __ jmp(lock_done);
2556
2557    // END Slow path lock
2558
2559    // BEGIN Slow path unlock
2560    __ bind(slow_path_unlock);
2561
2562    // If we haven't already saved the native result we must save it now as xmm registers
2563    // are still exposed.
2564
2565    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2566      save_native_result(masm, ret_type, stack_slots);
2567    }
2568
2569    __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2570
2571    __ mov(c_rarg0, obj_reg);
2572    __ mov(r12, rsp); // remember sp
2573    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2574    __ andptr(rsp, -16); // align stack as required by ABI
2575
2576    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2577    // NOTE that obj_reg == rbx currently
2578    __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2579    __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2580
2581    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2582    __ mov(rsp, r12); // restore sp
2583    __ reinit_heapbase();
2584#ifdef ASSERT
2585    {
2586      Label L;
2587      __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2588      __ jcc(Assembler::equal, L);
2589      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2590      __ bind(L);
2591    }
2592#endif /* ASSERT */
2593
2594    __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2595
2596    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2597      restore_native_result(masm, ret_type, stack_slots);
2598    }
2599    __ jmp(unlock_done);
2600
2601    // END Slow path unlock
2602
2603  } // synchronized
2604
2605  // SLOW PATH Reguard the stack if needed
2606
2607  __ bind(reguard);
2608  save_native_result(masm, ret_type, stack_slots);
2609  __ mov(r12, rsp); // remember sp
2610  __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2611  __ andptr(rsp, -16); // align stack as required by ABI
2612  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2613  __ mov(rsp, r12); // restore sp
2614  __ reinit_heapbase();
2615  restore_native_result(masm, ret_type, stack_slots);
2616  // and continue
2617  __ jmp(reguard_done);
2618
2619
2620
2621  __ flush();
2622
2623  nmethod *nm = nmethod::new_native_nmethod(method,
2624                                            compile_id,
2625                                            masm->code(),
2626                                            vep_offset,
2627                                            frame_complete,
2628                                            stack_slots / VMRegImpl::slots_per_word,
2629                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2630                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2631                                            oop_maps);
2632
2633  if (is_critical_native) {
2634    nm->set_lazy_critical_native(true);
2635  }
2636
2637  return nm;
2638
2639}
2640
2641#ifdef HAVE_DTRACE_H
2642// ---------------------------------------------------------------------------
2643// Generate a dtrace nmethod for a given signature.  The method takes arguments
2644// in the Java compiled code convention, marshals them to the native
2645// abi and then leaves nops at the position you would expect to call a native
2646// function. When the probe is enabled the nops are replaced with a trap
2647// instruction that dtrace inserts and the trace will cause a notification
2648// to dtrace.
2649//
2650// The probes are only able to take primitive types and java/lang/String as
2651// arguments.  No other java types are allowed. Strings are converted to utf8
2652// strings so that from dtrace point of view java strings are converted to C
2653// strings. There is an arbitrary fixed limit on the total space that a method
2654// can use for converting the strings. (256 chars per string in the signature).
2655// So any java string larger then this is truncated.
2656
2657static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2658static bool offsets_initialized = false;
2659
2660
2661nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
2662                                                methodHandle method) {
2663
2664
2665  // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2666  // be single threaded in this method.
2667  assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2668
2669  if (!offsets_initialized) {
2670    fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
2671    fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
2672    fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
2673    fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
2674    fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
2675    fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
2676
2677    fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
2678    fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
2679    fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
2680    fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
2681    fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
2682    fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
2683    fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
2684    fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
2685
2686    offsets_initialized = true;
2687  }
2688  // Fill in the signature array, for the calling-convention call.
2689  int total_args_passed = method->size_of_parameters();
2690
2691  BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2692  VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2693
2694  // The signature we are going to use for the trap that dtrace will see
2695  // java/lang/String is converted. We drop "this" and any other object
2696  // is converted to NULL.  (A one-slot java/lang/Long object reference
2697  // is converted to a two-slot long, which is why we double the allocation).
2698  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2699  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2700
2701  int i=0;
2702  int total_strings = 0;
2703  int first_arg_to_pass = 0;
2704  int total_c_args = 0;
2705
2706  // Skip the receiver as dtrace doesn't want to see it
2707  if( !method->is_static() ) {
2708    in_sig_bt[i++] = T_OBJECT;
2709    first_arg_to_pass = 1;
2710  }
2711
2712  // We need to convert the java args to where a native (non-jni) function
2713  // would expect them. To figure out where they go we convert the java
2714  // signature to a C signature.
2715
2716  SignatureStream ss(method->signature());
2717  for ( ; !ss.at_return_type(); ss.next()) {
2718    BasicType bt = ss.type();
2719    in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2720    out_sig_bt[total_c_args++] = bt;
2721    if( bt == T_OBJECT) {
2722      Symbol* s = ss.as_symbol_or_null();   // symbol is created
2723      if (s == vmSymbols::java_lang_String()) {
2724        total_strings++;
2725        out_sig_bt[total_c_args-1] = T_ADDRESS;
2726      } else if (s == vmSymbols::java_lang_Boolean() ||
2727                 s == vmSymbols::java_lang_Character() ||
2728                 s == vmSymbols::java_lang_Byte() ||
2729                 s == vmSymbols::java_lang_Short() ||
2730                 s == vmSymbols::java_lang_Integer() ||
2731                 s == vmSymbols::java_lang_Float()) {
2732        out_sig_bt[total_c_args-1] = T_INT;
2733      } else if (s == vmSymbols::java_lang_Long() ||
2734                 s == vmSymbols::java_lang_Double()) {
2735        out_sig_bt[total_c_args-1] = T_LONG;
2736        out_sig_bt[total_c_args++] = T_VOID;
2737      }
2738    } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2739      in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2740      // We convert double to long
2741      out_sig_bt[total_c_args-1] = T_LONG;
2742      out_sig_bt[total_c_args++] = T_VOID;
2743    } else if ( bt == T_FLOAT) {
2744      // We convert float to int
2745      out_sig_bt[total_c_args-1] = T_INT;
2746    }
2747  }
2748
2749  assert(i==total_args_passed, "validly parsed signature");
2750
2751  // Now get the compiled-Java layout as input arguments
2752  int comp_args_on_stack;
2753  comp_args_on_stack = SharedRuntime::java_calling_convention(
2754      in_sig_bt, in_regs, total_args_passed, false);
2755
2756  // Now figure out where the args must be stored and how much stack space
2757  // they require (neglecting out_preserve_stack_slots but space for storing
2758  // the 1st six register arguments). It's weird see int_stk_helper.
2759
2760  int out_arg_slots;
2761  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2762
2763  // Calculate the total number of stack slots we will need.
2764
2765  // First count the abi requirement plus all of the outgoing args
2766  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2767
2768  // Now space for the string(s) we must convert
2769  int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2770  for (i = 0; i < total_strings ; i++) {
2771    string_locs[i] = stack_slots;
2772    stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2773  }
2774
2775  // Plus the temps we might need to juggle register args
2776  // regs take two slots each
2777  stack_slots += (Argument::n_int_register_parameters_c +
2778                  Argument::n_float_register_parameters_c) * 2;
2779
2780
2781  // + 4 for return address (which we own) and saved rbp,
2782
2783  stack_slots += 4;
2784
2785  // Ok The space we have allocated will look like:
2786  //
2787  //
2788  // FP-> |                     |
2789  //      |---------------------|
2790  //      | string[n]           |
2791  //      |---------------------| <- string_locs[n]
2792  //      | string[n-1]         |
2793  //      |---------------------| <- string_locs[n-1]
2794  //      | ...                 |
2795  //      | ...                 |
2796  //      |---------------------| <- string_locs[1]
2797  //      | string[0]           |
2798  //      |---------------------| <- string_locs[0]
2799  //      | outbound memory     |
2800  //      | based arguments     |
2801  //      |                     |
2802  //      |---------------------|
2803  //      |                     |
2804  // SP-> | out_preserved_slots |
2805  //
2806  //
2807
2808  // Now compute actual number of stack words we need rounding to make
2809  // stack properly aligned.
2810  stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2811
2812  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2813
2814  intptr_t start = (intptr_t)__ pc();
2815
2816  // First thing make an ic check to see if we should even be here
2817
2818  // We are free to use all registers as temps without saving them and
2819  // restoring them except rbp. rbp, is the only callee save register
2820  // as far as the interpreter and the compiler(s) are concerned.
2821
2822  const Register ic_reg = rax;
2823  const Register receiver = rcx;
2824  Label hit;
2825  Label exception_pending;
2826
2827
2828  __ verify_oop(receiver);
2829  __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2830  __ jcc(Assembler::equal, hit);
2831
2832  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2833
2834  // verified entry must be aligned for code patching.
2835  // and the first 5 bytes must be in the same cache line
2836  // if we align at 8 then we will be sure 5 bytes are in the same line
2837  __ align(8);
2838
2839  __ bind(hit);
2840
2841  int vep_offset = ((intptr_t)__ pc()) - start;
2842
2843
2844  // The instruction at the verified entry point must be 5 bytes or longer
2845  // because it can be patched on the fly by make_non_entrant. The stack bang
2846  // instruction fits that requirement.
2847
2848  // Generate stack overflow check
2849
2850  if (UseStackBanging) {
2851    if (stack_size <= StackShadowPages*os::vm_page_size()) {
2852      __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2853    } else {
2854      __ movl(rax, stack_size);
2855      __ bang_stack_size(rax, rbx);
2856    }
2857  } else {
2858    // need a 5 byte instruction to allow MT safe patching to non-entrant
2859    __ fat_nop();
2860  }
2861
2862  assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2863         "valid size for make_non_entrant");
2864
2865  // Generate a new frame for the wrapper.
2866  __ enter();
2867
2868  // -4 because return address is already present and so is saved rbp,
2869  if (stack_size - 2*wordSize != 0) {
2870    __ subq(rsp, stack_size - 2*wordSize);
2871  }
2872
2873  // Frame is now completed as far a size and linkage.
2874
2875  int frame_complete = ((intptr_t)__ pc()) - start;
2876
2877  int c_arg, j_arg;
2878
2879  // State of input register args
2880
2881  bool  live[ConcreteRegisterImpl::number_of_registers];
2882
2883  live[j_rarg0->as_VMReg()->value()] = false;
2884  live[j_rarg1->as_VMReg()->value()] = false;
2885  live[j_rarg2->as_VMReg()->value()] = false;
2886  live[j_rarg3->as_VMReg()->value()] = false;
2887  live[j_rarg4->as_VMReg()->value()] = false;
2888  live[j_rarg5->as_VMReg()->value()] = false;
2889
2890  live[j_farg0->as_VMReg()->value()] = false;
2891  live[j_farg1->as_VMReg()->value()] = false;
2892  live[j_farg2->as_VMReg()->value()] = false;
2893  live[j_farg3->as_VMReg()->value()] = false;
2894  live[j_farg4->as_VMReg()->value()] = false;
2895  live[j_farg5->as_VMReg()->value()] = false;
2896  live[j_farg6->as_VMReg()->value()] = false;
2897  live[j_farg7->as_VMReg()->value()] = false;
2898
2899
2900  bool rax_is_zero = false;
2901
2902  // All args (except strings) destined for the stack are moved first
2903  for (j_arg = first_arg_to_pass, c_arg = 0 ;
2904       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2905    VMRegPair src = in_regs[j_arg];
2906    VMRegPair dst = out_regs[c_arg];
2907
2908    // Get the real reg value or a dummy (rsp)
2909
2910    int src_reg = src.first()->is_reg() ?
2911                  src.first()->value() :
2912                  rsp->as_VMReg()->value();
2913
2914    bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2915                    (in_sig_bt[j_arg] == T_OBJECT &&
2916                     out_sig_bt[c_arg] != T_INT &&
2917                     out_sig_bt[c_arg] != T_ADDRESS &&
2918                     out_sig_bt[c_arg] != T_LONG);
2919
2920    live[src_reg] = !useless;
2921
2922    if (dst.first()->is_stack()) {
2923
2924      // Even though a string arg in a register is still live after this loop
2925      // after the string conversion loop (next) it will be dead so we take
2926      // advantage of that now for simpler code to manage live.
2927
2928      live[src_reg] = false;
2929      switch (in_sig_bt[j_arg]) {
2930
2931        case T_ARRAY:
2932        case T_OBJECT:
2933          {
2934            Address stack_dst(rsp, reg2offset_out(dst.first()));
2935
2936            if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2937              // need to unbox a one-word value
2938              Register in_reg = rax;
2939              if ( src.first()->is_reg() ) {
2940                in_reg = src.first()->as_Register();
2941              } else {
2942                __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2943                rax_is_zero = false;
2944              }
2945              Label skipUnbox;
2946              __ movptr(Address(rsp, reg2offset_out(dst.first())),
2947                        (int32_t)NULL_WORD);
2948              __ testq(in_reg, in_reg);
2949              __ jcc(Assembler::zero, skipUnbox);
2950
2951              BasicType bt = out_sig_bt[c_arg];
2952              int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2953              Address src1(in_reg, box_offset);
2954              if ( bt == T_LONG ) {
2955                __ movq(in_reg,  src1);
2956                __ movq(stack_dst, in_reg);
2957                assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2958                ++c_arg; // skip over T_VOID to keep the loop indices in sync
2959              } else {
2960                __ movl(in_reg,  src1);
2961                __ movl(stack_dst, in_reg);
2962              }
2963
2964              __ bind(skipUnbox);
2965            } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2966              // Convert the arg to NULL
2967              if (!rax_is_zero) {
2968                __ xorq(rax, rax);
2969                rax_is_zero = true;
2970              }
2971              __ movq(stack_dst, rax);
2972            }
2973          }
2974          break;
2975
2976        case T_VOID:
2977          break;
2978
2979        case T_FLOAT:
2980          // This does the right thing since we know it is destined for the
2981          // stack
2982          float_move(masm, src, dst);
2983          break;
2984
2985        case T_DOUBLE:
2986          // This does the right thing since we know it is destined for the
2987          // stack
2988          double_move(masm, src, dst);
2989          break;
2990
2991        case T_LONG :
2992          long_move(masm, src, dst);
2993          break;
2994
2995        case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2996
2997        default:
2998          move32_64(masm, src, dst);
2999      }
3000    }
3001
3002  }
3003
3004  // If we have any strings we must store any register based arg to the stack
3005  // This includes any still live xmm registers too.
3006
3007  int sid = 0;
3008
3009  if (total_strings > 0 ) {
3010    for (j_arg = first_arg_to_pass, c_arg = 0 ;
3011         j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3012      VMRegPair src = in_regs[j_arg];
3013      VMRegPair dst = out_regs[c_arg];
3014
3015      if (src.first()->is_reg()) {
3016        Address src_tmp(rbp, fp_offset[src.first()->value()]);
3017
3018        // string oops were left untouched by the previous loop even if the
3019        // eventual (converted) arg is destined for the stack so park them
3020        // away now (except for first)
3021
3022        if (out_sig_bt[c_arg] == T_ADDRESS) {
3023          Address utf8_addr = Address(
3024              rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3025          if (sid != 1) {
3026            // The first string arg won't be killed until after the utf8
3027            // conversion
3028            __ movq(utf8_addr, src.first()->as_Register());
3029          }
3030        } else if (dst.first()->is_reg()) {
3031          if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
3032
3033            // Convert the xmm register to an int and store it in the reserved
3034            // location for the eventual c register arg
3035            XMMRegister f = src.first()->as_XMMRegister();
3036            if (in_sig_bt[j_arg] == T_FLOAT) {
3037              __ movflt(src_tmp, f);
3038            } else {
3039              __ movdbl(src_tmp, f);
3040            }
3041          } else {
3042            // If the arg is an oop type we don't support don't bother to store
3043            // it remember string was handled above.
3044            bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3045                            (in_sig_bt[j_arg] == T_OBJECT &&
3046                             out_sig_bt[c_arg] != T_INT &&
3047                             out_sig_bt[c_arg] != T_LONG);
3048
3049            if (!useless) {
3050              __ movq(src_tmp, src.first()->as_Register());
3051            }
3052          }
3053        }
3054      }
3055      if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3056        assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3057        ++c_arg; // skip over T_VOID to keep the loop indices in sync
3058      }
3059    }
3060
3061    // Now that the volatile registers are safe, convert all the strings
3062    sid = 0;
3063
3064    for (j_arg = first_arg_to_pass, c_arg = 0 ;
3065         j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3066      if (out_sig_bt[c_arg] == T_ADDRESS) {
3067        // It's a string
3068        Address utf8_addr = Address(
3069            rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3070        // The first string we find might still be in the original java arg
3071        // register
3072
3073        VMReg src = in_regs[j_arg].first();
3074
3075        // We will need to eventually save the final argument to the trap
3076        // in the von-volatile location dedicated to src. This is the offset
3077        // from fp we will use.
3078        int src_off = src->is_reg() ?
3079            fp_offset[src->value()] : reg2offset_in(src);
3080
3081        // This is where the argument will eventually reside
3082        VMRegPair dst = out_regs[c_arg];
3083
3084        if (src->is_reg()) {
3085          if (sid == 1) {
3086            __ movq(c_rarg0, src->as_Register());
3087          } else {
3088            __ movq(c_rarg0, utf8_addr);
3089          }
3090        } else {
3091          // arg is still in the original location
3092          __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
3093        }
3094        Label done, convert;
3095
3096        // see if the oop is NULL
3097        __ testq(c_rarg0, c_rarg0);
3098        __ jcc(Assembler::notEqual, convert);
3099
3100        if (dst.first()->is_reg()) {
3101          // Save the ptr to utf string in the origina src loc or the tmp
3102          // dedicated to it
3103          __ movq(Address(rbp, src_off), c_rarg0);
3104        } else {
3105          __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
3106        }
3107        __ jmp(done);
3108
3109        __ bind(convert);
3110
3111        __ lea(c_rarg1, utf8_addr);
3112        if (dst.first()->is_reg()) {
3113          __ movq(Address(rbp, src_off), c_rarg1);
3114        } else {
3115          __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
3116        }
3117        // And do the conversion
3118        __ call(RuntimeAddress(
3119                CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
3120
3121        __ bind(done);
3122      }
3123      if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3124        assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3125        ++c_arg; // skip over T_VOID to keep the loop indices in sync
3126      }
3127    }
3128    // The get_utf call killed all the c_arg registers
3129    live[c_rarg0->as_VMReg()->value()] = false;
3130    live[c_rarg1->as_VMReg()->value()] = false;
3131    live[c_rarg2->as_VMReg()->value()] = false;
3132    live[c_rarg3->as_VMReg()->value()] = false;
3133    live[c_rarg4->as_VMReg()->value()] = false;
3134    live[c_rarg5->as_VMReg()->value()] = false;
3135
3136    live[c_farg0->as_VMReg()->value()] = false;
3137    live[c_farg1->as_VMReg()->value()] = false;
3138    live[c_farg2->as_VMReg()->value()] = false;
3139    live[c_farg3->as_VMReg()->value()] = false;
3140    live[c_farg4->as_VMReg()->value()] = false;
3141    live[c_farg5->as_VMReg()->value()] = false;
3142    live[c_farg6->as_VMReg()->value()] = false;
3143    live[c_farg7->as_VMReg()->value()] = false;
3144  }
3145
3146  // Now we can finally move the register args to their desired locations
3147
3148  rax_is_zero = false;
3149
3150  for (j_arg = first_arg_to_pass, c_arg = 0 ;
3151       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3152
3153    VMRegPair src = in_regs[j_arg];
3154    VMRegPair dst = out_regs[c_arg];
3155
3156    // Only need to look for args destined for the interger registers (since we
3157    // convert float/double args to look like int/long outbound)
3158    if (dst.first()->is_reg()) {
3159      Register r =  dst.first()->as_Register();
3160
3161      // Check if the java arg is unsupported and thereofre useless
3162      bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3163                      (in_sig_bt[j_arg] == T_OBJECT &&
3164                       out_sig_bt[c_arg] != T_INT &&
3165                       out_sig_bt[c_arg] != T_ADDRESS &&
3166                       out_sig_bt[c_arg] != T_LONG);
3167
3168
3169      // If we're going to kill an existing arg save it first
3170      if (live[dst.first()->value()]) {
3171        // you can't kill yourself
3172        if (src.first() != dst.first()) {
3173          __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
3174        }
3175      }
3176      if (src.first()->is_reg()) {
3177        if (live[src.first()->value()] ) {
3178          if (in_sig_bt[j_arg] == T_FLOAT) {
3179            __ movdl(r, src.first()->as_XMMRegister());
3180          } else if (in_sig_bt[j_arg] == T_DOUBLE) {
3181            __ movdq(r, src.first()->as_XMMRegister());
3182          } else if (r != src.first()->as_Register()) {
3183            if (!useless) {
3184              __ movq(r, src.first()->as_Register());
3185            }
3186          }
3187        } else {
3188          // If the arg is an oop type we don't support don't bother to store
3189          // it
3190          if (!useless) {
3191            if (in_sig_bt[j_arg] == T_DOUBLE ||
3192                in_sig_bt[j_arg] == T_LONG  ||
3193                in_sig_bt[j_arg] == T_OBJECT ) {
3194              __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
3195            } else {
3196              __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
3197            }
3198          }
3199        }
3200        live[src.first()->value()] = false;
3201      } else if (!useless) {
3202        // full sized move even for int should be ok
3203        __ movq(r, Address(rbp, reg2offset_in(src.first())));
3204      }
3205
3206      // At this point r has the original java arg in the final location
3207      // (assuming it wasn't useless). If the java arg was an oop
3208      // we have a bit more to do
3209
3210      if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
3211        if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
3212          // need to unbox a one-word value
3213          Label skip;
3214          __ testq(r, r);
3215          __ jcc(Assembler::equal, skip);
3216          BasicType bt = out_sig_bt[c_arg];
3217          int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
3218          Address src1(r, box_offset);
3219          if ( bt == T_LONG ) {
3220            __ movq(r, src1);
3221          } else {
3222            __ movl(r, src1);
3223          }
3224          __ bind(skip);
3225
3226        } else if (out_sig_bt[c_arg] != T_ADDRESS) {
3227          // Convert the arg to NULL
3228          __ xorq(r, r);
3229        }
3230      }
3231
3232      // dst can longer be holding an input value
3233      live[dst.first()->value()] = false;
3234    }
3235    if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3236      assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3237      ++c_arg; // skip over T_VOID to keep the loop indices in sync
3238    }
3239  }
3240
3241
3242  // Ok now we are done. Need to place the nop that dtrace wants in order to
3243  // patch in the trap
3244  int patch_offset = ((intptr_t)__ pc()) - start;
3245
3246  __ nop();
3247
3248
3249  // Return
3250
3251  __ leave();
3252  __ ret(0);
3253
3254  __ flush();
3255
3256  nmethod *nm = nmethod::new_dtrace_nmethod(
3257      method, masm->code(), vep_offset, patch_offset, frame_complete,
3258      stack_slots / VMRegImpl::slots_per_word);
3259  return nm;
3260
3261}
3262
3263#endif // HAVE_DTRACE_H
3264
3265// this function returns the adjust size (in number of words) to a c2i adapter
3266// activation for use during deoptimization
3267int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3268  return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3269}
3270
3271
3272uint SharedRuntime::out_preserve_stack_slots() {
3273  return 0;
3274}
3275
3276//------------------------------generate_deopt_blob----------------------------
3277void SharedRuntime::generate_deopt_blob() {
3278  // Allocate space for the code
3279  ResourceMark rm;
3280  // Setup code generation tools
3281  CodeBuffer buffer("deopt_blob", 2048, 1024);
3282  MacroAssembler* masm = new MacroAssembler(&buffer);
3283  int frame_size_in_words;
3284  OopMap* map = NULL;
3285  OopMapSet *oop_maps = new OopMapSet();
3286
3287  // -------------
3288  // This code enters when returning to a de-optimized nmethod.  A return
3289  // address has been pushed on the the stack, and return values are in
3290  // registers.
3291  // If we are doing a normal deopt then we were called from the patched
3292  // nmethod from the point we returned to the nmethod. So the return
3293  // address on the stack is wrong by NativeCall::instruction_size
3294  // We will adjust the value so it looks like we have the original return
3295  // address on the stack (like when we eagerly deoptimized).
3296  // In the case of an exception pending when deoptimizing, we enter
3297  // with a return address on the stack that points after the call we patched
3298  // into the exception handler. We have the following register state from,
3299  // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3300  //    rax: exception oop
3301  //    rbx: exception handler
3302  //    rdx: throwing pc
3303  // So in this case we simply jam rdx into the useless return address and
3304  // the stack looks just like we want.
3305  //
3306  // At this point we need to de-opt.  We save the argument return
3307  // registers.  We call the first C routine, fetch_unroll_info().  This
3308  // routine captures the return values and returns a structure which
3309  // describes the current frame size and the sizes of all replacement frames.
3310  // The current frame is compiled code and may contain many inlined
3311  // functions, each with their own JVM state.  We pop the current frame, then
3312  // push all the new frames.  Then we call the C routine unpack_frames() to
3313  // populate these frames.  Finally unpack_frames() returns us the new target
3314  // address.  Notice that callee-save registers are BLOWN here; they have
3315  // already been captured in the vframeArray at the time the return PC was
3316  // patched.
3317  address start = __ pc();
3318  Label cont;
3319
3320  // Prolog for non exception case!
3321
3322  // Save everything in sight.
3323  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3324
3325  // Normal deoptimization.  Save exec mode for unpack_frames.
3326  __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3327  __ jmp(cont);
3328
3329  int reexecute_offset = __ pc() - start;
3330
3331  // Reexecute case
3332  // return address is the pc describes what bci to do re-execute at
3333
3334  // No need to update map as each call to save_live_registers will produce identical oopmap
3335  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3336
3337  __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3338  __ jmp(cont);
3339
3340  int exception_offset = __ pc() - start;
3341
3342  // Prolog for exception case
3343
3344  // all registers are dead at this entry point, except for rax, and
3345  // rdx which contain the exception oop and exception pc
3346  // respectively.  Set them in TLS and fall thru to the
3347  // unpack_with_exception_in_tls entry point.
3348
3349  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3350  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3351
3352  int exception_in_tls_offset = __ pc() - start;
3353
3354  // new implementation because exception oop is now passed in JavaThread
3355
3356  // Prolog for exception case
3357  // All registers must be preserved because they might be used by LinearScan
3358  // Exceptiop oop and throwing PC are passed in JavaThread
3359  // tos: stack at point of call to method that threw the exception (i.e. only
3360  // args are on the stack, no return address)
3361
3362  // make room on stack for the return address
3363  // It will be patched later with the throwing pc. The correct value is not
3364  // available now because loading it from memory would destroy registers.
3365  __ push(0);
3366
3367  // Save everything in sight.
3368  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3369
3370  // Now it is safe to overwrite any register
3371
3372  // Deopt during an exception.  Save exec mode for unpack_frames.
3373  __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3374
3375  // load throwing pc from JavaThread and patch it as the return address
3376  // of the current frame. Then clear the field in JavaThread
3377
3378  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3379  __ movptr(Address(rbp, wordSize), rdx);
3380  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3381
3382#ifdef ASSERT
3383  // verify that there is really an exception oop in JavaThread
3384  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3385  __ verify_oop(rax);
3386
3387  // verify that there is no pending exception
3388  Label no_pending_exception;
3389  __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3390  __ testptr(rax, rax);
3391  __ jcc(Assembler::zero, no_pending_exception);
3392  __ stop("must not have pending exception here");
3393  __ bind(no_pending_exception);
3394#endif
3395
3396  __ bind(cont);
3397
3398  // Call C code.  Need thread and this frame, but NOT official VM entry
3399  // crud.  We cannot block on this call, no GC can happen.
3400  //
3401  // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3402
3403  // fetch_unroll_info needs to call last_java_frame().
3404
3405  __ set_last_Java_frame(noreg, noreg, NULL);
3406#ifdef ASSERT
3407  { Label L;
3408    __ cmpptr(Address(r15_thread,
3409                    JavaThread::last_Java_fp_offset()),
3410            (int32_t)0);
3411    __ jcc(Assembler::equal, L);
3412    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3413    __ bind(L);
3414  }
3415#endif // ASSERT
3416  __ mov(c_rarg0, r15_thread);
3417  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3418
3419  // Need to have an oopmap that tells fetch_unroll_info where to
3420  // find any register it might need.
3421  oop_maps->add_gc_map(__ pc() - start, map);
3422
3423  __ reset_last_Java_frame(false, false);
3424
3425  // Load UnrollBlock* into rdi
3426  __ mov(rdi, rax);
3427
3428   Label noException;
3429  __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3430  __ jcc(Assembler::notEqual, noException);
3431  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3432  // QQQ this is useless it was NULL above
3433  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3434  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3435  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3436
3437  __ verify_oop(rax);
3438
3439  // Overwrite the result registers with the exception results.
3440  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3441  // I think this is useless
3442  __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3443
3444  __ bind(noException);
3445
3446  // Only register save data is on the stack.
3447  // Now restore the result registers.  Everything else is either dead
3448  // or captured in the vframeArray.
3449  RegisterSaver::restore_result_registers(masm);
3450
3451  // All of the register save area has been popped of the stack. Only the
3452  // return address remains.
3453
3454  // Pop all the frames we must move/replace.
3455  //
3456  // Frame picture (youngest to oldest)
3457  // 1: self-frame (no frame link)
3458  // 2: deopting frame  (no frame link)
3459  // 3: caller of deopting frame (could be compiled/interpreted).
3460  //
3461  // Note: by leaving the return address of self-frame on the stack
3462  // and using the size of frame 2 to adjust the stack
3463  // when we are done the return to frame 3 will still be on the stack.
3464
3465  // Pop deoptimized frame
3466  __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3467  __ addptr(rsp, rcx);
3468
3469  // rsp should be pointing at the return address to the caller (3)
3470
3471  // Stack bang to make sure there's enough room for these interpreter frames.
3472  if (UseStackBanging) {
3473    __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3474    __ bang_stack_size(rbx, rcx);
3475  }
3476
3477  // Load address of array of frame pcs into rcx
3478  __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3479
3480  // Trash the old pc
3481  __ addptr(rsp, wordSize);
3482
3483  // Load address of array of frame sizes into rsi
3484  __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3485
3486  // Load counter into rdx
3487  __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3488
3489  // Pick up the initial fp we should save
3490  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3491
3492  // Now adjust the caller's stack to make up for the extra locals
3493  // but record the original sp so that we can save it in the skeletal interpreter
3494  // frame and the stack walking of interpreter_sender will get the unextended sp
3495  // value and not the "real" sp value.
3496
3497  const Register sender_sp = r8;
3498
3499  __ mov(sender_sp, rsp);
3500  __ movl(rbx, Address(rdi,
3501                       Deoptimization::UnrollBlock::
3502                       caller_adjustment_offset_in_bytes()));
3503  __ subptr(rsp, rbx);
3504
3505  // Push interpreter frames in a loop
3506  Label loop;
3507  __ bind(loop);
3508  __ movptr(rbx, Address(rsi, 0));      // Load frame size
3509#ifdef CC_INTERP
3510  __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3511#ifdef ASSERT
3512  __ push(0xDEADDEAD);                  // Make a recognizable pattern
3513  __ push(0xDEADDEAD);
3514#else /* ASSERT */
3515  __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3516#endif /* ASSERT */
3517#else
3518  __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3519#endif // CC_INTERP
3520  __ pushptr(Address(rcx, 0));          // Save return address
3521  __ enter();                           // Save old & set new ebp
3522  __ subptr(rsp, rbx);                  // Prolog
3523#ifdef CC_INTERP
3524  __ movptr(Address(rbp,
3525                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3526            sender_sp); // Make it walkable
3527#else /* CC_INTERP */
3528  // This value is corrected by layout_activation_impl
3529  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3530  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3531#endif /* CC_INTERP */
3532  __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3533  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3534  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3535  __ decrementl(rdx);                   // Decrement counter
3536  __ jcc(Assembler::notZero, loop);
3537  __ pushptr(Address(rcx, 0));          // Save final return address
3538
3539  // Re-push self-frame
3540  __ enter();                           // Save old & set new ebp
3541
3542  // Allocate a full sized register save area.
3543  // Return address and rbp are in place, so we allocate two less words.
3544  __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3545
3546  // Restore frame locals after moving the frame
3547  __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3548  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3549
3550  // Call C code.  Need thread but NOT official VM entry
3551  // crud.  We cannot block on this call, no GC can happen.  Call should
3552  // restore return values to their stack-slots with the new SP.
3553  //
3554  // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3555
3556  // Use rbp because the frames look interpreted now
3557  // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3558  // Don't need the precise return PC here, just precise enough to point into this code blob.
3559  address the_pc = __ pc();
3560  __ set_last_Java_frame(noreg, rbp, the_pc);
3561
3562  __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3563  __ mov(c_rarg0, r15_thread);
3564  __ movl(c_rarg1, r14); // second arg: exec_mode
3565  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3566  // Revert SP alignment after call since we're going to do some SP relative addressing below
3567  __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3568
3569  // Set an oopmap for the call site
3570  // Use the same PC we used for the last java frame
3571  oop_maps->add_gc_map(the_pc - start,
3572                       new OopMap( frame_size_in_words, 0 ));
3573
3574  // Clear fp AND pc
3575  __ reset_last_Java_frame(true, true);
3576
3577  // Collect return values
3578  __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3579  __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3580  // I think this is useless (throwing pc?)
3581  __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3582
3583  // Pop self-frame.
3584  __ leave();                           // Epilog
3585
3586  // Jump to interpreter
3587  __ ret(0);
3588
3589  // Make sure all code is generated
3590  masm->flush();
3591
3592  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3593  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3594}
3595
3596#ifdef COMPILER2
3597//------------------------------generate_uncommon_trap_blob--------------------
3598void SharedRuntime::generate_uncommon_trap_blob() {
3599  // Allocate space for the code
3600  ResourceMark rm;
3601  // Setup code generation tools
3602  CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3603  MacroAssembler* masm = new MacroAssembler(&buffer);
3604
3605  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3606
3607  address start = __ pc();
3608
3609  // Push self-frame.  We get here with a return address on the
3610  // stack, so rsp is 8-byte aligned until we allocate our frame.
3611  __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3612
3613  // No callee saved registers. rbp is assumed implicitly saved
3614  __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3615
3616  // compiler left unloaded_class_index in j_rarg0 move to where the
3617  // runtime expects it.
3618  __ movl(c_rarg1, j_rarg0);
3619
3620  __ set_last_Java_frame(noreg, noreg, NULL);
3621
3622  // Call C code.  Need thread but NOT official VM entry
3623  // crud.  We cannot block on this call, no GC can happen.  Call should
3624  // capture callee-saved registers as well as return values.
3625  // Thread is in rdi already.
3626  //
3627  // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3628
3629  __ mov(c_rarg0, r15_thread);
3630  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3631
3632  // Set an oopmap for the call site
3633  OopMapSet* oop_maps = new OopMapSet();
3634  OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3635
3636  // location of rbp is known implicitly by the frame sender code
3637
3638  oop_maps->add_gc_map(__ pc() - start, map);
3639
3640  __ reset_last_Java_frame(false, false);
3641
3642  // Load UnrollBlock* into rdi
3643  __ mov(rdi, rax);
3644
3645  // Pop all the frames we must move/replace.
3646  //
3647  // Frame picture (youngest to oldest)
3648  // 1: self-frame (no frame link)
3649  // 2: deopting frame  (no frame link)
3650  // 3: caller of deopting frame (could be compiled/interpreted).
3651
3652  // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3653  __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3654
3655  // Pop deoptimized frame (int)
3656  __ movl(rcx, Address(rdi,
3657                       Deoptimization::UnrollBlock::
3658                       size_of_deoptimized_frame_offset_in_bytes()));
3659  __ addptr(rsp, rcx);
3660
3661  // rsp should be pointing at the return address to the caller (3)
3662
3663  // Stack bang to make sure there's enough room for these interpreter frames.
3664  if (UseStackBanging) {
3665    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3666    __ bang_stack_size(rbx, rcx);
3667  }
3668
3669  // Load address of array of frame pcs into rcx (address*)
3670  __ movptr(rcx,
3671            Address(rdi,
3672                    Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3673
3674  // Trash the return pc
3675  __ addptr(rsp, wordSize);
3676
3677  // Load address of array of frame sizes into rsi (intptr_t*)
3678  __ movptr(rsi, Address(rdi,
3679                         Deoptimization::UnrollBlock::
3680                         frame_sizes_offset_in_bytes()));
3681
3682  // Counter
3683  __ movl(rdx, Address(rdi,
3684                       Deoptimization::UnrollBlock::
3685                       number_of_frames_offset_in_bytes())); // (int)
3686
3687  // Pick up the initial fp we should save
3688  __ movptr(rbp,
3689            Address(rdi,
3690                    Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3691
3692  // Now adjust the caller's stack to make up for the extra locals but
3693  // record the original sp so that we can save it in the skeletal
3694  // interpreter frame and the stack walking of interpreter_sender
3695  // will get the unextended sp value and not the "real" sp value.
3696
3697  const Register sender_sp = r8;
3698
3699  __ mov(sender_sp, rsp);
3700  __ movl(rbx, Address(rdi,
3701                       Deoptimization::UnrollBlock::
3702                       caller_adjustment_offset_in_bytes())); // (int)
3703  __ subptr(rsp, rbx);
3704
3705  // Push interpreter frames in a loop
3706  Label loop;
3707  __ bind(loop);
3708  __ movptr(rbx, Address(rsi, 0)); // Load frame size
3709  __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3710  __ pushptr(Address(rcx, 0));     // Save return address
3711  __ enter();                      // Save old & set new rbp
3712  __ subptr(rsp, rbx);             // Prolog
3713#ifdef CC_INTERP
3714  __ movptr(Address(rbp,
3715                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3716            sender_sp); // Make it walkable
3717#else // CC_INTERP
3718  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3719            sender_sp);            // Make it walkable
3720  // This value is corrected by layout_activation_impl
3721  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3722#endif // CC_INTERP
3723  __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3724  __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3725  __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3726  __ decrementl(rdx);              // Decrement counter
3727  __ jcc(Assembler::notZero, loop);
3728  __ pushptr(Address(rcx, 0));     // Save final return address
3729
3730  // Re-push self-frame
3731  __ enter();                 // Save old & set new rbp
3732  __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3733                              // Prolog
3734
3735  // Use rbp because the frames look interpreted now
3736  // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3737  // Don't need the precise return PC here, just precise enough to point into this code blob.
3738  address the_pc = __ pc();
3739  __ set_last_Java_frame(noreg, rbp, the_pc);
3740
3741  // Call C code.  Need thread but NOT official VM entry
3742  // crud.  We cannot block on this call, no GC can happen.  Call should
3743  // restore return values to their stack-slots with the new SP.
3744  // Thread is in rdi already.
3745  //
3746  // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3747
3748  __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3749  __ mov(c_rarg0, r15_thread);
3750  __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3751  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3752
3753  // Set an oopmap for the call site
3754  // Use the same PC we used for the last java frame
3755  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3756
3757  // Clear fp AND pc
3758  __ reset_last_Java_frame(true, true);
3759
3760  // Pop self-frame.
3761  __ leave();                 // Epilog
3762
3763  // Jump to interpreter
3764  __ ret(0);
3765
3766  // Make sure all code is generated
3767  masm->flush();
3768
3769  _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3770                                                 SimpleRuntimeFrame::framesize >> 1);
3771}
3772#endif // COMPILER2
3773
3774
3775//------------------------------generate_handler_blob------
3776//
3777// Generate a special Compile2Runtime blob that saves all registers,
3778// and setup oopmap.
3779//
3780SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3781  assert(StubRoutines::forward_exception_entry() != NULL,
3782         "must be generated before");
3783
3784  ResourceMark rm;
3785  OopMapSet *oop_maps = new OopMapSet();
3786  OopMap* map;
3787
3788  // Allocate space for the code.  Setup code generation tools.
3789  CodeBuffer buffer("handler_blob", 2048, 1024);
3790  MacroAssembler* masm = new MacroAssembler(&buffer);
3791
3792  address start   = __ pc();
3793  address call_pc = NULL;
3794  int frame_size_in_words;
3795  bool cause_return = (poll_type == POLL_AT_RETURN);
3796  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3797
3798  // Make room for return address (or push it again)
3799  if (!cause_return) {
3800    __ push(rbx);
3801  }
3802
3803  // Save registers, fpu state, and flags
3804  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3805
3806  // The following is basically a call_VM.  However, we need the precise
3807  // address of the call in order to generate an oopmap. Hence, we do all the
3808  // work outselves.
3809
3810  __ set_last_Java_frame(noreg, noreg, NULL);
3811
3812  // The return address must always be correct so that frame constructor never
3813  // sees an invalid pc.
3814
3815  if (!cause_return) {
3816    // overwrite the dummy value we pushed on entry
3817    __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3818    __ movptr(Address(rbp, wordSize), c_rarg0);
3819  }
3820
3821  // Do the call
3822  __ mov(c_rarg0, r15_thread);
3823  __ call(RuntimeAddress(call_ptr));
3824
3825  // Set an oopmap for the call site.  This oopmap will map all
3826  // oop-registers and debug-info registers as callee-saved.  This
3827  // will allow deoptimization at this safepoint to find all possible
3828  // debug-info recordings, as well as let GC find all oops.
3829
3830  oop_maps->add_gc_map( __ pc() - start, map);
3831
3832  Label noException;
3833
3834  __ reset_last_Java_frame(false, false);
3835
3836  __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3837  __ jcc(Assembler::equal, noException);
3838
3839  // Exception pending
3840
3841  RegisterSaver::restore_live_registers(masm, save_vectors);
3842
3843  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3844
3845  // No exception case
3846  __ bind(noException);
3847
3848  // Normal exit, restore registers and exit.
3849  RegisterSaver::restore_live_registers(masm, save_vectors);
3850
3851  __ ret(0);
3852
3853  // Make sure all code is generated
3854  masm->flush();
3855
3856  // Fill-out other meta info
3857  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3858}
3859
3860//
3861// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3862//
3863// Generate a stub that calls into vm to find out the proper destination
3864// of a java call. All the argument registers are live at this point
3865// but since this is generic code we don't know what they are and the caller
3866// must do any gc of the args.
3867//
3868RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3869  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3870
3871  // allocate space for the code
3872  ResourceMark rm;
3873
3874  CodeBuffer buffer(name, 1000, 512);
3875  MacroAssembler* masm                = new MacroAssembler(&buffer);
3876
3877  int frame_size_in_words;
3878
3879  OopMapSet *oop_maps = new OopMapSet();
3880  OopMap* map = NULL;
3881
3882  int start = __ offset();
3883
3884  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3885
3886  int frame_complete = __ offset();
3887
3888  __ set_last_Java_frame(noreg, noreg, NULL);
3889
3890  __ mov(c_rarg0, r15_thread);
3891
3892  __ call(RuntimeAddress(destination));
3893
3894
3895  // Set an oopmap for the call site.
3896  // We need this not only for callee-saved registers, but also for volatile
3897  // registers that the compiler might be keeping live across a safepoint.
3898
3899  oop_maps->add_gc_map( __ offset() - start, map);
3900
3901  // rax contains the address we are going to jump to assuming no exception got installed
3902
3903  // clear last_Java_sp
3904  __ reset_last_Java_frame(false, false);
3905  // check for pending exceptions
3906  Label pending;
3907  __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3908  __ jcc(Assembler::notEqual, pending);
3909
3910  // get the returned Method*
3911  __ get_vm_result_2(rbx, r15_thread);
3912  __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3913
3914  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3915
3916  RegisterSaver::restore_live_registers(masm);
3917
3918  // We are back the the original state on entry and ready to go.
3919
3920  __ jmp(rax);
3921
3922  // Pending exception after the safepoint
3923
3924  __ bind(pending);
3925
3926  RegisterSaver::restore_live_registers(masm);
3927
3928  // exception pending => remove activation and forward to exception handler
3929
3930  __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3931
3932  __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3933  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3934
3935  // -------------
3936  // make sure all code is generated
3937  masm->flush();
3938
3939  // return the  blob
3940  // frame_size_words or bytes??
3941  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3942}
3943
3944
3945#ifdef COMPILER2
3946// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3947//
3948//------------------------------generate_exception_blob---------------------------
3949// creates exception blob at the end
3950// Using exception blob, this code is jumped from a compiled method.
3951// (see emit_exception_handler in x86_64.ad file)
3952//
3953// Given an exception pc at a call we call into the runtime for the
3954// handler in this method. This handler might merely restore state
3955// (i.e. callee save registers) unwind the frame and jump to the
3956// exception handler for the nmethod if there is no Java level handler
3957// for the nmethod.
3958//
3959// This code is entered with a jmp.
3960//
3961// Arguments:
3962//   rax: exception oop
3963//   rdx: exception pc
3964//
3965// Results:
3966//   rax: exception oop
3967//   rdx: exception pc in caller or ???
3968//   destination: exception handler of caller
3969//
3970// Note: the exception pc MUST be at a call (precise debug information)
3971//       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3972//
3973
3974void OptoRuntime::generate_exception_blob() {
3975  assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3976  assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3977  assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3978
3979  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3980
3981  // Allocate space for the code
3982  ResourceMark rm;
3983  // Setup code generation tools
3984  CodeBuffer buffer("exception_blob", 2048, 1024);
3985  MacroAssembler* masm = new MacroAssembler(&buffer);
3986
3987
3988  address start = __ pc();
3989
3990  // Exception pc is 'return address' for stack walker
3991  __ push(rdx);
3992  __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3993
3994  // Save callee-saved registers.  See x86_64.ad.
3995
3996  // rbp is an implicitly saved callee saved register (i.e. the calling
3997  // convention will save restore it in prolog/epilog) Other than that
3998  // there are no callee save registers now that adapter frames are gone.
3999
4000  __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4001
4002  // Store exception in Thread object. We cannot pass any arguments to the
4003  // handle_exception call, since we do not want to make any assumption
4004  // about the size of the frame where the exception happened in.
4005  // c_rarg0 is either rdi (Linux) or rcx (Windows).
4006  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4007  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4008
4009  // This call does all the hard work.  It checks if an exception handler
4010  // exists in the method.
4011  // If so, it returns the handler address.
4012  // If not, it prepares for stack-unwinding, restoring the callee-save
4013  // registers of the frame being removed.
4014  //
4015  // address OptoRuntime::handle_exception_C(JavaThread* thread)
4016
4017  // At a method handle call, the stack may not be properly aligned
4018  // when returning with an exception.
4019  address the_pc = __ pc();
4020  __ set_last_Java_frame(noreg, noreg, the_pc);
4021  __ mov(c_rarg0, r15_thread);
4022  __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4023  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4024
4025  // Set an oopmap for the call site.  This oopmap will only be used if we
4026  // are unwinding the stack.  Hence, all locations will be dead.
4027  // Callee-saved registers will be the same as the frame above (i.e.,
4028  // handle_exception_stub), since they were restored when we got the
4029  // exception.
4030
4031  OopMapSet* oop_maps = new OopMapSet();
4032
4033  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4034
4035  __ reset_last_Java_frame(false, true);
4036
4037  // Restore callee-saved registers
4038
4039  // rbp is an implicitly saved callee saved register (i.e. the calling
4040  // convention will save restore it in prolog/epilog) Other than that
4041  // there are no callee save registers no that adapter frames are gone.
4042
4043  __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4044
4045  __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4046  __ pop(rdx);                  // No need for exception pc anymore
4047
4048  // rax: exception handler
4049
4050  // Restore SP from BP if the exception PC is a MethodHandle call site.
4051  __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
4052  __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
4053
4054  // We have a handler in rax (could be deopt blob).
4055  __ mov(r8, rax);
4056
4057  // Get the exception oop
4058  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4059  // Get the exception pc in case we are deoptimized
4060  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4061#ifdef ASSERT
4062  __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4063  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4064#endif
4065  // Clear the exception oop so GC no longer processes it as a root.
4066  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4067
4068  // rax: exception oop
4069  // r8:  exception handler
4070  // rdx: exception pc
4071  // Jump to handler
4072
4073  __ jmp(r8);
4074
4075  // Make sure all code is generated
4076  masm->flush();
4077
4078  // Set exception blob
4079  _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4080}
4081#endif // COMPILER2
4082