macroAssembler_x86.hpp revision 4438:e961c11b85fe
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
26#define CPU_X86_VM_MACROASSEMBLER_X86_HPP
27
28#include "asm/assembler.hpp"
29#include "utilities/macros.hpp"
30
31
32// MacroAssembler extends Assembler by frequently used macros.
33//
34// Instructions for which a 'better' code sequence exists depending
35// on arguments should also go in here.
36
37class MacroAssembler: public Assembler {
38  friend class LIR_Assembler;
39  friend class Runtime1;      // as_Address()
40
41 protected:
42
43  Address as_Address(AddressLiteral adr);
44  Address as_Address(ArrayAddress adr);
45
46  // Support for VM calls
47  //
48  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
49  // may customize this version by overriding it for its purposes (e.g., to save/restore
50  // additional registers when doing a VM call).
51#ifdef CC_INTERP
52  // c++ interpreter never wants to use interp_masm version of call_VM
53  #define VIRTUAL
54#else
55  #define VIRTUAL virtual
56#endif
57
58  VIRTUAL void call_VM_leaf_base(
59    address entry_point,               // the entry point
60    int     number_of_arguments        // the number of arguments to pop after the call
61  );
62
63  // This is the base routine called by the different versions of call_VM. The interpreter
64  // may customize this version by overriding it for its purposes (e.g., to save/restore
65  // additional registers when doing a VM call).
66  //
67  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
68  // returns the register which contains the thread upon return. If a thread register has been
69  // specified, the return value will correspond to that register. If no last_java_sp is specified
70  // (noreg) than rsp will be used instead.
71  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
72    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
73    Register java_thread,              // the thread if computed before     ; use noreg otherwise
74    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
75    address  entry_point,              // the entry point
76    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
77    bool     check_exceptions          // whether to check for pending exceptions after return
78  );
79
80  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
81  // The implementation is only non-empty for the InterpreterMacroAssembler,
82  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
83  virtual void check_and_handle_popframe(Register java_thread);
84  virtual void check_and_handle_earlyret(Register java_thread);
85
86  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
87
88  // helpers for FPU flag access
89  // tmp is a temporary register, if none is available use noreg
90  void save_rax   (Register tmp);
91  void restore_rax(Register tmp);
92
93 public:
94  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
95
96  // Support for NULL-checks
97  //
98  // Generates code that causes a NULL OS exception if the content of reg is NULL.
99  // If the accessed location is M[reg + offset] and the offset is known, provide the
100  // offset. No explicit code generation is needed if the offset is within a certain
101  // range (0 <= offset <= page_size).
102
103  void null_check(Register reg, int offset = -1);
104  static bool needs_explicit_null_check(intptr_t offset);
105
106  // Required platform-specific helpers for Label::patch_instructions.
107  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
108  void pd_patch_instruction(address branch, address target) {
109    unsigned char op = branch[0];
110    assert(op == 0xE8 /* call */ ||
111        op == 0xE9 /* jmp */ ||
112        op == 0xEB /* short jmp */ ||
113        (op & 0xF0) == 0x70 /* short jcc */ ||
114        op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
115        "Invalid opcode at patch point");
116
117    if (op == 0xEB || (op & 0xF0) == 0x70) {
118      // short offset operators (jmp and jcc)
119      char* disp = (char*) &branch[1];
120      int imm8 = target - (address) &disp[1];
121      guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
122      *disp = imm8;
123    } else {
124      int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
125      int imm32 = target - (address) &disp[1];
126      *disp = imm32;
127    }
128  }
129
130  // The following 4 methods return the offset of the appropriate move instruction
131
132  // Support for fast byte/short loading with zero extension (depending on particular CPU)
133  int load_unsigned_byte(Register dst, Address src);
134  int load_unsigned_short(Register dst, Address src);
135
136  // Support for fast byte/short loading with sign extension (depending on particular CPU)
137  int load_signed_byte(Register dst, Address src);
138  int load_signed_short(Register dst, Address src);
139
140  // Support for sign-extension (hi:lo = extend_sign(lo))
141  void extend_sign(Register hi, Register lo);
142
143  // Load and store values by size and signed-ness
144  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
145  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
146
147  // Support for inc/dec with optimal instruction selection depending on value
148
149  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
150  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
151
152  void decrementl(Address dst, int value = 1);
153  void decrementl(Register reg, int value = 1);
154
155  void decrementq(Register reg, int value = 1);
156  void decrementq(Address dst, int value = 1);
157
158  void incrementl(Address dst, int value = 1);
159  void incrementl(Register reg, int value = 1);
160
161  void incrementq(Register reg, int value = 1);
162  void incrementq(Address dst, int value = 1);
163
164
165  // Support optimal SSE move instructions.
166  void movflt(XMMRegister dst, XMMRegister src) {
167    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
168    else                       { movss (dst, src); return; }
169  }
170  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
171  void movflt(XMMRegister dst, AddressLiteral src);
172  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
173
174  void movdbl(XMMRegister dst, XMMRegister src) {
175    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
176    else                       { movsd (dst, src); return; }
177  }
178
179  void movdbl(XMMRegister dst, AddressLiteral src);
180
181  void movdbl(XMMRegister dst, Address src) {
182    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
183    else                         { movlpd(dst, src); return; }
184  }
185  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
186
187  void incrementl(AddressLiteral dst);
188  void incrementl(ArrayAddress dst);
189
190  // Alignment
191  void align(int modulus);
192
193  // A 5 byte nop that is safe for patching (see patch_verified_entry)
194  void fat_nop();
195
196  // Stack frame creation/removal
197  void enter();
198  void leave();
199
200  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
201  // The pointer will be loaded into the thread register.
202  void get_thread(Register thread);
203
204
205  // Support for VM calls
206  //
207  // It is imperative that all calls into the VM are handled via the call_VM macros.
208  // They make sure that the stack linkage is setup correctly. call_VM's correspond
209  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
210
211
212  void call_VM(Register oop_result,
213               address entry_point,
214               bool check_exceptions = true);
215  void call_VM(Register oop_result,
216               address entry_point,
217               Register arg_1,
218               bool check_exceptions = true);
219  void call_VM(Register oop_result,
220               address entry_point,
221               Register arg_1, Register arg_2,
222               bool check_exceptions = true);
223  void call_VM(Register oop_result,
224               address entry_point,
225               Register arg_1, Register arg_2, Register arg_3,
226               bool check_exceptions = true);
227
228  // Overloadings with last_Java_sp
229  void call_VM(Register oop_result,
230               Register last_java_sp,
231               address entry_point,
232               int number_of_arguments = 0,
233               bool check_exceptions = true);
234  void call_VM(Register oop_result,
235               Register last_java_sp,
236               address entry_point,
237               Register arg_1, bool
238               check_exceptions = true);
239  void call_VM(Register oop_result,
240               Register last_java_sp,
241               address entry_point,
242               Register arg_1, Register arg_2,
243               bool check_exceptions = true);
244  void call_VM(Register oop_result,
245               Register last_java_sp,
246               address entry_point,
247               Register arg_1, Register arg_2, Register arg_3,
248               bool check_exceptions = true);
249
250  void get_vm_result  (Register oop_result, Register thread);
251  void get_vm_result_2(Register metadata_result, Register thread);
252
253  // These always tightly bind to MacroAssembler::call_VM_base
254  // bypassing the virtual implementation
255  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
256  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
257  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
258  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
259  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
260
261  void call_VM_leaf(address entry_point,
262                    int number_of_arguments = 0);
263  void call_VM_leaf(address entry_point,
264                    Register arg_1);
265  void call_VM_leaf(address entry_point,
266                    Register arg_1, Register arg_2);
267  void call_VM_leaf(address entry_point,
268                    Register arg_1, Register arg_2, Register arg_3);
269
270  // These always tightly bind to MacroAssembler::call_VM_leaf_base
271  // bypassing the virtual implementation
272  void super_call_VM_leaf(address entry_point);
273  void super_call_VM_leaf(address entry_point, Register arg_1);
274  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
275  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
276  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
277
278  // last Java Frame (fills frame anchor)
279  void set_last_Java_frame(Register thread,
280                           Register last_java_sp,
281                           Register last_java_fp,
282                           address last_java_pc);
283
284  // thread in the default location (r15_thread on 64bit)
285  void set_last_Java_frame(Register last_java_sp,
286                           Register last_java_fp,
287                           address last_java_pc);
288
289  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
290
291  // thread in the default location (r15_thread on 64bit)
292  void reset_last_Java_frame(bool clear_fp, bool clear_pc);
293
294  // Stores
295  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
296  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
297
298#if INCLUDE_ALL_GCS
299
300  void g1_write_barrier_pre(Register obj,
301                            Register pre_val,
302                            Register thread,
303                            Register tmp,
304                            bool tosca_live,
305                            bool expand_call);
306
307  void g1_write_barrier_post(Register store_addr,
308                             Register new_val,
309                             Register thread,
310                             Register tmp,
311                             Register tmp2);
312
313#endif // INCLUDE_ALL_GCS
314
315  // split store_check(Register obj) to enhance instruction interleaving
316  void store_check_part_1(Register obj);
317  void store_check_part_2(Register obj);
318
319  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
320  void c2bool(Register x);
321
322  // C++ bool manipulation
323
324  void movbool(Register dst, Address src);
325  void movbool(Address dst, bool boolconst);
326  void movbool(Address dst, Register src);
327  void testbool(Register dst);
328
329  // oop manipulations
330  void load_klass(Register dst, Register src);
331  void store_klass(Register dst, Register src);
332
333  void load_heap_oop(Register dst, Address src);
334  void load_heap_oop_not_null(Register dst, Address src);
335  void store_heap_oop(Address dst, Register src);
336  void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
337
338  // Used for storing NULL. All other oop constants should be
339  // stored using routines that take a jobject.
340  void store_heap_oop_null(Address dst);
341
342  void load_prototype_header(Register dst, Register src);
343
344#ifdef _LP64
345  void store_klass_gap(Register dst, Register src);
346
347  // This dummy is to prevent a call to store_heap_oop from
348  // converting a zero (like NULL) into a Register by giving
349  // the compiler two choices it can't resolve
350
351  void store_heap_oop(Address dst, void* dummy);
352
353  void encode_heap_oop(Register r);
354  void decode_heap_oop(Register r);
355  void encode_heap_oop_not_null(Register r);
356  void decode_heap_oop_not_null(Register r);
357  void encode_heap_oop_not_null(Register dst, Register src);
358  void decode_heap_oop_not_null(Register dst, Register src);
359
360  void set_narrow_oop(Register dst, jobject obj);
361  void set_narrow_oop(Address dst, jobject obj);
362  void cmp_narrow_oop(Register dst, jobject obj);
363  void cmp_narrow_oop(Address dst, jobject obj);
364
365  void encode_klass_not_null(Register r);
366  void decode_klass_not_null(Register r);
367  void encode_klass_not_null(Register dst, Register src);
368  void decode_klass_not_null(Register dst, Register src);
369  void set_narrow_klass(Register dst, Klass* k);
370  void set_narrow_klass(Address dst, Klass* k);
371  void cmp_narrow_klass(Register dst, Klass* k);
372  void cmp_narrow_klass(Address dst, Klass* k);
373
374  // if heap base register is used - reinit it with the correct value
375  void reinit_heapbase();
376
377  DEBUG_ONLY(void verify_heapbase(const char* msg);)
378
379#endif // _LP64
380
381  // Int division/remainder for Java
382  // (as idivl, but checks for special case as described in JVM spec.)
383  // returns idivl instruction offset for implicit exception handling
384  int corrected_idivl(Register reg);
385
386  // Long division/remainder for Java
387  // (as idivq, but checks for special case as described in JVM spec.)
388  // returns idivq instruction offset for implicit exception handling
389  int corrected_idivq(Register reg);
390
391  void int3();
392
393  // Long operation macros for a 32bit cpu
394  // Long negation for Java
395  void lneg(Register hi, Register lo);
396
397  // Long multiplication for Java
398  // (destroys contents of eax, ebx, ecx and edx)
399  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
400
401  // Long shifts for Java
402  // (semantics as described in JVM spec.)
403  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
404  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
405
406  // Long compare for Java
407  // (semantics as described in JVM spec.)
408  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
409
410
411  // misc
412
413  // Sign extension
414  void sign_extend_short(Register reg);
415  void sign_extend_byte(Register reg);
416
417  // Division by power of 2, rounding towards 0
418  void division_with_shift(Register reg, int shift_value);
419
420  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
421  //
422  // CF (corresponds to C0) if x < y
423  // PF (corresponds to C2) if unordered
424  // ZF (corresponds to C3) if x = y
425  //
426  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
427  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
428  void fcmp(Register tmp);
429  // Variant of the above which allows y to be further down the stack
430  // and which only pops x and y if specified. If pop_right is
431  // specified then pop_left must also be specified.
432  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
433
434  // Floating-point comparison for Java
435  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
436  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
437  // (semantics as described in JVM spec.)
438  void fcmp2int(Register dst, bool unordered_is_less);
439  // Variant of the above which allows y to be further down the stack
440  // and which only pops x and y if specified. If pop_right is
441  // specified then pop_left must also be specified.
442  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
443
444  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
445  // tmp is a temporary register, if none is available use noreg
446  void fremr(Register tmp);
447
448
449  // same as fcmp2int, but using SSE2
450  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
451  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
452
453  // Inlined sin/cos generator for Java; must not use CPU instruction
454  // directly on Intel as it does not have high enough precision
455  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
456  // number of FPU stack slots in use; all but the topmost will
457  // require saving if a slow case is necessary. Assumes argument is
458  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
459  // this code.
460  void trigfunc(char trig, int num_fpu_regs_in_use = 1);
461
462  // branch to L if FPU flag C2 is set/not set
463  // tmp is a temporary register, if none is available use noreg
464  void jC2 (Register tmp, Label& L);
465  void jnC2(Register tmp, Label& L);
466
467  // Pop ST (ffree & fincstp combined)
468  void fpop();
469
470  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
471  void push_fTOS();
472
473  // pops double TOS element from CPU stack and pushes on FPU stack
474  void pop_fTOS();
475
476  void empty_FPU_stack();
477
478  void push_IU_state();
479  void pop_IU_state();
480
481  void push_FPU_state();
482  void pop_FPU_state();
483
484  void push_CPU_state();
485  void pop_CPU_state();
486
487  // Round up to a power of two
488  void round_to(Register reg, int modulus);
489
490  // Callee saved registers handling
491  void push_callee_saved_registers();
492  void pop_callee_saved_registers();
493
494  // allocation
495  void eden_allocate(
496    Register obj,                      // result: pointer to object after successful allocation
497    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
498    int      con_size_in_bytes,        // object size in bytes if   known at compile time
499    Register t1,                       // temp register
500    Label&   slow_case                 // continuation point if fast allocation fails
501  );
502  void tlab_allocate(
503    Register obj,                      // result: pointer to object after successful allocation
504    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
505    int      con_size_in_bytes,        // object size in bytes if   known at compile time
506    Register t1,                       // temp register
507    Register t2,                       // temp register
508    Label&   slow_case                 // continuation point if fast allocation fails
509  );
510  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
511  void incr_allocated_bytes(Register thread,
512                            Register var_size_in_bytes, int con_size_in_bytes,
513                            Register t1 = noreg);
514
515  // interface method calling
516  void lookup_interface_method(Register recv_klass,
517                               Register intf_klass,
518                               RegisterOrConstant itable_index,
519                               Register method_result,
520                               Register scan_temp,
521                               Label& no_such_interface);
522
523  // virtual method calling
524  void lookup_virtual_method(Register recv_klass,
525                             RegisterOrConstant vtable_index,
526                             Register method_result);
527
528  // Test sub_klass against super_klass, with fast and slow paths.
529
530  // The fast path produces a tri-state answer: yes / no / maybe-slow.
531  // One of the three labels can be NULL, meaning take the fall-through.
532  // If super_check_offset is -1, the value is loaded up from super_klass.
533  // No registers are killed, except temp_reg.
534  void check_klass_subtype_fast_path(Register sub_klass,
535                                     Register super_klass,
536                                     Register temp_reg,
537                                     Label* L_success,
538                                     Label* L_failure,
539                                     Label* L_slow_path,
540                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
541
542  // The rest of the type check; must be wired to a corresponding fast path.
543  // It does not repeat the fast path logic, so don't use it standalone.
544  // The temp_reg and temp2_reg can be noreg, if no temps are available.
545  // Updates the sub's secondary super cache as necessary.
546  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
547  void check_klass_subtype_slow_path(Register sub_klass,
548                                     Register super_klass,
549                                     Register temp_reg,
550                                     Register temp2_reg,
551                                     Label* L_success,
552                                     Label* L_failure,
553                                     bool set_cond_codes = false);
554
555  // Simplified, combined version, good for typical uses.
556  // Falls through on failure.
557  void check_klass_subtype(Register sub_klass,
558                           Register super_klass,
559                           Register temp_reg,
560                           Label& L_success);
561
562  // method handles (JSR 292)
563  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
564
565  //----
566  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
567
568  // Debugging
569
570  // only if +VerifyOops
571  // TODO: Make these macros with file and line like sparc version!
572  void verify_oop(Register reg, const char* s = "broken oop");
573  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
574
575  // TODO: verify method and klass metadata (compare against vptr?)
576  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
577  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
578
579#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
580#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
581
582  // only if +VerifyFPU
583  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
584
585  // Verify or restore cpu control state after JNI call
586  void restore_cpu_control_state_after_jni();
587
588  // prints msg, dumps registers and stops execution
589  void stop(const char* msg);
590
591  // prints msg and continues
592  void warn(const char* msg);
593
594  // dumps registers and other state
595  void print_state();
596
597  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
598  static void debug64(char* msg, int64_t pc, int64_t regs[]);
599  static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
600  static void print_state64(int64_t pc, int64_t regs[]);
601
602  void os_breakpoint();
603
604  void untested()                                { stop("untested"); }
605
606  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
607
608  void should_not_reach_here()                   { stop("should not reach here"); }
609
610  void print_CPU_state();
611
612  // Stack overflow checking
613  void bang_stack_with_offset(int offset) {
614    // stack grows down, caller passes positive offset
615    assert(offset > 0, "must bang with negative offset");
616    movl(Address(rsp, (-offset)), rax);
617  }
618
619  // Writes to stack successive pages until offset reached to check for
620  // stack overflow + shadow pages.  Also, clobbers tmp
621  void bang_stack_size(Register size, Register tmp);
622
623  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
624                                                Register tmp,
625                                                int offset);
626
627  // Support for serializing memory accesses between threads
628  void serialize_memory(Register thread, Register tmp);
629
630  void verify_tlab();
631
632  // Biased locking support
633  // lock_reg and obj_reg must be loaded up with the appropriate values.
634  // swap_reg must be rax, and is killed.
635  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
636  // be killed; if not supplied, push/pop will be used internally to
637  // allocate a temporary (inefficient, avoid if possible).
638  // Optional slow case is for implementations (interpreter and C1) which branch to
639  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
640  // Returns offset of first potentially-faulting instruction for null
641  // check info (currently consumed only by C1). If
642  // swap_reg_contains_mark is true then returns -1 as it is assumed
643  // the calling code has already passed any potential faults.
644  int biased_locking_enter(Register lock_reg, Register obj_reg,
645                           Register swap_reg, Register tmp_reg,
646                           bool swap_reg_contains_mark,
647                           Label& done, Label* slow_case = NULL,
648                           BiasedLockingCounters* counters = NULL);
649  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
650
651
652  Condition negate_condition(Condition cond);
653
654  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
655  // operands. In general the names are modified to avoid hiding the instruction in Assembler
656  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
657  // here in MacroAssembler. The major exception to this rule is call
658
659  // Arithmetics
660
661
662  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
663  void addptr(Address dst, Register src);
664
665  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
666  void addptr(Register dst, int32_t src);
667  void addptr(Register dst, Register src);
668  void addptr(Register dst, RegisterOrConstant src) {
669    if (src.is_constant()) addptr(dst, (int) src.as_constant());
670    else                   addptr(dst,       src.as_register());
671  }
672
673  void andptr(Register dst, int32_t src);
674  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
675
676  void cmp8(AddressLiteral src1, int imm);
677
678  // renamed to drag out the casting of address to int32_t/intptr_t
679  void cmp32(Register src1, int32_t imm);
680
681  void cmp32(AddressLiteral src1, int32_t imm);
682  // compare reg - mem, or reg - &mem
683  void cmp32(Register src1, AddressLiteral src2);
684
685  void cmp32(Register src1, Address src2);
686
687#ifndef _LP64
688  void cmpklass(Address dst, Metadata* obj);
689  void cmpklass(Register dst, Metadata* obj);
690  void cmpoop(Address dst, jobject obj);
691  void cmpoop(Register dst, jobject obj);
692#endif // _LP64
693
694  // NOTE src2 must be the lval. This is NOT an mem-mem compare
695  void cmpptr(Address src1, AddressLiteral src2);
696
697  void cmpptr(Register src1, AddressLiteral src2);
698
699  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
700  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
701  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
702
703  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
704  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
705
706  // cmp64 to avoild hiding cmpq
707  void cmp64(Register src1, AddressLiteral src);
708
709  void cmpxchgptr(Register reg, Address adr);
710
711  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
712
713
714  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
715
716
717  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
718
719  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
720
721  void shlptr(Register dst, int32_t shift);
722  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
723
724  void shrptr(Register dst, int32_t shift);
725  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
726
727  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
728  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
729
730  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
731
732  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
733  void subptr(Register dst, int32_t src);
734  // Force generation of a 4 byte immediate value even if it fits into 8bit
735  void subptr_imm32(Register dst, int32_t src);
736  void subptr(Register dst, Register src);
737  void subptr(Register dst, RegisterOrConstant src) {
738    if (src.is_constant()) subptr(dst, (int) src.as_constant());
739    else                   subptr(dst,       src.as_register());
740  }
741
742  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
743  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
744
745  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
746  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
747
748  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
749
750
751
752  // Helper functions for statistics gathering.
753  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
754  void cond_inc32(Condition cond, AddressLiteral counter_addr);
755  // Unconditional atomic increment.
756  void atomic_incl(AddressLiteral counter_addr);
757
758  void lea(Register dst, AddressLiteral adr);
759  void lea(Address dst, AddressLiteral adr);
760  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
761
762  void leal32(Register dst, Address src) { leal(dst, src); }
763
764  // Import other testl() methods from the parent class or else
765  // they will be hidden by the following overriding declaration.
766  using Assembler::testl;
767  void testl(Register dst, AddressLiteral src);
768
769  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
770  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
771  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
772
773  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
774  void testptr(Register src1, Register src2);
775
776  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
777  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
778
779  // Calls
780
781  void call(Label& L, relocInfo::relocType rtype);
782  void call(Register entry);
783
784  // NOTE: this call tranfers to the effective address of entry NOT
785  // the address contained by entry. This is because this is more natural
786  // for jumps/calls.
787  void call(AddressLiteral entry);
788
789  // Emit the CompiledIC call idiom
790  void ic_call(address entry);
791
792  // Jumps
793
794  // NOTE: these jumps tranfer to the effective address of dst NOT
795  // the address contained by dst. This is because this is more natural
796  // for jumps/calls.
797  void jump(AddressLiteral dst);
798  void jump_cc(Condition cc, AddressLiteral dst);
799
800  // 32bit can do a case table jump in one instruction but we no longer allow the base
801  // to be installed in the Address class. This jump will tranfers to the address
802  // contained in the location described by entry (not the address of entry)
803  void jump(ArrayAddress entry);
804
805  // Floating
806
807  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
808  void andpd(XMMRegister dst, AddressLiteral src);
809
810  void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
811  void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
812  void andps(XMMRegister dst, AddressLiteral src);
813
814  void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
815  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
816  void comiss(XMMRegister dst, AddressLiteral src);
817
818  void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
819  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
820  void comisd(XMMRegister dst, AddressLiteral src);
821
822  void fadd_s(Address src)        { Assembler::fadd_s(src); }
823  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
824
825  void fldcw(Address src) { Assembler::fldcw(src); }
826  void fldcw(AddressLiteral src);
827
828  void fld_s(int index)   { Assembler::fld_s(index); }
829  void fld_s(Address src) { Assembler::fld_s(src); }
830  void fld_s(AddressLiteral src);
831
832  void fld_d(Address src) { Assembler::fld_d(src); }
833  void fld_d(AddressLiteral src);
834
835  void fld_x(Address src) { Assembler::fld_x(src); }
836  void fld_x(AddressLiteral src);
837
838  void fmul_s(Address src)        { Assembler::fmul_s(src); }
839  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
840
841  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
842  void ldmxcsr(AddressLiteral src);
843
844  // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
845  // all corner cases and may result in NaN and require fallback to a
846  // runtime call.
847  void fast_pow();
848  void fast_exp();
849  void increase_precision();
850  void restore_precision();
851
852  // computes exp(x). Fallback to runtime call included.
853  void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
854  // computes pow(x,y). Fallback to runtime call included.
855  void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
856
857private:
858
859  // call runtime as a fallback for trig functions and pow/exp.
860  void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
861
862  // computes 2^(Ylog2X); Ylog2X in ST(0)
863  void pow_exp_core_encoding();
864
865  // computes pow(x,y) or exp(x). Fallback to runtime call included.
866  void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
867
868  // these are private because users should be doing movflt/movdbl
869
870  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
871  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
872  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
873  void movss(XMMRegister dst, AddressLiteral src);
874
875  void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
876  void movlpd(XMMRegister dst, AddressLiteral src);
877
878public:
879
880  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
881  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
882  void addsd(XMMRegister dst, AddressLiteral src);
883
884  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
885  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
886  void addss(XMMRegister dst, AddressLiteral src);
887
888  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
889  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
890  void divsd(XMMRegister dst, AddressLiteral src);
891
892  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
893  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
894  void divss(XMMRegister dst, AddressLiteral src);
895
896  // Move Unaligned Double Quadword
897  void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
898  void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
899  void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
900  void movdqu(XMMRegister dst, AddressLiteral src);
901
902  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
903  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
904  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
905  void movsd(XMMRegister dst, AddressLiteral src);
906
907  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
908  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
909  void mulsd(XMMRegister dst, AddressLiteral src);
910
911  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
912  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
913  void mulss(XMMRegister dst, AddressLiteral src);
914
915  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
916  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
917  void sqrtsd(XMMRegister dst, AddressLiteral src);
918
919  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
920  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
921  void sqrtss(XMMRegister dst, AddressLiteral src);
922
923  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
924  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
925  void subsd(XMMRegister dst, AddressLiteral src);
926
927  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
928  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
929  void subss(XMMRegister dst, AddressLiteral src);
930
931  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
932  void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
933  void ucomiss(XMMRegister dst, AddressLiteral src);
934
935  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
936  void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
937  void ucomisd(XMMRegister dst, AddressLiteral src);
938
939  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
940  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
941  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
942  void xorpd(XMMRegister dst, AddressLiteral src);
943
944  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
945  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
946  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
947  void xorps(XMMRegister dst, AddressLiteral src);
948
949  // Shuffle Bytes
950  void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
951  void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
952  void pshufb(XMMRegister dst, AddressLiteral src);
953  // AVX 3-operands instructions
954
955  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
956  void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
957  void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
958
959  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
960  void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
961  void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
962
963  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
964  void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
965  void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
966
967  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
968  void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
969  void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
970
971  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
972  void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
973  void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
974
975  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
976  void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
977  void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
978
979  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
980  void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
981  void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
982
983  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
984  void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
985  void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
986
987  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
988  void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
989  void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
990
991  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
992  void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
993  void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
994
995  // AVX Vector instructions
996
997  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
998  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
999  void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1000
1001  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1002  void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1003  void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1004
1005  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
1006    if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1007      Assembler::vpxor(dst, nds, src, vector256);
1008    else
1009      Assembler::vxorpd(dst, nds, src, vector256);
1010  }
1011  void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
1012    if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1013      Assembler::vpxor(dst, nds, src, vector256);
1014    else
1015      Assembler::vxorpd(dst, nds, src, vector256);
1016  }
1017
1018  // Simple version for AVX2 256bit vectors
1019  void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1020  void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1021
1022  // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1023  void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1024    if (UseAVX > 1) // vinserti128h is available only in AVX2
1025      Assembler::vinserti128h(dst, nds, src);
1026    else
1027      Assembler::vinsertf128h(dst, nds, src);
1028  }
1029
1030  // Data
1031
1032  void cmov32( Condition cc, Register dst, Address  src);
1033  void cmov32( Condition cc, Register dst, Register src);
1034
1035  void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1036
1037  void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1038  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1039
1040  void movoop(Register dst, jobject obj);
1041  void movoop(Address dst, jobject obj);
1042
1043  void mov_metadata(Register dst, Metadata* obj);
1044  void mov_metadata(Address dst, Metadata* obj);
1045
1046  void movptr(ArrayAddress dst, Register src);
1047  // can this do an lea?
1048  void movptr(Register dst, ArrayAddress src);
1049
1050  void movptr(Register dst, Address src);
1051
1052  void movptr(Register dst, AddressLiteral src);
1053
1054  void movptr(Register dst, intptr_t src);
1055  void movptr(Register dst, Register src);
1056  void movptr(Address dst, intptr_t src);
1057
1058  void movptr(Address dst, Register src);
1059
1060  void movptr(Register dst, RegisterOrConstant src) {
1061    if (src.is_constant()) movptr(dst, src.as_constant());
1062    else                   movptr(dst, src.as_register());
1063  }
1064
1065#ifdef _LP64
1066  // Generally the next two are only used for moving NULL
1067  // Although there are situations in initializing the mark word where
1068  // they could be used. They are dangerous.
1069
1070  // They only exist on LP64 so that int32_t and intptr_t are not the same
1071  // and we have ambiguous declarations.
1072
1073  void movptr(Address dst, int32_t imm32);
1074  void movptr(Register dst, int32_t imm32);
1075#endif // _LP64
1076
1077  // to avoid hiding movl
1078  void mov32(AddressLiteral dst, Register src);
1079  void mov32(Register dst, AddressLiteral src);
1080
1081  // to avoid hiding movb
1082  void movbyte(ArrayAddress dst, int src);
1083
1084  // Import other mov() methods from the parent class or else
1085  // they will be hidden by the following overriding declaration.
1086  using Assembler::movdl;
1087  using Assembler::movq;
1088  void movdl(XMMRegister dst, AddressLiteral src);
1089  void movq(XMMRegister dst, AddressLiteral src);
1090
1091  // Can push value or effective address
1092  void pushptr(AddressLiteral src);
1093
1094  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1095  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1096
1097  void pushoop(jobject obj);
1098  void pushklass(Metadata* obj);
1099
1100  // sign extend as need a l to ptr sized element
1101  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1102  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1103
1104  // C2 compiled method's prolog code.
1105  void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
1106
1107  // clear memory of size 'cnt' qwords, starting at 'base'.
1108  void clear_mem(Register base, Register cnt, Register rtmp);
1109
1110  // IndexOf strings.
1111  // Small strings are loaded through stack if they cross page boundary.
1112  void string_indexof(Register str1, Register str2,
1113                      Register cnt1, Register cnt2,
1114                      int int_cnt2,  Register result,
1115                      XMMRegister vec, Register tmp);
1116
1117  // IndexOf for constant substrings with size >= 8 elements
1118  // which don't need to be loaded through stack.
1119  void string_indexofC8(Register str1, Register str2,
1120                      Register cnt1, Register cnt2,
1121                      int int_cnt2,  Register result,
1122                      XMMRegister vec, Register tmp);
1123
1124    // Smallest code: we don't need to load through stack,
1125    // check string tail.
1126
1127  // Compare strings.
1128  void string_compare(Register str1, Register str2,
1129                      Register cnt1, Register cnt2, Register result,
1130                      XMMRegister vec1);
1131
1132  // Compare char[] arrays.
1133  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1134                          Register limit, Register result, Register chr,
1135                          XMMRegister vec1, XMMRegister vec2);
1136
1137  // Fill primitive arrays
1138  void generate_fill(BasicType t, bool aligned,
1139                     Register to, Register value, Register count,
1140                     Register rtmp, XMMRegister xtmp);
1141
1142  void encode_iso_array(Register src, Register dst, Register len,
1143                        XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1144                        XMMRegister tmp4, Register tmp5, Register result);
1145
1146#undef VIRTUAL
1147
1148};
1149
1150/**
1151 * class SkipIfEqual:
1152 *
1153 * Instantiating this class will result in assembly code being output that will
1154 * jump around any code emitted between the creation of the instance and it's
1155 * automatic destruction at the end of a scope block, depending on the value of
1156 * the flag passed to the constructor, which will be checked at run-time.
1157 */
1158class SkipIfEqual {
1159 private:
1160  MacroAssembler* _masm;
1161  Label _label;
1162
1163 public:
1164   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1165   ~SkipIfEqual();
1166};
1167
1168#endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP
1169