interp_masm_x86.cpp revision 9111:a41fe5ffa839
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interp_masm_x86.hpp"
27#include "interpreter/interpreter.hpp"
28#include "interpreter/interpreterRuntime.hpp"
29#include "oops/arrayOop.hpp"
30#include "oops/markOop.hpp"
31#include "oops/methodData.hpp"
32#include "oops/method.hpp"
33#include "prims/jvmtiExport.hpp"
34#include "prims/jvmtiRedefineClassesTrace.hpp"
35#include "prims/jvmtiThreadState.hpp"
36#include "runtime/basicLock.hpp"
37#include "runtime/biasedLocking.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/thread.inline.hpp"
40
41// Implementation of InterpreterMacroAssembler
42
43void InterpreterMacroAssembler::jump_to_entry(address entry) {
44  assert(entry, "Entry must have been generated by now");
45  jump(RuntimeAddress(entry));
46}
47
48#ifndef CC_INTERP
49void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
50  Label update, next, none;
51
52  verify_oop(obj);
53
54  testptr(obj, obj);
55  jccb(Assembler::notZero, update);
56  orptr(mdo_addr, TypeEntries::null_seen);
57  jmpb(next);
58
59  bind(update);
60  load_klass(obj, obj);
61
62  xorptr(obj, mdo_addr);
63  testptr(obj, TypeEntries::type_klass_mask);
64  jccb(Assembler::zero, next); // klass seen before, nothing to
65                               // do. The unknown bit may have been
66                               // set already but no need to check.
67
68  testptr(obj, TypeEntries::type_unknown);
69  jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
70
71  cmpptr(mdo_addr, 0);
72  jccb(Assembler::equal, none);
73  cmpptr(mdo_addr, TypeEntries::null_seen);
74  jccb(Assembler::equal, none);
75  // There is a chance that the checks above (re-reading profiling
76  // data from memory) fail if another thread has just set the
77  // profiling to this obj's klass
78  xorptr(obj, mdo_addr);
79  testptr(obj, TypeEntries::type_klass_mask);
80  jccb(Assembler::zero, next);
81
82  // different than before. Cannot keep accurate profile.
83  orptr(mdo_addr, TypeEntries::type_unknown);
84  jmpb(next);
85
86  bind(none);
87  // first time here. Set profile type.
88  movptr(mdo_addr, obj);
89
90  bind(next);
91}
92
93void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
94  if (!ProfileInterpreter) {
95    return;
96  }
97
98  if (MethodData::profile_arguments() || MethodData::profile_return()) {
99    Label profile_continue;
100
101    test_method_data_pointer(mdp, profile_continue);
102
103    int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
104
105    cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
106    jcc(Assembler::notEqual, profile_continue);
107
108    if (MethodData::profile_arguments()) {
109      Label done;
110      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
111      addptr(mdp, off_to_args);
112
113      for (int i = 0; i < TypeProfileArgsLimit; i++) {
114        if (i > 0 || MethodData::profile_return()) {
115          // If return value type is profiled we may have no argument to profile
116          movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
117          subl(tmp, i*TypeStackSlotEntries::per_arg_count());
118          cmpl(tmp, TypeStackSlotEntries::per_arg_count());
119          jcc(Assembler::less, done);
120        }
121        movptr(tmp, Address(callee, Method::const_offset()));
122        load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
123        // stack offset o (zero based) from the start of the argument
124        // list, for n arguments translates into offset n - o - 1 from
125        // the end of the argument list
126        subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
127        subl(tmp, 1);
128        Address arg_addr = argument_address(tmp);
129        movptr(tmp, arg_addr);
130
131        Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
132        profile_obj_type(tmp, mdo_arg_addr);
133
134        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
135        addptr(mdp, to_add);
136        off_to_args += to_add;
137      }
138
139      if (MethodData::profile_return()) {
140        movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
141        subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
142      }
143
144      bind(done);
145
146      if (MethodData::profile_return()) {
147        // We're right after the type profile for the last
148        // argument. tmp is the number of cells left in the
149        // CallTypeData/VirtualCallTypeData to reach its end. Non null
150        // if there's a return to profile.
151        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
152        shll(tmp, exact_log2(DataLayout::cell_size));
153        addptr(mdp, tmp);
154      }
155      movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
156    } else {
157      assert(MethodData::profile_return(), "either profile call args or call ret");
158      update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
159    }
160
161    // mdp points right after the end of the
162    // CallTypeData/VirtualCallTypeData, right after the cells for the
163    // return value type if there's one
164
165    bind(profile_continue);
166  }
167}
168
169void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
170  assert_different_registers(mdp, ret, tmp, _bcp_register);
171  if (ProfileInterpreter && MethodData::profile_return()) {
172    Label profile_continue, done;
173
174    test_method_data_pointer(mdp, profile_continue);
175
176    if (MethodData::profile_return_jsr292_only()) {
177      assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
178
179      // If we don't profile all invoke bytecodes we must make sure
180      // it's a bytecode we indeed profile. We can't go back to the
181      // begining of the ProfileData we intend to update to check its
182      // type because we're right after it and we don't known its
183      // length
184      Label do_profile;
185      cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
186      jcc(Assembler::equal, do_profile);
187      cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
188      jcc(Assembler::equal, do_profile);
189      get_method(tmp);
190      cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
191      jcc(Assembler::notEqual, profile_continue);
192
193      bind(do_profile);
194    }
195
196    Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
197    mov(tmp, ret);
198    profile_obj_type(tmp, mdo_ret_addr);
199
200    bind(profile_continue);
201  }
202}
203
204void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
205  if (ProfileInterpreter && MethodData::profile_parameters()) {
206    Label profile_continue, done;
207
208    test_method_data_pointer(mdp, profile_continue);
209
210    // Load the offset of the area within the MDO used for
211    // parameters. If it's negative we're not profiling any parameters
212    movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
213    testl(tmp1, tmp1);
214    jcc(Assembler::negative, profile_continue);
215
216    // Compute a pointer to the area for parameters from the offset
217    // and move the pointer to the slot for the last
218    // parameters. Collect profiling from last parameter down.
219    // mdo start + parameters offset + array length - 1
220    addptr(mdp, tmp1);
221    movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
222    decrement(tmp1, TypeStackSlotEntries::per_arg_count());
223
224    Label loop;
225    bind(loop);
226
227    int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
228    int type_base = in_bytes(ParametersTypeData::type_offset(0));
229    Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
230    Address arg_off(mdp, tmp1, per_arg_scale, off_base);
231    Address arg_type(mdp, tmp1, per_arg_scale, type_base);
232
233    // load offset on the stack from the slot for this parameter
234    movptr(tmp2, arg_off);
235    negptr(tmp2);
236    // read the parameter from the local area
237    movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
238
239    // profile the parameter
240    profile_obj_type(tmp2, arg_type);
241
242    // go to next parameter
243    decrement(tmp1, TypeStackSlotEntries::per_arg_count());
244    jcc(Assembler::positive, loop);
245
246    bind(profile_continue);
247  }
248}
249#endif
250
251#ifdef CC_INTERP
252void InterpreterMacroAssembler::get_method(Register reg) {
253  movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
254  movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
255}
256#endif // CC_INTERP
257
258#ifndef CC_INTERP
259void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
260                                                  int number_of_arguments) {
261  // interpreter specific
262  //
263  // Note: No need to save/restore bcp & locals registers
264  //       since these are callee saved registers and no blocking/
265  //       GC can happen in leaf calls.
266  // Further Note: DO NOT save/restore bcp/locals. If a caller has
267  // already saved them so that it can use rsi/rdi as temporaries
268  // then a save/restore here will DESTROY the copy the caller
269  // saved! There used to be a save_bcp() that only happened in
270  // the ASSERT path (no restore_bcp). Which caused bizarre failures
271  // when jvm built with ASSERTs.
272#ifdef ASSERT
273  {
274    Label L;
275    cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
276    jcc(Assembler::equal, L);
277    stop("InterpreterMacroAssembler::call_VM_leaf_base:"
278         " last_sp != NULL");
279    bind(L);
280  }
281#endif
282  // super call
283  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
284  // interpreter specific
285  // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
286  // but since they may not have been saved (and we don't want to
287  // save them here (see note above) the assert is invalid.
288}
289
290void InterpreterMacroAssembler::call_VM_base(Register oop_result,
291                                             Register java_thread,
292                                             Register last_java_sp,
293                                             address  entry_point,
294                                             int      number_of_arguments,
295                                             bool     check_exceptions) {
296  // interpreter specific
297  //
298  // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
299  //       really make a difference for these runtime calls, since they are
300  //       slow anyway. Btw., bcp must be saved/restored since it may change
301  //       due to GC.
302  NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
303  save_bcp();
304#ifdef ASSERT
305  {
306    Label L;
307    cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
308    jcc(Assembler::equal, L);
309    stop("InterpreterMacroAssembler::call_VM_leaf_base:"
310         " last_sp != NULL");
311    bind(L);
312  }
313#endif /* ASSERT */
314  // super call
315  MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
316                               entry_point, number_of_arguments,
317                               check_exceptions);
318  // interpreter specific
319  restore_bcp();
320  restore_locals();
321}
322
323void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
324  if (JvmtiExport::can_pop_frame()) {
325    Label L;
326    // Initiate popframe handling only if it is not already being
327    // processed.  If the flag has the popframe_processing bit set, it
328    // means that this code is called *during* popframe handling - we
329    // don't want to reenter.
330    // This method is only called just after the call into the vm in
331    // call_VM_base, so the arg registers are available.
332    Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
333                        LP64_ONLY(c_rarg0);
334    movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
335    testl(pop_cond, JavaThread::popframe_pending_bit);
336    jcc(Assembler::zero, L);
337    testl(pop_cond, JavaThread::popframe_processing_bit);
338    jcc(Assembler::notZero, L);
339    // Call Interpreter::remove_activation_preserving_args_entry() to get the
340    // address of the same-named entrypoint in the generated interpreter code.
341    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
342    jmp(rax);
343    bind(L);
344    NOT_LP64(get_thread(java_thread);)
345  }
346}
347
348void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
349  Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
350  NOT_LP64(get_thread(thread);)
351  movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
352  const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
353  const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
354  const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
355#ifdef _LP64
356  switch (state) {
357    case atos: movptr(rax, oop_addr);
358               movptr(oop_addr, (int32_t)NULL_WORD);
359               verify_oop(rax, state);              break;
360    case ltos: movptr(rax, val_addr);                 break;
361    case btos:                                   // fall through
362    case ctos:                                   // fall through
363    case stos:                                   // fall through
364    case itos: movl(rax, val_addr);                 break;
365    case ftos: load_float(val_addr);                break;
366    case dtos: load_double(val_addr);               break;
367    case vtos: /* nothing to do */                  break;
368    default  : ShouldNotReachHere();
369  }
370  // Clean up tos value in the thread object
371  movl(tos_addr,  (int) ilgl);
372  movl(val_addr,  (int32_t) NULL_WORD);
373#else
374  const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
375                             + in_ByteSize(wordSize));
376  switch (state) {
377    case atos: movptr(rax, oop_addr);
378               movptr(oop_addr, NULL_WORD);
379               verify_oop(rax, state);                break;
380    case ltos:
381               movl(rdx, val_addr1);               // fall through
382    case btos:                                     // fall through
383    case ctos:                                     // fall through
384    case stos:                                     // fall through
385    case itos: movl(rax, val_addr);                   break;
386    case ftos: load_float(val_addr);                  break;
387    case dtos: load_double(val_addr);                 break;
388    case vtos: /* nothing to do */                    break;
389    default  : ShouldNotReachHere();
390  }
391#endif // _LP64
392  // Clean up tos value in the thread object
393  movl(tos_addr,  (int32_t) ilgl);
394  movptr(val_addr,  NULL_WORD);
395  NOT_LP64(movptr(val_addr1, NULL_WORD);)
396}
397
398
399void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
400  if (JvmtiExport::can_force_early_return()) {
401    Label L;
402    Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
403    Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
404
405    movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
406    testptr(tmp, tmp);
407    jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
408
409    // Initiate earlyret handling only if it is not already being processed.
410    // If the flag has the earlyret_processing bit set, it means that this code
411    // is called *during* earlyret handling - we don't want to reenter.
412    movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
413    cmpl(tmp, JvmtiThreadState::earlyret_pending);
414    jcc(Assembler::notEqual, L);
415
416    // Call Interpreter::remove_activation_early_entry() to get the address of the
417    // same-named entrypoint in the generated interpreter code.
418    NOT_LP64(get_thread(java_thread);)
419    movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
420#ifdef _LP64
421    movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
422    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
423#else
424    pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
425    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
426#endif // _LP64
427    jmp(rax);
428    bind(L);
429    NOT_LP64(get_thread(java_thread);)
430  }
431}
432
433void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
434  assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
435  load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
436  bswapl(reg);
437  shrl(reg, 16);
438}
439
440void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
441                                                       int bcp_offset,
442                                                       size_t index_size) {
443  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
444  if (index_size == sizeof(u2)) {
445    load_unsigned_short(index, Address(_bcp_register, bcp_offset));
446  } else if (index_size == sizeof(u4)) {
447    movl(index, Address(_bcp_register, bcp_offset));
448    // Check if the secondary index definition is still ~x, otherwise
449    // we have to change the following assembler code to calculate the
450    // plain index.
451    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
452    notl(index);  // convert to plain index
453  } else if (index_size == sizeof(u1)) {
454    load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
455  } else {
456    ShouldNotReachHere();
457  }
458}
459
460void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
461                                                           Register index,
462                                                           int bcp_offset,
463                                                           size_t index_size) {
464  assert_different_registers(cache, index);
465  get_cache_index_at_bcp(index, bcp_offset, index_size);
466  movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
467  assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
468  // convert from field index to ConstantPoolCacheEntry index
469  assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
470  shll(index, 2);
471}
472
473void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
474                                                                        Register index,
475                                                                        Register bytecode,
476                                                                        int byte_no,
477                                                                        int bcp_offset,
478                                                                        size_t index_size) {
479  get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
480  // We use a 32-bit load here since the layout of 64-bit words on
481  // little-endian machines allow us that.
482  movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
483  const int shift_count = (1 + byte_no) * BitsPerByte;
484  assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
485         (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
486         "correct shift count");
487  shrl(bytecode, shift_count);
488  assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
489  andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
490}
491
492void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
493                                                               Register tmp,
494                                                               int bcp_offset,
495                                                               size_t index_size) {
496  assert(cache != tmp, "must use different register");
497  get_cache_index_at_bcp(tmp, bcp_offset, index_size);
498  assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
499  // convert from field index to ConstantPoolCacheEntry index
500  // and from word offset to byte offset
501  assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
502  shll(tmp, 2 + LogBytesPerWord);
503  movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
504  // skip past the header
505  addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
506  addptr(cache, tmp);  // construct pointer to cache entry
507}
508
509// Load object from cpool->resolved_references(index)
510void InterpreterMacroAssembler::load_resolved_reference_at_index(
511                                           Register result, Register index) {
512  assert_different_registers(result, index);
513  // convert from field index to resolved_references() index and from
514  // word index to byte offset. Since this is a java object, it can be compressed
515  Register tmp = index;  // reuse
516  shll(tmp, LogBytesPerHeapOop);
517
518  get_constant_pool(result);
519  // load pointer for resolved_references[] objArray
520  movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
521  // JNIHandles::resolve(obj);
522  movptr(result, Address(result, 0));
523  // Add in the index
524  addptr(result, tmp);
525  load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
526}
527
528
529// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
530// subtype of super_klass.
531//
532// Args:
533//      rax: superklass
534//      Rsub_klass: subklass
535//
536// Kills:
537//      rcx, rdi
538void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
539                                                  Label& ok_is_subtype) {
540  assert(Rsub_klass != rax, "rax holds superklass");
541  LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
542  LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
543  assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
544  assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
545
546  // Profile the not-null value's klass.
547  profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
548
549  // Do the check.
550  check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
551
552  // Profile the failure of the check.
553  profile_typecheck_failed(rcx); // blows rcx
554}
555
556
557#ifndef _LP64
558void InterpreterMacroAssembler::f2ieee() {
559  if (IEEEPrecision) {
560    fstp_s(Address(rsp, 0));
561    fld_s(Address(rsp, 0));
562  }
563}
564
565
566void InterpreterMacroAssembler::d2ieee() {
567  if (IEEEPrecision) {
568    fstp_d(Address(rsp, 0));
569    fld_d(Address(rsp, 0));
570  }
571}
572#endif // _LP64
573
574// Java Expression Stack
575
576void InterpreterMacroAssembler::pop_ptr(Register r) {
577  pop(r);
578}
579
580void InterpreterMacroAssembler::push_ptr(Register r) {
581  push(r);
582}
583
584void InterpreterMacroAssembler::push_i(Register r) {
585  push(r);
586}
587
588void InterpreterMacroAssembler::push_f(XMMRegister r) {
589  subptr(rsp, wordSize);
590  movflt(Address(rsp, 0), r);
591}
592
593void InterpreterMacroAssembler::pop_f(XMMRegister r) {
594  movflt(r, Address(rsp, 0));
595  addptr(rsp, wordSize);
596}
597
598void InterpreterMacroAssembler::push_d(XMMRegister r) {
599  subptr(rsp, 2 * wordSize);
600  movdbl(Address(rsp, 0), r);
601}
602
603void InterpreterMacroAssembler::pop_d(XMMRegister r) {
604  movdbl(r, Address(rsp, 0));
605  addptr(rsp, 2 * Interpreter::stackElementSize);
606}
607
608#ifdef _LP64
609void InterpreterMacroAssembler::pop_i(Register r) {
610  // XXX can't use pop currently, upper half non clean
611  movl(r, Address(rsp, 0));
612  addptr(rsp, wordSize);
613}
614
615void InterpreterMacroAssembler::pop_l(Register r) {
616  movq(r, Address(rsp, 0));
617  addptr(rsp, 2 * Interpreter::stackElementSize);
618}
619
620void InterpreterMacroAssembler::push_l(Register r) {
621  subptr(rsp, 2 * wordSize);
622  movq(Address(rsp, 0), r);
623}
624
625void InterpreterMacroAssembler::pop(TosState state) {
626  switch (state) {
627  case atos: pop_ptr();                 break;
628  case btos:
629  case ctos:
630  case stos:
631  case itos: pop_i();                   break;
632  case ltos: pop_l();                   break;
633  case ftos: pop_f(xmm0);               break;
634  case dtos: pop_d(xmm0);               break;
635  case vtos: /* nothing to do */        break;
636  default:   ShouldNotReachHere();
637  }
638  verify_oop(rax, state);
639}
640
641void InterpreterMacroAssembler::push(TosState state) {
642  verify_oop(rax, state);
643  switch (state) {
644  case atos: push_ptr();                break;
645  case btos:
646  case ctos:
647  case stos:
648  case itos: push_i();                  break;
649  case ltos: push_l();                  break;
650  case ftos: push_f(xmm0);              break;
651  case dtos: push_d(xmm0);              break;
652  case vtos: /* nothing to do */        break;
653  default  : ShouldNotReachHere();
654  }
655}
656#else
657void InterpreterMacroAssembler::pop_i(Register r) {
658  pop(r);
659}
660
661void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
662  pop(lo);
663  pop(hi);
664}
665
666void InterpreterMacroAssembler::pop_f() {
667  fld_s(Address(rsp, 0));
668  addptr(rsp, 1 * wordSize);
669}
670
671void InterpreterMacroAssembler::pop_d() {
672  fld_d(Address(rsp, 0));
673  addptr(rsp, 2 * wordSize);
674}
675
676
677void InterpreterMacroAssembler::pop(TosState state) {
678  switch (state) {
679    case atos: pop_ptr(rax);                                 break;
680    case btos:                                               // fall through
681    case ctos:                                               // fall through
682    case stos:                                               // fall through
683    case itos: pop_i(rax);                                   break;
684    case ltos: pop_l(rax, rdx);                              break;
685    case ftos:
686      if (UseSSE >= 1) {
687        pop_f(xmm0);
688      } else {
689        pop_f();
690      }
691      break;
692    case dtos:
693      if (UseSSE >= 2) {
694        pop_d(xmm0);
695      } else {
696        pop_d();
697      }
698      break;
699    case vtos: /* nothing to do */                           break;
700    default  : ShouldNotReachHere();
701  }
702  verify_oop(rax, state);
703}
704
705
706void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
707  push(hi);
708  push(lo);
709}
710
711void InterpreterMacroAssembler::push_f() {
712  // Do not schedule for no AGI! Never write beyond rsp!
713  subptr(rsp, 1 * wordSize);
714  fstp_s(Address(rsp, 0));
715}
716
717void InterpreterMacroAssembler::push_d() {
718  // Do not schedule for no AGI! Never write beyond rsp!
719  subptr(rsp, 2 * wordSize);
720  fstp_d(Address(rsp, 0));
721}
722
723
724void InterpreterMacroAssembler::push(TosState state) {
725  verify_oop(rax, state);
726  switch (state) {
727    case atos: push_ptr(rax); break;
728    case btos:                                               // fall through
729    case ctos:                                               // fall through
730    case stos:                                               // fall through
731    case itos: push_i(rax);                                    break;
732    case ltos: push_l(rax, rdx);                               break;
733    case ftos:
734      if (UseSSE >= 1) {
735        push_f(xmm0);
736      } else {
737        push_f();
738      }
739      break;
740    case dtos:
741      if (UseSSE >= 2) {
742        push_d(xmm0);
743      } else {
744        push_d();
745      }
746      break;
747    case vtos: /* nothing to do */                             break;
748    default  : ShouldNotReachHere();
749  }
750}
751#endif // _LP64
752
753
754// Helpers for swap and dup
755void InterpreterMacroAssembler::load_ptr(int n, Register val) {
756  movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
757}
758
759void InterpreterMacroAssembler::store_ptr(int n, Register val) {
760  movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
761}
762
763
764void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
765  // set sender sp
766  lea(_bcp_register, Address(rsp, wordSize));
767  // record last_sp
768  movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
769}
770
771
772// Jump to from_interpreted entry of a call unless single stepping is possible
773// in this thread in which case we must call the i2i entry
774void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
775  prepare_to_jump_from_interpreted();
776
777  if (JvmtiExport::can_post_interpreter_events()) {
778    Label run_compiled_code;
779    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
780    // compiled code in threads for which the event is enabled.  Check here for
781    // interp_only_mode if these events CAN be enabled.
782    // interp_only is an int, on little endian it is sufficient to test the byte only
783    // Is a cmpl faster?
784    LP64_ONLY(temp = r15_thread;)
785    NOT_LP64(get_thread(temp);)
786    cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
787    jccb(Assembler::zero, run_compiled_code);
788    jmp(Address(method, Method::interpreter_entry_offset()));
789    bind(run_compiled_code);
790  }
791
792  jmp(Address(method, Method::from_interpreted_offset()));
793}
794
795// The following two routines provide a hook so that an implementation
796// can schedule the dispatch in two parts.  x86 does not do this.
797void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
798  // Nothing x86 specific to be done here
799}
800
801void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
802  dispatch_next(state, step);
803}
804
805void InterpreterMacroAssembler::dispatch_base(TosState state,
806                                              address* table,
807                                              bool verifyoop) {
808  verify_FPU(1, state);
809  if (VerifyActivationFrameSize) {
810    Label L;
811    mov(rcx, rbp);
812    subptr(rcx, rsp);
813    int32_t min_frame_size =
814      (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
815      wordSize;
816    cmpptr(rcx, (int32_t)min_frame_size);
817    jcc(Assembler::greaterEqual, L);
818    stop("broken stack frame");
819    bind(L);
820  }
821  if (verifyoop) {
822    verify_oop(rax, state);
823  }
824#ifdef _LP64
825  lea(rscratch1, ExternalAddress((address)table));
826  jmp(Address(rscratch1, rbx, Address::times_8));
827#else
828  Address index(noreg, rbx, Address::times_ptr);
829  ExternalAddress tbl((address)table);
830  ArrayAddress dispatch(tbl, index);
831  jump(dispatch);
832#endif // _LP64
833}
834
835void InterpreterMacroAssembler::dispatch_only(TosState state) {
836  dispatch_base(state, Interpreter::dispatch_table(state));
837}
838
839void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
840  dispatch_base(state, Interpreter::normal_table(state));
841}
842
843void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
844  dispatch_base(state, Interpreter::normal_table(state), false);
845}
846
847
848void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
849  // load next bytecode (load before advancing _bcp_register to prevent AGI)
850  load_unsigned_byte(rbx, Address(_bcp_register, step));
851  // advance _bcp_register
852  increment(_bcp_register, step);
853  dispatch_base(state, Interpreter::dispatch_table(state));
854}
855
856void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
857  // load current bytecode
858  load_unsigned_byte(rbx, Address(_bcp_register, 0));
859  dispatch_base(state, table);
860}
861
862// remove activation
863//
864// Unlock the receiver if this is a synchronized method.
865// Unlock any Java monitors from syncronized blocks.
866// Remove the activation from the stack.
867//
868// If there are locked Java monitors
869//    If throw_monitor_exception
870//       throws IllegalMonitorStateException
871//    Else if install_monitor_exception
872//       installs IllegalMonitorStateException
873//    Else
874//       no error processing
875void InterpreterMacroAssembler::remove_activation(
876        TosState state,
877        Register ret_addr,
878        bool throw_monitor_exception,
879        bool install_monitor_exception,
880        bool notify_jvmdi) {
881  // Note: Registers rdx xmm0 may be in use for the
882  // result check if synchronized method
883  Label unlocked, unlock, no_unlock;
884
885  const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
886  const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
887  const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
888                              // monitor pointers need different register
889                              // because rdx may have the result in it
890  NOT_LP64(get_thread(rcx);)
891
892  // get the value of _do_not_unlock_if_synchronized into rdx
893  const Address do_not_unlock_if_synchronized(rthread,
894    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
895  movbool(rbx, do_not_unlock_if_synchronized);
896  movbool(do_not_unlock_if_synchronized, false); // reset the flag
897
898 // get method access flags
899  movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
900  movl(rcx, Address(rcx, Method::access_flags_offset()));
901  testl(rcx, JVM_ACC_SYNCHRONIZED);
902  jcc(Assembler::zero, unlocked);
903
904  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
905  // is set.
906  testbool(rbx);
907  jcc(Assembler::notZero, no_unlock);
908
909  // unlock monitor
910  push(state); // save result
911
912  // BasicObjectLock will be first in list, since this is a
913  // synchronized method. However, need to check that the object has
914  // not been unlocked by an explicit monitorexit bytecode.
915  const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
916                        wordSize - (int) sizeof(BasicObjectLock));
917  // We use c_rarg1/rdx so that if we go slow path it will be the correct
918  // register for unlock_object to pass to VM directly
919  lea(robj, monitor); // address of first monitor
920
921  movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
922  testptr(rax, rax);
923  jcc(Assembler::notZero, unlock);
924
925  pop(state);
926  if (throw_monitor_exception) {
927    // Entry already unlocked, need to throw exception
928    NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
929    call_VM(noreg, CAST_FROM_FN_PTR(address,
930                   InterpreterRuntime::throw_illegal_monitor_state_exception));
931    should_not_reach_here();
932  } else {
933    // Monitor already unlocked during a stack unroll. If requested,
934    // install an illegal_monitor_state_exception.  Continue with
935    // stack unrolling.
936    if (install_monitor_exception) {
937      NOT_LP64(empty_FPU_stack();)
938      call_VM(noreg, CAST_FROM_FN_PTR(address,
939                     InterpreterRuntime::new_illegal_monitor_state_exception));
940    }
941    jmp(unlocked);
942  }
943
944  bind(unlock);
945  unlock_object(robj);
946  pop(state);
947
948  // Check that for block-structured locking (i.e., that all locked
949  // objects has been unlocked)
950  bind(unlocked);
951
952  // rax, rdx: Might contain return value
953
954  // Check that all monitors are unlocked
955  {
956    Label loop, exception, entry, restart;
957    const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
958    const Address monitor_block_top(
959        rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
960    const Address monitor_block_bot(
961        rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
962
963    bind(restart);
964    // We use c_rarg1 so that if we go slow path it will be the correct
965    // register for unlock_object to pass to VM directly
966    movptr(rmon, monitor_block_top); // points to current entry, starting
967                                  // with top-most entry
968    lea(rbx, monitor_block_bot);  // points to word before bottom of
969                                  // monitor block
970    jmp(entry);
971
972    // Entry already locked, need to throw exception
973    bind(exception);
974
975    if (throw_monitor_exception) {
976      // Throw exception
977      NOT_LP64(empty_FPU_stack();)
978      MacroAssembler::call_VM(noreg,
979                              CAST_FROM_FN_PTR(address, InterpreterRuntime::
980                                   throw_illegal_monitor_state_exception));
981      should_not_reach_here();
982    } else {
983      // Stack unrolling. Unlock object and install illegal_monitor_exception.
984      // Unlock does not block, so don't have to worry about the frame.
985      // We don't have to preserve c_rarg1 since we are going to throw an exception.
986
987      push(state);
988      mov(robj, rmon);   // nop if robj and rmon are the same
989      unlock_object(robj);
990      pop(state);
991
992      if (install_monitor_exception) {
993        NOT_LP64(empty_FPU_stack();)
994        call_VM(noreg, CAST_FROM_FN_PTR(address,
995                                        InterpreterRuntime::
996                                        new_illegal_monitor_state_exception));
997      }
998
999      jmp(restart);
1000    }
1001
1002    bind(loop);
1003    // check if current entry is used
1004    cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1005    jcc(Assembler::notEqual, exception);
1006
1007    addptr(rmon, entry_size); // otherwise advance to next entry
1008    bind(entry);
1009    cmpptr(rmon, rbx); // check if bottom reached
1010    jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1011  }
1012
1013  bind(no_unlock);
1014
1015  // jvmti support
1016  if (notify_jvmdi) {
1017    notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1018  } else {
1019    notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1020  }
1021
1022  // remove activation
1023  // get sender sp
1024  movptr(rbx,
1025         Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1026  leave();                           // remove frame anchor
1027  pop(ret_addr);                     // get return address
1028  mov(rsp, rbx);                     // set sp to sender sp
1029}
1030#endif // !CC_INTERP
1031
1032void InterpreterMacroAssembler::get_method_counters(Register method,
1033                                                    Register mcs, Label& skip) {
1034  Label has_counters;
1035  movptr(mcs, Address(method, Method::method_counters_offset()));
1036  testptr(mcs, mcs);
1037  jcc(Assembler::notZero, has_counters);
1038  call_VM(noreg, CAST_FROM_FN_PTR(address,
1039          InterpreterRuntime::build_method_counters), method);
1040  movptr(mcs, Address(method,Method::method_counters_offset()));
1041  testptr(mcs, mcs);
1042  jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1043  bind(has_counters);
1044}
1045
1046
1047// Lock object
1048//
1049// Args:
1050//      rdx, c_rarg1: BasicObjectLock to be used for locking
1051//
1052// Kills:
1053//      rax, rbx
1054void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1055  assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1056         "The argument is only for looks. It must be c_rarg1");
1057
1058  if (UseHeavyMonitors) {
1059    call_VM(noreg,
1060            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1061            lock_reg);
1062  } else {
1063    Label done;
1064
1065    const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1066    const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1067                                  // problematic case where tmp_reg = no_reg.
1068    const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1069
1070    const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1071    const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1072    const int mark_offset = lock_offset +
1073                            BasicLock::displaced_header_offset_in_bytes();
1074
1075    Label slow_case;
1076
1077    // Load object pointer into obj_reg
1078    movptr(obj_reg, Address(lock_reg, obj_offset));
1079
1080    if (UseBiasedLocking) {
1081      biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1082    }
1083
1084    // Load immediate 1 into swap_reg %rax
1085    movl(swap_reg, (int32_t)1);
1086
1087    // Load (object->mark() | 1) into swap_reg %rax
1088    orptr(swap_reg, Address(obj_reg, 0));
1089
1090    // Save (object->mark() | 1) into BasicLock's displaced header
1091    movptr(Address(lock_reg, mark_offset), swap_reg);
1092
1093    assert(lock_offset == 0,
1094           "displached header must be first word in BasicObjectLock");
1095
1096    if (os::is_MP()) lock();
1097    cmpxchgptr(lock_reg, Address(obj_reg, 0));
1098    if (PrintBiasedLockingStatistics) {
1099      cond_inc32(Assembler::zero,
1100                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1101    }
1102    jcc(Assembler::zero, done);
1103
1104    const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1105
1106    // Test if the oopMark is an obvious stack pointer, i.e.,
1107    //  1) (mark & zero_bits) == 0, and
1108    //  2) rsp <= mark < mark + os::pagesize()
1109    //
1110    // These 3 tests can be done by evaluating the following
1111    // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1112    // assuming both stack pointer and pagesize have their
1113    // least significant bits clear.
1114    // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1115    subptr(swap_reg, rsp);
1116    andptr(swap_reg, zero_bits - os::vm_page_size());
1117
1118    // Save the test result, for recursive case, the result is zero
1119    movptr(Address(lock_reg, mark_offset), swap_reg);
1120
1121    if (PrintBiasedLockingStatistics) {
1122      cond_inc32(Assembler::zero,
1123                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1124    }
1125    jcc(Assembler::zero, done);
1126
1127    bind(slow_case);
1128
1129    // Call the runtime routine for slow case
1130    call_VM(noreg,
1131            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1132            lock_reg);
1133
1134    bind(done);
1135  }
1136}
1137
1138
1139// Unlocks an object. Used in monitorexit bytecode and
1140// remove_activation.  Throws an IllegalMonitorException if object is
1141// not locked by current thread.
1142//
1143// Args:
1144//      rdx, c_rarg1: BasicObjectLock for lock
1145//
1146// Kills:
1147//      rax
1148//      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1149//      rscratch1, rscratch2 (scratch regs)
1150// rax, rbx, rcx, rdx
1151void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1152  assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1153         "The argument is only for looks. It must be c_rarg1");
1154
1155  if (UseHeavyMonitors) {
1156    call_VM(noreg,
1157            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1158            lock_reg);
1159  } else {
1160    Label done;
1161
1162    const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1163    const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1164    const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1165
1166    save_bcp(); // Save in case of exception
1167
1168    // Convert from BasicObjectLock structure to object and BasicLock
1169    // structure Store the BasicLock address into %rax
1170    lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1171
1172    // Load oop into obj_reg(%c_rarg3)
1173    movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1174
1175    // Free entry
1176    movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1177
1178    if (UseBiasedLocking) {
1179      biased_locking_exit(obj_reg, header_reg, done);
1180    }
1181
1182    // Load the old header from BasicLock structure
1183    movptr(header_reg, Address(swap_reg,
1184                               BasicLock::displaced_header_offset_in_bytes()));
1185
1186    // Test for recursion
1187    testptr(header_reg, header_reg);
1188
1189    // zero for recursive case
1190    jcc(Assembler::zero, done);
1191
1192    // Atomic swap back the old header
1193    if (os::is_MP()) lock();
1194    cmpxchgptr(header_reg, Address(obj_reg, 0));
1195
1196    // zero for recursive case
1197    jcc(Assembler::zero, done);
1198
1199    // Call the runtime routine for slow case.
1200    movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1201         obj_reg); // restore obj
1202    call_VM(noreg,
1203            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1204            lock_reg);
1205
1206    bind(done);
1207
1208    restore_bcp();
1209  }
1210}
1211#ifndef CC_INTERP
1212void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1213                                                         Label& zero_continue) {
1214  assert(ProfileInterpreter, "must be profiling interpreter");
1215  movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1216  testptr(mdp, mdp);
1217  jcc(Assembler::zero, zero_continue);
1218}
1219
1220
1221// Set the method data pointer for the current bcp.
1222void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1223  assert(ProfileInterpreter, "must be profiling interpreter");
1224  Label set_mdp;
1225  push(rax);
1226  push(rbx);
1227
1228  get_method(rbx);
1229  // Test MDO to avoid the call if it is NULL.
1230  movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1231  testptr(rax, rax);
1232  jcc(Assembler::zero, set_mdp);
1233  // rbx: method
1234  // _bcp_register: bcp
1235  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1236  // rax: mdi
1237  // mdo is guaranteed to be non-zero here, we checked for it before the call.
1238  movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1239  addptr(rbx, in_bytes(MethodData::data_offset()));
1240  addptr(rax, rbx);
1241  bind(set_mdp);
1242  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1243  pop(rbx);
1244  pop(rax);
1245}
1246
1247void InterpreterMacroAssembler::verify_method_data_pointer() {
1248  assert(ProfileInterpreter, "must be profiling interpreter");
1249#ifdef ASSERT
1250  Label verify_continue;
1251  push(rax);
1252  push(rbx);
1253  Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1254  Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1255  push(arg3_reg);
1256  push(arg2_reg);
1257  test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1258  get_method(rbx);
1259
1260  // If the mdp is valid, it will point to a DataLayout header which is
1261  // consistent with the bcp.  The converse is highly probable also.
1262  load_unsigned_short(arg2_reg,
1263                      Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1264  addptr(arg2_reg, Address(rbx, Method::const_offset()));
1265  lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1266  cmpptr(arg2_reg, _bcp_register);
1267  jcc(Assembler::equal, verify_continue);
1268  // rbx: method
1269  // _bcp_register: bcp
1270  // c_rarg3: mdp
1271  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1272               rbx, _bcp_register, arg3_reg);
1273  bind(verify_continue);
1274  pop(arg2_reg);
1275  pop(arg3_reg);
1276  pop(rbx);
1277  pop(rax);
1278#endif // ASSERT
1279}
1280
1281
1282void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1283                                                int constant,
1284                                                Register value) {
1285  assert(ProfileInterpreter, "must be profiling interpreter");
1286  Address data(mdp_in, constant);
1287  movptr(data, value);
1288}
1289
1290
1291void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1292                                                      int constant,
1293                                                      bool decrement) {
1294  // Counter address
1295  Address data(mdp_in, constant);
1296
1297  increment_mdp_data_at(data, decrement);
1298}
1299
1300void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1301                                                      bool decrement) {
1302  assert(ProfileInterpreter, "must be profiling interpreter");
1303  // %%% this does 64bit counters at best it is wasting space
1304  // at worst it is a rare bug when counters overflow
1305
1306  if (decrement) {
1307    // Decrement the register.  Set condition codes.
1308    addptr(data, (int32_t) -DataLayout::counter_increment);
1309    // If the decrement causes the counter to overflow, stay negative
1310    Label L;
1311    jcc(Assembler::negative, L);
1312    addptr(data, (int32_t) DataLayout::counter_increment);
1313    bind(L);
1314  } else {
1315    assert(DataLayout::counter_increment == 1,
1316           "flow-free idiom only works with 1");
1317    // Increment the register.  Set carry flag.
1318    addptr(data, DataLayout::counter_increment);
1319    // If the increment causes the counter to overflow, pull back by 1.
1320    sbbptr(data, (int32_t)0);
1321  }
1322}
1323
1324
1325void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1326                                                      Register reg,
1327                                                      int constant,
1328                                                      bool decrement) {
1329  Address data(mdp_in, reg, Address::times_1, constant);
1330
1331  increment_mdp_data_at(data, decrement);
1332}
1333
1334void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1335                                                int flag_byte_constant) {
1336  assert(ProfileInterpreter, "must be profiling interpreter");
1337  int header_offset = in_bytes(DataLayout::header_offset());
1338  int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1339  // Set the flag
1340  orl(Address(mdp_in, header_offset), header_bits);
1341}
1342
1343
1344
1345void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1346                                                 int offset,
1347                                                 Register value,
1348                                                 Register test_value_out,
1349                                                 Label& not_equal_continue) {
1350  assert(ProfileInterpreter, "must be profiling interpreter");
1351  if (test_value_out == noreg) {
1352    cmpptr(value, Address(mdp_in, offset));
1353  } else {
1354    // Put the test value into a register, so caller can use it:
1355    movptr(test_value_out, Address(mdp_in, offset));
1356    cmpptr(test_value_out, value);
1357  }
1358  jcc(Assembler::notEqual, not_equal_continue);
1359}
1360
1361
1362void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1363                                                     int offset_of_disp) {
1364  assert(ProfileInterpreter, "must be profiling interpreter");
1365  Address disp_address(mdp_in, offset_of_disp);
1366  addptr(mdp_in, disp_address);
1367  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1368}
1369
1370
1371void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1372                                                     Register reg,
1373                                                     int offset_of_disp) {
1374  assert(ProfileInterpreter, "must be profiling interpreter");
1375  Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1376  addptr(mdp_in, disp_address);
1377  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1378}
1379
1380
1381void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1382                                                       int constant) {
1383  assert(ProfileInterpreter, "must be profiling interpreter");
1384  addptr(mdp_in, constant);
1385  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1386}
1387
1388
1389void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1390  assert(ProfileInterpreter, "must be profiling interpreter");
1391  push(return_bci); // save/restore across call_VM
1392  call_VM(noreg,
1393          CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1394          return_bci);
1395  pop(return_bci);
1396}
1397
1398
1399void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1400                                                     Register bumped_count) {
1401  if (ProfileInterpreter) {
1402    Label profile_continue;
1403
1404    // If no method data exists, go to profile_continue.
1405    // Otherwise, assign to mdp
1406    test_method_data_pointer(mdp, profile_continue);
1407
1408    // We are taking a branch.  Increment the taken count.
1409    // We inline increment_mdp_data_at to return bumped_count in a register
1410    //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1411    Address data(mdp, in_bytes(JumpData::taken_offset()));
1412    movptr(bumped_count, data);
1413    assert(DataLayout::counter_increment == 1,
1414            "flow-free idiom only works with 1");
1415    addptr(bumped_count, DataLayout::counter_increment);
1416    sbbptr(bumped_count, 0);
1417    movptr(data, bumped_count); // Store back out
1418
1419    // The method data pointer needs to be updated to reflect the new target.
1420    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1421    bind(profile_continue);
1422  }
1423}
1424
1425
1426void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1427  if (ProfileInterpreter) {
1428    Label profile_continue;
1429
1430    // If no method data exists, go to profile_continue.
1431    test_method_data_pointer(mdp, profile_continue);
1432
1433    // We are taking a branch.  Increment the not taken count.
1434    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1435
1436    // The method data pointer needs to be updated to correspond to
1437    // the next bytecode
1438    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1439    bind(profile_continue);
1440  }
1441}
1442
1443void InterpreterMacroAssembler::profile_call(Register mdp) {
1444  if (ProfileInterpreter) {
1445    Label profile_continue;
1446
1447    // If no method data exists, go to profile_continue.
1448    test_method_data_pointer(mdp, profile_continue);
1449
1450    // We are making a call.  Increment the count.
1451    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1452
1453    // The method data pointer needs to be updated to reflect the new target.
1454    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1455    bind(profile_continue);
1456  }
1457}
1458
1459
1460void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1461  if (ProfileInterpreter) {
1462    Label profile_continue;
1463
1464    // If no method data exists, go to profile_continue.
1465    test_method_data_pointer(mdp, profile_continue);
1466
1467    // We are making a call.  Increment the count.
1468    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1469
1470    // The method data pointer needs to be updated to reflect the new target.
1471    update_mdp_by_constant(mdp,
1472                           in_bytes(VirtualCallData::
1473                                    virtual_call_data_size()));
1474    bind(profile_continue);
1475  }
1476}
1477
1478
1479void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1480                                                     Register mdp,
1481                                                     Register reg2,
1482                                                     bool receiver_can_be_null) {
1483  if (ProfileInterpreter) {
1484    Label profile_continue;
1485
1486    // If no method data exists, go to profile_continue.
1487    test_method_data_pointer(mdp, profile_continue);
1488
1489    Label skip_receiver_profile;
1490    if (receiver_can_be_null) {
1491      Label not_null;
1492      testptr(receiver, receiver);
1493      jccb(Assembler::notZero, not_null);
1494      // We are making a call.  Increment the count for null receiver.
1495      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1496      jmp(skip_receiver_profile);
1497      bind(not_null);
1498    }
1499
1500    // Record the receiver type.
1501    record_klass_in_profile(receiver, mdp, reg2, true);
1502    bind(skip_receiver_profile);
1503
1504    // The method data pointer needs to be updated to reflect the new target.
1505#if INCLUDE_JVMCI
1506    if (MethodProfileWidth == 0) {
1507      update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1508    }
1509#else // INCLUDE_JVMCI
1510    update_mdp_by_constant(mdp,
1511                           in_bytes(VirtualCallData::
1512                                    virtual_call_data_size()));
1513#endif // INCLUDE_JVMCI
1514    bind(profile_continue);
1515  }
1516}
1517
1518#if INCLUDE_JVMCI
1519void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1520  assert_different_registers(method, mdp, reg2);
1521  if (ProfileInterpreter && MethodProfileWidth > 0) {
1522    Label profile_continue;
1523
1524    // If no method data exists, go to profile_continue.
1525    test_method_data_pointer(mdp, profile_continue);
1526
1527    Label done;
1528    record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1529      &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1530    bind(done);
1531
1532    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1533    bind(profile_continue);
1534  }
1535}
1536#endif // INCLUDE_JVMCI
1537
1538// This routine creates a state machine for updating the multi-row
1539// type profile at a virtual call site (or other type-sensitive bytecode).
1540// The machine visits each row (of receiver/count) until the receiver type
1541// is found, or until it runs out of rows.  At the same time, it remembers
1542// the location of the first empty row.  (An empty row records null for its
1543// receiver, and can be allocated for a newly-observed receiver type.)
1544// Because there are two degrees of freedom in the state, a simple linear
1545// search will not work; it must be a decision tree.  Hence this helper
1546// function is recursive, to generate the required tree structured code.
1547// It's the interpreter, so we are trading off code space for speed.
1548// See below for example code.
1549void InterpreterMacroAssembler::record_klass_in_profile_helper(
1550                                        Register receiver, Register mdp,
1551                                        Register reg2, int start_row,
1552                                        Label& done, bool is_virtual_call) {
1553  if (TypeProfileWidth == 0) {
1554    if (is_virtual_call) {
1555      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1556    }
1557#if INCLUDE_JVMCI
1558    else if (EnableJVMCI) {
1559      increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1560    }
1561#endif // INCLUDE_JVMCI
1562  } else {
1563    int non_profiled_offset = -1;
1564    if (is_virtual_call) {
1565      non_profiled_offset = in_bytes(CounterData::count_offset());
1566    }
1567#if INCLUDE_JVMCI
1568    else if (EnableJVMCI) {
1569      non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1570    }
1571#endif // INCLUDE_JVMCI
1572
1573    record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1574        &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1575  }
1576}
1577
1578void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1579                                        Register reg2, int start_row, Label& done, int total_rows,
1580                                        OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1581                                        int non_profiled_offset) {
1582  int last_row = total_rows - 1;
1583  assert(start_row <= last_row, "must be work left to do");
1584  // Test this row for both the item and for null.
1585  // Take any of three different outcomes:
1586  //   1. found item => increment count and goto done
1587  //   2. found null => keep looking for case 1, maybe allocate this cell
1588  //   3. found something else => keep looking for cases 1 and 2
1589  // Case 3 is handled by a recursive call.
1590  for (int row = start_row; row <= last_row; row++) {
1591    Label next_test;
1592    bool test_for_null_also = (row == start_row);
1593
1594    // See if the item is item[n].
1595    int item_offset = in_bytes(item_offset_fn(row));
1596    test_mdp_data_at(mdp, item_offset, item,
1597                     (test_for_null_also ? reg2 : noreg),
1598                     next_test);
1599    // (Reg2 now contains the item from the CallData.)
1600
1601    // The item is item[n].  Increment count[n].
1602    int count_offset = in_bytes(item_count_offset_fn(row));
1603    increment_mdp_data_at(mdp, count_offset);
1604    jmp(done);
1605    bind(next_test);
1606
1607    if (test_for_null_also) {
1608      Label found_null;
1609      // Failed the equality check on item[n]...  Test for null.
1610      testptr(reg2, reg2);
1611      if (start_row == last_row) {
1612        // The only thing left to do is handle the null case.
1613        if (non_profiled_offset >= 0) {
1614          jccb(Assembler::zero, found_null);
1615          // Item did not match any saved item and there is no empty row for it.
1616          // Increment total counter to indicate polymorphic case.
1617          increment_mdp_data_at(mdp, non_profiled_offset);
1618          jmp(done);
1619          bind(found_null);
1620        } else {
1621          jcc(Assembler::notZero, done);
1622        }
1623        break;
1624      }
1625      // Since null is rare, make it be the branch-taken case.
1626      jcc(Assembler::zero, found_null);
1627
1628      // Put all the "Case 3" tests here.
1629      record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1630        item_offset_fn, item_count_offset_fn, non_profiled_offset);
1631
1632      // Found a null.  Keep searching for a matching item,
1633      // but remember that this is an empty (unused) slot.
1634      bind(found_null);
1635    }
1636  }
1637
1638  // In the fall-through case, we found no matching item, but we
1639  // observed the item[start_row] is NULL.
1640
1641  // Fill in the item field and increment the count.
1642  int item_offset = in_bytes(item_offset_fn(start_row));
1643  set_mdp_data_at(mdp, item_offset, item);
1644  int count_offset = in_bytes(item_count_offset_fn(start_row));
1645  movl(reg2, DataLayout::counter_increment);
1646  set_mdp_data_at(mdp, count_offset, reg2);
1647  if (start_row > 0) {
1648    jmp(done);
1649  }
1650}
1651
1652// Example state machine code for three profile rows:
1653//   // main copy of decision tree, rooted at row[1]
1654//   if (row[0].rec == rec) { row[0].incr(); goto done; }
1655//   if (row[0].rec != NULL) {
1656//     // inner copy of decision tree, rooted at row[1]
1657//     if (row[1].rec == rec) { row[1].incr(); goto done; }
1658//     if (row[1].rec != NULL) {
1659//       // degenerate decision tree, rooted at row[2]
1660//       if (row[2].rec == rec) { row[2].incr(); goto done; }
1661//       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1662//       row[2].init(rec); goto done;
1663//     } else {
1664//       // remember row[1] is empty
1665//       if (row[2].rec == rec) { row[2].incr(); goto done; }
1666//       row[1].init(rec); goto done;
1667//     }
1668//   } else {
1669//     // remember row[0] is empty
1670//     if (row[1].rec == rec) { row[1].incr(); goto done; }
1671//     if (row[2].rec == rec) { row[2].incr(); goto done; }
1672//     row[0].init(rec); goto done;
1673//   }
1674//   done:
1675
1676void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1677                                                        Register mdp, Register reg2,
1678                                                        bool is_virtual_call) {
1679  assert(ProfileInterpreter, "must be profiling");
1680  Label done;
1681
1682  record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1683
1684  bind (done);
1685}
1686
1687void InterpreterMacroAssembler::profile_ret(Register return_bci,
1688                                            Register mdp) {
1689  if (ProfileInterpreter) {
1690    Label profile_continue;
1691    uint row;
1692
1693    // If no method data exists, go to profile_continue.
1694    test_method_data_pointer(mdp, profile_continue);
1695
1696    // Update the total ret count.
1697    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1698
1699    for (row = 0; row < RetData::row_limit(); row++) {
1700      Label next_test;
1701
1702      // See if return_bci is equal to bci[n]:
1703      test_mdp_data_at(mdp,
1704                       in_bytes(RetData::bci_offset(row)),
1705                       return_bci, noreg,
1706                       next_test);
1707
1708      // return_bci is equal to bci[n].  Increment the count.
1709      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1710
1711      // The method data pointer needs to be updated to reflect the new target.
1712      update_mdp_by_offset(mdp,
1713                           in_bytes(RetData::bci_displacement_offset(row)));
1714      jmp(profile_continue);
1715      bind(next_test);
1716    }
1717
1718    update_mdp_for_ret(return_bci);
1719
1720    bind(profile_continue);
1721  }
1722}
1723
1724
1725void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1726  if (ProfileInterpreter) {
1727    Label profile_continue;
1728
1729    // If no method data exists, go to profile_continue.
1730    test_method_data_pointer(mdp, profile_continue);
1731
1732    set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1733
1734    // The method data pointer needs to be updated.
1735    int mdp_delta = in_bytes(BitData::bit_data_size());
1736    if (TypeProfileCasts) {
1737      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1738    }
1739    update_mdp_by_constant(mdp, mdp_delta);
1740
1741    bind(profile_continue);
1742  }
1743}
1744
1745
1746void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1747  if (ProfileInterpreter && TypeProfileCasts) {
1748    Label profile_continue;
1749
1750    // If no method data exists, go to profile_continue.
1751    test_method_data_pointer(mdp, profile_continue);
1752
1753    int count_offset = in_bytes(CounterData::count_offset());
1754    // Back up the address, since we have already bumped the mdp.
1755    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1756
1757    // *Decrement* the counter.  We expect to see zero or small negatives.
1758    increment_mdp_data_at(mdp, count_offset, true);
1759
1760    bind (profile_continue);
1761  }
1762}
1763
1764
1765void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1766  if (ProfileInterpreter) {
1767    Label profile_continue;
1768
1769    // If no method data exists, go to profile_continue.
1770    test_method_data_pointer(mdp, profile_continue);
1771
1772    // The method data pointer needs to be updated.
1773    int mdp_delta = in_bytes(BitData::bit_data_size());
1774    if (TypeProfileCasts) {
1775      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1776
1777      // Record the object type.
1778      record_klass_in_profile(klass, mdp, reg2, false);
1779      NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1780      NOT_LP64(restore_locals();)         // Restore EDI
1781    }
1782    update_mdp_by_constant(mdp, mdp_delta);
1783
1784    bind(profile_continue);
1785  }
1786}
1787
1788
1789void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1790  if (ProfileInterpreter) {
1791    Label profile_continue;
1792
1793    // If no method data exists, go to profile_continue.
1794    test_method_data_pointer(mdp, profile_continue);
1795
1796    // Update the default case count
1797    increment_mdp_data_at(mdp,
1798                          in_bytes(MultiBranchData::default_count_offset()));
1799
1800    // The method data pointer needs to be updated.
1801    update_mdp_by_offset(mdp,
1802                         in_bytes(MultiBranchData::
1803                                  default_displacement_offset()));
1804
1805    bind(profile_continue);
1806  }
1807}
1808
1809
1810void InterpreterMacroAssembler::profile_switch_case(Register index,
1811                                                    Register mdp,
1812                                                    Register reg2) {
1813  if (ProfileInterpreter) {
1814    Label profile_continue;
1815
1816    // If no method data exists, go to profile_continue.
1817    test_method_data_pointer(mdp, profile_continue);
1818
1819    // Build the base (index * per_case_size_in_bytes()) +
1820    // case_array_offset_in_bytes()
1821    movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1822    imulptr(index, reg2); // XXX l ?
1823    addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1824
1825    // Update the case count
1826    increment_mdp_data_at(mdp,
1827                          index,
1828                          in_bytes(MultiBranchData::relative_count_offset()));
1829
1830    // The method data pointer needs to be updated.
1831    update_mdp_by_offset(mdp,
1832                         index,
1833                         in_bytes(MultiBranchData::
1834                                  relative_displacement_offset()));
1835
1836    bind(profile_continue);
1837  }
1838}
1839
1840
1841
1842void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1843  if (state == atos) {
1844    MacroAssembler::verify_oop(reg);
1845  }
1846}
1847
1848void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1849#ifndef _LP64
1850  if ((state == ftos && UseSSE < 1) ||
1851      (state == dtos && UseSSE < 2)) {
1852    MacroAssembler::verify_FPU(stack_depth);
1853  }
1854#endif
1855}
1856
1857// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1858void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1859                                                        int increment, Address mask,
1860                                                        Register scratch, bool preloaded,
1861                                                        Condition cond, Label* where) {
1862  if (!preloaded) {
1863    movl(scratch, counter_addr);
1864  }
1865  incrementl(scratch, increment);
1866  movl(counter_addr, scratch);
1867  andl(scratch, mask);
1868  jcc(cond, *where);
1869}
1870#endif // CC_INTERP
1871
1872void InterpreterMacroAssembler::notify_method_entry() {
1873  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1874  // track stack depth.  If it is possible to enter interp_only_mode we add
1875  // the code to check if the event should be sent.
1876  Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1877  Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1878  if (JvmtiExport::can_post_interpreter_events()) {
1879    Label L;
1880    NOT_LP64(get_thread(rthread);)
1881    movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1882    testl(rdx, rdx);
1883    jcc(Assembler::zero, L);
1884    call_VM(noreg, CAST_FROM_FN_PTR(address,
1885                                    InterpreterRuntime::post_method_entry));
1886    bind(L);
1887  }
1888
1889  {
1890    SkipIfEqual skip(this, &DTraceMethodProbes, false);
1891    NOT_LP64(get_thread(rthread);)
1892    get_method(rarg);
1893    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1894                 rthread, rarg);
1895  }
1896
1897  // RedefineClasses() tracing support for obsolete method entry
1898  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1899    NOT_LP64(get_thread(rthread);)
1900    get_method(rarg);
1901    call_VM_leaf(
1902      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1903      rthread, rarg);
1904  }
1905}
1906
1907
1908void InterpreterMacroAssembler::notify_method_exit(
1909    TosState state, NotifyMethodExitMode mode) {
1910  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1911  // track stack depth.  If it is possible to enter interp_only_mode we add
1912  // the code to check if the event should be sent.
1913  Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1914  Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1915  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1916    Label L;
1917    // Note: frame::interpreter_frame_result has a dependency on how the
1918    // method result is saved across the call to post_method_exit. If this
1919    // is changed then the interpreter_frame_result implementation will
1920    // need to be updated too.
1921
1922    // For c++ interpreter the result is always stored at a known location in the frame
1923    // template interpreter will leave it on the top of the stack.
1924    NOT_CC_INTERP(push(state);)
1925    NOT_LP64(get_thread(rthread);)
1926    movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1927    testl(rdx, rdx);
1928    jcc(Assembler::zero, L);
1929    call_VM(noreg,
1930            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1931    bind(L);
1932    NOT_CC_INTERP(pop(state));
1933  }
1934
1935  {
1936    SkipIfEqual skip(this, &DTraceMethodProbes, false);
1937    NOT_CC_INTERP(push(state));
1938    NOT_LP64(get_thread(rthread);)
1939    get_method(rarg);
1940    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1941                 rthread, rarg);
1942    NOT_CC_INTERP(pop(state));
1943  }
1944}
1945