nativeInst_x86.cpp revision 12408:777aaa19c4b1
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "memory/resourceArea.hpp"
28#include "nativeInst_x86.hpp"
29#include "oops/oop.inline.hpp"
30#include "runtime/handles.hpp"
31#include "runtime/sharedRuntime.hpp"
32#include "runtime/stubRoutines.hpp"
33#include "utilities/ostream.hpp"
34#ifdef COMPILER1
35#include "c1/c1_Runtime1.hpp"
36#endif
37
38void NativeInstruction::wrote(int offset) {
39  ICache::invalidate_word(addr_at(offset));
40}
41
42void NativeLoadGot::report_and_fail() const {
43  tty->print_cr("Addr: " INTPTR_FORMAT, p2i(instruction_address()));
44  fatal("not a indirect rip mov to rbx");
45}
46
47void NativeLoadGot::verify() const {
48  if (has_rex) {
49    int rex = ubyte_at(0);
50    if (rex != rex_prefix) {
51      report_and_fail();
52    }
53  }
54
55  int inst = ubyte_at(rex_size);
56  if (inst != instruction_code) {
57    report_and_fail();
58  }
59  int modrm = ubyte_at(rex_size + 1);
60  if (modrm != modrm_rbx_code && modrm != modrm_rax_code) {
61    report_and_fail();
62  }
63}
64
65intptr_t NativeLoadGot::data() const {
66  return *(intptr_t *) got_address();
67}
68
69address NativePltCall::destination() const {
70  NativeGotJump* jump = nativeGotJump_at(plt_jump());
71  return jump->destination();
72}
73
74address NativePltCall::plt_entry() const {
75  return return_address() + displacement();
76}
77
78address NativePltCall::plt_jump() const {
79  address entry = plt_entry();
80  // Virtual PLT code has move instruction first
81  if (((NativeGotJump*)entry)->is_GotJump()) {
82    return entry;
83  } else {
84    return nativeLoadGot_at(entry)->next_instruction_address();
85  }
86}
87
88address NativePltCall::plt_load_got() const {
89  address entry = plt_entry();
90  if (!((NativeGotJump*)entry)->is_GotJump()) {
91    // Virtual PLT code has move instruction first
92    return entry;
93  } else {
94    // Static PLT code has move instruction second (from c2i stub)
95    return nativeGotJump_at(entry)->next_instruction_address();
96  }
97}
98
99address NativePltCall::plt_c2i_stub() const {
100  address entry = plt_load_got();
101  // This method should be called only for static calls which has C2I stub.
102  NativeLoadGot* load = nativeLoadGot_at(entry);
103  return entry;
104}
105
106address NativePltCall::plt_resolve_call() const {
107  NativeGotJump* jump = nativeGotJump_at(plt_jump());
108  address entry = jump->next_instruction_address();
109  if (((NativeGotJump*)entry)->is_GotJump()) {
110    return entry;
111  } else {
112    // c2i stub 2 instructions
113    entry = nativeLoadGot_at(entry)->next_instruction_address();
114    return nativeGotJump_at(entry)->next_instruction_address();
115  }
116}
117
118void NativePltCall::reset_to_plt_resolve_call() {
119  set_destination_mt_safe(plt_resolve_call());
120}
121
122void NativePltCall::set_destination_mt_safe(address dest) {
123  // rewriting the value in the GOT, it should always be aligned
124  NativeGotJump* jump = nativeGotJump_at(plt_jump());
125  address* got = (address *) jump->got_address();
126  *got = dest;
127}
128
129void NativePltCall::set_stub_to_clean() {
130  NativeLoadGot* method_loader = nativeLoadGot_at(plt_c2i_stub());
131  NativeGotJump* jump          = nativeGotJump_at(method_loader->next_instruction_address());
132  method_loader->set_data(0);
133  jump->set_jump_destination((address)-1);
134}
135
136void NativePltCall::verify() const {
137  // Make sure code pattern is actually a call rip+off32 instruction.
138  int inst = ubyte_at(0);
139  if (inst != instruction_code) {
140    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", p2i(instruction_address()),
141                                                        inst);
142    fatal("not a call rip+off32");
143  }
144}
145
146address NativeGotJump::destination() const {
147  address *got_entry = (address *) got_address();
148  return *got_entry;
149}
150
151void NativeGotJump::verify() const {
152  int inst = ubyte_at(0);
153  if (inst != instruction_code) {
154    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", p2i(instruction_address()),
155                                                        inst);
156    fatal("not a indirect rip jump");
157  }
158}
159
160void NativeCall::verify() {
161  // Make sure code pattern is actually a call imm32 instruction.
162  int inst = ubyte_at(0);
163  if (inst != instruction_code) {
164    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", p2i(instruction_address()),
165                                                        inst);
166    fatal("not a call disp32");
167  }
168}
169
170address NativeCall::destination() const {
171  // Getting the destination of a call isn't safe because that call can
172  // be getting patched while you're calling this.  There's only special
173  // places where this can be called but not automatically verifiable by
174  // checking which locks are held.  The solution is true atomic patching
175  // on x86, nyi.
176  return return_address() + displacement();
177}
178
179void NativeCall::print() {
180  tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
181                p2i(instruction_address()), p2i(destination()));
182}
183
184// Inserts a native call instruction at a given pc
185void NativeCall::insert(address code_pos, address entry) {
186  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
187#ifdef AMD64
188  guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
189#endif // AMD64
190  *code_pos = instruction_code;
191  *((int32_t *)(code_pos+1)) = (int32_t) disp;
192  ICache::invalidate_range(code_pos, instruction_size);
193}
194
195// MT-safe patching of a call instruction.
196// First patches first word of instruction to two jmp's that jmps to them
197// selfs (spinlock). Then patches the last byte, and then atomicly replaces
198// the jmp's with the first 4 byte of the new instruction.
199void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
200  assert(Patching_lock->is_locked() ||
201         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
202  assert (instr_addr != NULL, "illegal address for code patching");
203
204  NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
205  if (os::is_MP()) {
206    guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
207  }
208
209  // First patch dummy jmp in place
210  unsigned char patch[4];
211  assert(sizeof(patch)==sizeof(jint), "sanity check");
212  patch[0] = 0xEB;       // jmp rel8
213  patch[1] = 0xFE;       // jmp to self
214  patch[2] = 0xEB;
215  patch[3] = 0xFE;
216
217  // First patch dummy jmp in place
218  *(jint*)instr_addr = *(jint *)patch;
219
220  // Invalidate.  Opteron requires a flush after every write.
221  n_call->wrote(0);
222
223  // Patch 4th byte
224  instr_addr[4] = code_buffer[4];
225
226  n_call->wrote(4);
227
228  // Patch bytes 0-3
229  *(jint*)instr_addr = *(jint *)code_buffer;
230
231  n_call->wrote(0);
232
233#ifdef ASSERT
234   // verify patching
235   for ( int i = 0; i < instruction_size; i++) {
236     address ptr = (address)((intptr_t)code_buffer + i);
237     int a_byte = (*ptr) & 0xFF;
238     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
239   }
240#endif
241
242}
243
244
245// Similar to replace_mt_safe, but just changes the destination.  The
246// important thing is that free-running threads are able to execute this
247// call instruction at all times.  If the displacement field is aligned
248// we can simply rely on atomicity of 32-bit writes to make sure other threads
249// will see no intermediate states.  Otherwise, the first two bytes of the
250// call are guaranteed to be aligned, and can be atomically patched to a
251// self-loop to guard the instruction while we change the other bytes.
252
253// We cannot rely on locks here, since the free-running threads must run at
254// full speed.
255//
256// Used in the runtime linkage of calls; see class CompiledIC.
257// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
258void NativeCall::set_destination_mt_safe(address dest) {
259  debug_only(verify());
260  // Make sure patching code is locked.  No two threads can patch at the same
261  // time but one may be executing this code.
262  assert(Patching_lock->is_locked() ||
263         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
264  // Both C1 and C2 should now be generating code which aligns the patched address
265  // to be within a single cache line except that C1 does not do the alignment on
266  // uniprocessor systems.
267  bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
268                    ((uintptr_t)displacement_address() + 3) / cache_line_size;
269
270  guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
271
272  if (is_aligned) {
273    // Simple case:  The destination lies within a single cache line.
274    set_destination(dest);
275  } else if ((uintptr_t)instruction_address() / cache_line_size ==
276             ((uintptr_t)instruction_address()+1) / cache_line_size) {
277    // Tricky case:  The instruction prefix lies within a single cache line.
278    intptr_t disp = dest - return_address();
279#ifdef AMD64
280    guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
281#endif // AMD64
282
283    int call_opcode = instruction_address()[0];
284
285    // First patch dummy jump in place:
286    {
287      u_char patch_jump[2];
288      patch_jump[0] = 0xEB;       // jmp rel8
289      patch_jump[1] = 0xFE;       // jmp to self
290
291      assert(sizeof(patch_jump)==sizeof(short), "sanity check");
292      *(short*)instruction_address() = *(short*)patch_jump;
293    }
294    // Invalidate.  Opteron requires a flush after every write.
295    wrote(0);
296
297    // (Note: We assume any reader which has already started to read
298    // the unpatched call will completely read the whole unpatched call
299    // without seeing the next writes we are about to make.)
300
301    // Next, patch the last three bytes:
302    u_char patch_disp[5];
303    patch_disp[0] = call_opcode;
304    *(int32_t*)&patch_disp[1] = (int32_t)disp;
305    assert(sizeof(patch_disp)==instruction_size, "sanity check");
306    for (int i = sizeof(short); i < instruction_size; i++)
307      instruction_address()[i] = patch_disp[i];
308
309    // Invalidate.  Opteron requires a flush after every write.
310    wrote(sizeof(short));
311
312    // (Note: We assume that any reader which reads the opcode we are
313    // about to repatch will also read the writes we just made.)
314
315    // Finally, overwrite the jump:
316    *(short*)instruction_address() = *(short*)patch_disp;
317    // Invalidate.  Opteron requires a flush after every write.
318    wrote(0);
319
320    debug_only(verify());
321    guarantee(destination() == dest, "patch succeeded");
322  } else {
323    // Impossible:  One or the other must be atomically writable.
324    ShouldNotReachHere();
325  }
326}
327
328
329void NativeMovConstReg::verify() {
330#ifdef AMD64
331  // make sure code pattern is actually a mov reg64, imm64 instruction
332  if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
333      (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
334    print();
335    fatal("not a REX.W[B] mov reg64, imm64");
336  }
337#else
338  // make sure code pattern is actually a mov reg, imm32 instruction
339  u_char test_byte = *(u_char*)instruction_address();
340  u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
341  if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
342#endif // AMD64
343}
344
345
346void NativeMovConstReg::print() {
347  tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
348                p2i(instruction_address()), data());
349}
350
351//-------------------------------------------------------------------
352
353int NativeMovRegMem::instruction_start() const {
354  int off = 0;
355  u_char instr_0 = ubyte_at(off);
356
357  // See comment in Assembler::locate_operand() about VEX prefixes.
358  if (instr_0 == instruction_VEX_prefix_2bytes) {
359    assert((UseAVX > 0), "shouldn't have VEX prefix");
360    NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
361    return 2;
362  }
363  if (instr_0 == instruction_VEX_prefix_3bytes) {
364    assert((UseAVX > 0), "shouldn't have VEX prefix");
365    NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
366    return 3;
367  }
368
369  // First check to see if we have a (prefixed or not) xor
370  if (instr_0 >= instruction_prefix_wide_lo && // 0x40
371      instr_0 <= instruction_prefix_wide_hi) { // 0x4f
372    off++;
373    instr_0 = ubyte_at(off);
374  }
375
376  if (instr_0 == instruction_code_xor) {
377    off += 2;
378    instr_0 = ubyte_at(off);
379  }
380
381  // Now look for the real instruction and the many prefix/size specifiers.
382
383  if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
384    off++; // Not SSE instructions
385    instr_0 = ubyte_at(off);
386  }
387
388  if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
389       instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
390    off++;
391    instr_0 = ubyte_at(off);
392  }
393
394  if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
395       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
396    off++;
397    instr_0 = ubyte_at(off);
398  }
399
400
401  if (instr_0 == instruction_extended_prefix ) {  // 0x0f
402    off++;
403  }
404
405  return off;
406}
407
408address NativeMovRegMem::instruction_address() const {
409  return addr_at(instruction_start());
410}
411
412address NativeMovRegMem::next_instruction_address() const {
413  address ret = instruction_address() + instruction_size;
414  u_char instr_0 =  *(u_char*) instruction_address();
415  switch (instr_0) {
416  case instruction_operandsize_prefix:
417
418    fatal("should have skipped instruction_operandsize_prefix");
419    break;
420
421  case instruction_extended_prefix:
422    fatal("should have skipped instruction_extended_prefix");
423    break;
424
425  case instruction_code_mem2reg_movslq: // 0x63
426  case instruction_code_mem2reg_movzxb: // 0xB6
427  case instruction_code_mem2reg_movsxb: // 0xBE
428  case instruction_code_mem2reg_movzxw: // 0xB7
429  case instruction_code_mem2reg_movsxw: // 0xBF
430  case instruction_code_reg2mem:        // 0x89 (q/l)
431  case instruction_code_mem2reg:        // 0x8B (q/l)
432  case instruction_code_reg2memb:       // 0x88
433  case instruction_code_mem2regb:       // 0x8a
434
435  case instruction_code_float_s:        // 0xd9 fld_s a
436  case instruction_code_float_d:        // 0xdd fld_d a
437
438  case instruction_code_xmm_load:       // 0x10
439  case instruction_code_xmm_store:      // 0x11
440  case instruction_code_xmm_lpd:        // 0x12
441    {
442      // If there is an SIB then instruction is longer than expected
443      u_char mod_rm = *(u_char*)(instruction_address() + 1);
444      if ((mod_rm & 7) == 0x4) {
445        ret++;
446      }
447    }
448  case instruction_code_xor:
449    fatal("should have skipped xor lead in");
450    break;
451
452  default:
453    fatal("not a NativeMovRegMem");
454  }
455  return ret;
456
457}
458
459int NativeMovRegMem::offset() const{
460  int off = data_offset + instruction_start();
461  u_char mod_rm = *(u_char*)(instruction_address() + 1);
462  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
463  // the encoding to use an SIB byte. Which will have the nnnn
464  // field off by one byte
465  if ((mod_rm & 7) == 0x4) {
466    off++;
467  }
468  return int_at(off);
469}
470
471void NativeMovRegMem::set_offset(int x) {
472  int off = data_offset + instruction_start();
473  u_char mod_rm = *(u_char*)(instruction_address() + 1);
474  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
475  // the encoding to use an SIB byte. Which will have the nnnn
476  // field off by one byte
477  if ((mod_rm & 7) == 0x4) {
478    off++;
479  }
480  set_int_at(off, x);
481}
482
483void NativeMovRegMem::verify() {
484  // make sure code pattern is actually a mov [reg+offset], reg instruction
485  u_char test_byte = *(u_char*)instruction_address();
486  switch (test_byte) {
487    case instruction_code_reg2memb:  // 0x88 movb a, r
488    case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
489    case instruction_code_mem2regb:  // 0x8a movb r, a
490    case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
491      break;
492
493    case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
494    case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
495    case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
496    case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
497    case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
498      break;
499
500    case instruction_code_float_s:   // 0xd9 fld_s a
501    case instruction_code_float_d:   // 0xdd fld_d a
502    case instruction_code_xmm_load:  // 0x10 movsd xmm, a
503    case instruction_code_xmm_store: // 0x11 movsd a, xmm
504    case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
505      break;
506
507    default:
508          fatal ("not a mov [reg+offs], reg instruction");
509  }
510}
511
512
513void NativeMovRegMem::print() {
514  tty->print_cr(PTR_FORMAT ": mov reg, [reg + %x]", p2i(instruction_address()), offset());
515}
516
517//-------------------------------------------------------------------
518
519void NativeLoadAddress::verify() {
520  // make sure code pattern is actually a mov [reg+offset], reg instruction
521  u_char test_byte = *(u_char*)instruction_address();
522#ifdef _LP64
523  if ( (test_byte == instruction_prefix_wide ||
524        test_byte == instruction_prefix_wide_extended) ) {
525    test_byte = *(u_char*)(instruction_address() + 1);
526  }
527#endif // _LP64
528  if ( ! ((test_byte == lea_instruction_code)
529          LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
530    fatal ("not a lea reg, [reg+offs] instruction");
531  }
532}
533
534
535void NativeLoadAddress::print() {
536  tty->print_cr(PTR_FORMAT ": lea [reg + %x], reg", p2i(instruction_address()), offset());
537}
538
539//--------------------------------------------------------------------------------
540
541void NativeJump::verify() {
542  if (*(u_char*)instruction_address() != instruction_code) {
543    // far jump
544    NativeMovConstReg* mov = nativeMovConstReg_at(instruction_address());
545    NativeInstruction* jmp = nativeInstruction_at(mov->next_instruction_address());
546    if (!jmp->is_jump_reg()) {
547      fatal("not a jump instruction");
548    }
549  }
550}
551
552
553void NativeJump::insert(address code_pos, address entry) {
554  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
555#ifdef AMD64
556  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
557#endif // AMD64
558
559  *code_pos = instruction_code;
560  *((int32_t*)(code_pos + 1)) = (int32_t)disp;
561
562  ICache::invalidate_range(code_pos, instruction_size);
563}
564
565void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
566  // Patching to not_entrant can happen while activations of the method are
567  // in use. The patching in that instance must happen only when certain
568  // alignment restrictions are true. These guarantees check those
569  // conditions.
570#ifdef AMD64
571  const int linesize = 64;
572#else
573  const int linesize = 32;
574#endif // AMD64
575
576  // Must be wordSize aligned
577  guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
578            "illegal address for code patching 2");
579  // First 5 bytes must be within the same cache line - 4827828
580  guarantee((uintptr_t) verified_entry / linesize ==
581            ((uintptr_t) verified_entry + 4) / linesize,
582            "illegal address for code patching 3");
583}
584
585
586// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
587// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
588// First patches the first word atomically to be a jump to itself.
589// Then patches the last byte  and then atomically patches the first word (4-bytes),
590// thus inserting the desired jump
591// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
592// entry point is in same cache line as unverified entry point, and the instruction being
593// patched is >= 5 byte (size of patch).
594//
595// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
596// In C1 the restriction is enforced by CodeEmitter::method_entry
597// In JVMCI, the restriction is enforced by HotSpotFrameContext.enter(...)
598//
599void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
600  // complete jump instruction (to be inserted) is in code_buffer;
601  unsigned char code_buffer[5];
602  code_buffer[0] = instruction_code;
603  intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
604#ifdef AMD64
605  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
606#endif // AMD64
607  *(int32_t*)(code_buffer + 1) = (int32_t)disp;
608
609  check_verified_entry_alignment(entry, verified_entry);
610
611  // Can't call nativeJump_at() because it's asserts jump exists
612  NativeJump* n_jump = (NativeJump*) verified_entry;
613
614  //First patch dummy jmp in place
615
616  unsigned char patch[4];
617  assert(sizeof(patch)==sizeof(int32_t), "sanity check");
618  patch[0] = 0xEB;       // jmp rel8
619  patch[1] = 0xFE;       // jmp to self
620  patch[2] = 0xEB;
621  patch[3] = 0xFE;
622
623  // First patch dummy jmp in place
624  *(int32_t*)verified_entry = *(int32_t *)patch;
625
626  n_jump->wrote(0);
627
628  // Patch 5th byte (from jump instruction)
629  verified_entry[4] = code_buffer[4];
630
631  n_jump->wrote(4);
632
633  // Patch bytes 0-3 (from jump instruction)
634  *(int32_t*)verified_entry = *(int32_t *)code_buffer;
635  // Invalidate.  Opteron requires a flush after every write.
636  n_jump->wrote(0);
637
638}
639
640address NativeFarJump::jump_destination() const          {
641  NativeMovConstReg* mov = nativeMovConstReg_at(addr_at(0));
642  return (address)mov->data();
643}
644
645void NativeFarJump::verify() {
646  if (is_far_jump()) {
647    NativeMovConstReg* mov = nativeMovConstReg_at(addr_at(0));
648    NativeInstruction* jmp = nativeInstruction_at(mov->next_instruction_address());
649    if (jmp->is_jump_reg()) return;
650  }
651  fatal("not a jump instruction");
652}
653
654void NativePopReg::insert(address code_pos, Register reg) {
655  assert(reg->encoding() < 8, "no space for REX");
656  assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
657  *code_pos = (u_char)(instruction_code | reg->encoding());
658  ICache::invalidate_range(code_pos, instruction_size);
659}
660
661
662void NativeIllegalInstruction::insert(address code_pos) {
663  assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
664  *(short *)code_pos = instruction_code;
665  ICache::invalidate_range(code_pos, instruction_size);
666}
667
668void NativeGeneralJump::verify() {
669  assert(((NativeInstruction *)this)->is_jump() ||
670         ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
671}
672
673
674void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
675  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
676#ifdef AMD64
677  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
678#endif // AMD64
679
680  *code_pos = unconditional_long_jump;
681  *((int32_t *)(code_pos+1)) = (int32_t) disp;
682  ICache::invalidate_range(code_pos, instruction_size);
683}
684
685
686// MT-safe patching of a long jump instruction.
687// First patches first word of instruction to two jmp's that jmps to them
688// selfs (spinlock). Then patches the last byte, and then atomicly replaces
689// the jmp's with the first 4 byte of the new instruction.
690void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
691   assert (instr_addr != NULL, "illegal address for code patching (4)");
692   NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
693
694   // Temporary code
695   unsigned char patch[4];
696   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
697   patch[0] = 0xEB;       // jmp rel8
698   patch[1] = 0xFE;       // jmp to self
699   patch[2] = 0xEB;
700   patch[3] = 0xFE;
701
702   // First patch dummy jmp in place
703   *(int32_t*)instr_addr = *(int32_t *)patch;
704    n_jump->wrote(0);
705
706   // Patch 4th byte
707   instr_addr[4] = code_buffer[4];
708
709    n_jump->wrote(4);
710
711   // Patch bytes 0-3
712   *(jint*)instr_addr = *(jint *)code_buffer;
713
714    n_jump->wrote(0);
715
716#ifdef ASSERT
717   // verify patching
718   for ( int i = 0; i < instruction_size; i++) {
719     address ptr = (address)((intptr_t)code_buffer + i);
720     int a_byte = (*ptr) & 0xFF;
721     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
722   }
723#endif
724
725}
726
727
728
729address NativeGeneralJump::jump_destination() const {
730  int op_code = ubyte_at(0);
731  bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
732  int  offset  = (op_code == 0x0F)  ? 2 : 1;
733  int  length  = offset + ((is_rel32off) ? 4 : 1);
734
735  if (is_rel32off)
736    return addr_at(0) + length + int_at(offset);
737  else
738    return addr_at(0) + length + sbyte_at(offset);
739}
740