nativeInst_x86.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_nativeInst_x86.cpp.incl"
27
28void NativeInstruction::wrote(int offset) {
29  ICache::invalidate_word(addr_at(offset));
30}
31
32
33void NativeCall::verify() {
34  // Make sure code pattern is actually a call imm32 instruction.
35  int inst = ubyte_at(0);
36  if (inst != instruction_code) {
37    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
38                                                        inst);
39    fatal("not a call disp32");
40  }
41}
42
43address NativeCall::destination() const {
44  // Getting the destination of a call isn't safe because that call can
45  // be getting patched while you're calling this.  There's only special
46  // places where this can be called but not automatically verifiable by
47  // checking which locks are held.  The solution is true atomic patching
48  // on x86, nyi.
49  return return_address() + displacement();
50}
51
52void NativeCall::print() {
53  tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
54                instruction_address(), destination());
55}
56
57// Inserts a native call instruction at a given pc
58void NativeCall::insert(address code_pos, address entry) {
59  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
60#ifdef AMD64
61  guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
62#endif // AMD64
63  *code_pos = instruction_code;
64  *((int32_t *)(code_pos+1)) = (int32_t) disp;
65  ICache::invalidate_range(code_pos, instruction_size);
66}
67
68// MT-safe patching of a call instruction.
69// First patches first word of instruction to two jmp's that jmps to them
70// selfs (spinlock). Then patches the last byte, and then atomicly replaces
71// the jmp's with the first 4 byte of the new instruction.
72void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
73  assert(Patching_lock->is_locked() ||
74         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
75  assert (instr_addr != NULL, "illegal address for code patching");
76
77  NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
78  if (os::is_MP()) {
79    guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
80  }
81
82  // First patch dummy jmp in place
83  unsigned char patch[4];
84  assert(sizeof(patch)==sizeof(jint), "sanity check");
85  patch[0] = 0xEB;       // jmp rel8
86  patch[1] = 0xFE;       // jmp to self
87  patch[2] = 0xEB;
88  patch[3] = 0xFE;
89
90  // First patch dummy jmp in place
91  *(jint*)instr_addr = *(jint *)patch;
92
93  // Invalidate.  Opteron requires a flush after every write.
94  n_call->wrote(0);
95
96  // Patch 4th byte
97  instr_addr[4] = code_buffer[4];
98
99  n_call->wrote(4);
100
101  // Patch bytes 0-3
102  *(jint*)instr_addr = *(jint *)code_buffer;
103
104  n_call->wrote(0);
105
106#ifdef ASSERT
107   // verify patching
108   for ( int i = 0; i < instruction_size; i++) {
109     address ptr = (address)((intptr_t)code_buffer + i);
110     int a_byte = (*ptr) & 0xFF;
111     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
112   }
113#endif
114
115}
116
117
118// Similar to replace_mt_safe, but just changes the destination.  The
119// important thing is that free-running threads are able to execute this
120// call instruction at all times.  If the displacement field is aligned
121// we can simply rely on atomicity of 32-bit writes to make sure other threads
122// will see no intermediate states.  Otherwise, the first two bytes of the
123// call are guaranteed to be aligned, and can be atomically patched to a
124// self-loop to guard the instruction while we change the other bytes.
125
126// We cannot rely on locks here, since the free-running threads must run at
127// full speed.
128//
129// Used in the runtime linkage of calls; see class CompiledIC.
130// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
131void NativeCall::set_destination_mt_safe(address dest) {
132  debug_only(verify());
133  // Make sure patching code is locked.  No two threads can patch at the same
134  // time but one may be executing this code.
135  assert(Patching_lock->is_locked() ||
136         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
137  // Both C1 and C2 should now be generating code which aligns the patched address
138  // to be within a single cache line except that C1 does not do the alignment on
139  // uniprocessor systems.
140  bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
141                    ((uintptr_t)displacement_address() + 3) / cache_line_size;
142
143  guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
144
145  if (is_aligned) {
146    // Simple case:  The destination lies within a single cache line.
147    set_destination(dest);
148  } else if ((uintptr_t)instruction_address() / cache_line_size ==
149             ((uintptr_t)instruction_address()+1) / cache_line_size) {
150    // Tricky case:  The instruction prefix lies within a single cache line.
151    intptr_t disp = dest - return_address();
152#ifdef AMD64
153    guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
154#endif // AMD64
155
156    int call_opcode = instruction_address()[0];
157
158    // First patch dummy jump in place:
159    {
160      u_char patch_jump[2];
161      patch_jump[0] = 0xEB;       // jmp rel8
162      patch_jump[1] = 0xFE;       // jmp to self
163
164      assert(sizeof(patch_jump)==sizeof(short), "sanity check");
165      *(short*)instruction_address() = *(short*)patch_jump;
166    }
167    // Invalidate.  Opteron requires a flush after every write.
168    wrote(0);
169
170    // (Note: We assume any reader which has already started to read
171    // the unpatched call will completely read the whole unpatched call
172    // without seeing the next writes we are about to make.)
173
174    // Next, patch the last three bytes:
175    u_char patch_disp[5];
176    patch_disp[0] = call_opcode;
177    *(int32_t*)&patch_disp[1] = (int32_t)disp;
178    assert(sizeof(patch_disp)==instruction_size, "sanity check");
179    for (int i = sizeof(short); i < instruction_size; i++)
180      instruction_address()[i] = patch_disp[i];
181
182    // Invalidate.  Opteron requires a flush after every write.
183    wrote(sizeof(short));
184
185    // (Note: We assume that any reader which reads the opcode we are
186    // about to repatch will also read the writes we just made.)
187
188    // Finally, overwrite the jump:
189    *(short*)instruction_address() = *(short*)patch_disp;
190    // Invalidate.  Opteron requires a flush after every write.
191    wrote(0);
192
193    debug_only(verify());
194    guarantee(destination() == dest, "patch succeeded");
195  } else {
196    // Impossible:  One or the other must be atomically writable.
197    ShouldNotReachHere();
198  }
199}
200
201
202void NativeMovConstReg::verify() {
203#ifdef AMD64
204  // make sure code pattern is actually a mov reg64, imm64 instruction
205  if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
206      (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
207    print();
208    fatal("not a REX.W[B] mov reg64, imm64");
209  }
210#else
211  // make sure code pattern is actually a mov reg, imm32 instruction
212  u_char test_byte = *(u_char*)instruction_address();
213  u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
214  if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
215#endif // AMD64
216}
217
218
219void NativeMovConstReg::print() {
220  tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
221                instruction_address(), data());
222}
223
224//-------------------------------------------------------------------
225
226int NativeMovRegMem::instruction_start() const {
227  int off = 0;
228  u_char instr_0 = ubyte_at(off);
229
230  // First check to see if we have a (prefixed or not) xor
231  if ( instr_0 >= instruction_prefix_wide_lo &&      // 0x40
232       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
233    off++;
234    instr_0 = ubyte_at(off);
235  }
236
237  if (instr_0 == instruction_code_xor) {
238    off += 2;
239    instr_0 = ubyte_at(off);
240  }
241
242  // Now look for the real instruction and the many prefix/size specifiers.
243
244  if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
245    off++; // Not SSE instructions
246    instr_0 = ubyte_at(off);
247  }
248
249  if ( instr_0 == instruction_code_xmm_ss_prefix ||      // 0xf3
250       instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
251    off++;
252    instr_0 = ubyte_at(off);
253  }
254
255  if ( instr_0 >= instruction_prefix_wide_lo &&      // 0x40
256       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
257    off++;
258    instr_0 = ubyte_at(off);
259  }
260
261
262  if (instr_0 == instruction_extended_prefix ) {  // 0x0f
263    off++;
264  }
265
266  return off;
267}
268
269address NativeMovRegMem::instruction_address() const {
270  return addr_at(instruction_start());
271}
272
273address NativeMovRegMem::next_instruction_address() const {
274  address ret = instruction_address() + instruction_size;
275  u_char instr_0 =  *(u_char*) instruction_address();
276  switch (instr_0) {
277  case instruction_operandsize_prefix:
278
279    fatal("should have skipped instruction_operandsize_prefix");
280    break;
281
282  case instruction_extended_prefix:
283    fatal("should have skipped instruction_extended_prefix");
284    break;
285
286  case instruction_code_mem2reg_movslq: // 0x63
287  case instruction_code_mem2reg_movzxb: // 0xB6
288  case instruction_code_mem2reg_movsxb: // 0xBE
289  case instruction_code_mem2reg_movzxw: // 0xB7
290  case instruction_code_mem2reg_movsxw: // 0xBF
291  case instruction_code_reg2mem:        // 0x89 (q/l)
292  case instruction_code_mem2reg:        // 0x8B (q/l)
293  case instruction_code_reg2memb:       // 0x88
294  case instruction_code_mem2regb:       // 0x8a
295
296  case instruction_code_float_s:        // 0xd9 fld_s a
297  case instruction_code_float_d:        // 0xdd fld_d a
298
299  case instruction_code_xmm_load:       // 0x10
300  case instruction_code_xmm_store:      // 0x11
301  case instruction_code_xmm_lpd:        // 0x12
302    {
303      // If there is an SIB then instruction is longer than expected
304      u_char mod_rm = *(u_char*)(instruction_address() + 1);
305      if ((mod_rm & 7) == 0x4) {
306        ret++;
307      }
308    }
309  case instruction_code_xor:
310    fatal("should have skipped xor lead in");
311    break;
312
313  default:
314    fatal("not a NativeMovRegMem");
315  }
316  return ret;
317
318}
319
320int NativeMovRegMem::offset() const{
321  int off = data_offset + instruction_start();
322  u_char mod_rm = *(u_char*)(instruction_address() + 1);
323  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
324  // the encoding to use an SIB byte. Which will have the nnnn
325  // field off by one byte
326  if ((mod_rm & 7) == 0x4) {
327    off++;
328  }
329  return int_at(off);
330}
331
332void NativeMovRegMem::set_offset(int x) {
333  int off = data_offset + instruction_start();
334  u_char mod_rm = *(u_char*)(instruction_address() + 1);
335  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
336  // the encoding to use an SIB byte. Which will have the nnnn
337  // field off by one byte
338  if ((mod_rm & 7) == 0x4) {
339    off++;
340  }
341  set_int_at(off, x);
342}
343
344void NativeMovRegMem::verify() {
345  // make sure code pattern is actually a mov [reg+offset], reg instruction
346  u_char test_byte = *(u_char*)instruction_address();
347  switch (test_byte) {
348    case instruction_code_reg2memb:  // 0x88 movb a, r
349    case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
350    case instruction_code_mem2regb:  // 0x8a movb r, a
351    case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
352      break;
353
354    case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
355    case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
356    case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
357    case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
358    case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
359      break;
360
361    case instruction_code_float_s:   // 0xd9 fld_s a
362    case instruction_code_float_d:   // 0xdd fld_d a
363    case instruction_code_xmm_load:  // 0x10 movsd xmm, a
364    case instruction_code_xmm_store: // 0x11 movsd a, xmm
365    case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
366      break;
367
368    default:
369          fatal ("not a mov [reg+offs], reg instruction");
370  }
371}
372
373
374void NativeMovRegMem::print() {
375  tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
376}
377
378//-------------------------------------------------------------------
379
380void NativeLoadAddress::verify() {
381  // make sure code pattern is actually a mov [reg+offset], reg instruction
382  u_char test_byte = *(u_char*)instruction_address();
383#ifdef _LP64
384  if ( (test_byte == instruction_prefix_wide ||
385        test_byte == instruction_prefix_wide_extended) ) {
386    test_byte = *(u_char*)(instruction_address() + 1);
387  }
388#endif // _LP64
389  if ( ! ((test_byte == lea_instruction_code)
390          LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
391    fatal ("not a lea reg, [reg+offs] instruction");
392  }
393}
394
395
396void NativeLoadAddress::print() {
397  tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
398}
399
400//--------------------------------------------------------------------------------
401
402void NativeJump::verify() {
403  if (*(u_char*)instruction_address() != instruction_code) {
404    fatal("not a jump instruction");
405  }
406}
407
408
409void NativeJump::insert(address code_pos, address entry) {
410  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
411#ifdef AMD64
412  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
413#endif // AMD64
414
415  *code_pos = instruction_code;
416  *((int32_t*)(code_pos + 1)) = (int32_t)disp;
417
418  ICache::invalidate_range(code_pos, instruction_size);
419}
420
421void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
422  // Patching to not_entrant can happen while activations of the method are
423  // in use. The patching in that instance must happen only when certain
424  // alignment restrictions are true. These guarantees check those
425  // conditions.
426#ifdef AMD64
427  const int linesize = 64;
428#else
429  const int linesize = 32;
430#endif // AMD64
431
432  // Must be wordSize aligned
433  guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
434            "illegal address for code patching 2");
435  // First 5 bytes must be within the same cache line - 4827828
436  guarantee((uintptr_t) verified_entry / linesize ==
437            ((uintptr_t) verified_entry + 4) / linesize,
438            "illegal address for code patching 3");
439}
440
441
442// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
443// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
444// First patches the first word atomically to be a jump to itself.
445// Then patches the last byte  and then atomically patches the first word (4-bytes),
446// thus inserting the desired jump
447// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
448// entry point is in same cache line as unverified entry point, and the instruction being
449// patched is >= 5 byte (size of patch).
450//
451// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
452// In C1 the restriction is enforced by CodeEmitter::method_entry
453//
454void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
455  // complete jump instruction (to be inserted) is in code_buffer;
456  unsigned char code_buffer[5];
457  code_buffer[0] = instruction_code;
458  intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
459#ifdef AMD64
460  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
461#endif // AMD64
462  *(int32_t*)(code_buffer + 1) = (int32_t)disp;
463
464  check_verified_entry_alignment(entry, verified_entry);
465
466  // Can't call nativeJump_at() because it's asserts jump exists
467  NativeJump* n_jump = (NativeJump*) verified_entry;
468
469  //First patch dummy jmp in place
470
471  unsigned char patch[4];
472  assert(sizeof(patch)==sizeof(int32_t), "sanity check");
473  patch[0] = 0xEB;       // jmp rel8
474  patch[1] = 0xFE;       // jmp to self
475  patch[2] = 0xEB;
476  patch[3] = 0xFE;
477
478  // First patch dummy jmp in place
479  *(int32_t*)verified_entry = *(int32_t *)patch;
480
481  n_jump->wrote(0);
482
483  // Patch 5th byte (from jump instruction)
484  verified_entry[4] = code_buffer[4];
485
486  n_jump->wrote(4);
487
488  // Patch bytes 0-3 (from jump instruction)
489  *(int32_t*)verified_entry = *(int32_t *)code_buffer;
490  // Invalidate.  Opteron requires a flush after every write.
491  n_jump->wrote(0);
492
493}
494
495void NativePopReg::insert(address code_pos, Register reg) {
496  assert(reg->encoding() < 8, "no space for REX");
497  assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
498  *code_pos = (u_char)(instruction_code | reg->encoding());
499  ICache::invalidate_range(code_pos, instruction_size);
500}
501
502
503void NativeIllegalInstruction::insert(address code_pos) {
504  assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
505  *(short *)code_pos = instruction_code;
506  ICache::invalidate_range(code_pos, instruction_size);
507}
508
509void NativeGeneralJump::verify() {
510  assert(((NativeInstruction *)this)->is_jump() ||
511         ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
512}
513
514
515void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
516  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
517#ifdef AMD64
518  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
519#endif // AMD64
520
521  *code_pos = unconditional_long_jump;
522  *((int32_t *)(code_pos+1)) = (int32_t) disp;
523  ICache::invalidate_range(code_pos, instruction_size);
524}
525
526
527// MT-safe patching of a long jump instruction.
528// First patches first word of instruction to two jmp's that jmps to them
529// selfs (spinlock). Then patches the last byte, and then atomicly replaces
530// the jmp's with the first 4 byte of the new instruction.
531void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
532   assert (instr_addr != NULL, "illegal address for code patching (4)");
533   NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
534
535   // Temporary code
536   unsigned char patch[4];
537   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
538   patch[0] = 0xEB;       // jmp rel8
539   patch[1] = 0xFE;       // jmp to self
540   patch[2] = 0xEB;
541   patch[3] = 0xFE;
542
543   // First patch dummy jmp in place
544   *(int32_t*)instr_addr = *(int32_t *)patch;
545    n_jump->wrote(0);
546
547   // Patch 4th byte
548   instr_addr[4] = code_buffer[4];
549
550    n_jump->wrote(4);
551
552   // Patch bytes 0-3
553   *(jint*)instr_addr = *(jint *)code_buffer;
554
555    n_jump->wrote(0);
556
557#ifdef ASSERT
558   // verify patching
559   for ( int i = 0; i < instruction_size; i++) {
560     address ptr = (address)((intptr_t)code_buffer + i);
561     int a_byte = (*ptr) & 0xFF;
562     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
563   }
564#endif
565
566}
567
568
569
570address NativeGeneralJump::jump_destination() const {
571  int op_code = ubyte_at(0);
572  bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
573  int  offset  = (op_code == 0x0F)  ? 2 : 1;
574  int  length  = offset + ((is_rel32off) ? 4 : 1);
575
576  if (is_rel32off)
577    return addr_at(0) + length + int_at(offset);
578  else
579    return addr_at(0) + length + sbyte_at(offset);
580}
581
582bool NativeInstruction::is_dtrace_trap() {
583  return (*(int32_t*)this & 0xff) == 0xcc;
584}
585