nativeInst_x86.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_nativeInst_x86.cpp.incl"
27
28void NativeInstruction::wrote(int offset) {
29  ICache::invalidate_word(addr_at(offset));
30}
31
32
33void NativeCall::verify() {
34  // Make sure code pattern is actually a call imm32 instruction.
35  int inst = ubyte_at(0);
36  if (inst != instruction_code) {
37    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
38                                                        inst);
39    fatal("not a call disp32");
40  }
41}
42
43address NativeCall::destination() const {
44  // Getting the destination of a call isn't safe because that call can
45  // be getting patched while you're calling this.  There's only special
46  // places where this can be called but not automatically verifiable by
47  // checking which locks are held.  The solution is true atomic patching
48  // on x86, nyi.
49  return return_address() + displacement();
50}
51
52void NativeCall::print() {
53  tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
54                instruction_address(), destination());
55}
56
57// Inserts a native call instruction at a given pc
58void NativeCall::insert(address code_pos, address entry) {
59  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
60#ifdef AMD64
61  guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
62#endif // AMD64
63  *code_pos = instruction_code;
64  *((int32_t *)(code_pos+1)) = (int32_t) disp;
65  ICache::invalidate_range(code_pos, instruction_size);
66}
67
68// MT-safe patching of a call instruction.
69// First patches first word of instruction to two jmp's that jmps to them
70// selfs (spinlock). Then patches the last byte, and then atomicly replaces
71// the jmp's with the first 4 byte of the new instruction.
72void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
73  assert(Patching_lock->is_locked() ||
74         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
75  assert (instr_addr != NULL, "illegal address for code patching");
76
77  NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
78  if (os::is_MP()) {
79    guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
80  }
81
82  // First patch dummy jmp in place
83  unsigned char patch[4];
84  assert(sizeof(patch)==sizeof(jint), "sanity check");
85  patch[0] = 0xEB;       // jmp rel8
86  patch[1] = 0xFE;       // jmp to self
87  patch[2] = 0xEB;
88  patch[3] = 0xFE;
89
90  // First patch dummy jmp in place
91  *(jint*)instr_addr = *(jint *)patch;
92
93  // Invalidate.  Opteron requires a flush after every write.
94  n_call->wrote(0);
95
96  // Patch 4th byte
97  instr_addr[4] = code_buffer[4];
98
99  n_call->wrote(4);
100
101  // Patch bytes 0-3
102  *(jint*)instr_addr = *(jint *)code_buffer;
103
104  n_call->wrote(0);
105
106#ifdef ASSERT
107   // verify patching
108   for ( int i = 0; i < instruction_size; i++) {
109     address ptr = (address)((intptr_t)code_buffer + i);
110     int a_byte = (*ptr) & 0xFF;
111     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
112   }
113#endif
114
115}
116
117
118// Similar to replace_mt_safe, but just changes the destination.  The
119// important thing is that free-running threads are able to execute this
120// call instruction at all times.  If the displacement field is aligned
121// we can simply rely on atomicity of 32-bit writes to make sure other threads
122// will see no intermediate states.  Otherwise, the first two bytes of the
123// call are guaranteed to be aligned, and can be atomically patched to a
124// self-loop to guard the instruction while we change the other bytes.
125
126// We cannot rely on locks here, since the free-running threads must run at
127// full speed.
128//
129// Used in the runtime linkage of calls; see class CompiledIC.
130// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
131void NativeCall::set_destination_mt_safe(address dest) {
132  debug_only(verify());
133  // Make sure patching code is locked.  No two threads can patch at the same
134  // time but one may be executing this code.
135  assert(Patching_lock->is_locked() ||
136         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
137  // Both C1 and C2 should now be generating code which aligns the patched address
138  // to be within a single cache line except that C1 does not do the alignment on
139  // uniprocessor systems.
140  bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
141                    ((uintptr_t)displacement_address() + 3) / cache_line_size;
142
143  guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
144
145  if (is_aligned) {
146    // Simple case:  The destination lies within a single cache line.
147    set_destination(dest);
148  } else if ((uintptr_t)instruction_address() / cache_line_size ==
149             ((uintptr_t)instruction_address()+1) / cache_line_size) {
150    // Tricky case:  The instruction prefix lies within a single cache line.
151    intptr_t disp = dest - return_address();
152#ifdef AMD64
153    guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
154#endif // AMD64
155
156    int call_opcode = instruction_address()[0];
157
158    // First patch dummy jump in place:
159    {
160      u_char patch_jump[2];
161      patch_jump[0] = 0xEB;       // jmp rel8
162      patch_jump[1] = 0xFE;       // jmp to self
163
164      assert(sizeof(patch_jump)==sizeof(short), "sanity check");
165      *(short*)instruction_address() = *(short*)patch_jump;
166    }
167    // Invalidate.  Opteron requires a flush after every write.
168    wrote(0);
169
170    // (Note: We assume any reader which has already started to read
171    // the unpatched call will completely read the whole unpatched call
172    // without seeing the next writes we are about to make.)
173
174    // Next, patch the last three bytes:
175    u_char patch_disp[5];
176    patch_disp[0] = call_opcode;
177    *(int32_t*)&patch_disp[1] = (int32_t)disp;
178    assert(sizeof(patch_disp)==instruction_size, "sanity check");
179    for (int i = sizeof(short); i < instruction_size; i++)
180      instruction_address()[i] = patch_disp[i];
181
182    // Invalidate.  Opteron requires a flush after every write.
183    wrote(sizeof(short));
184
185    // (Note: We assume that any reader which reads the opcode we are
186    // about to repatch will also read the writes we just made.)
187
188    // Finally, overwrite the jump:
189    *(short*)instruction_address() = *(short*)patch_disp;
190    // Invalidate.  Opteron requires a flush after every write.
191    wrote(0);
192
193    debug_only(verify());
194    guarantee(destination() == dest, "patch succeeded");
195  } else {
196    // Impossible:  One or the other must be atomically writable.
197    ShouldNotReachHere();
198  }
199}
200
201
202void NativeMovConstReg::verify() {
203#ifdef AMD64
204  // make sure code pattern is actually a mov reg64, imm64 instruction
205  if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
206      (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
207    print();
208    fatal("not a REX.W[B] mov reg64, imm64");
209  }
210#else
211  // make sure code pattern is actually a mov reg, imm32 instruction
212  u_char test_byte = *(u_char*)instruction_address();
213  u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
214  if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
215#endif // AMD64
216}
217
218
219void NativeMovConstReg::print() {
220  tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
221                instruction_address(), data());
222}
223
224//-------------------------------------------------------------------
225
226#ifndef AMD64
227
228void NativeMovRegMem::copy_instruction_to(address new_instruction_address) {
229  int inst_size = instruction_size;
230
231  // See if there's an instruction size prefix override.
232  if ( *(address(this))   == instruction_operandsize_prefix &&
233       *(address(this)+1) != instruction_code_xmm_code ) { // Not SSE instr
234    inst_size += 1;
235  }
236  if ( *(address(this)) == instruction_extended_prefix ) inst_size += 1;
237
238  for (int i = 0; i < instruction_size; i++) {
239    *(new_instruction_address + i) = *(address(this) + i);
240  }
241}
242
243void NativeMovRegMem::verify() {
244  // make sure code pattern is actually a mov [reg+offset], reg instruction
245  u_char test_byte = *(u_char*)instruction_address();
246  if ( ! ( (test_byte == instruction_code_reg2memb)
247      || (test_byte == instruction_code_mem2regb)
248      || (test_byte == instruction_code_mem2regl)
249      || (test_byte == instruction_code_reg2meml)
250      || (test_byte == instruction_code_mem2reg_movzxb )
251      || (test_byte == instruction_code_mem2reg_movzxw )
252      || (test_byte == instruction_code_mem2reg_movsxb )
253      || (test_byte == instruction_code_mem2reg_movsxw )
254      || (test_byte == instruction_code_float_s)
255      || (test_byte == instruction_code_float_d)
256      || (test_byte == instruction_code_long_volatile) ) )
257  {
258    u_char byte1 = ((u_char*)instruction_address())[1];
259    u_char byte2 = ((u_char*)instruction_address())[2];
260    if ((test_byte != instruction_code_xmm_ss_prefix &&
261         test_byte != instruction_code_xmm_sd_prefix &&
262         test_byte != instruction_operandsize_prefix) ||
263        byte1 != instruction_code_xmm_code ||
264        (byte2 != instruction_code_xmm_load &&
265         byte2 != instruction_code_xmm_lpd  &&
266         byte2 != instruction_code_xmm_store)) {
267          fatal ("not a mov [reg+offs], reg instruction");
268    }
269  }
270}
271
272
273void NativeMovRegMem::print() {
274  tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
275}
276
277//-------------------------------------------------------------------
278
279void NativeLoadAddress::verify() {
280  // make sure code pattern is actually a mov [reg+offset], reg instruction
281  u_char test_byte = *(u_char*)instruction_address();
282  if ( ! (test_byte == instruction_code) ) {
283    fatal ("not a lea reg, [reg+offs] instruction");
284  }
285}
286
287
288void NativeLoadAddress::print() {
289  tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
290}
291
292#endif // !AMD64
293
294//--------------------------------------------------------------------------------
295
296void NativeJump::verify() {
297  if (*(u_char*)instruction_address() != instruction_code) {
298    fatal("not a jump instruction");
299  }
300}
301
302
303void NativeJump::insert(address code_pos, address entry) {
304  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
305#ifdef AMD64
306  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
307#endif // AMD64
308
309  *code_pos = instruction_code;
310  *((int32_t*)(code_pos + 1)) = (int32_t)disp;
311
312  ICache::invalidate_range(code_pos, instruction_size);
313}
314
315void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
316  // Patching to not_entrant can happen while activations of the method are
317  // in use. The patching in that instance must happen only when certain
318  // alignment restrictions are true. These guarantees check those
319  // conditions.
320#ifdef AMD64
321  const int linesize = 64;
322#else
323  const int linesize = 32;
324#endif // AMD64
325
326  // Must be wordSize aligned
327  guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
328            "illegal address for code patching 2");
329  // First 5 bytes must be within the same cache line - 4827828
330  guarantee((uintptr_t) verified_entry / linesize ==
331            ((uintptr_t) verified_entry + 4) / linesize,
332            "illegal address for code patching 3");
333}
334
335
336// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
337// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
338// First patches the first word atomically to be a jump to itself.
339// Then patches the last byte  and then atomically patches the first word (4-bytes),
340// thus inserting the desired jump
341// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
342// entry point is in same cache line as unverified entry point, and the instruction being
343// patched is >= 5 byte (size of patch).
344//
345// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
346// In C1 the restriction is enforced by CodeEmitter::method_entry
347//
348void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
349  // complete jump instruction (to be inserted) is in code_buffer;
350  unsigned char code_buffer[5];
351  code_buffer[0] = instruction_code;
352  intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
353#ifdef AMD64
354  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
355#endif // AMD64
356  *(int32_t*)(code_buffer + 1) = (int32_t)disp;
357
358  check_verified_entry_alignment(entry, verified_entry);
359
360  // Can't call nativeJump_at() because it's asserts jump exists
361  NativeJump* n_jump = (NativeJump*) verified_entry;
362
363  //First patch dummy jmp in place
364
365  unsigned char patch[4];
366  assert(sizeof(patch)==sizeof(int32_t), "sanity check");
367  patch[0] = 0xEB;       // jmp rel8
368  patch[1] = 0xFE;       // jmp to self
369  patch[2] = 0xEB;
370  patch[3] = 0xFE;
371
372  // First patch dummy jmp in place
373  *(int32_t*)verified_entry = *(int32_t *)patch;
374
375  n_jump->wrote(0);
376
377  // Patch 5th byte (from jump instruction)
378  verified_entry[4] = code_buffer[4];
379
380  n_jump->wrote(4);
381
382  // Patch bytes 0-3 (from jump instruction)
383  *(int32_t*)verified_entry = *(int32_t *)code_buffer;
384  // Invalidate.  Opteron requires a flush after every write.
385  n_jump->wrote(0);
386
387}
388
389void NativePopReg::insert(address code_pos, Register reg) {
390  assert(reg->encoding() < 8, "no space for REX");
391  assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
392  *code_pos = (u_char)(instruction_code | reg->encoding());
393  ICache::invalidate_range(code_pos, instruction_size);
394}
395
396
397void NativeIllegalInstruction::insert(address code_pos) {
398  assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
399  *(short *)code_pos = instruction_code;
400  ICache::invalidate_range(code_pos, instruction_size);
401}
402
403void NativeGeneralJump::verify() {
404  assert(((NativeInstruction *)this)->is_jump() ||
405         ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
406}
407
408
409void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
410  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
411#ifdef AMD64
412  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
413#endif // AMD64
414
415  *code_pos = unconditional_long_jump;
416  *((int32_t *)(code_pos+1)) = (int32_t) disp;
417  ICache::invalidate_range(code_pos, instruction_size);
418}
419
420
421// MT-safe patching of a long jump instruction.
422// First patches first word of instruction to two jmp's that jmps to them
423// selfs (spinlock). Then patches the last byte, and then atomicly replaces
424// the jmp's with the first 4 byte of the new instruction.
425void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
426   assert (instr_addr != NULL, "illegal address for code patching (4)");
427   NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
428
429   // Temporary code
430   unsigned char patch[4];
431   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
432   patch[0] = 0xEB;       // jmp rel8
433   patch[1] = 0xFE;       // jmp to self
434   patch[2] = 0xEB;
435   patch[3] = 0xFE;
436
437   // First patch dummy jmp in place
438   *(int32_t*)instr_addr = *(int32_t *)patch;
439    n_jump->wrote(0);
440
441   // Patch 4th byte
442   instr_addr[4] = code_buffer[4];
443
444    n_jump->wrote(4);
445
446   // Patch bytes 0-3
447   *(jint*)instr_addr = *(jint *)code_buffer;
448
449    n_jump->wrote(0);
450
451#ifdef ASSERT
452   // verify patching
453   for ( int i = 0; i < instruction_size; i++) {
454     address ptr = (address)((intptr_t)code_buffer + i);
455     int a_byte = (*ptr) & 0xFF;
456     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
457   }
458#endif
459
460}
461
462
463
464address NativeGeneralJump::jump_destination() const {
465  int op_code = ubyte_at(0);
466  bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
467  int  offset  = (op_code == 0x0F)  ? 2 : 1;
468  int  length  = offset + ((is_rel32off) ? 4 : 1);
469
470  if (is_rel32off)
471    return addr_at(0) + length + int_at(offset);
472  else
473    return addr_at(0) + length + sbyte_at(offset);
474}
475
476bool NativeInstruction::is_dtrace_trap() {
477  return (*(int32_t*)this & 0xff) == 0xcc;
478}
479