nativeInst_x86.hpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// We have interfaces for the following instructions:
26// - NativeInstruction
27// - - NativeCall
28// - - NativeMovConstReg
29// - - NativeMovConstRegPatching
30// - - NativeMovRegMem
31// - - NativeMovRegMemPatching
32// - - NativeJump
33// - - NativeIllegalOpCode
34// - - NativeGeneralJump
35// - - NativeReturn
36// - - NativeReturnX (return with argument)
37// - - NativePushConst
38// - - NativeTstRegMem
39
40// The base class for different kinds of native instruction abstractions.
41// Provides the primitive operations to manipulate code relative to this.
42
43class NativeInstruction VALUE_OBJ_CLASS_SPEC {
44  friend class Relocation;
45
46 public:
47  enum Intel_specific_constants {
48    nop_instruction_code        = 0x90,
49    nop_instruction_size        =    1
50  };
51
52  bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
53  inline bool is_call();
54  inline bool is_illegal();
55  inline bool is_return();
56  inline bool is_jump();
57  inline bool is_cond_jump();
58  inline bool is_safepoint_poll();
59  inline bool is_mov_literal64();
60
61 protected:
62  address addr_at(int offset) const    { return address(this) + offset; }
63
64  s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
65  u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
66
67  jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
68
69  intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
70
71  oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
72
73
74  void set_char_at(int offset, char c)        { *addr_at(offset) = (u_char)c; wrote(offset); }
75  void set_int_at(int offset, jint  i)        { *(jint*)addr_at(offset) = i;  wrote(offset); }
76  void set_ptr_at (int offset, intptr_t  ptr) { *(intptr_t*) addr_at(offset) = ptr;  wrote(offset); }
77  void set_oop_at (int offset, oop  o)        { *(oop*) addr_at(offset) = o;  wrote(offset); }
78
79  // This doesn't really do anything on Intel, but it is the place where
80  // cache invalidation belongs, generically:
81  void wrote(int offset);
82
83 public:
84
85  // unit test stuff
86  static void test() {}                 // override for testing
87
88  inline friend NativeInstruction* nativeInstruction_at(address address);
89};
90
91inline NativeInstruction* nativeInstruction_at(address address) {
92  NativeInstruction* inst = (NativeInstruction*)address;
93#ifdef ASSERT
94  //inst->verify();
95#endif
96  return inst;
97}
98
99inline NativeCall* nativeCall_at(address address);
100// The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
101// instructions (used to manipulate inline caches, primitive & dll calls, etc.).
102
103class NativeCall: public NativeInstruction {
104 public:
105  enum Intel_specific_constants {
106    instruction_code            = 0xE8,
107    instruction_size            =    5,
108    instruction_offset          =    0,
109    displacement_offset         =    1,
110    return_address_offset       =    5
111  };
112
113  enum { cache_line_size = BytesPerWord };  // conservative estimate!
114
115  address instruction_address() const       { return addr_at(instruction_offset); }
116  address next_instruction_address() const  { return addr_at(return_address_offset); }
117  int   displacement() const                { return (jint) int_at(displacement_offset); }
118  address displacement_address() const      { return addr_at(displacement_offset); }
119  address return_address() const            { return addr_at(return_address_offset); }
120  address destination() const;
121  void  set_destination(address dest)       {
122#ifdef AMD64
123    assert((labs((intptr_t) dest - (intptr_t) return_address())  &
124            0xFFFFFFFF00000000) == 0,
125           "must be 32bit offset");
126#endif // AMD64
127    set_int_at(displacement_offset, dest - return_address());
128  }
129  void  set_destination_mt_safe(address dest);
130
131  void  verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
132  void  verify();
133  void  print();
134
135  // Creation
136  inline friend NativeCall* nativeCall_at(address address);
137  inline friend NativeCall* nativeCall_before(address return_address);
138
139  static bool is_call_at(address instr) {
140    return ((*instr) & 0xFF) == NativeCall::instruction_code;
141  }
142
143  static bool is_call_before(address return_address) {
144    return is_call_at(return_address - NativeCall::return_address_offset);
145  }
146
147  static bool is_call_to(address instr, address target) {
148    return nativeInstruction_at(instr)->is_call() &&
149      nativeCall_at(instr)->destination() == target;
150  }
151
152  // MT-safe patching of a call instruction.
153  static void insert(address code_pos, address entry);
154
155  static void replace_mt_safe(address instr_addr, address code_buffer);
156};
157
158inline NativeCall* nativeCall_at(address address) {
159  NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
160#ifdef ASSERT
161  call->verify();
162#endif
163  return call;
164}
165
166inline NativeCall* nativeCall_before(address return_address) {
167  NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
168#ifdef ASSERT
169  call->verify();
170#endif
171  return call;
172}
173
174// An interface for accessing/manipulating native mov reg, imm32 instructions.
175// (used to manipulate inlined 32bit data dll calls, etc.)
176class NativeMovConstReg: public NativeInstruction {
177#ifdef AMD64
178  static const bool has_rex = true;
179  static const int rex_size = 1;
180#else
181  static const bool has_rex = false;
182  static const int rex_size = 0;
183#endif // AMD64
184 public:
185  enum Intel_specific_constants {
186    instruction_code            = 0xB8,
187    instruction_size            =    1 + rex_size + wordSize,
188    instruction_offset          =    0,
189    data_offset                 =    1 + rex_size,
190    next_instruction_offset     =    instruction_size,
191    register_mask               = 0x07
192  };
193
194  address instruction_address() const       { return addr_at(instruction_offset); }
195  address next_instruction_address() const  { return addr_at(next_instruction_offset); }
196  intptr_t data() const                     { return ptr_at(data_offset); }
197  void  set_data(intptr_t x)                { set_ptr_at(data_offset, x); }
198
199  void  verify();
200  void  print();
201
202  // unit test stuff
203  static void test() {}
204
205  // Creation
206  inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
207  inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
208};
209
210inline NativeMovConstReg* nativeMovConstReg_at(address address) {
211  NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
212#ifdef ASSERT
213  test->verify();
214#endif
215  return test;
216}
217
218inline NativeMovConstReg* nativeMovConstReg_before(address address) {
219  NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
220#ifdef ASSERT
221  test->verify();
222#endif
223  return test;
224}
225
226class NativeMovConstRegPatching: public NativeMovConstReg {
227 private:
228    friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
229    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
230    #ifdef ASSERT
231      test->verify();
232    #endif
233    return test;
234  }
235};
236
237#ifndef AMD64
238
239// An interface for accessing/manipulating native moves of the form:
240//      mov[b/w/l] [reg + offset], reg   (instruction_code_reg2mem)
241//      mov[b/w/l] reg, [reg+offset]     (instruction_code_mem2reg
242//      mov[s/z]x[w/b] [reg + offset], reg
243//      fld_s  [reg+offset]
244//      fld_d  [reg+offset]
245//      fstp_s [reg + offset]
246//      fstp_d [reg + offset]
247//
248// Warning: These routines must be able to handle any instruction sequences
249// that are generated as a result of the load/store byte,word,long
250// macros.  For example: The load_unsigned_byte instruction generates
251// an xor reg,reg inst prior to generating the movb instruction.  This
252// class must skip the xor instruction.
253
254class NativeMovRegMem: public NativeInstruction {
255 public:
256  enum Intel_specific_constants {
257    instruction_code_xor                = 0x33,
258    instruction_extended_prefix         = 0x0F,
259    instruction_code_mem2reg_movzxb     = 0xB6,
260    instruction_code_mem2reg_movsxb     = 0xBE,
261    instruction_code_mem2reg_movzxw     = 0xB7,
262    instruction_code_mem2reg_movsxw     = 0xBF,
263    instruction_operandsize_prefix      = 0x66,
264    instruction_code_reg2meml           = 0x89,
265    instruction_code_mem2regl           = 0x8b,
266    instruction_code_reg2memb           = 0x88,
267    instruction_code_mem2regb           = 0x8a,
268    instruction_code_float_s            = 0xd9,
269    instruction_code_float_d            = 0xdd,
270    instruction_code_long_volatile      = 0xdf,
271    instruction_code_xmm_ss_prefix      = 0xf3,
272    instruction_code_xmm_sd_prefix      = 0xf2,
273    instruction_code_xmm_code           = 0x0f,
274    instruction_code_xmm_load           = 0x10,
275    instruction_code_xmm_store          = 0x11,
276    instruction_code_xmm_lpd            = 0x12,
277
278    instruction_size                    = 4,
279    instruction_offset                  = 0,
280    data_offset                         = 2,
281    next_instruction_offset             = 4
282  };
283
284  address instruction_address() const {
285    if (*addr_at(instruction_offset)   == instruction_operandsize_prefix &&
286        *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
287      return addr_at(instruction_offset+1); // Not SSE instructions
288    }
289    else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
290      return addr_at(instruction_offset+1);
291    }
292    else if (*addr_at(instruction_offset) == instruction_code_xor) {
293      return addr_at(instruction_offset+2);
294    }
295    else return addr_at(instruction_offset);
296  }
297
298  address next_instruction_address() const {
299    switch (*addr_at(instruction_offset)) {
300    case instruction_operandsize_prefix:
301      if (*addr_at(instruction_offset+1) == instruction_code_xmm_code)
302        return instruction_address() + instruction_size; // SSE instructions
303    case instruction_extended_prefix:
304      return instruction_address() + instruction_size + 1;
305    case instruction_code_reg2meml:
306    case instruction_code_mem2regl:
307    case instruction_code_reg2memb:
308    case instruction_code_mem2regb:
309    case instruction_code_xor:
310      return instruction_address() + instruction_size + 2;
311    default:
312      return instruction_address() + instruction_size;
313    }
314  }
315  int   offset() const{
316    if (*addr_at(instruction_offset)   == instruction_operandsize_prefix &&
317        *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
318      return int_at(data_offset+1); // Not SSE instructions
319    }
320    else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
321      return int_at(data_offset+1);
322    }
323    else if (*addr_at(instruction_offset) == instruction_code_xor ||
324             *addr_at(instruction_offset) == instruction_code_xmm_ss_prefix ||
325             *addr_at(instruction_offset) == instruction_code_xmm_sd_prefix ||
326             *addr_at(instruction_offset) == instruction_operandsize_prefix) {
327      return int_at(data_offset+2);
328    }
329    else return int_at(data_offset);
330  }
331
332  void  set_offset(int x) {
333    if (*addr_at(instruction_offset)   == instruction_operandsize_prefix &&
334        *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
335      set_int_at(data_offset+1, x); // Not SSE instructions
336    }
337    else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
338      set_int_at(data_offset+1, x);
339    }
340    else if (*addr_at(instruction_offset) == instruction_code_xor ||
341             *addr_at(instruction_offset) == instruction_code_xmm_ss_prefix ||
342             *addr_at(instruction_offset) == instruction_code_xmm_sd_prefix ||
343             *addr_at(instruction_offset) == instruction_operandsize_prefix) {
344      set_int_at(data_offset+2, x);
345    }
346    else set_int_at(data_offset, x);
347  }
348
349  void  add_offset_in_bytes(int add_offset)     { set_offset ( ( offset() + add_offset ) ); }
350  void  copy_instruction_to(address new_instruction_address);
351
352  void verify();
353  void print ();
354
355  // unit test stuff
356  static void test() {}
357
358 private:
359  inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
360};
361
362inline NativeMovRegMem* nativeMovRegMem_at (address address) {
363  NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
364#ifdef ASSERT
365  test->verify();
366#endif
367  return test;
368}
369
370class NativeMovRegMemPatching: public NativeMovRegMem {
371 private:
372  friend NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
373    NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)(address - instruction_offset);
374    #ifdef ASSERT
375      test->verify();
376    #endif
377    return test;
378  }
379};
380
381
382
383// An interface for accessing/manipulating native leal instruction of form:
384//        leal reg, [reg + offset]
385
386class NativeLoadAddress: public NativeMovRegMem {
387 public:
388  enum Intel_specific_constants {
389    instruction_code            = 0x8D
390  };
391
392  void verify();
393  void print ();
394
395  // unit test stuff
396  static void test() {}
397
398 private:
399  friend NativeLoadAddress* nativeLoadAddress_at (address address) {
400    NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
401    #ifdef ASSERT
402      test->verify();
403    #endif
404    return test;
405  }
406};
407
408#endif // AMD64
409
410// jump rel32off
411
412class NativeJump: public NativeInstruction {
413 public:
414  enum Intel_specific_constants {
415    instruction_code            = 0xe9,
416    instruction_size            =    5,
417    instruction_offset          =    0,
418    data_offset                 =    1,
419    next_instruction_offset     =    5
420  };
421
422  address instruction_address() const       { return addr_at(instruction_offset); }
423  address next_instruction_address() const  { return addr_at(next_instruction_offset); }
424  address jump_destination() const          {
425     address dest = (int_at(data_offset)+next_instruction_address());
426#ifdef AMD64 // What is this about?
427     // return -1 if jump to self
428    dest = (dest == (address) this) ? (address) -1 : dest;
429#endif // AMD64
430    return dest;
431  }
432
433  void  set_jump_destination(address dest)  {
434    intptr_t val = dest - next_instruction_address();
435#ifdef AMD64
436    if (dest == (address) -1) { // can't encode jump to -1
437      val = -5; // jump to self
438    } else {
439      assert((labs(val)  & 0xFFFFFFFF00000000) == 0,
440             "must be 32bit offset");
441    }
442#endif // AMD64
443    set_int_at(data_offset, (jint)val);
444  }
445
446  // Creation
447  inline friend NativeJump* nativeJump_at(address address);
448
449  void verify();
450
451  // Unit testing stuff
452  static void test() {}
453
454  // Insertion of native jump instruction
455  static void insert(address code_pos, address entry);
456  // MT-safe insertion of native jump at verified method entry
457  static void check_verified_entry_alignment(address entry, address verified_entry);
458  static void patch_verified_entry(address entry, address verified_entry, address dest);
459};
460
461inline NativeJump* nativeJump_at(address address) {
462  NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
463#ifdef ASSERT
464  jump->verify();
465#endif
466  return jump;
467}
468
469// Handles all kinds of jump on Intel. Long/far, conditional/unconditional
470class NativeGeneralJump: public NativeInstruction {
471 public:
472  enum Intel_specific_constants {
473    // Constants does not apply, since the lengths and offsets depends on the actual jump
474    // used
475    // Instruction codes:
476    //   Unconditional jumps: 0xE9    (rel32off), 0xEB (rel8off)
477    //   Conditional jumps:   0x0F8x  (rel32off), 0x7x (rel8off)
478    unconditional_long_jump  = 0xe9,
479    unconditional_short_jump = 0xeb,
480    instruction_size = 5
481  };
482
483  address instruction_address() const       { return addr_at(0); }
484  address jump_destination()    const;
485
486  // Creation
487  inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
488
489  // Insertion of native general jump instruction
490  static void insert_unconditional(address code_pos, address entry);
491  static void replace_mt_safe(address instr_addr, address code_buffer);
492
493  void verify();
494};
495
496inline NativeGeneralJump* nativeGeneralJump_at(address address) {
497  NativeGeneralJump* jump = (NativeGeneralJump*)(address);
498  debug_only(jump->verify();)
499  return jump;
500}
501
502class NativePopReg : public NativeInstruction {
503 public:
504  enum Intel_specific_constants {
505    instruction_code            = 0x58,
506    instruction_size            =    1,
507    instruction_offset          =    0,
508    data_offset                 =    1,
509    next_instruction_offset     =    1
510  };
511
512  // Insert a pop instruction
513  static void insert(address code_pos, Register reg);
514};
515
516
517class NativeIllegalInstruction: public NativeInstruction {
518 public:
519  enum Intel_specific_constants {
520    instruction_code            = 0x0B0F,    // Real byte order is: 0x0F, 0x0B
521    instruction_size            =    2,
522    instruction_offset          =    0,
523    next_instruction_offset     =    2
524  };
525
526  // Insert illegal opcode as specific address
527  static void insert(address code_pos);
528};
529
530// return instruction that does not pop values of the stack
531class NativeReturn: public NativeInstruction {
532 public:
533  enum Intel_specific_constants {
534    instruction_code            = 0xC3,
535    instruction_size            =    1,
536    instruction_offset          =    0,
537    next_instruction_offset     =    1
538  };
539};
540
541// return instruction that does pop values of the stack
542class NativeReturnX: public NativeInstruction {
543 public:
544  enum Intel_specific_constants {
545    instruction_code            = 0xC2,
546    instruction_size            =    2,
547    instruction_offset          =    0,
548    next_instruction_offset     =    2
549  };
550};
551
552// Simple test vs memory
553class NativeTstRegMem: public NativeInstruction {
554 public:
555  enum Intel_specific_constants {
556    instruction_code_memXregl   = 0x85
557  };
558};
559
560inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
561inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
562inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
563                                                          ubyte_at(0) == NativeReturnX::instruction_code; }
564inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
565                                                          ubyte_at(0) == 0xEB; /* short jump */ }
566inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
567                                                          (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
568inline bool NativeInstruction::is_safepoint_poll() {
569#ifdef AMD64
570  return ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
571         ubyte_at(1) == 0x05 && // 00 rax 101
572         ((intptr_t) addr_at(6)) + int_at(2) == (intptr_t) os::get_polling_page();
573#else
574  return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2regl ||
575           ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
576           (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
577           (os::is_poll_address((address)int_at(2)));
578#endif // AMD64
579}
580
581inline bool NativeInstruction::is_mov_literal64() {
582#ifdef AMD64
583  return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
584          (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
585#else
586  return false;
587#endif // AMD64
588}
589