macroAssembler_x86.hpp revision 13184:7903df1b0c4f
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
26#define CPU_X86_VM_MACROASSEMBLER_X86_HPP
27
28#include "asm/assembler.hpp"
29#include "utilities/macros.hpp"
30#include "runtime/rtmLocking.hpp"
31
32// MacroAssembler extends Assembler by frequently used macros.
33//
34// Instructions for which a 'better' code sequence exists depending
35// on arguments should also go in here.
36
37class MacroAssembler: public Assembler {
38  friend class LIR_Assembler;
39  friend class Runtime1;      // as_Address()
40
41 protected:
42
43  Address as_Address(AddressLiteral adr);
44  Address as_Address(ArrayAddress adr);
45
46  // Support for VM calls
47  //
48  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
49  // may customize this version by overriding it for its purposes (e.g., to save/restore
50  // additional registers when doing a VM call).
51
52  virtual void call_VM_leaf_base(
53    address entry_point,               // the entry point
54    int     number_of_arguments        // the number of arguments to pop after the call
55  );
56
57  // This is the base routine called by the different versions of call_VM. The interpreter
58  // may customize this version by overriding it for its purposes (e.g., to save/restore
59  // additional registers when doing a VM call).
60  //
61  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
62  // returns the register which contains the thread upon return. If a thread register has been
63  // specified, the return value will correspond to that register. If no last_java_sp is specified
64  // (noreg) than rsp will be used instead.
65  virtual void call_VM_base(           // returns the register containing the thread upon return
66    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
67    Register java_thread,              // the thread if computed before     ; use noreg otherwise
68    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
69    address  entry_point,              // the entry point
70    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
71    bool     check_exceptions          // whether to check for pending exceptions after return
72  );
73
74  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
75
76  // helpers for FPU flag access
77  // tmp is a temporary register, if none is available use noreg
78  void save_rax   (Register tmp);
79  void restore_rax(Register tmp);
80
81 public:
82  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
83
84 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
85 // The implementation is only non-empty for the InterpreterMacroAssembler,
86 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
87 virtual void check_and_handle_popframe(Register java_thread);
88 virtual void check_and_handle_earlyret(Register java_thread);
89
90  // Support for NULL-checks
91  //
92  // Generates code that causes a NULL OS exception if the content of reg is NULL.
93  // If the accessed location is M[reg + offset] and the offset is known, provide the
94  // offset. No explicit code generation is needed if the offset is within a certain
95  // range (0 <= offset <= page_size).
96
97  void null_check(Register reg, int offset = -1);
98  static bool needs_explicit_null_check(intptr_t offset);
99
100  // Required platform-specific helpers for Label::patch_instructions.
101  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
102  void pd_patch_instruction(address branch, address target) {
103    unsigned char op = branch[0];
104    assert(op == 0xE8 /* call */ ||
105        op == 0xE9 /* jmp */ ||
106        op == 0xEB /* short jmp */ ||
107        (op & 0xF0) == 0x70 /* short jcc */ ||
108        op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
109        op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
110        "Invalid opcode at patch point");
111
112    if (op == 0xEB || (op & 0xF0) == 0x70) {
113      // short offset operators (jmp and jcc)
114      char* disp = (char*) &branch[1];
115      int imm8 = target - (address) &disp[1];
116      guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
117      *disp = imm8;
118    } else {
119      int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
120      int imm32 = target - (address) &disp[1];
121      *disp = imm32;
122    }
123  }
124
125  // The following 4 methods return the offset of the appropriate move instruction
126
127  // Support for fast byte/short loading with zero extension (depending on particular CPU)
128  int load_unsigned_byte(Register dst, Address src);
129  int load_unsigned_short(Register dst, Address src);
130
131  // Support for fast byte/short loading with sign extension (depending on particular CPU)
132  int load_signed_byte(Register dst, Address src);
133  int load_signed_short(Register dst, Address src);
134
135  // Support for sign-extension (hi:lo = extend_sign(lo))
136  void extend_sign(Register hi, Register lo);
137
138  // Load and store values by size and signed-ness
139  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
140  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
141
142  // Support for inc/dec with optimal instruction selection depending on value
143
144  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
145  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
146
147  void decrementl(Address dst, int value = 1);
148  void decrementl(Register reg, int value = 1);
149
150  void decrementq(Register reg, int value = 1);
151  void decrementq(Address dst, int value = 1);
152
153  void incrementl(Address dst, int value = 1);
154  void incrementl(Register reg, int value = 1);
155
156  void incrementq(Register reg, int value = 1);
157  void incrementq(Address dst, int value = 1);
158
159  // special instructions for EVEX
160  void setvectmask(Register dst, Register src);
161  void restorevectmask();
162
163  // Support optimal SSE move instructions.
164  void movflt(XMMRegister dst, XMMRegister src) {
165    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
166    else                       { movss (dst, src); return; }
167  }
168  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
169  void movflt(XMMRegister dst, AddressLiteral src);
170  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
171
172  void movdbl(XMMRegister dst, XMMRegister src) {
173    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
174    else                       { movsd (dst, src); return; }
175  }
176
177  void movdbl(XMMRegister dst, AddressLiteral src);
178
179  void movdbl(XMMRegister dst, Address src) {
180    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
181    else                         { movlpd(dst, src); return; }
182  }
183  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
184
185  void incrementl(AddressLiteral dst);
186  void incrementl(ArrayAddress dst);
187
188  void incrementq(AddressLiteral dst);
189
190  // Alignment
191  void align(int modulus);
192  void align(int modulus, int target);
193
194  // A 5 byte nop that is safe for patching (see patch_verified_entry)
195  void fat_nop();
196
197  // Stack frame creation/removal
198  void enter();
199  void leave();
200
201  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
202  // The pointer will be loaded into the thread register.
203  void get_thread(Register thread);
204
205
206  // Support for VM calls
207  //
208  // It is imperative that all calls into the VM are handled via the call_VM macros.
209  // They make sure that the stack linkage is setup correctly. call_VM's correspond
210  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
211
212
213  void call_VM(Register oop_result,
214               address entry_point,
215               bool check_exceptions = true);
216  void call_VM(Register oop_result,
217               address entry_point,
218               Register arg_1,
219               bool check_exceptions = true);
220  void call_VM(Register oop_result,
221               address entry_point,
222               Register arg_1, Register arg_2,
223               bool check_exceptions = true);
224  void call_VM(Register oop_result,
225               address entry_point,
226               Register arg_1, Register arg_2, Register arg_3,
227               bool check_exceptions = true);
228
229  // Overloadings with last_Java_sp
230  void call_VM(Register oop_result,
231               Register last_java_sp,
232               address entry_point,
233               int number_of_arguments = 0,
234               bool check_exceptions = true);
235  void call_VM(Register oop_result,
236               Register last_java_sp,
237               address entry_point,
238               Register arg_1, bool
239               check_exceptions = true);
240  void call_VM(Register oop_result,
241               Register last_java_sp,
242               address entry_point,
243               Register arg_1, Register arg_2,
244               bool check_exceptions = true);
245  void call_VM(Register oop_result,
246               Register last_java_sp,
247               address entry_point,
248               Register arg_1, Register arg_2, Register arg_3,
249               bool check_exceptions = true);
250
251  void get_vm_result  (Register oop_result, Register thread);
252  void get_vm_result_2(Register metadata_result, Register thread);
253
254  // These always tightly bind to MacroAssembler::call_VM_base
255  // bypassing the virtual implementation
256  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
257  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
258  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
259  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
260  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
261
262  void call_VM_leaf0(address entry_point);
263  void call_VM_leaf(address entry_point,
264                    int number_of_arguments = 0);
265  void call_VM_leaf(address entry_point,
266                    Register arg_1);
267  void call_VM_leaf(address entry_point,
268                    Register arg_1, Register arg_2);
269  void call_VM_leaf(address entry_point,
270                    Register arg_1, Register arg_2, Register arg_3);
271
272  // These always tightly bind to MacroAssembler::call_VM_leaf_base
273  // bypassing the virtual implementation
274  void super_call_VM_leaf(address entry_point);
275  void super_call_VM_leaf(address entry_point, Register arg_1);
276  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
277  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
278  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
279
280  // last Java Frame (fills frame anchor)
281  void set_last_Java_frame(Register thread,
282                           Register last_java_sp,
283                           Register last_java_fp,
284                           address last_java_pc);
285
286  // thread in the default location (r15_thread on 64bit)
287  void set_last_Java_frame(Register last_java_sp,
288                           Register last_java_fp,
289                           address last_java_pc);
290
291  void reset_last_Java_frame(Register thread, bool clear_fp);
292
293  // thread in the default location (r15_thread on 64bit)
294  void reset_last_Java_frame(bool clear_fp);
295
296  // Stores
297  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
298  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
299
300  void resolve_jobject(Register value, Register thread, Register tmp);
301  void clear_jweak_tag(Register possibly_jweak);
302
303#if INCLUDE_ALL_GCS
304
305  void g1_write_barrier_pre(Register obj,
306                            Register pre_val,
307                            Register thread,
308                            Register tmp,
309                            bool tosca_live,
310                            bool expand_call);
311
312  void g1_write_barrier_post(Register store_addr,
313                             Register new_val,
314                             Register thread,
315                             Register tmp,
316                             Register tmp2);
317
318#endif // INCLUDE_ALL_GCS
319
320  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
321  void c2bool(Register x);
322
323  // C++ bool manipulation
324
325  void movbool(Register dst, Address src);
326  void movbool(Address dst, bool boolconst);
327  void movbool(Address dst, Register src);
328  void testbool(Register dst);
329
330  void load_mirror(Register mirror, Register method);
331
332  // oop manipulations
333  void load_klass(Register dst, Register src);
334  void store_klass(Register dst, Register src);
335
336  void load_heap_oop(Register dst, Address src);
337  void load_heap_oop_not_null(Register dst, Address src);
338  void store_heap_oop(Address dst, Register src);
339  void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
340
341  // Used for storing NULL. All other oop constants should be
342  // stored using routines that take a jobject.
343  void store_heap_oop_null(Address dst);
344
345  void load_prototype_header(Register dst, Register src);
346
347#ifdef _LP64
348  void store_klass_gap(Register dst, Register src);
349
350  // This dummy is to prevent a call to store_heap_oop from
351  // converting a zero (like NULL) into a Register by giving
352  // the compiler two choices it can't resolve
353
354  void store_heap_oop(Address dst, void* dummy);
355
356  void encode_heap_oop(Register r);
357  void decode_heap_oop(Register r);
358  void encode_heap_oop_not_null(Register r);
359  void decode_heap_oop_not_null(Register r);
360  void encode_heap_oop_not_null(Register dst, Register src);
361  void decode_heap_oop_not_null(Register dst, Register src);
362
363  void set_narrow_oop(Register dst, jobject obj);
364  void set_narrow_oop(Address dst, jobject obj);
365  void cmp_narrow_oop(Register dst, jobject obj);
366  void cmp_narrow_oop(Address dst, jobject obj);
367
368  void encode_klass_not_null(Register r);
369  void decode_klass_not_null(Register r);
370  void encode_klass_not_null(Register dst, Register src);
371  void decode_klass_not_null(Register dst, Register src);
372  void set_narrow_klass(Register dst, Klass* k);
373  void set_narrow_klass(Address dst, Klass* k);
374  void cmp_narrow_klass(Register dst, Klass* k);
375  void cmp_narrow_klass(Address dst, Klass* k);
376
377  // Returns the byte size of the instructions generated by decode_klass_not_null()
378  // when compressed klass pointers are being used.
379  static int instr_size_for_decode_klass_not_null();
380
381  // if heap base register is used - reinit it with the correct value
382  void reinit_heapbase();
383
384  DEBUG_ONLY(void verify_heapbase(const char* msg);)
385
386#endif // _LP64
387
388  // Int division/remainder for Java
389  // (as idivl, but checks for special case as described in JVM spec.)
390  // returns idivl instruction offset for implicit exception handling
391  int corrected_idivl(Register reg);
392
393  // Long division/remainder for Java
394  // (as idivq, but checks for special case as described in JVM spec.)
395  // returns idivq instruction offset for implicit exception handling
396  int corrected_idivq(Register reg);
397
398  void int3();
399
400  // Long operation macros for a 32bit cpu
401  // Long negation for Java
402  void lneg(Register hi, Register lo);
403
404  // Long multiplication for Java
405  // (destroys contents of eax, ebx, ecx and edx)
406  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
407
408  // Long shifts for Java
409  // (semantics as described in JVM spec.)
410  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
411  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
412
413  // Long compare for Java
414  // (semantics as described in JVM spec.)
415  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
416
417
418  // misc
419
420  // Sign extension
421  void sign_extend_short(Register reg);
422  void sign_extend_byte(Register reg);
423
424  // Division by power of 2, rounding towards 0
425  void division_with_shift(Register reg, int shift_value);
426
427  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
428  //
429  // CF (corresponds to C0) if x < y
430  // PF (corresponds to C2) if unordered
431  // ZF (corresponds to C3) if x = y
432  //
433  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
434  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
435  void fcmp(Register tmp);
436  // Variant of the above which allows y to be further down the stack
437  // and which only pops x and y if specified. If pop_right is
438  // specified then pop_left must also be specified.
439  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
440
441  // Floating-point comparison for Java
442  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
443  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
444  // (semantics as described in JVM spec.)
445  void fcmp2int(Register dst, bool unordered_is_less);
446  // Variant of the above which allows y to be further down the stack
447  // and which only pops x and y if specified. If pop_right is
448  // specified then pop_left must also be specified.
449  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
450
451  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
452  // tmp is a temporary register, if none is available use noreg
453  void fremr(Register tmp);
454
455  // dst = c = a * b + c
456  void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
457  void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
458
459  void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
460  void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
461  void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
462  void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
463
464
465  // same as fcmp2int, but using SSE2
466  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
467  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
468
469  // branch to L if FPU flag C2 is set/not set
470  // tmp is a temporary register, if none is available use noreg
471  void jC2 (Register tmp, Label& L);
472  void jnC2(Register tmp, Label& L);
473
474  // Pop ST (ffree & fincstp combined)
475  void fpop();
476
477  // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
478  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
479  void load_float(Address src);
480
481  // Store float value to 'address'. If UseSSE >= 1, the value is stored
482  // from register xmm0. Otherwise, the value is stored from the FPU stack.
483  void store_float(Address dst);
484
485  // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
486  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
487  void load_double(Address src);
488
489  // Store double value to 'address'. If UseSSE >= 2, the value is stored
490  // from register xmm0. Otherwise, the value is stored from the FPU stack.
491  void store_double(Address dst);
492
493  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
494  void push_fTOS();
495
496  // pops double TOS element from CPU stack and pushes on FPU stack
497  void pop_fTOS();
498
499  void empty_FPU_stack();
500
501  void push_IU_state();
502  void pop_IU_state();
503
504  void push_FPU_state();
505  void pop_FPU_state();
506
507  void push_CPU_state();
508  void pop_CPU_state();
509
510  // Round up to a power of two
511  void round_to(Register reg, int modulus);
512
513  // Callee saved registers handling
514  void push_callee_saved_registers();
515  void pop_callee_saved_registers();
516
517  // allocation
518  void eden_allocate(
519    Register obj,                      // result: pointer to object after successful allocation
520    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
521    int      con_size_in_bytes,        // object size in bytes if   known at compile time
522    Register t1,                       // temp register
523    Label&   slow_case                 // continuation point if fast allocation fails
524  );
525  void tlab_allocate(
526    Register obj,                      // result: pointer to object after successful allocation
527    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
528    int      con_size_in_bytes,        // object size in bytes if   known at compile time
529    Register t1,                       // temp register
530    Register t2,                       // temp register
531    Label&   slow_case                 // continuation point if fast allocation fails
532  );
533  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
534  void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
535
536  void incr_allocated_bytes(Register thread,
537                            Register var_size_in_bytes, int con_size_in_bytes,
538                            Register t1 = noreg);
539
540  // interface method calling
541  void lookup_interface_method(Register recv_klass,
542                               Register intf_klass,
543                               RegisterOrConstant itable_index,
544                               Register method_result,
545                               Register scan_temp,
546                               Label& no_such_interface);
547
548  // virtual method calling
549  void lookup_virtual_method(Register recv_klass,
550                             RegisterOrConstant vtable_index,
551                             Register method_result);
552
553  // Test sub_klass against super_klass, with fast and slow paths.
554
555  // The fast path produces a tri-state answer: yes / no / maybe-slow.
556  // One of the three labels can be NULL, meaning take the fall-through.
557  // If super_check_offset is -1, the value is loaded up from super_klass.
558  // No registers are killed, except temp_reg.
559  void check_klass_subtype_fast_path(Register sub_klass,
560                                     Register super_klass,
561                                     Register temp_reg,
562                                     Label* L_success,
563                                     Label* L_failure,
564                                     Label* L_slow_path,
565                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
566
567  // The rest of the type check; must be wired to a corresponding fast path.
568  // It does not repeat the fast path logic, so don't use it standalone.
569  // The temp_reg and temp2_reg can be noreg, if no temps are available.
570  // Updates the sub's secondary super cache as necessary.
571  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
572  void check_klass_subtype_slow_path(Register sub_klass,
573                                     Register super_klass,
574                                     Register temp_reg,
575                                     Register temp2_reg,
576                                     Label* L_success,
577                                     Label* L_failure,
578                                     bool set_cond_codes = false);
579
580  // Simplified, combined version, good for typical uses.
581  // Falls through on failure.
582  void check_klass_subtype(Register sub_klass,
583                           Register super_klass,
584                           Register temp_reg,
585                           Label& L_success);
586
587  // method handles (JSR 292)
588  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
589
590  //----
591  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
592
593  // Debugging
594
595  // only if +VerifyOops
596  // TODO: Make these macros with file and line like sparc version!
597  void verify_oop(Register reg, const char* s = "broken oop");
598  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
599
600  // TODO: verify method and klass metadata (compare against vptr?)
601  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
602  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
603
604#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
605#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
606
607  // only if +VerifyFPU
608  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
609
610  // Verify or restore cpu control state after JNI call
611  void restore_cpu_control_state_after_jni();
612
613  // prints msg, dumps registers and stops execution
614  void stop(const char* msg);
615
616  // prints msg and continues
617  void warn(const char* msg);
618
619  // dumps registers and other state
620  void print_state();
621
622  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
623  static void debug64(char* msg, int64_t pc, int64_t regs[]);
624  static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
625  static void print_state64(int64_t pc, int64_t regs[]);
626
627  void os_breakpoint();
628
629  void untested()                                { stop("untested"); }
630
631  void unimplemented(const char* what = "");
632
633  void should_not_reach_here()                   { stop("should not reach here"); }
634
635  void print_CPU_state();
636
637  // Stack overflow checking
638  void bang_stack_with_offset(int offset) {
639    // stack grows down, caller passes positive offset
640    assert(offset > 0, "must bang with negative offset");
641    movl(Address(rsp, (-offset)), rax);
642  }
643
644  // Writes to stack successive pages until offset reached to check for
645  // stack overflow + shadow pages.  Also, clobbers tmp
646  void bang_stack_size(Register size, Register tmp);
647
648  // Check for reserved stack access in method being exited (for JIT)
649  void reserved_stack_check();
650
651  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
652                                                Register tmp,
653                                                int offset);
654
655  // Support for serializing memory accesses between threads
656  void serialize_memory(Register thread, Register tmp);
657
658  void verify_tlab();
659
660  // Biased locking support
661  // lock_reg and obj_reg must be loaded up with the appropriate values.
662  // swap_reg must be rax, and is killed.
663  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
664  // be killed; if not supplied, push/pop will be used internally to
665  // allocate a temporary (inefficient, avoid if possible).
666  // Optional slow case is for implementations (interpreter and C1) which branch to
667  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
668  // Returns offset of first potentially-faulting instruction for null
669  // check info (currently consumed only by C1). If
670  // swap_reg_contains_mark is true then returns -1 as it is assumed
671  // the calling code has already passed any potential faults.
672  int biased_locking_enter(Register lock_reg, Register obj_reg,
673                           Register swap_reg, Register tmp_reg,
674                           bool swap_reg_contains_mark,
675                           Label& done, Label* slow_case = NULL,
676                           BiasedLockingCounters* counters = NULL);
677  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
678#ifdef COMPILER2
679  // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
680  // See full desription in macroAssembler_x86.cpp.
681  void fast_lock(Register obj, Register box, Register tmp,
682                 Register scr, Register cx1, Register cx2,
683                 BiasedLockingCounters* counters,
684                 RTMLockingCounters* rtm_counters,
685                 RTMLockingCounters* stack_rtm_counters,
686                 Metadata* method_data,
687                 bool use_rtm, bool profile_rtm);
688  void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
689#if INCLUDE_RTM_OPT
690  void rtm_counters_update(Register abort_status, Register rtm_counters);
691  void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
692  void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
693                                   RTMLockingCounters* rtm_counters,
694                                   Metadata* method_data);
695  void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
696                     RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
697  void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
698  void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
699  void rtm_stack_locking(Register obj, Register tmp, Register scr,
700                         Register retry_on_abort_count,
701                         RTMLockingCounters* stack_rtm_counters,
702                         Metadata* method_data, bool profile_rtm,
703                         Label& DONE_LABEL, Label& IsInflated);
704  void rtm_inflated_locking(Register obj, Register box, Register tmp,
705                            Register scr, Register retry_on_busy_count,
706                            Register retry_on_abort_count,
707                            RTMLockingCounters* rtm_counters,
708                            Metadata* method_data, bool profile_rtm,
709                            Label& DONE_LABEL);
710#endif
711#endif
712
713  Condition negate_condition(Condition cond);
714
715  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
716  // operands. In general the names are modified to avoid hiding the instruction in Assembler
717  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
718  // here in MacroAssembler. The major exception to this rule is call
719
720  // Arithmetics
721
722
723  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
724  void addptr(Address dst, Register src);
725
726  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
727  void addptr(Register dst, int32_t src);
728  void addptr(Register dst, Register src);
729  void addptr(Register dst, RegisterOrConstant src) {
730    if (src.is_constant()) addptr(dst, (int) src.as_constant());
731    else                   addptr(dst,       src.as_register());
732  }
733
734  void andptr(Register dst, int32_t src);
735  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
736
737  void cmp8(AddressLiteral src1, int imm);
738
739  // renamed to drag out the casting of address to int32_t/intptr_t
740  void cmp32(Register src1, int32_t imm);
741
742  void cmp32(AddressLiteral src1, int32_t imm);
743  // compare reg - mem, or reg - &mem
744  void cmp32(Register src1, AddressLiteral src2);
745
746  void cmp32(Register src1, Address src2);
747
748#ifndef _LP64
749  void cmpklass(Address dst, Metadata* obj);
750  void cmpklass(Register dst, Metadata* obj);
751  void cmpoop(Address dst, jobject obj);
752  void cmpoop(Register dst, jobject obj);
753#endif // _LP64
754
755  // NOTE src2 must be the lval. This is NOT an mem-mem compare
756  void cmpptr(Address src1, AddressLiteral src2);
757
758  void cmpptr(Register src1, AddressLiteral src2);
759
760  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
761  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
762  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
763
764  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
765  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
766
767  // cmp64 to avoild hiding cmpq
768  void cmp64(Register src1, AddressLiteral src);
769
770  void cmpxchgptr(Register reg, Address adr);
771
772  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
773
774
775  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
776  void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
777
778
779  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
780
781  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
782
783  void shlptr(Register dst, int32_t shift);
784  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
785
786  void shrptr(Register dst, int32_t shift);
787  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
788
789  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
790  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
791
792  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
793
794  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
795  void subptr(Register dst, int32_t src);
796  // Force generation of a 4 byte immediate value even if it fits into 8bit
797  void subptr_imm32(Register dst, int32_t src);
798  void subptr(Register dst, Register src);
799  void subptr(Register dst, RegisterOrConstant src) {
800    if (src.is_constant()) subptr(dst, (int) src.as_constant());
801    else                   subptr(dst,       src.as_register());
802  }
803
804  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
805  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
806
807  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
808  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
809
810  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
811
812
813
814  // Helper functions for statistics gathering.
815  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
816  void cond_inc32(Condition cond, AddressLiteral counter_addr);
817  // Unconditional atomic increment.
818  void atomic_incl(Address counter_addr);
819  void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
820#ifdef _LP64
821  void atomic_incq(Address counter_addr);
822  void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
823#endif
824  void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
825  void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
826
827  void lea(Register dst, AddressLiteral adr);
828  void lea(Address dst, AddressLiteral adr);
829  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
830
831  void leal32(Register dst, Address src) { leal(dst, src); }
832
833  // Import other testl() methods from the parent class or else
834  // they will be hidden by the following overriding declaration.
835  using Assembler::testl;
836  void testl(Register dst, AddressLiteral src);
837
838  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
839  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
840  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
841  void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
842
843  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
844  void testptr(Register src1, Register src2);
845
846  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
847  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
848
849  // Calls
850
851  void call(Label& L, relocInfo::relocType rtype);
852  void call(Register entry);
853
854  // NOTE: this call transfers to the effective address of entry NOT
855  // the address contained by entry. This is because this is more natural
856  // for jumps/calls.
857  void call(AddressLiteral entry);
858
859  // Emit the CompiledIC call idiom
860  void ic_call(address entry, jint method_index = 0);
861
862  // Jumps
863
864  // NOTE: these jumps tranfer to the effective address of dst NOT
865  // the address contained by dst. This is because this is more natural
866  // for jumps/calls.
867  void jump(AddressLiteral dst);
868  void jump_cc(Condition cc, AddressLiteral dst);
869
870  // 32bit can do a case table jump in one instruction but we no longer allow the base
871  // to be installed in the Address class. This jump will tranfers to the address
872  // contained in the location described by entry (not the address of entry)
873  void jump(ArrayAddress entry);
874
875  // Floating
876
877  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
878  void andpd(XMMRegister dst, AddressLiteral src);
879  void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
880
881  void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
882  void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
883  void andps(XMMRegister dst, AddressLiteral src);
884
885  void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
886  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
887  void comiss(XMMRegister dst, AddressLiteral src);
888
889  void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
890  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
891  void comisd(XMMRegister dst, AddressLiteral src);
892
893  void fadd_s(Address src)        { Assembler::fadd_s(src); }
894  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
895
896  void fldcw(Address src) { Assembler::fldcw(src); }
897  void fldcw(AddressLiteral src);
898
899  void fld_s(int index)   { Assembler::fld_s(index); }
900  void fld_s(Address src) { Assembler::fld_s(src); }
901  void fld_s(AddressLiteral src);
902
903  void fld_d(Address src) { Assembler::fld_d(src); }
904  void fld_d(AddressLiteral src);
905
906  void fld_x(Address src) { Assembler::fld_x(src); }
907  void fld_x(AddressLiteral src);
908
909  void fmul_s(Address src)        { Assembler::fmul_s(src); }
910  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
911
912  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
913  void ldmxcsr(AddressLiteral src);
914
915#ifdef _LP64
916 private:
917  void sha256_AVX2_one_round_compute(
918    Register  reg_old_h,
919    Register  reg_a,
920    Register  reg_b,
921    Register  reg_c,
922    Register  reg_d,
923    Register  reg_e,
924    Register  reg_f,
925    Register  reg_g,
926    Register  reg_h,
927    int iter);
928  void sha256_AVX2_four_rounds_compute_first(int start);
929  void sha256_AVX2_four_rounds_compute_last(int start);
930  void sha256_AVX2_one_round_and_sched(
931        XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
932        XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
933        XMMRegister xmm_2,     /* ymm6 */
934        XMMRegister xmm_3,     /* ymm7 */
935        Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
936        Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
937        Register    reg_c,      /* edi */
938        Register    reg_d,      /* esi */
939        Register    reg_e,      /* r8d */
940        Register    reg_f,      /* r9d */
941        Register    reg_g,      /* r10d */
942        Register    reg_h,      /* r11d */
943        int iter);
944
945  void addm(int disp, Register r1, Register r2);
946
947 public:
948  void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
949                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
950                   Register buf, Register state, Register ofs, Register limit, Register rsp,
951                   bool multi_block, XMMRegister shuf_mask);
952#endif
953
954#ifdef _LP64
955 private:
956  void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
957                                     Register e, Register f, Register g, Register h, int iteration);
958
959  void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
960                                          Register a, Register b, Register c, Register d, Register e, Register f,
961                                          Register g, Register h, int iteration);
962
963  void addmq(int disp, Register r1, Register r2);
964 public:
965  void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
966                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
967                   Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
968                   XMMRegister shuf_mask);
969#endif
970
971  void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
972                 XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
973                 Register buf, Register state, Register ofs, Register limit, Register rsp,
974                 bool multi_block);
975
976#ifdef _LP64
977  void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
978                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
979                   Register buf, Register state, Register ofs, Register limit, Register rsp,
980                   bool multi_block, XMMRegister shuf_mask);
981#else
982  void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
983                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
984                   Register buf, Register state, Register ofs, Register limit, Register rsp,
985                   bool multi_block);
986#endif
987
988  void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
989                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
990                Register rax, Register rcx, Register rdx, Register tmp);
991
992#ifdef _LP64
993  void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
994                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
995                Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
996
997  void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
998                  XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
999                  Register rax, Register rcx, Register rdx, Register r11);
1000
1001  void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1002                XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1003                Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1004
1005  void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1008                Register tmp3, Register tmp4);
1009
1010  void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                Register rax, Register rcx, Register rdx, Register tmp1,
1013                Register tmp2, Register tmp3, Register tmp4);
1014  void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                Register rax, Register rcx, Register rdx, Register tmp1,
1017                Register tmp2, Register tmp3, Register tmp4);
1018#else
1019  void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1020                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1021                Register rax, Register rcx, Register rdx, Register tmp1);
1022
1023  void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                Register rax, Register rcx, Register rdx, Register tmp);
1026
1027  void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1028                XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1029                Register rdx, Register tmp);
1030
1031  void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1032                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1033                Register rax, Register rbx, Register rdx);
1034
1035  void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                Register rax, Register rcx, Register rdx, Register tmp);
1038
1039  void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1040                        Register edx, Register ebx, Register esi, Register edi,
1041                        Register ebp, Register esp);
1042
1043  void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1044                         Register esi, Register edi, Register ebp, Register esp);
1045
1046  void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1047                        Register edx, Register ebx, Register esi, Register edi,
1048                        Register ebp, Register esp);
1049
1050  void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1051                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1052                Register rax, Register rcx, Register rdx, Register tmp);
1053#endif
1054
1055  void increase_precision();
1056  void restore_precision();
1057
1058private:
1059
1060  // these are private because users should be doing movflt/movdbl
1061
1062  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1063  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1064  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1065  void movss(XMMRegister dst, AddressLiteral src);
1066
1067  void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1068  void movlpd(XMMRegister dst, AddressLiteral src);
1069
1070public:
1071
1072  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1073  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1074  void addsd(XMMRegister dst, AddressLiteral src);
1075
1076  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1077  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1078  void addss(XMMRegister dst, AddressLiteral src);
1079
1080  void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1081  void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1082  void addpd(XMMRegister dst, AddressLiteral src);
1083
1084  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1085  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1086  void divsd(XMMRegister dst, AddressLiteral src);
1087
1088  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1089  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1090  void divss(XMMRegister dst, AddressLiteral src);
1091
1092  // Move Unaligned Double Quadword
1093  void movdqu(Address     dst, XMMRegister src);
1094  void movdqu(XMMRegister dst, Address src);
1095  void movdqu(XMMRegister dst, XMMRegister src);
1096  void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1097  // AVX Unaligned forms
1098  void vmovdqu(Address     dst, XMMRegister src);
1099  void vmovdqu(XMMRegister dst, Address src);
1100  void vmovdqu(XMMRegister dst, XMMRegister src);
1101  void vmovdqu(XMMRegister dst, AddressLiteral src);
1102
1103  // Move Aligned Double Quadword
1104  void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1105  void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1106  void movdqa(XMMRegister dst, AddressLiteral src);
1107
1108  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1109  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1110  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1111  void movsd(XMMRegister dst, AddressLiteral src);
1112
1113  void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1114  void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1115  void mulpd(XMMRegister dst, AddressLiteral src);
1116
1117  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1118  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1119  void mulsd(XMMRegister dst, AddressLiteral src);
1120
1121  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1122  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1123  void mulss(XMMRegister dst, AddressLiteral src);
1124
1125  // Carry-Less Multiplication Quadword
1126  void pclmulldq(XMMRegister dst, XMMRegister src) {
1127    // 0x00 - multiply lower 64 bits [0:63]
1128    Assembler::pclmulqdq(dst, src, 0x00);
1129  }
1130  void pclmulhdq(XMMRegister dst, XMMRegister src) {
1131    // 0x11 - multiply upper 64 bits [64:127]
1132    Assembler::pclmulqdq(dst, src, 0x11);
1133  }
1134
1135  void pcmpeqb(XMMRegister dst, XMMRegister src);
1136  void pcmpeqw(XMMRegister dst, XMMRegister src);
1137
1138  void pcmpestri(XMMRegister dst, Address src, int imm8);
1139  void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1140
1141  void pmovzxbw(XMMRegister dst, XMMRegister src);
1142  void pmovzxbw(XMMRegister dst, Address src);
1143
1144  void pmovmskb(Register dst, XMMRegister src);
1145
1146  void ptest(XMMRegister dst, XMMRegister src);
1147
1148  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1149  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1150  void sqrtsd(XMMRegister dst, AddressLiteral src);
1151
1152  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1153  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1154  void sqrtss(XMMRegister dst, AddressLiteral src);
1155
1156  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1157  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1158  void subsd(XMMRegister dst, AddressLiteral src);
1159
1160  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1161  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1162  void subss(XMMRegister dst, AddressLiteral src);
1163
1164  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1165  void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1166  void ucomiss(XMMRegister dst, AddressLiteral src);
1167
1168  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1169  void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1170  void ucomisd(XMMRegister dst, AddressLiteral src);
1171
1172  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1173  void xorpd(XMMRegister dst, XMMRegister src);
1174  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1175  void xorpd(XMMRegister dst, AddressLiteral src);
1176
1177  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1178  void xorps(XMMRegister dst, XMMRegister src);
1179  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1180  void xorps(XMMRegister dst, AddressLiteral src);
1181
1182  // Shuffle Bytes
1183  void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1184  void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1185  void pshufb(XMMRegister dst, AddressLiteral src);
1186  // AVX 3-operands instructions
1187
1188  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1189  void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1190  void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1191
1192  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1193  void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1194  void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1195
1196  void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1197  void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1198
1199  void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1200  void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1201
1202  void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1203  void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1204
1205  void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1206  void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1207  void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1208
1209  void vpbroadcastw(XMMRegister dst, XMMRegister src);
1210
1211  void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1212  void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1213
1214  void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1215  void vpmovmskb(Register dst, XMMRegister src);
1216
1217  void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1218  void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1219
1220  void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1221  void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1222
1223  void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1224  void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1225
1226  void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1227  void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1228
1229  void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1230  void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1231
1232  void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1233  void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1234
1235  void vptest(XMMRegister dst, XMMRegister src);
1236
1237  void punpcklbw(XMMRegister dst, XMMRegister src);
1238  void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1239
1240  void pshufd(XMMRegister dst, Address src, int mode);
1241  void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1242
1243  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1244  void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1245
1246  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1247  void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1248  void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1249
1250  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1251  void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1252  void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1253
1254  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1255  void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1256  void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1257
1258  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1259  void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1260  void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1261
1262  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1263  void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1264  void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1265
1266  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1267  void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1268  void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1269
1270  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1271  void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1272  void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1273
1274  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1275  void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1276  void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1277
1278  void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1279  void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1280
1281  // AVX Vector instructions
1282
1283  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1284  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1285  void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1286
1287  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1288  void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1289  void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1290
1291  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1292    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1293      Assembler::vpxor(dst, nds, src, vector_len);
1294    else
1295      Assembler::vxorpd(dst, nds, src, vector_len);
1296  }
1297  void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1298    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1299      Assembler::vpxor(dst, nds, src, vector_len);
1300    else
1301      Assembler::vxorpd(dst, nds, src, vector_len);
1302  }
1303
1304  // Simple version for AVX2 256bit vectors
1305  void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1306  void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1307
1308  void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1309    if (UseAVX > 2) {
1310      Assembler::vinserti32x4(dst, dst, src, imm8);
1311    } else if (UseAVX > 1) {
1312      // vinserti128 is available only in AVX2
1313      Assembler::vinserti128(dst, nds, src, imm8);
1314    } else {
1315      Assembler::vinsertf128(dst, nds, src, imm8);
1316    }
1317  }
1318
1319  void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1320    if (UseAVX > 2) {
1321      Assembler::vinserti32x4(dst, dst, src, imm8);
1322    } else if (UseAVX > 1) {
1323      // vinserti128 is available only in AVX2
1324      Assembler::vinserti128(dst, nds, src, imm8);
1325    } else {
1326      Assembler::vinsertf128(dst, nds, src, imm8);
1327    }
1328  }
1329
1330  void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1331    if (UseAVX > 2) {
1332      Assembler::vextracti32x4(dst, src, imm8);
1333    } else if (UseAVX > 1) {
1334      // vextracti128 is available only in AVX2
1335      Assembler::vextracti128(dst, src, imm8);
1336    } else {
1337      Assembler::vextractf128(dst, src, imm8);
1338    }
1339  }
1340
1341  void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1342    if (UseAVX > 2) {
1343      Assembler::vextracti32x4(dst, src, imm8);
1344    } else if (UseAVX > 1) {
1345      // vextracti128 is available only in AVX2
1346      Assembler::vextracti128(dst, src, imm8);
1347    } else {
1348      Assembler::vextractf128(dst, src, imm8);
1349    }
1350  }
1351
1352  // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1353  void vinserti128_high(XMMRegister dst, XMMRegister src) {
1354    vinserti128(dst, dst, src, 1);
1355  }
1356  void vinserti128_high(XMMRegister dst, Address src) {
1357    vinserti128(dst, dst, src, 1);
1358  }
1359  void vextracti128_high(XMMRegister dst, XMMRegister src) {
1360    vextracti128(dst, src, 1);
1361  }
1362  void vextracti128_high(Address dst, XMMRegister src) {
1363    vextracti128(dst, src, 1);
1364  }
1365
1366  void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1367    if (UseAVX > 2) {
1368      Assembler::vinsertf32x4(dst, dst, src, 1);
1369    } else {
1370      Assembler::vinsertf128(dst, dst, src, 1);
1371    }
1372  }
1373
1374  void vinsertf128_high(XMMRegister dst, Address src) {
1375    if (UseAVX > 2) {
1376      Assembler::vinsertf32x4(dst, dst, src, 1);
1377    } else {
1378      Assembler::vinsertf128(dst, dst, src, 1);
1379    }
1380  }
1381
1382  void vextractf128_high(XMMRegister dst, XMMRegister src) {
1383    if (UseAVX > 2) {
1384      Assembler::vextractf32x4(dst, src, 1);
1385    } else {
1386      Assembler::vextractf128(dst, src, 1);
1387    }
1388  }
1389
1390  void vextractf128_high(Address dst, XMMRegister src) {
1391    if (UseAVX > 2) {
1392      Assembler::vextractf32x4(dst, src, 1);
1393    } else {
1394      Assembler::vextractf128(dst, src, 1);
1395    }
1396  }
1397
1398  // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1399  void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1400    Assembler::vinserti64x4(dst, dst, src, 1);
1401  }
1402  void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1403    Assembler::vinsertf64x4(dst, dst, src, 1);
1404  }
1405  void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1406    Assembler::vextracti64x4(dst, src, 1);
1407  }
1408  void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1409    Assembler::vextractf64x4(dst, src, 1);
1410  }
1411  void vextractf64x4_high(Address dst, XMMRegister src) {
1412    Assembler::vextractf64x4(dst, src, 1);
1413  }
1414  void vinsertf64x4_high(XMMRegister dst, Address src) {
1415    Assembler::vinsertf64x4(dst, dst, src, 1);
1416  }
1417
1418  // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1419  void vinserti128_low(XMMRegister dst, XMMRegister src) {
1420    vinserti128(dst, dst, src, 0);
1421  }
1422  void vinserti128_low(XMMRegister dst, Address src) {
1423    vinserti128(dst, dst, src, 0);
1424  }
1425  void vextracti128_low(XMMRegister dst, XMMRegister src) {
1426    vextracti128(dst, src, 0);
1427  }
1428  void vextracti128_low(Address dst, XMMRegister src) {
1429    vextracti128(dst, src, 0);
1430  }
1431
1432  void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1433    if (UseAVX > 2) {
1434      Assembler::vinsertf32x4(dst, dst, src, 0);
1435    } else {
1436      Assembler::vinsertf128(dst, dst, src, 0);
1437    }
1438  }
1439
1440  void vinsertf128_low(XMMRegister dst, Address src) {
1441    if (UseAVX > 2) {
1442      Assembler::vinsertf32x4(dst, dst, src, 0);
1443    } else {
1444      Assembler::vinsertf128(dst, dst, src, 0);
1445    }
1446  }
1447
1448  void vextractf128_low(XMMRegister dst, XMMRegister src) {
1449    if (UseAVX > 2) {
1450      Assembler::vextractf32x4(dst, src, 0);
1451    } else {
1452      Assembler::vextractf128(dst, src, 0);
1453    }
1454  }
1455
1456  void vextractf128_low(Address dst, XMMRegister src) {
1457    if (UseAVX > 2) {
1458      Assembler::vextractf32x4(dst, src, 0);
1459    } else {
1460      Assembler::vextractf128(dst, src, 0);
1461    }
1462  }
1463
1464  // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1465  void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1466    Assembler::vinserti64x4(dst, dst, src, 0);
1467  }
1468  void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1469    Assembler::vinsertf64x4(dst, dst, src, 0);
1470  }
1471  void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1472    Assembler::vextracti64x4(dst, src, 0);
1473  }
1474  void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1475    Assembler::vextractf64x4(dst, src, 0);
1476  }
1477  void vextractf64x4_low(Address dst, XMMRegister src) {
1478    Assembler::vextractf64x4(dst, src, 0);
1479  }
1480  void vinsertf64x4_low(XMMRegister dst, Address src) {
1481    Assembler::vinsertf64x4(dst, dst, src, 0);
1482  }
1483
1484  // Carry-Less Multiplication Quadword
1485  void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1486    // 0x00 - multiply lower 64 bits [0:63]
1487    Assembler::vpclmulqdq(dst, nds, src, 0x00);
1488  }
1489  void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1490    // 0x11 - multiply upper 64 bits [64:127]
1491    Assembler::vpclmulqdq(dst, nds, src, 0x11);
1492  }
1493
1494  // Data
1495
1496  void cmov32( Condition cc, Register dst, Address  src);
1497  void cmov32( Condition cc, Register dst, Register src);
1498
1499  void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1500
1501  void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1502  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1503
1504  void movoop(Register dst, jobject obj);
1505  void movoop(Address dst, jobject obj);
1506
1507  void mov_metadata(Register dst, Metadata* obj);
1508  void mov_metadata(Address dst, Metadata* obj);
1509
1510  void movptr(ArrayAddress dst, Register src);
1511  // can this do an lea?
1512  void movptr(Register dst, ArrayAddress src);
1513
1514  void movptr(Register dst, Address src);
1515
1516#ifdef _LP64
1517  void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1518#else
1519  void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1520#endif
1521
1522  void movptr(Register dst, intptr_t src);
1523  void movptr(Register dst, Register src);
1524  void movptr(Address dst, intptr_t src);
1525
1526  void movptr(Address dst, Register src);
1527
1528  void movptr(Register dst, RegisterOrConstant src) {
1529    if (src.is_constant()) movptr(dst, src.as_constant());
1530    else                   movptr(dst, src.as_register());
1531  }
1532
1533#ifdef _LP64
1534  // Generally the next two are only used for moving NULL
1535  // Although there are situations in initializing the mark word where
1536  // they could be used. They are dangerous.
1537
1538  // They only exist on LP64 so that int32_t and intptr_t are not the same
1539  // and we have ambiguous declarations.
1540
1541  void movptr(Address dst, int32_t imm32);
1542  void movptr(Register dst, int32_t imm32);
1543#endif // _LP64
1544
1545  // to avoid hiding movl
1546  void mov32(AddressLiteral dst, Register src);
1547  void mov32(Register dst, AddressLiteral src);
1548
1549  // to avoid hiding movb
1550  void movbyte(ArrayAddress dst, int src);
1551
1552  // Import other mov() methods from the parent class or else
1553  // they will be hidden by the following overriding declaration.
1554  using Assembler::movdl;
1555  using Assembler::movq;
1556  void movdl(XMMRegister dst, AddressLiteral src);
1557  void movq(XMMRegister dst, AddressLiteral src);
1558
1559  // Can push value or effective address
1560  void pushptr(AddressLiteral src);
1561
1562  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1563  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1564
1565  void pushoop(jobject obj);
1566  void pushklass(Metadata* obj);
1567
1568  // sign extend as need a l to ptr sized element
1569  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1570  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1571
1572  // C2 compiled method's prolog code.
1573  void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1574
1575  // clear memory of size 'cnt' qwords, starting at 'base';
1576  // if 'is_large' is set, do not try to produce short loop
1577  void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1578
1579#ifdef COMPILER2
1580  void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1581                           XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1582
1583  // IndexOf strings.
1584  // Small strings are loaded through stack if they cross page boundary.
1585  void string_indexof(Register str1, Register str2,
1586                      Register cnt1, Register cnt2,
1587                      int int_cnt2,  Register result,
1588                      XMMRegister vec, Register tmp,
1589                      int ae);
1590
1591  // IndexOf for constant substrings with size >= 8 elements
1592  // which don't need to be loaded through stack.
1593  void string_indexofC8(Register str1, Register str2,
1594                      Register cnt1, Register cnt2,
1595                      int int_cnt2,  Register result,
1596                      XMMRegister vec, Register tmp,
1597                      int ae);
1598
1599    // Smallest code: we don't need to load through stack,
1600    // check string tail.
1601
1602  // helper function for string_compare
1603  void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1604                          Address::ScaleFactor scale, Address::ScaleFactor scale1,
1605                          Address::ScaleFactor scale2, Register index, int ae);
1606  // Compare strings.
1607  void string_compare(Register str1, Register str2,
1608                      Register cnt1, Register cnt2, Register result,
1609                      XMMRegister vec1, int ae);
1610
1611  // Search for Non-ASCII character (Negative byte value) in a byte array,
1612  // return true if it has any and false otherwise.
1613  void has_negatives(Register ary1, Register len,
1614                     Register result, Register tmp1,
1615                     XMMRegister vec1, XMMRegister vec2);
1616
1617  // Compare char[] or byte[] arrays.
1618  void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1619                     Register limit, Register result, Register chr,
1620                     XMMRegister vec1, XMMRegister vec2, bool is_char);
1621
1622#endif
1623
1624  // Fill primitive arrays
1625  void generate_fill(BasicType t, bool aligned,
1626                     Register to, Register value, Register count,
1627                     Register rtmp, XMMRegister xtmp);
1628
1629  void encode_iso_array(Register src, Register dst, Register len,
1630                        XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1631                        XMMRegister tmp4, Register tmp5, Register result);
1632
1633#ifdef _LP64
1634  void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1635  void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1636                             Register y, Register y_idx, Register z,
1637                             Register carry, Register product,
1638                             Register idx, Register kdx);
1639  void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1640                              Register yz_idx, Register idx,
1641                              Register carry, Register product, int offset);
1642  void multiply_128_x_128_bmi2_loop(Register y, Register z,
1643                                    Register carry, Register carry2,
1644                                    Register idx, Register jdx,
1645                                    Register yz_idx1, Register yz_idx2,
1646                                    Register tmp, Register tmp3, Register tmp4);
1647  void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1648                               Register yz_idx, Register idx, Register jdx,
1649                               Register carry, Register product,
1650                               Register carry2);
1651  void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1652                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1653  void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1654                     Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1655  void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1656                            Register tmp2);
1657  void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1658                       Register rdxReg, Register raxReg);
1659  void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1660  void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1661                       Register tmp3, Register tmp4);
1662  void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1663                     Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1664
1665  void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1666               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1667               Register raxReg);
1668  void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1669               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1670               Register raxReg);
1671  void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1672                           Register result, Register tmp1, Register tmp2,
1673                           XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1674#endif
1675
1676  // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1677  void update_byte_crc32(Register crc, Register val, Register table);
1678  void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1679  // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1680  // Note on a naming convention:
1681  // Prefix w = register only used on a Westmere+ architecture
1682  // Prefix n = register only used on a Nehalem architecture
1683#ifdef _LP64
1684  void crc32c_ipl_alg4(Register in_out, uint32_t n,
1685                       Register tmp1, Register tmp2, Register tmp3);
1686#else
1687  void crc32c_ipl_alg4(Register in_out, uint32_t n,
1688                       Register tmp1, Register tmp2, Register tmp3,
1689                       XMMRegister xtmp1, XMMRegister xtmp2);
1690#endif
1691  void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1692                        Register in_out,
1693                        uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1694                        XMMRegister w_xtmp2,
1695                        Register tmp1,
1696                        Register n_tmp2, Register n_tmp3);
1697  void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1698                       XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1699                       Register tmp1, Register tmp2,
1700                       Register n_tmp3);
1701  void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1702                         Register in_out1, Register in_out2, Register in_out3,
1703                         Register tmp1, Register tmp2, Register tmp3,
1704                         XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1705                         Register tmp4, Register tmp5,
1706                         Register n_tmp6);
1707  void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1708                            Register tmp1, Register tmp2, Register tmp3,
1709                            Register tmp4, Register tmp5, Register tmp6,
1710                            XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1711                            bool is_pclmulqdq_supported);
1712  // Fold 128-bit data chunk
1713  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1714  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1715  // Fold 8-bit data
1716  void fold_8bit_crc32(Register crc, Register table, Register tmp);
1717  void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1718
1719  // Compress char[] array to byte[].
1720  void char_array_compress(Register src, Register dst, Register len,
1721                           XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1722                           XMMRegister tmp4, Register tmp5, Register result);
1723
1724  // Inflate byte[] array to char[].
1725  void byte_array_inflate(Register src, Register dst, Register len,
1726                          XMMRegister tmp1, Register tmp2);
1727
1728};
1729
1730/**
1731 * class SkipIfEqual:
1732 *
1733 * Instantiating this class will result in assembly code being output that will
1734 * jump around any code emitted between the creation of the instance and it's
1735 * automatic destruction at the end of a scope block, depending on the value of
1736 * the flag passed to the constructor, which will be checked at run-time.
1737 */
1738class SkipIfEqual {
1739 private:
1740  MacroAssembler* _masm;
1741  Label _label;
1742
1743 public:
1744   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1745   ~SkipIfEqual();
1746};
1747
1748#endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP
1749