nativeInst_x86.cpp revision 9099:115188e14c15
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "memory/resourceArea.hpp"
28#include "nativeInst_x86.hpp"
29#include "oops/oop.inline.hpp"
30#include "runtime/handles.hpp"
31#include "runtime/sharedRuntime.hpp"
32#include "runtime/stubRoutines.hpp"
33#include "utilities/ostream.hpp"
34#ifdef COMPILER1
35#include "c1/c1_Runtime1.hpp"
36#endif
37
38void NativeInstruction::wrote(int offset) {
39  ICache::invalidate_word(addr_at(offset));
40}
41
42
43void NativeCall::verify() {
44  // Make sure code pattern is actually a call imm32 instruction.
45  int inst = ubyte_at(0);
46  if (inst != instruction_code) {
47    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", p2i(instruction_address()),
48                                                        inst);
49    fatal("not a call disp32");
50  }
51}
52
53address NativeCall::destination() const {
54  // Getting the destination of a call isn't safe because that call can
55  // be getting patched while you're calling this.  There's only special
56  // places where this can be called but not automatically verifiable by
57  // checking which locks are held.  The solution is true atomic patching
58  // on x86, nyi.
59  return return_address() + displacement();
60}
61
62void NativeCall::print() {
63  tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
64                p2i(instruction_address()), p2i(destination()));
65}
66
67// Inserts a native call instruction at a given pc
68void NativeCall::insert(address code_pos, address entry) {
69  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
70#ifdef AMD64
71  guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
72#endif // AMD64
73  *code_pos = instruction_code;
74  *((int32_t *)(code_pos+1)) = (int32_t) disp;
75  ICache::invalidate_range(code_pos, instruction_size);
76}
77
78// MT-safe patching of a call instruction.
79// First patches first word of instruction to two jmp's that jmps to them
80// selfs (spinlock). Then patches the last byte, and then atomicly replaces
81// the jmp's with the first 4 byte of the new instruction.
82void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
83  assert(Patching_lock->is_locked() ||
84         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
85  assert (instr_addr != NULL, "illegal address for code patching");
86
87  NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
88  if (os::is_MP()) {
89    guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
90  }
91
92  // First patch dummy jmp in place
93  unsigned char patch[4];
94  assert(sizeof(patch)==sizeof(jint), "sanity check");
95  patch[0] = 0xEB;       // jmp rel8
96  patch[1] = 0xFE;       // jmp to self
97  patch[2] = 0xEB;
98  patch[3] = 0xFE;
99
100  // First patch dummy jmp in place
101  *(jint*)instr_addr = *(jint *)patch;
102
103  // Invalidate.  Opteron requires a flush after every write.
104  n_call->wrote(0);
105
106  // Patch 4th byte
107  instr_addr[4] = code_buffer[4];
108
109  n_call->wrote(4);
110
111  // Patch bytes 0-3
112  *(jint*)instr_addr = *(jint *)code_buffer;
113
114  n_call->wrote(0);
115
116#ifdef ASSERT
117   // verify patching
118   for ( int i = 0; i < instruction_size; i++) {
119     address ptr = (address)((intptr_t)code_buffer + i);
120     int a_byte = (*ptr) & 0xFF;
121     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
122   }
123#endif
124
125}
126
127
128// Similar to replace_mt_safe, but just changes the destination.  The
129// important thing is that free-running threads are able to execute this
130// call instruction at all times.  If the displacement field is aligned
131// we can simply rely on atomicity of 32-bit writes to make sure other threads
132// will see no intermediate states.  Otherwise, the first two bytes of the
133// call are guaranteed to be aligned, and can be atomically patched to a
134// self-loop to guard the instruction while we change the other bytes.
135
136// We cannot rely on locks here, since the free-running threads must run at
137// full speed.
138//
139// Used in the runtime linkage of calls; see class CompiledIC.
140// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
141void NativeCall::set_destination_mt_safe(address dest) {
142  debug_only(verify());
143  // Make sure patching code is locked.  No two threads can patch at the same
144  // time but one may be executing this code.
145  assert(Patching_lock->is_locked() ||
146         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
147  // Both C1 and C2 should now be generating code which aligns the patched address
148  // to be within a single cache line except that C1 does not do the alignment on
149  // uniprocessor systems.
150  bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
151                    ((uintptr_t)displacement_address() + 3) / cache_line_size;
152
153  guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
154
155  if (is_aligned) {
156    // Simple case:  The destination lies within a single cache line.
157    set_destination(dest);
158  } else if ((uintptr_t)instruction_address() / cache_line_size ==
159             ((uintptr_t)instruction_address()+1) / cache_line_size) {
160    // Tricky case:  The instruction prefix lies within a single cache line.
161    intptr_t disp = dest - return_address();
162#ifdef AMD64
163    guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
164#endif // AMD64
165
166    int call_opcode = instruction_address()[0];
167
168    // First patch dummy jump in place:
169    {
170      u_char patch_jump[2];
171      patch_jump[0] = 0xEB;       // jmp rel8
172      patch_jump[1] = 0xFE;       // jmp to self
173
174      assert(sizeof(patch_jump)==sizeof(short), "sanity check");
175      *(short*)instruction_address() = *(short*)patch_jump;
176    }
177    // Invalidate.  Opteron requires a flush after every write.
178    wrote(0);
179
180    // (Note: We assume any reader which has already started to read
181    // the unpatched call will completely read the whole unpatched call
182    // without seeing the next writes we are about to make.)
183
184    // Next, patch the last three bytes:
185    u_char patch_disp[5];
186    patch_disp[0] = call_opcode;
187    *(int32_t*)&patch_disp[1] = (int32_t)disp;
188    assert(sizeof(patch_disp)==instruction_size, "sanity check");
189    for (int i = sizeof(short); i < instruction_size; i++)
190      instruction_address()[i] = patch_disp[i];
191
192    // Invalidate.  Opteron requires a flush after every write.
193    wrote(sizeof(short));
194
195    // (Note: We assume that any reader which reads the opcode we are
196    // about to repatch will also read the writes we just made.)
197
198    // Finally, overwrite the jump:
199    *(short*)instruction_address() = *(short*)patch_disp;
200    // Invalidate.  Opteron requires a flush after every write.
201    wrote(0);
202
203    debug_only(verify());
204    guarantee(destination() == dest, "patch succeeded");
205  } else {
206    // Impossible:  One or the other must be atomically writable.
207    ShouldNotReachHere();
208  }
209}
210
211
212void NativeMovConstReg::verify() {
213#ifdef AMD64
214  // make sure code pattern is actually a mov reg64, imm64 instruction
215  if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
216      (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
217    print();
218    fatal("not a REX.W[B] mov reg64, imm64");
219  }
220#else
221  // make sure code pattern is actually a mov reg, imm32 instruction
222  u_char test_byte = *(u_char*)instruction_address();
223  u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
224  if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
225#endif // AMD64
226}
227
228
229void NativeMovConstReg::print() {
230  tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
231                p2i(instruction_address()), data());
232}
233
234//-------------------------------------------------------------------
235
236int NativeMovRegMem::instruction_start() const {
237  int off = 0;
238  u_char instr_0 = ubyte_at(off);
239
240  // See comment in Assembler::locate_operand() about VEX prefixes.
241  if (instr_0 == instruction_VEX_prefix_2bytes) {
242    assert((UseAVX > 0), "shouldn't have VEX prefix");
243    NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
244    return 2;
245  }
246  if (instr_0 == instruction_VEX_prefix_3bytes) {
247    assert((UseAVX > 0), "shouldn't have VEX prefix");
248    NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
249    return 3;
250  }
251
252  // First check to see if we have a (prefixed or not) xor
253  if (instr_0 >= instruction_prefix_wide_lo && // 0x40
254      instr_0 <= instruction_prefix_wide_hi) { // 0x4f
255    off++;
256    instr_0 = ubyte_at(off);
257  }
258
259  if (instr_0 == instruction_code_xor) {
260    off += 2;
261    instr_0 = ubyte_at(off);
262  }
263
264  // Now look for the real instruction and the many prefix/size specifiers.
265
266  if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
267    off++; // Not SSE instructions
268    instr_0 = ubyte_at(off);
269  }
270
271  if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
272       instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
273    off++;
274    instr_0 = ubyte_at(off);
275  }
276
277  if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
278       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
279    off++;
280    instr_0 = ubyte_at(off);
281  }
282
283
284  if (instr_0 == instruction_extended_prefix ) {  // 0x0f
285    off++;
286  }
287
288  return off;
289}
290
291address NativeMovRegMem::instruction_address() const {
292  return addr_at(instruction_start());
293}
294
295address NativeMovRegMem::next_instruction_address() const {
296  address ret = instruction_address() + instruction_size;
297  u_char instr_0 =  *(u_char*) instruction_address();
298  switch (instr_0) {
299  case instruction_operandsize_prefix:
300
301    fatal("should have skipped instruction_operandsize_prefix");
302    break;
303
304  case instruction_extended_prefix:
305    fatal("should have skipped instruction_extended_prefix");
306    break;
307
308  case instruction_code_mem2reg_movslq: // 0x63
309  case instruction_code_mem2reg_movzxb: // 0xB6
310  case instruction_code_mem2reg_movsxb: // 0xBE
311  case instruction_code_mem2reg_movzxw: // 0xB7
312  case instruction_code_mem2reg_movsxw: // 0xBF
313  case instruction_code_reg2mem:        // 0x89 (q/l)
314  case instruction_code_mem2reg:        // 0x8B (q/l)
315  case instruction_code_reg2memb:       // 0x88
316  case instruction_code_mem2regb:       // 0x8a
317
318  case instruction_code_float_s:        // 0xd9 fld_s a
319  case instruction_code_float_d:        // 0xdd fld_d a
320
321  case instruction_code_xmm_load:       // 0x10
322  case instruction_code_xmm_store:      // 0x11
323  case instruction_code_xmm_lpd:        // 0x12
324    {
325      // If there is an SIB then instruction is longer than expected
326      u_char mod_rm = *(u_char*)(instruction_address() + 1);
327      if ((mod_rm & 7) == 0x4) {
328        ret++;
329      }
330    }
331  case instruction_code_xor:
332    fatal("should have skipped xor lead in");
333    break;
334
335  default:
336    fatal("not a NativeMovRegMem");
337  }
338  return ret;
339
340}
341
342int NativeMovRegMem::offset() const{
343  int off = data_offset + instruction_start();
344  u_char mod_rm = *(u_char*)(instruction_address() + 1);
345  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
346  // the encoding to use an SIB byte. Which will have the nnnn
347  // field off by one byte
348  if ((mod_rm & 7) == 0x4) {
349    off++;
350  }
351  return int_at(off);
352}
353
354void NativeMovRegMem::set_offset(int x) {
355  int off = data_offset + instruction_start();
356  u_char mod_rm = *(u_char*)(instruction_address() + 1);
357  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
358  // the encoding to use an SIB byte. Which will have the nnnn
359  // field off by one byte
360  if ((mod_rm & 7) == 0x4) {
361    off++;
362  }
363  set_int_at(off, x);
364}
365
366void NativeMovRegMem::verify() {
367  // make sure code pattern is actually a mov [reg+offset], reg instruction
368  u_char test_byte = *(u_char*)instruction_address();
369  switch (test_byte) {
370    case instruction_code_reg2memb:  // 0x88 movb a, r
371    case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
372    case instruction_code_mem2regb:  // 0x8a movb r, a
373    case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
374      break;
375
376    case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
377    case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
378    case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
379    case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
380    case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
381      break;
382
383    case instruction_code_float_s:   // 0xd9 fld_s a
384    case instruction_code_float_d:   // 0xdd fld_d a
385    case instruction_code_xmm_load:  // 0x10 movsd xmm, a
386    case instruction_code_xmm_store: // 0x11 movsd a, xmm
387    case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
388      break;
389
390    default:
391          fatal ("not a mov [reg+offs], reg instruction");
392  }
393}
394
395
396void NativeMovRegMem::print() {
397  tty->print_cr(PTR_FORMAT ": mov reg, [reg + %x]", p2i(instruction_address()), offset());
398}
399
400//-------------------------------------------------------------------
401
402void NativeLoadAddress::verify() {
403  // make sure code pattern is actually a mov [reg+offset], reg instruction
404  u_char test_byte = *(u_char*)instruction_address();
405#ifdef _LP64
406  if ( (test_byte == instruction_prefix_wide ||
407        test_byte == instruction_prefix_wide_extended) ) {
408    test_byte = *(u_char*)(instruction_address() + 1);
409  }
410#endif // _LP64
411  if ( ! ((test_byte == lea_instruction_code)
412          LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
413    fatal ("not a lea reg, [reg+offs] instruction");
414  }
415}
416
417
418void NativeLoadAddress::print() {
419  tty->print_cr(PTR_FORMAT ": lea [reg + %x], reg", p2i(instruction_address()), offset());
420}
421
422//--------------------------------------------------------------------------------
423
424void NativeJump::verify() {
425  if (*(u_char*)instruction_address() != instruction_code) {
426    fatal("not a jump instruction");
427  }
428}
429
430
431void NativeJump::insert(address code_pos, address entry) {
432  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
433#ifdef AMD64
434  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
435#endif // AMD64
436
437  *code_pos = instruction_code;
438  *((int32_t*)(code_pos + 1)) = (int32_t)disp;
439
440  ICache::invalidate_range(code_pos, instruction_size);
441}
442
443void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
444  // Patching to not_entrant can happen while activations of the method are
445  // in use. The patching in that instance must happen only when certain
446  // alignment restrictions are true. These guarantees check those
447  // conditions.
448#ifdef AMD64
449  const int linesize = 64;
450#else
451  const int linesize = 32;
452#endif // AMD64
453
454  // Must be wordSize aligned
455  guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
456            "illegal address for code patching 2");
457  // First 5 bytes must be within the same cache line - 4827828
458  guarantee((uintptr_t) verified_entry / linesize ==
459            ((uintptr_t) verified_entry + 4) / linesize,
460            "illegal address for code patching 3");
461}
462
463
464// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
465// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
466// First patches the first word atomically to be a jump to itself.
467// Then patches the last byte  and then atomically patches the first word (4-bytes),
468// thus inserting the desired jump
469// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
470// entry point is in same cache line as unverified entry point, and the instruction being
471// patched is >= 5 byte (size of patch).
472//
473// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
474// In C1 the restriction is enforced by CodeEmitter::method_entry
475//
476void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
477  // complete jump instruction (to be inserted) is in code_buffer;
478  unsigned char code_buffer[5];
479  code_buffer[0] = instruction_code;
480  intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
481#ifdef AMD64
482  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
483#endif // AMD64
484  *(int32_t*)(code_buffer + 1) = (int32_t)disp;
485
486  check_verified_entry_alignment(entry, verified_entry);
487
488  // Can't call nativeJump_at() because it's asserts jump exists
489  NativeJump* n_jump = (NativeJump*) verified_entry;
490
491  //First patch dummy jmp in place
492
493  unsigned char patch[4];
494  assert(sizeof(patch)==sizeof(int32_t), "sanity check");
495  patch[0] = 0xEB;       // jmp rel8
496  patch[1] = 0xFE;       // jmp to self
497  patch[2] = 0xEB;
498  patch[3] = 0xFE;
499
500  // First patch dummy jmp in place
501  *(int32_t*)verified_entry = *(int32_t *)patch;
502
503  n_jump->wrote(0);
504
505  // Patch 5th byte (from jump instruction)
506  verified_entry[4] = code_buffer[4];
507
508  n_jump->wrote(4);
509
510  // Patch bytes 0-3 (from jump instruction)
511  *(int32_t*)verified_entry = *(int32_t *)code_buffer;
512  // Invalidate.  Opteron requires a flush after every write.
513  n_jump->wrote(0);
514
515}
516
517void NativePopReg::insert(address code_pos, Register reg) {
518  assert(reg->encoding() < 8, "no space for REX");
519  assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
520  *code_pos = (u_char)(instruction_code | reg->encoding());
521  ICache::invalidate_range(code_pos, instruction_size);
522}
523
524
525void NativeIllegalInstruction::insert(address code_pos) {
526  assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
527  *(short *)code_pos = instruction_code;
528  ICache::invalidate_range(code_pos, instruction_size);
529}
530
531void NativeGeneralJump::verify() {
532  assert(((NativeInstruction *)this)->is_jump() ||
533         ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
534}
535
536
537void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
538  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
539#ifdef AMD64
540  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
541#endif // AMD64
542
543  *code_pos = unconditional_long_jump;
544  *((int32_t *)(code_pos+1)) = (int32_t) disp;
545  ICache::invalidate_range(code_pos, instruction_size);
546}
547
548
549// MT-safe patching of a long jump instruction.
550// First patches first word of instruction to two jmp's that jmps to them
551// selfs (spinlock). Then patches the last byte, and then atomicly replaces
552// the jmp's with the first 4 byte of the new instruction.
553void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
554   assert (instr_addr != NULL, "illegal address for code patching (4)");
555   NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
556
557   // Temporary code
558   unsigned char patch[4];
559   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
560   patch[0] = 0xEB;       // jmp rel8
561   patch[1] = 0xFE;       // jmp to self
562   patch[2] = 0xEB;
563   patch[3] = 0xFE;
564
565   // First patch dummy jmp in place
566   *(int32_t*)instr_addr = *(int32_t *)patch;
567    n_jump->wrote(0);
568
569   // Patch 4th byte
570   instr_addr[4] = code_buffer[4];
571
572    n_jump->wrote(4);
573
574   // Patch bytes 0-3
575   *(jint*)instr_addr = *(jint *)code_buffer;
576
577    n_jump->wrote(0);
578
579#ifdef ASSERT
580   // verify patching
581   for ( int i = 0; i < instruction_size; i++) {
582     address ptr = (address)((intptr_t)code_buffer + i);
583     int a_byte = (*ptr) & 0xFF;
584     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
585   }
586#endif
587
588}
589
590
591
592address NativeGeneralJump::jump_destination() const {
593  int op_code = ubyte_at(0);
594  bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
595  int  offset  = (op_code == 0x0F)  ? 2 : 1;
596  int  length  = offset + ((is_rel32off) ? 4 : 1);
597
598  if (is_rel32off)
599    return addr_at(0) + length + int_at(offset);
600  else
601    return addr_at(0) + length + sbyte_at(offset);
602}
603