macroAssembler_x86.hpp revision 9737:e286c9ccd58d
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
26#define CPU_X86_VM_MACROASSEMBLER_X86_HPP
27
28#include "asm/assembler.hpp"
29#include "utilities/macros.hpp"
30#include "runtime/rtmLocking.hpp"
31
32// MacroAssembler extends Assembler by frequently used macros.
33//
34// Instructions for which a 'better' code sequence exists depending
35// on arguments should also go in here.
36
37class MacroAssembler: public Assembler {
38  friend class LIR_Assembler;
39  friend class Runtime1;      // as_Address()
40
41 protected:
42
43  Address as_Address(AddressLiteral adr);
44  Address as_Address(ArrayAddress adr);
45
46  // Support for VM calls
47  //
48  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
49  // may customize this version by overriding it for its purposes (e.g., to save/restore
50  // additional registers when doing a VM call).
51#ifdef CC_INTERP
52  // c++ interpreter never wants to use interp_masm version of call_VM
53  #define VIRTUAL
54#else
55  #define VIRTUAL virtual
56#endif
57
58#define COMMA ,
59
60  VIRTUAL void call_VM_leaf_base(
61    address entry_point,               // the entry point
62    int     number_of_arguments        // the number of arguments to pop after the call
63  );
64
65  // This is the base routine called by the different versions of call_VM. The interpreter
66  // may customize this version by overriding it for its purposes (e.g., to save/restore
67  // additional registers when doing a VM call).
68  //
69  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
70  // returns the register which contains the thread upon return. If a thread register has been
71  // specified, the return value will correspond to that register. If no last_java_sp is specified
72  // (noreg) than rsp will be used instead.
73  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
74    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
75    Register java_thread,              // the thread if computed before     ; use noreg otherwise
76    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
77    address  entry_point,              // the entry point
78    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
79    bool     check_exceptions          // whether to check for pending exceptions after return
80  );
81
82  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
83  // The implementation is only non-empty for the InterpreterMacroAssembler,
84  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
85  virtual void check_and_handle_popframe(Register java_thread);
86  virtual void check_and_handle_earlyret(Register java_thread);
87
88  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
89
90  // helpers for FPU flag access
91  // tmp is a temporary register, if none is available use noreg
92  void save_rax   (Register tmp);
93  void restore_rax(Register tmp);
94
95 public:
96  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
97
98  // Support for NULL-checks
99  //
100  // Generates code that causes a NULL OS exception if the content of reg is NULL.
101  // If the accessed location is M[reg + offset] and the offset is known, provide the
102  // offset. No explicit code generation is needed if the offset is within a certain
103  // range (0 <= offset <= page_size).
104
105  void null_check(Register reg, int offset = -1);
106  static bool needs_explicit_null_check(intptr_t offset);
107
108  // Required platform-specific helpers for Label::patch_instructions.
109  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
110  void pd_patch_instruction(address branch, address target) {
111    unsigned char op = branch[0];
112    assert(op == 0xE8 /* call */ ||
113        op == 0xE9 /* jmp */ ||
114        op == 0xEB /* short jmp */ ||
115        (op & 0xF0) == 0x70 /* short jcc */ ||
116        op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
117        op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
118        "Invalid opcode at patch point");
119
120    if (op == 0xEB || (op & 0xF0) == 0x70) {
121      // short offset operators (jmp and jcc)
122      char* disp = (char*) &branch[1];
123      int imm8 = target - (address) &disp[1];
124      guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
125      *disp = imm8;
126    } else {
127      int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
128      int imm32 = target - (address) &disp[1];
129      *disp = imm32;
130    }
131  }
132
133  // The following 4 methods return the offset of the appropriate move instruction
134
135  // Support for fast byte/short loading with zero extension (depending on particular CPU)
136  int load_unsigned_byte(Register dst, Address src);
137  int load_unsigned_short(Register dst, Address src);
138
139  // Support for fast byte/short loading with sign extension (depending on particular CPU)
140  int load_signed_byte(Register dst, Address src);
141  int load_signed_short(Register dst, Address src);
142
143  // Support for sign-extension (hi:lo = extend_sign(lo))
144  void extend_sign(Register hi, Register lo);
145
146  // Load and store values by size and signed-ness
147  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
148  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
149
150  // Support for inc/dec with optimal instruction selection depending on value
151
152  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
153  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
154
155  void decrementl(Address dst, int value = 1);
156  void decrementl(Register reg, int value = 1);
157
158  void decrementq(Register reg, int value = 1);
159  void decrementq(Address dst, int value = 1);
160
161  void incrementl(Address dst, int value = 1);
162  void incrementl(Register reg, int value = 1);
163
164  void incrementq(Register reg, int value = 1);
165  void incrementq(Address dst, int value = 1);
166
167  // Support optimal SSE move instructions.
168  void movflt(XMMRegister dst, XMMRegister src) {
169    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
170    else                       { movss (dst, src); return; }
171  }
172  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
173  void movflt(XMMRegister dst, AddressLiteral src);
174  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
175
176  void movdbl(XMMRegister dst, XMMRegister src) {
177    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
178    else                       { movsd (dst, src); return; }
179  }
180
181  void movdbl(XMMRegister dst, AddressLiteral src);
182
183  void movdbl(XMMRegister dst, Address src) {
184    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
185    else                         { movlpd(dst, src); return; }
186  }
187  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
188
189  void incrementl(AddressLiteral dst);
190  void incrementl(ArrayAddress dst);
191
192  void incrementq(AddressLiteral dst);
193
194  // Alignment
195  void align(int modulus);
196  void align(int modulus, int target);
197
198  // A 5 byte nop that is safe for patching (see patch_verified_entry)
199  void fat_nop();
200
201  // Stack frame creation/removal
202  void enter();
203  void leave();
204
205  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
206  // The pointer will be loaded into the thread register.
207  void get_thread(Register thread);
208
209
210  // Support for VM calls
211  //
212  // It is imperative that all calls into the VM are handled via the call_VM macros.
213  // They make sure that the stack linkage is setup correctly. call_VM's correspond
214  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
215
216
217  void call_VM(Register oop_result,
218               address entry_point,
219               bool check_exceptions = true);
220  void call_VM(Register oop_result,
221               address entry_point,
222               Register arg_1,
223               bool check_exceptions = true);
224  void call_VM(Register oop_result,
225               address entry_point,
226               Register arg_1, Register arg_2,
227               bool check_exceptions = true);
228  void call_VM(Register oop_result,
229               address entry_point,
230               Register arg_1, Register arg_2, Register arg_3,
231               bool check_exceptions = true);
232
233  // Overloadings with last_Java_sp
234  void call_VM(Register oop_result,
235               Register last_java_sp,
236               address entry_point,
237               int number_of_arguments = 0,
238               bool check_exceptions = true);
239  void call_VM(Register oop_result,
240               Register last_java_sp,
241               address entry_point,
242               Register arg_1, bool
243               check_exceptions = true);
244  void call_VM(Register oop_result,
245               Register last_java_sp,
246               address entry_point,
247               Register arg_1, Register arg_2,
248               bool check_exceptions = true);
249  void call_VM(Register oop_result,
250               Register last_java_sp,
251               address entry_point,
252               Register arg_1, Register arg_2, Register arg_3,
253               bool check_exceptions = true);
254
255  void get_vm_result  (Register oop_result, Register thread);
256  void get_vm_result_2(Register metadata_result, Register thread);
257
258  // These always tightly bind to MacroAssembler::call_VM_base
259  // bypassing the virtual implementation
260  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
261  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
262  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
263  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
264  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
265
266  void call_VM_leaf(address entry_point,
267                    int number_of_arguments = 0);
268  void call_VM_leaf(address entry_point,
269                    Register arg_1);
270  void call_VM_leaf(address entry_point,
271                    Register arg_1, Register arg_2);
272  void call_VM_leaf(address entry_point,
273                    Register arg_1, Register arg_2, Register arg_3);
274
275  // These always tightly bind to MacroAssembler::call_VM_leaf_base
276  // bypassing the virtual implementation
277  void super_call_VM_leaf(address entry_point);
278  void super_call_VM_leaf(address entry_point, Register arg_1);
279  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
280  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
281  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
282
283  // last Java Frame (fills frame anchor)
284  void set_last_Java_frame(Register thread,
285                           Register last_java_sp,
286                           Register last_java_fp,
287                           address last_java_pc);
288
289  // thread in the default location (r15_thread on 64bit)
290  void set_last_Java_frame(Register last_java_sp,
291                           Register last_java_fp,
292                           address last_java_pc);
293
294  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
295
296  // thread in the default location (r15_thread on 64bit)
297  void reset_last_Java_frame(bool clear_fp, bool clear_pc);
298
299  // Stores
300  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
301  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
302
303#if INCLUDE_ALL_GCS
304
305  void g1_write_barrier_pre(Register obj,
306                            Register pre_val,
307                            Register thread,
308                            Register tmp,
309                            bool tosca_live,
310                            bool expand_call);
311
312  void g1_write_barrier_post(Register store_addr,
313                             Register new_val,
314                             Register thread,
315                             Register tmp,
316                             Register tmp2);
317
318#endif // INCLUDE_ALL_GCS
319
320  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
321  void c2bool(Register x);
322
323  // C++ bool manipulation
324
325  void movbool(Register dst, Address src);
326  void movbool(Address dst, bool boolconst);
327  void movbool(Address dst, Register src);
328  void testbool(Register dst);
329
330  // oop manipulations
331  void load_klass(Register dst, Register src);
332  void store_klass(Register dst, Register src);
333
334  void load_heap_oop(Register dst, Address src);
335  void load_heap_oop_not_null(Register dst, Address src);
336  void store_heap_oop(Address dst, Register src);
337  void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
338
339  // Used for storing NULL. All other oop constants should be
340  // stored using routines that take a jobject.
341  void store_heap_oop_null(Address dst);
342
343  void load_prototype_header(Register dst, Register src);
344
345#ifdef _LP64
346  void store_klass_gap(Register dst, Register src);
347
348  // This dummy is to prevent a call to store_heap_oop from
349  // converting a zero (like NULL) into a Register by giving
350  // the compiler two choices it can't resolve
351
352  void store_heap_oop(Address dst, void* dummy);
353
354  void encode_heap_oop(Register r);
355  void decode_heap_oop(Register r);
356  void encode_heap_oop_not_null(Register r);
357  void decode_heap_oop_not_null(Register r);
358  void encode_heap_oop_not_null(Register dst, Register src);
359  void decode_heap_oop_not_null(Register dst, Register src);
360
361  void set_narrow_oop(Register dst, jobject obj);
362  void set_narrow_oop(Address dst, jobject obj);
363  void cmp_narrow_oop(Register dst, jobject obj);
364  void cmp_narrow_oop(Address dst, jobject obj);
365
366  void encode_klass_not_null(Register r);
367  void decode_klass_not_null(Register r);
368  void encode_klass_not_null(Register dst, Register src);
369  void decode_klass_not_null(Register dst, Register src);
370  void set_narrow_klass(Register dst, Klass* k);
371  void set_narrow_klass(Address dst, Klass* k);
372  void cmp_narrow_klass(Register dst, Klass* k);
373  void cmp_narrow_klass(Address dst, Klass* k);
374
375  // Returns the byte size of the instructions generated by decode_klass_not_null()
376  // when compressed klass pointers are being used.
377  static int instr_size_for_decode_klass_not_null();
378
379  // if heap base register is used - reinit it with the correct value
380  void reinit_heapbase();
381
382  DEBUG_ONLY(void verify_heapbase(const char* msg);)
383
384#endif // _LP64
385
386  // Int division/remainder for Java
387  // (as idivl, but checks for special case as described in JVM spec.)
388  // returns idivl instruction offset for implicit exception handling
389  int corrected_idivl(Register reg);
390
391  // Long division/remainder for Java
392  // (as idivq, but checks for special case as described in JVM spec.)
393  // returns idivq instruction offset for implicit exception handling
394  int corrected_idivq(Register reg);
395
396  void int3();
397
398  // Long operation macros for a 32bit cpu
399  // Long negation for Java
400  void lneg(Register hi, Register lo);
401
402  // Long multiplication for Java
403  // (destroys contents of eax, ebx, ecx and edx)
404  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
405
406  // Long shifts for Java
407  // (semantics as described in JVM spec.)
408  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
409  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
410
411  // Long compare for Java
412  // (semantics as described in JVM spec.)
413  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
414
415
416  // misc
417
418  // Sign extension
419  void sign_extend_short(Register reg);
420  void sign_extend_byte(Register reg);
421
422  // Division by power of 2, rounding towards 0
423  void division_with_shift(Register reg, int shift_value);
424
425  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
426  //
427  // CF (corresponds to C0) if x < y
428  // PF (corresponds to C2) if unordered
429  // ZF (corresponds to C3) if x = y
430  //
431  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
432  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
433  void fcmp(Register tmp);
434  // Variant of the above which allows y to be further down the stack
435  // and which only pops x and y if specified. If pop_right is
436  // specified then pop_left must also be specified.
437  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
438
439  // Floating-point comparison for Java
440  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
441  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
442  // (semantics as described in JVM spec.)
443  void fcmp2int(Register dst, bool unordered_is_less);
444  // Variant of the above which allows y to be further down the stack
445  // and which only pops x and y if specified. If pop_right is
446  // specified then pop_left must also be specified.
447  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
448
449  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
450  // tmp is a temporary register, if none is available use noreg
451  void fremr(Register tmp);
452
453
454  // same as fcmp2int, but using SSE2
455  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
456  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
457
458  // Inlined sin/cos generator for Java; must not use CPU instruction
459  // directly on Intel as it does not have high enough precision
460  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
461  // number of FPU stack slots in use; all but the topmost will
462  // require saving if a slow case is necessary. Assumes argument is
463  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
464  // this code.
465  void trigfunc(char trig, int num_fpu_regs_in_use = 1);
466
467  // branch to L if FPU flag C2 is set/not set
468  // tmp is a temporary register, if none is available use noreg
469  void jC2 (Register tmp, Label& L);
470  void jnC2(Register tmp, Label& L);
471
472  // Pop ST (ffree & fincstp combined)
473  void fpop();
474
475  // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
476  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
477  void load_float(Address src);
478
479  // Store float value to 'address'. If UseSSE >= 1, the value is stored
480  // from register xmm0. Otherwise, the value is stored from the FPU stack.
481  void store_float(Address dst);
482
483  // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
484  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
485  void load_double(Address src);
486
487  // Store double value to 'address'. If UseSSE >= 2, the value is stored
488  // from register xmm0. Otherwise, the value is stored from the FPU stack.
489  void store_double(Address dst);
490
491  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
492  void push_fTOS();
493
494  // pops double TOS element from CPU stack and pushes on FPU stack
495  void pop_fTOS();
496
497  void empty_FPU_stack();
498
499  void push_IU_state();
500  void pop_IU_state();
501
502  void push_FPU_state();
503  void pop_FPU_state();
504
505  void push_CPU_state();
506  void pop_CPU_state();
507
508  // Round up to a power of two
509  void round_to(Register reg, int modulus);
510
511  // Callee saved registers handling
512  void push_callee_saved_registers();
513  void pop_callee_saved_registers();
514
515  // allocation
516  void eden_allocate(
517    Register obj,                      // result: pointer to object after successful allocation
518    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
519    int      con_size_in_bytes,        // object size in bytes if   known at compile time
520    Register t1,                       // temp register
521    Label&   slow_case                 // continuation point if fast allocation fails
522  );
523  void tlab_allocate(
524    Register obj,                      // result: pointer to object after successful allocation
525    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
526    int      con_size_in_bytes,        // object size in bytes if   known at compile time
527    Register t1,                       // temp register
528    Register t2,                       // temp register
529    Label&   slow_case                 // continuation point if fast allocation fails
530  );
531  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
532  void incr_allocated_bytes(Register thread,
533                            Register var_size_in_bytes, int con_size_in_bytes,
534                            Register t1 = noreg);
535
536  // interface method calling
537  void lookup_interface_method(Register recv_klass,
538                               Register intf_klass,
539                               RegisterOrConstant itable_index,
540                               Register method_result,
541                               Register scan_temp,
542                               Label& no_such_interface);
543
544  // virtual method calling
545  void lookup_virtual_method(Register recv_klass,
546                             RegisterOrConstant vtable_index,
547                             Register method_result);
548
549  // Test sub_klass against super_klass, with fast and slow paths.
550
551  // The fast path produces a tri-state answer: yes / no / maybe-slow.
552  // One of the three labels can be NULL, meaning take the fall-through.
553  // If super_check_offset is -1, the value is loaded up from super_klass.
554  // No registers are killed, except temp_reg.
555  void check_klass_subtype_fast_path(Register sub_klass,
556                                     Register super_klass,
557                                     Register temp_reg,
558                                     Label* L_success,
559                                     Label* L_failure,
560                                     Label* L_slow_path,
561                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
562
563  // The rest of the type check; must be wired to a corresponding fast path.
564  // It does not repeat the fast path logic, so don't use it standalone.
565  // The temp_reg and temp2_reg can be noreg, if no temps are available.
566  // Updates the sub's secondary super cache as necessary.
567  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
568  void check_klass_subtype_slow_path(Register sub_klass,
569                                     Register super_klass,
570                                     Register temp_reg,
571                                     Register temp2_reg,
572                                     Label* L_success,
573                                     Label* L_failure,
574                                     bool set_cond_codes = false);
575
576  // Simplified, combined version, good for typical uses.
577  // Falls through on failure.
578  void check_klass_subtype(Register sub_klass,
579                           Register super_klass,
580                           Register temp_reg,
581                           Label& L_success);
582
583  // method handles (JSR 292)
584  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
585
586  //----
587  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
588
589  // Debugging
590
591  // only if +VerifyOops
592  // TODO: Make these macros with file and line like sparc version!
593  void verify_oop(Register reg, const char* s = "broken oop");
594  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
595
596  // TODO: verify method and klass metadata (compare against vptr?)
597  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
598  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
599
600#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
601#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
602
603  // only if +VerifyFPU
604  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
605
606  // Verify or restore cpu control state after JNI call
607  void restore_cpu_control_state_after_jni();
608
609  // prints msg, dumps registers and stops execution
610  void stop(const char* msg);
611
612  // prints msg and continues
613  void warn(const char* msg);
614
615  // dumps registers and other state
616  void print_state();
617
618  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
619  static void debug64(char* msg, int64_t pc, int64_t regs[]);
620  static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
621  static void print_state64(int64_t pc, int64_t regs[]);
622
623  void os_breakpoint();
624
625  void untested()                                { stop("untested"); }
626
627  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
628
629  void should_not_reach_here()                   { stop("should not reach here"); }
630
631  void print_CPU_state();
632
633  // Stack overflow checking
634  void bang_stack_with_offset(int offset) {
635    // stack grows down, caller passes positive offset
636    assert(offset > 0, "must bang with negative offset");
637    movl(Address(rsp, (-offset)), rax);
638  }
639
640  // Writes to stack successive pages until offset reached to check for
641  // stack overflow + shadow pages.  Also, clobbers tmp
642  void bang_stack_size(Register size, Register tmp);
643
644  // Check for reserved stack access in method being exited (for JIT)
645  void reserved_stack_check();
646
647  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
648                                                Register tmp,
649                                                int offset);
650
651  // Support for serializing memory accesses between threads
652  void serialize_memory(Register thread, Register tmp);
653
654  void verify_tlab();
655
656  // Biased locking support
657  // lock_reg and obj_reg must be loaded up with the appropriate values.
658  // swap_reg must be rax, and is killed.
659  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
660  // be killed; if not supplied, push/pop will be used internally to
661  // allocate a temporary (inefficient, avoid if possible).
662  // Optional slow case is for implementations (interpreter and C1) which branch to
663  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
664  // Returns offset of first potentially-faulting instruction for null
665  // check info (currently consumed only by C1). If
666  // swap_reg_contains_mark is true then returns -1 as it is assumed
667  // the calling code has already passed any potential faults.
668  int biased_locking_enter(Register lock_reg, Register obj_reg,
669                           Register swap_reg, Register tmp_reg,
670                           bool swap_reg_contains_mark,
671                           Label& done, Label* slow_case = NULL,
672                           BiasedLockingCounters* counters = NULL);
673  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
674#ifdef COMPILER2
675  // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
676  // See full desription in macroAssembler_x86.cpp.
677  void fast_lock(Register obj, Register box, Register tmp,
678                 Register scr, Register cx1, Register cx2,
679                 BiasedLockingCounters* counters,
680                 RTMLockingCounters* rtm_counters,
681                 RTMLockingCounters* stack_rtm_counters,
682                 Metadata* method_data,
683                 bool use_rtm, bool profile_rtm);
684  void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
685#if INCLUDE_RTM_OPT
686  void rtm_counters_update(Register abort_status, Register rtm_counters);
687  void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
688  void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
689                                   RTMLockingCounters* rtm_counters,
690                                   Metadata* method_data);
691  void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
692                     RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
693  void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
694  void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
695  void rtm_stack_locking(Register obj, Register tmp, Register scr,
696                         Register retry_on_abort_count,
697                         RTMLockingCounters* stack_rtm_counters,
698                         Metadata* method_data, bool profile_rtm,
699                         Label& DONE_LABEL, Label& IsInflated);
700  void rtm_inflated_locking(Register obj, Register box, Register tmp,
701                            Register scr, Register retry_on_busy_count,
702                            Register retry_on_abort_count,
703                            RTMLockingCounters* rtm_counters,
704                            Metadata* method_data, bool profile_rtm,
705                            Label& DONE_LABEL);
706#endif
707#endif
708
709  Condition negate_condition(Condition cond);
710
711  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
712  // operands. In general the names are modified to avoid hiding the instruction in Assembler
713  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
714  // here in MacroAssembler. The major exception to this rule is call
715
716  // Arithmetics
717
718
719  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
720  void addptr(Address dst, Register src);
721
722  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
723  void addptr(Register dst, int32_t src);
724  void addptr(Register dst, Register src);
725  void addptr(Register dst, RegisterOrConstant src) {
726    if (src.is_constant()) addptr(dst, (int) src.as_constant());
727    else                   addptr(dst,       src.as_register());
728  }
729
730  void andptr(Register dst, int32_t src);
731  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
732
733  void cmp8(AddressLiteral src1, int imm);
734
735  // renamed to drag out the casting of address to int32_t/intptr_t
736  void cmp32(Register src1, int32_t imm);
737
738  void cmp32(AddressLiteral src1, int32_t imm);
739  // compare reg - mem, or reg - &mem
740  void cmp32(Register src1, AddressLiteral src2);
741
742  void cmp32(Register src1, Address src2);
743
744#ifndef _LP64
745  void cmpklass(Address dst, Metadata* obj);
746  void cmpklass(Register dst, Metadata* obj);
747  void cmpoop(Address dst, jobject obj);
748  void cmpoop(Register dst, jobject obj);
749#endif // _LP64
750
751  // NOTE src2 must be the lval. This is NOT an mem-mem compare
752  void cmpptr(Address src1, AddressLiteral src2);
753
754  void cmpptr(Register src1, AddressLiteral src2);
755
756  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
757  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
758  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
759
760  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
761  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
762
763  // cmp64 to avoild hiding cmpq
764  void cmp64(Register src1, AddressLiteral src);
765
766  void cmpxchgptr(Register reg, Address adr);
767
768  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
769
770
771  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
772  void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
773
774
775  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
776
777  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
778
779  void shlptr(Register dst, int32_t shift);
780  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
781
782  void shrptr(Register dst, int32_t shift);
783  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
784
785  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
786  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
787
788  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
789
790  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
791  void subptr(Register dst, int32_t src);
792  // Force generation of a 4 byte immediate value even if it fits into 8bit
793  void subptr_imm32(Register dst, int32_t src);
794  void subptr(Register dst, Register src);
795  void subptr(Register dst, RegisterOrConstant src) {
796    if (src.is_constant()) subptr(dst, (int) src.as_constant());
797    else                   subptr(dst,       src.as_register());
798  }
799
800  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
801  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
802
803  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
804  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
805
806  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
807
808
809
810  // Helper functions for statistics gathering.
811  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
812  void cond_inc32(Condition cond, AddressLiteral counter_addr);
813  // Unconditional atomic increment.
814  void atomic_incl(Address counter_addr);
815  void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
816#ifdef _LP64
817  void atomic_incq(Address counter_addr);
818  void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
819#endif
820  void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
821  void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
822
823  void lea(Register dst, AddressLiteral adr);
824  void lea(Address dst, AddressLiteral adr);
825  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
826
827  void leal32(Register dst, Address src) { leal(dst, src); }
828
829  // Import other testl() methods from the parent class or else
830  // they will be hidden by the following overriding declaration.
831  using Assembler::testl;
832  void testl(Register dst, AddressLiteral src);
833
834  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
835  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
836  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
837  void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
838
839  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
840  void testptr(Register src1, Register src2);
841
842  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
843  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
844
845  // Calls
846
847  void call(Label& L, relocInfo::relocType rtype);
848  void call(Register entry);
849
850  // NOTE: this call tranfers to the effective address of entry NOT
851  // the address contained by entry. This is because this is more natural
852  // for jumps/calls.
853  void call(AddressLiteral entry);
854
855  // Emit the CompiledIC call idiom
856  void ic_call(address entry);
857
858  // Jumps
859
860  // NOTE: these jumps tranfer to the effective address of dst NOT
861  // the address contained by dst. This is because this is more natural
862  // for jumps/calls.
863  void jump(AddressLiteral dst);
864  void jump_cc(Condition cc, AddressLiteral dst);
865
866  // 32bit can do a case table jump in one instruction but we no longer allow the base
867  // to be installed in the Address class. This jump will tranfers to the address
868  // contained in the location described by entry (not the address of entry)
869  void jump(ArrayAddress entry);
870
871  // Floating
872
873  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
874  void andpd(XMMRegister dst, AddressLiteral src);
875
876  void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
877  void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
878  void andps(XMMRegister dst, AddressLiteral src);
879
880  void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
881  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
882  void comiss(XMMRegister dst, AddressLiteral src);
883
884  void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
885  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
886  void comisd(XMMRegister dst, AddressLiteral src);
887
888  void fadd_s(Address src)        { Assembler::fadd_s(src); }
889  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
890
891  void fldcw(Address src) { Assembler::fldcw(src); }
892  void fldcw(AddressLiteral src);
893
894  void fld_s(int index)   { Assembler::fld_s(index); }
895  void fld_s(Address src) { Assembler::fld_s(src); }
896  void fld_s(AddressLiteral src);
897
898  void fld_d(Address src) { Assembler::fld_d(src); }
899  void fld_d(AddressLiteral src);
900
901  void fld_x(Address src) { Assembler::fld_x(src); }
902  void fld_x(AddressLiteral src);
903
904  void fmul_s(Address src)        { Assembler::fmul_s(src); }
905  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
906
907  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
908  void ldmxcsr(AddressLiteral src);
909
910  // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
911  // all corner cases and may result in NaN and require fallback to a
912  // runtime call.
913  void fast_pow();
914  void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
915                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
916                Register rax, Register rcx, Register rdx, Register tmp);
917
918  void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
919                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
920                Register rax, Register rcx, Register rdx, Register tmp1 LP64_ONLY(COMMA Register tmp2));
921
922  void increase_precision();
923  void restore_precision();
924
925  // computes pow(x,y). Fallback to runtime call included.
926  void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(num_fpu_regs_in_use); }
927
928private:
929
930  // call runtime as a fallback for trig functions and pow/exp.
931  void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
932
933  // computes 2^(Ylog2X); Ylog2X in ST(0)
934  void pow_exp_core_encoding();
935
936  // computes pow(x,y) or exp(x). Fallback to runtime call included.
937  void pow_or_exp(int num_fpu_regs_in_use);
938
939  // these are private because users should be doing movflt/movdbl
940
941  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
942  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
943  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
944  void movss(XMMRegister dst, AddressLiteral src);
945
946  void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
947  void movlpd(XMMRegister dst, AddressLiteral src);
948
949public:
950
951  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
952  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
953  void addsd(XMMRegister dst, AddressLiteral src);
954
955  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
956  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
957  void addss(XMMRegister dst, AddressLiteral src);
958
959  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
960  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
961  void divsd(XMMRegister dst, AddressLiteral src);
962
963  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
964  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
965  void divss(XMMRegister dst, AddressLiteral src);
966
967  // Move Unaligned Double Quadword
968  void movdqu(Address     dst, XMMRegister src);
969  void movdqu(XMMRegister dst, Address src);
970  void movdqu(XMMRegister dst, XMMRegister src);
971  void movdqu(XMMRegister dst, AddressLiteral src);
972  // AVX Unaligned forms
973  void vmovdqu(Address     dst, XMMRegister src);
974  void vmovdqu(XMMRegister dst, Address src);
975  void vmovdqu(XMMRegister dst, XMMRegister src);
976  void vmovdqu(XMMRegister dst, AddressLiteral src);
977
978  // Move Aligned Double Quadword
979  void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
980  void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
981  void movdqa(XMMRegister dst, AddressLiteral src);
982
983  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
984  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
985  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
986  void movsd(XMMRegister dst, AddressLiteral src);
987
988  void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
989  void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
990  void mulpd(XMMRegister dst, AddressLiteral src);
991
992  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
993  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
994  void mulsd(XMMRegister dst, AddressLiteral src);
995
996  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
997  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
998  void mulss(XMMRegister dst, AddressLiteral src);
999
1000  // Carry-Less Multiplication Quadword
1001  void pclmulldq(XMMRegister dst, XMMRegister src) {
1002    // 0x00 - multiply lower 64 bits [0:63]
1003    Assembler::pclmulqdq(dst, src, 0x00);
1004  }
1005  void pclmulhdq(XMMRegister dst, XMMRegister src) {
1006    // 0x11 - multiply upper 64 bits [64:127]
1007    Assembler::pclmulqdq(dst, src, 0x11);
1008  }
1009
1010  void pcmpeqb(XMMRegister dst, XMMRegister src);
1011  void pcmpeqw(XMMRegister dst, XMMRegister src);
1012
1013  void pcmpestri(XMMRegister dst, Address src, int imm8);
1014  void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1015
1016  void pmovzxbw(XMMRegister dst, XMMRegister src);
1017  void pmovzxbw(XMMRegister dst, Address src);
1018
1019  void pmovmskb(Register dst, XMMRegister src);
1020
1021  void ptest(XMMRegister dst, XMMRegister src);
1022
1023  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1024  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1025  void sqrtsd(XMMRegister dst, AddressLiteral src);
1026
1027  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1028  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1029  void sqrtss(XMMRegister dst, AddressLiteral src);
1030
1031  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1032  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1033  void subsd(XMMRegister dst, AddressLiteral src);
1034
1035  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1036  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1037  void subss(XMMRegister dst, AddressLiteral src);
1038
1039  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1040  void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1041  void ucomiss(XMMRegister dst, AddressLiteral src);
1042
1043  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1044  void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1045  void ucomisd(XMMRegister dst, AddressLiteral src);
1046
1047  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1048  void xorpd(XMMRegister dst, XMMRegister src);
1049  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1050  void xorpd(XMMRegister dst, AddressLiteral src);
1051
1052  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1053  void xorps(XMMRegister dst, XMMRegister src);
1054  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1055  void xorps(XMMRegister dst, AddressLiteral src);
1056
1057  // Shuffle Bytes
1058  void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1059  void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1060  void pshufb(XMMRegister dst, AddressLiteral src);
1061  // AVX 3-operands instructions
1062
1063  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1064  void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1065  void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1066
1067  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1068  void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1069  void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1070
1071  void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1072  void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1073
1074  void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1075  void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1076
1077  void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1078  void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1079
1080  void vpbroadcastw(XMMRegister dst, XMMRegister src);
1081
1082  void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1083  void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1084
1085  void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1086  void vpmovmskb(Register dst, XMMRegister src);
1087
1088  void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1089  void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1090
1091  void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1092  void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1093
1094  void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1095  void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1096
1097  void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1098  void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1099
1100  void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1101  void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1102
1103  void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1104  void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1105
1106  void vptest(XMMRegister dst, XMMRegister src);
1107
1108  void punpcklbw(XMMRegister dst, XMMRegister src);
1109  void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1110
1111  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1112  void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1113
1114  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1115  void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1116  void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1117
1118  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1119  void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1120  void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1121
1122  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1123  void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1124  void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1125
1126  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1127  void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1128  void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1129
1130  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1131  void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1132  void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1133
1134  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1135  void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1136  void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1137
1138  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1139  void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1140  void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1141
1142  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1143  void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1144  void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1145
1146  void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1147  void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1148
1149  // AVX Vector instructions
1150
1151  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1152  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1153  void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1154
1155  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1156  void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1157  void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1158
1159  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1160    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1161      Assembler::vpxor(dst, nds, src, vector_len);
1162    else
1163      Assembler::vxorpd(dst, nds, src, vector_len);
1164  }
1165  void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1166    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1167      Assembler::vpxor(dst, nds, src, vector_len);
1168    else
1169      Assembler::vxorpd(dst, nds, src, vector_len);
1170  }
1171
1172  // Simple version for AVX2 256bit vectors
1173  void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1174  void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1175
1176  // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1177  void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1178    if (UseAVX > 1) // vinserti128h is available only in AVX2
1179      Assembler::vinserti128h(dst, nds, src);
1180    else
1181      Assembler::vinsertf128h(dst, nds, src);
1182  }
1183
1184  // Carry-Less Multiplication Quadword
1185  void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1186    // 0x00 - multiply lower 64 bits [0:63]
1187    Assembler::vpclmulqdq(dst, nds, src, 0x00);
1188  }
1189  void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1190    // 0x11 - multiply upper 64 bits [64:127]
1191    Assembler::vpclmulqdq(dst, nds, src, 0x11);
1192  }
1193
1194  // Data
1195
1196  void cmov32( Condition cc, Register dst, Address  src);
1197  void cmov32( Condition cc, Register dst, Register src);
1198
1199  void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1200
1201  void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1202  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1203
1204  void movoop(Register dst, jobject obj);
1205  void movoop(Address dst, jobject obj);
1206
1207  void mov_metadata(Register dst, Metadata* obj);
1208  void mov_metadata(Address dst, Metadata* obj);
1209
1210  void movptr(ArrayAddress dst, Register src);
1211  // can this do an lea?
1212  void movptr(Register dst, ArrayAddress src);
1213
1214  void movptr(Register dst, Address src);
1215
1216#ifdef _LP64
1217  void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1218#else
1219  void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1220#endif
1221
1222  void movptr(Register dst, intptr_t src);
1223  void movptr(Register dst, Register src);
1224  void movptr(Address dst, intptr_t src);
1225
1226  void movptr(Address dst, Register src);
1227
1228  void movptr(Register dst, RegisterOrConstant src) {
1229    if (src.is_constant()) movptr(dst, src.as_constant());
1230    else                   movptr(dst, src.as_register());
1231  }
1232
1233#ifdef _LP64
1234  // Generally the next two are only used for moving NULL
1235  // Although there are situations in initializing the mark word where
1236  // they could be used. They are dangerous.
1237
1238  // They only exist on LP64 so that int32_t and intptr_t are not the same
1239  // and we have ambiguous declarations.
1240
1241  void movptr(Address dst, int32_t imm32);
1242  void movptr(Register dst, int32_t imm32);
1243#endif // _LP64
1244
1245  // to avoid hiding movl
1246  void mov32(AddressLiteral dst, Register src);
1247  void mov32(Register dst, AddressLiteral src);
1248
1249  // to avoid hiding movb
1250  void movbyte(ArrayAddress dst, int src);
1251
1252  // Import other mov() methods from the parent class or else
1253  // they will be hidden by the following overriding declaration.
1254  using Assembler::movdl;
1255  using Assembler::movq;
1256  void movdl(XMMRegister dst, AddressLiteral src);
1257  void movq(XMMRegister dst, AddressLiteral src);
1258
1259  // Can push value or effective address
1260  void pushptr(AddressLiteral src);
1261
1262  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1263  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1264
1265  void pushoop(jobject obj);
1266  void pushklass(Metadata* obj);
1267
1268  // sign extend as need a l to ptr sized element
1269  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1270  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1271
1272  // C2 compiled method's prolog code.
1273  void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1274
1275  // clear memory of size 'cnt' qwords, starting at 'base'.
1276  void clear_mem(Register base, Register cnt, Register rtmp);
1277
1278#ifdef COMPILER2
1279  void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1280                           XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1281
1282  // IndexOf strings.
1283  // Small strings are loaded through stack if they cross page boundary.
1284  void string_indexof(Register str1, Register str2,
1285                      Register cnt1, Register cnt2,
1286                      int int_cnt2,  Register result,
1287                      XMMRegister vec, Register tmp,
1288                      int ae);
1289
1290  // IndexOf for constant substrings with size >= 8 elements
1291  // which don't need to be loaded through stack.
1292  void string_indexofC8(Register str1, Register str2,
1293                      Register cnt1, Register cnt2,
1294                      int int_cnt2,  Register result,
1295                      XMMRegister vec, Register tmp,
1296                      int ae);
1297
1298    // Smallest code: we don't need to load through stack,
1299    // check string tail.
1300
1301  // helper function for string_compare
1302  void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1303                          Address::ScaleFactor scale, Address::ScaleFactor scale1,
1304                          Address::ScaleFactor scale2, Register index, int ae);
1305  // Compare strings.
1306  void string_compare(Register str1, Register str2,
1307                      Register cnt1, Register cnt2, Register result,
1308                      XMMRegister vec1, int ae);
1309
1310  // Search for Non-ASCII character (Negative byte value) in a byte array,
1311  // return true if it has any and false otherwise.
1312  void has_negatives(Register ary1, Register len,
1313                     Register result, Register tmp1,
1314                     XMMRegister vec1, XMMRegister vec2);
1315
1316  // Compare char[] or byte[] arrays.
1317  void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1318                     Register limit, Register result, Register chr,
1319                     XMMRegister vec1, XMMRegister vec2, bool is_char);
1320
1321#endif
1322
1323  // Fill primitive arrays
1324  void generate_fill(BasicType t, bool aligned,
1325                     Register to, Register value, Register count,
1326                     Register rtmp, XMMRegister xtmp);
1327
1328  void encode_iso_array(Register src, Register dst, Register len,
1329                        XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1330                        XMMRegister tmp4, Register tmp5, Register result);
1331
1332#ifdef _LP64
1333  void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1334  void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1335                             Register y, Register y_idx, Register z,
1336                             Register carry, Register product,
1337                             Register idx, Register kdx);
1338  void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1339                              Register yz_idx, Register idx,
1340                              Register carry, Register product, int offset);
1341  void multiply_128_x_128_bmi2_loop(Register y, Register z,
1342                                    Register carry, Register carry2,
1343                                    Register idx, Register jdx,
1344                                    Register yz_idx1, Register yz_idx2,
1345                                    Register tmp, Register tmp3, Register tmp4);
1346  void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1347                               Register yz_idx, Register idx, Register jdx,
1348                               Register carry, Register product,
1349                               Register carry2);
1350  void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1351                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1352
1353  void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1354                     Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1355  void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1356                            Register tmp2);
1357  void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1358                       Register rdxReg, Register raxReg);
1359  void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1360  void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1361                       Register tmp3, Register tmp4);
1362  void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1363                     Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1364
1365  void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1366               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1367               Register raxReg);
1368  void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1369               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1370               Register raxReg);
1371#endif
1372
1373  // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1374  void update_byte_crc32(Register crc, Register val, Register table);
1375  void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1376  // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1377  // Note on a naming convention:
1378  // Prefix w = register only used on a Westmere+ architecture
1379  // Prefix n = register only used on a Nehalem architecture
1380#ifdef _LP64
1381  void crc32c_ipl_alg4(Register in_out, uint32_t n,
1382                       Register tmp1, Register tmp2, Register tmp3);
1383#else
1384  void crc32c_ipl_alg4(Register in_out, uint32_t n,
1385                       Register tmp1, Register tmp2, Register tmp3,
1386                       XMMRegister xtmp1, XMMRegister xtmp2);
1387#endif
1388  void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1389                        Register in_out,
1390                        uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1391                        XMMRegister w_xtmp2,
1392                        Register tmp1,
1393                        Register n_tmp2, Register n_tmp3);
1394  void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1395                       XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1396                       Register tmp1, Register tmp2,
1397                       Register n_tmp3);
1398  void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1399                         Register in_out1, Register in_out2, Register in_out3,
1400                         Register tmp1, Register tmp2, Register tmp3,
1401                         XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1402                         Register tmp4, Register tmp5,
1403                         Register n_tmp6);
1404  void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1405                            Register tmp1, Register tmp2, Register tmp3,
1406                            Register tmp4, Register tmp5, Register tmp6,
1407                            XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1408                            bool is_pclmulqdq_supported);
1409  // Fold 128-bit data chunk
1410  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1411  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1412  // Fold 8-bit data
1413  void fold_8bit_crc32(Register crc, Register table, Register tmp);
1414  void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1415
1416  // Compress char[] array to byte[].
1417  void char_array_compress(Register src, Register dst, Register len,
1418                           XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1419                           XMMRegister tmp4, Register tmp5, Register result);
1420
1421  // Inflate byte[] array to char[].
1422  void byte_array_inflate(Register src, Register dst, Register len,
1423                          XMMRegister tmp1, Register tmp2);
1424
1425#undef VIRTUAL
1426
1427};
1428
1429/**
1430 * class SkipIfEqual:
1431 *
1432 * Instantiating this class will result in assembly code being output that will
1433 * jump around any code emitted between the creation of the instance and it's
1434 * automatic destruction at the end of a scope block, depending on the value of
1435 * the flag passed to the constructor, which will be checked at run-time.
1436 */
1437class SkipIfEqual {
1438 private:
1439  MacroAssembler* _masm;
1440  Label _label;
1441
1442 public:
1443   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1444   ~SkipIfEqual();
1445};
1446
1447#endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP
1448