interp_masm_x86.cpp revision 8001:854a2726b586
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interp_masm_x86.hpp"
27#include "interpreter/interpreter.hpp"
28#include "interpreter/interpreterRuntime.hpp"
29#include "oops/arrayOop.hpp"
30#include "oops/markOop.hpp"
31#include "oops/methodData.hpp"
32#include "oops/method.hpp"
33#include "prims/jvmtiExport.hpp"
34#include "prims/jvmtiRedefineClassesTrace.hpp"
35#include "prims/jvmtiThreadState.hpp"
36#include "runtime/basicLock.hpp"
37#include "runtime/biasedLocking.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/thread.inline.hpp"
40
41// Implementation of InterpreterMacroAssembler
42
43#ifndef CC_INTERP
44void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
45  Label update, next, none;
46
47  verify_oop(obj);
48
49  testptr(obj, obj);
50  jccb(Assembler::notZero, update);
51  orptr(mdo_addr, TypeEntries::null_seen);
52  jmpb(next);
53
54  bind(update);
55  load_klass(obj, obj);
56
57  xorptr(obj, mdo_addr);
58  testptr(obj, TypeEntries::type_klass_mask);
59  jccb(Assembler::zero, next); // klass seen before, nothing to
60                               // do. The unknown bit may have been
61                               // set already but no need to check.
62
63  testptr(obj, TypeEntries::type_unknown);
64  jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
65
66  cmpptr(mdo_addr, 0);
67  jccb(Assembler::equal, none);
68  cmpptr(mdo_addr, TypeEntries::null_seen);
69  jccb(Assembler::equal, none);
70  // There is a chance that the checks above (re-reading profiling
71  // data from memory) fail if another thread has just set the
72  // profiling to this obj's klass
73  xorptr(obj, mdo_addr);
74  testptr(obj, TypeEntries::type_klass_mask);
75  jccb(Assembler::zero, next);
76
77  // different than before. Cannot keep accurate profile.
78  orptr(mdo_addr, TypeEntries::type_unknown);
79  jmpb(next);
80
81  bind(none);
82  // first time here. Set profile type.
83  movptr(mdo_addr, obj);
84
85  bind(next);
86}
87
88void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
89  if (!ProfileInterpreter) {
90    return;
91  }
92
93  if (MethodData::profile_arguments() || MethodData::profile_return()) {
94    Label profile_continue;
95
96    test_method_data_pointer(mdp, profile_continue);
97
98    int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
99
100    cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
101    jcc(Assembler::notEqual, profile_continue);
102
103    if (MethodData::profile_arguments()) {
104      Label done;
105      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
106      addptr(mdp, off_to_args);
107
108      for (int i = 0; i < TypeProfileArgsLimit; i++) {
109        if (i > 0 || MethodData::profile_return()) {
110          // If return value type is profiled we may have no argument to profile
111          movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
112          subl(tmp, i*TypeStackSlotEntries::per_arg_count());
113          cmpl(tmp, TypeStackSlotEntries::per_arg_count());
114          jcc(Assembler::less, done);
115        }
116        movptr(tmp, Address(callee, Method::const_offset()));
117        load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
118        // stack offset o (zero based) from the start of the argument
119        // list, for n arguments translates into offset n - o - 1 from
120        // the end of the argument list
121        subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
122        subl(tmp, 1);
123        Address arg_addr = argument_address(tmp);
124        movptr(tmp, arg_addr);
125
126        Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
127        profile_obj_type(tmp, mdo_arg_addr);
128
129        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
130        addptr(mdp, to_add);
131        off_to_args += to_add;
132      }
133
134      if (MethodData::profile_return()) {
135        movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
136        subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
137      }
138
139      bind(done);
140
141      if (MethodData::profile_return()) {
142        // We're right after the type profile for the last
143        // argument. tmp is the number of cells left in the
144        // CallTypeData/VirtualCallTypeData to reach its end. Non null
145        // if there's a return to profile.
146        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
147        shll(tmp, exact_log2(DataLayout::cell_size));
148        addptr(mdp, tmp);
149      }
150      movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
151    } else {
152      assert(MethodData::profile_return(), "either profile call args or call ret");
153      update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
154    }
155
156    // mdp points right after the end of the
157    // CallTypeData/VirtualCallTypeData, right after the cells for the
158    // return value type if there's one
159
160    bind(profile_continue);
161  }
162}
163
164void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
165  assert_different_registers(mdp, ret, tmp, _bcp_register);
166  if (ProfileInterpreter && MethodData::profile_return()) {
167    Label profile_continue, done;
168
169    test_method_data_pointer(mdp, profile_continue);
170
171    if (MethodData::profile_return_jsr292_only()) {
172      // If we don't profile all invoke bytecodes we must make sure
173      // it's a bytecode we indeed profile. We can't go back to the
174      // begining of the ProfileData we intend to update to check its
175      // type because we're right after it and we don't known its
176      // length
177      Label do_profile;
178      cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
179      jcc(Assembler::equal, do_profile);
180      cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
181      jcc(Assembler::equal, do_profile);
182      get_method(tmp);
183      cmpb(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
184      jcc(Assembler::notEqual, profile_continue);
185
186      bind(do_profile);
187    }
188
189    Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
190    mov(tmp, ret);
191    profile_obj_type(tmp, mdo_ret_addr);
192
193    bind(profile_continue);
194  }
195}
196
197void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
198  if (ProfileInterpreter && MethodData::profile_parameters()) {
199    Label profile_continue, done;
200
201    test_method_data_pointer(mdp, profile_continue);
202
203    // Load the offset of the area within the MDO used for
204    // parameters. If it's negative we're not profiling any parameters
205    movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
206    testl(tmp1, tmp1);
207    jcc(Assembler::negative, profile_continue);
208
209    // Compute a pointer to the area for parameters from the offset
210    // and move the pointer to the slot for the last
211    // parameters. Collect profiling from last parameter down.
212    // mdo start + parameters offset + array length - 1
213    addptr(mdp, tmp1);
214    movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
215    decrement(tmp1, TypeStackSlotEntries::per_arg_count());
216
217    Label loop;
218    bind(loop);
219
220    int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
221    int type_base = in_bytes(ParametersTypeData::type_offset(0));
222    Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
223    Address arg_off(mdp, tmp1, per_arg_scale, off_base);
224    Address arg_type(mdp, tmp1, per_arg_scale, type_base);
225
226    // load offset on the stack from the slot for this parameter
227    movptr(tmp2, arg_off);
228    negptr(tmp2);
229    // read the parameter from the local area
230    movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
231
232    // profile the parameter
233    profile_obj_type(tmp2, arg_type);
234
235    // go to next parameter
236    decrement(tmp1, TypeStackSlotEntries::per_arg_count());
237    jcc(Assembler::positive, loop);
238
239    bind(profile_continue);
240  }
241}
242#endif
243
244#ifdef CC_INTERP
245void InterpreterMacroAssembler::get_method(Register reg) {
246  movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
247  movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
248}
249#endif // CC_INTERP
250
251#ifndef CC_INTERP
252void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
253                                                  int number_of_arguments) {
254  // interpreter specific
255  //
256  // Note: No need to save/restore bcp & locals registers
257  //       since these are callee saved registers and no blocking/
258  //       GC can happen in leaf calls.
259  // Further Note: DO NOT save/restore bcp/locals. If a caller has
260  // already saved them so that it can use rsi/rdi as temporaries
261  // then a save/restore here will DESTROY the copy the caller
262  // saved! There used to be a save_bcp() that only happened in
263  // the ASSERT path (no restore_bcp). Which caused bizarre failures
264  // when jvm built with ASSERTs.
265#ifdef ASSERT
266  {
267    Label L;
268    cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
269    jcc(Assembler::equal, L);
270    stop("InterpreterMacroAssembler::call_VM_leaf_base:"
271         " last_sp != NULL");
272    bind(L);
273  }
274#endif
275  // super call
276  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
277  // interpreter specific
278  // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
279  // but since they may not have been saved (and we don't want to
280  // save them here (see note above) the assert is invalid.
281}
282
283void InterpreterMacroAssembler::call_VM_base(Register oop_result,
284                                             Register java_thread,
285                                             Register last_java_sp,
286                                             address  entry_point,
287                                             int      number_of_arguments,
288                                             bool     check_exceptions) {
289  // interpreter specific
290  //
291  // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
292  //       really make a difference for these runtime calls, since they are
293  //       slow anyway. Btw., bcp must be saved/restored since it may change
294  //       due to GC.
295  NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
296  save_bcp();
297#ifdef ASSERT
298  {
299    Label L;
300    cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
301    jcc(Assembler::equal, L);
302    stop("InterpreterMacroAssembler::call_VM_leaf_base:"
303         " last_sp != NULL");
304    bind(L);
305  }
306#endif /* ASSERT */
307  // super call
308  MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
309                               entry_point, number_of_arguments,
310                               check_exceptions);
311  // interpreter specific
312  restore_bcp();
313  restore_locals();
314}
315
316void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
317  if (JvmtiExport::can_pop_frame()) {
318    Label L;
319    // Initiate popframe handling only if it is not already being
320    // processed.  If the flag has the popframe_processing bit set, it
321    // means that this code is called *during* popframe handling - we
322    // don't want to reenter.
323    // This method is only called just after the call into the vm in
324    // call_VM_base, so the arg registers are available.
325    Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
326                        LP64_ONLY(c_rarg0);
327    movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
328    testl(pop_cond, JavaThread::popframe_pending_bit);
329    jcc(Assembler::zero, L);
330    testl(pop_cond, JavaThread::popframe_processing_bit);
331    jcc(Assembler::notZero, L);
332    // Call Interpreter::remove_activation_preserving_args_entry() to get the
333    // address of the same-named entrypoint in the generated interpreter code.
334    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
335    jmp(rax);
336    bind(L);
337    NOT_LP64(get_thread(java_thread);)
338  }
339}
340
341void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
342  Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
343  NOT_LP64(get_thread(thread);)
344  movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
345  const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
346  const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
347  const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
348#ifdef _LP64
349  switch (state) {
350    case atos: movptr(rax, oop_addr);
351               movptr(oop_addr, (int32_t)NULL_WORD);
352               verify_oop(rax, state);              break;
353    case ltos: movptr(rax, val_addr);                 break;
354    case btos:                                   // fall through
355    case ctos:                                   // fall through
356    case stos:                                   // fall through
357    case itos: movl(rax, val_addr);                 break;
358    case ftos: movflt(xmm0, val_addr);              break;
359    case dtos: movdbl(xmm0, val_addr);              break;
360    case vtos: /* nothing to do */                  break;
361    default  : ShouldNotReachHere();
362  }
363  // Clean up tos value in the thread object
364  movl(tos_addr,  (int) ilgl);
365  movl(val_addr,  (int32_t) NULL_WORD);
366#else
367  const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
368                             + in_ByteSize(wordSize));
369  switch (state) {
370    case atos: movptr(rax, oop_addr);
371               movptr(oop_addr, NULL_WORD);
372               verify_oop(rax, state);                break;
373    case ltos:
374               movl(rdx, val_addr1);               // fall through
375    case btos:                                     // fall through
376    case ctos:                                     // fall through
377    case stos:                                     // fall through
378    case itos: movl(rax, val_addr);                   break;
379    case ftos: fld_s(val_addr);                       break;
380    case dtos: fld_d(val_addr);                       break;
381    case vtos: /* nothing to do */                    break;
382    default  : ShouldNotReachHere();
383  }
384#endif // _LP64
385  // Clean up tos value in the thread object
386  movl(tos_addr,  (int32_t) ilgl);
387  movptr(val_addr,  NULL_WORD);
388  NOT_LP64(movptr(val_addr1, NULL_WORD);)
389}
390
391
392void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
393  if (JvmtiExport::can_force_early_return()) {
394    Label L;
395    Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
396    Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
397
398    movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
399    testptr(tmp, tmp);
400    jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
401
402    // Initiate earlyret handling only if it is not already being processed.
403    // If the flag has the earlyret_processing bit set, it means that this code
404    // is called *during* earlyret handling - we don't want to reenter.
405    movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
406    cmpl(tmp, JvmtiThreadState::earlyret_pending);
407    jcc(Assembler::notEqual, L);
408
409    // Call Interpreter::remove_activation_early_entry() to get the address of the
410    // same-named entrypoint in the generated interpreter code.
411    NOT_LP64(get_thread(java_thread);)
412    movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
413#ifdef _LP64
414    movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
415    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
416#else
417    pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
418    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
419#endif // _LP64
420    jmp(rax);
421    bind(L);
422    NOT_LP64(get_thread(java_thread);)
423  }
424}
425
426void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
427  assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
428  load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
429  bswapl(reg);
430  shrl(reg, 16);
431}
432
433void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
434                                                       int bcp_offset,
435                                                       size_t index_size) {
436  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
437  if (index_size == sizeof(u2)) {
438    load_unsigned_short(index, Address(_bcp_register, bcp_offset));
439  } else if (index_size == sizeof(u4)) {
440    movl(index, Address(_bcp_register, bcp_offset));
441    // Check if the secondary index definition is still ~x, otherwise
442    // we have to change the following assembler code to calculate the
443    // plain index.
444    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
445    notl(index);  // convert to plain index
446  } else if (index_size == sizeof(u1)) {
447    load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
448  } else {
449    ShouldNotReachHere();
450  }
451}
452
453void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
454                                                           Register index,
455                                                           int bcp_offset,
456                                                           size_t index_size) {
457  assert_different_registers(cache, index);
458  get_cache_index_at_bcp(index, bcp_offset, index_size);
459  movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
460  assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
461  // convert from field index to ConstantPoolCacheEntry index
462  assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
463  shll(index, 2);
464}
465
466void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
467                                                                        Register index,
468                                                                        Register bytecode,
469                                                                        int byte_no,
470                                                                        int bcp_offset,
471                                                                        size_t index_size) {
472  get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
473  // We use a 32-bit load here since the layout of 64-bit words on
474  // little-endian machines allow us that.
475  movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
476  const int shift_count = (1 + byte_no) * BitsPerByte;
477  assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
478         (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
479         "correct shift count");
480  shrl(bytecode, shift_count);
481  assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
482  andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
483}
484
485void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
486                                                               Register tmp,
487                                                               int bcp_offset,
488                                                               size_t index_size) {
489  assert(cache != tmp, "must use different register");
490  get_cache_index_at_bcp(tmp, bcp_offset, index_size);
491  assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
492  // convert from field index to ConstantPoolCacheEntry index
493  // and from word offset to byte offset
494  assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
495  shll(tmp, 2 + LogBytesPerWord);
496  movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
497  // skip past the header
498  addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
499  addptr(cache, tmp);  // construct pointer to cache entry
500}
501
502// Load object from cpool->resolved_references(index)
503void InterpreterMacroAssembler::load_resolved_reference_at_index(
504                                           Register result, Register index) {
505  assert_different_registers(result, index);
506  // convert from field index to resolved_references() index and from
507  // word index to byte offset. Since this is a java object, it can be compressed
508  Register tmp = index;  // reuse
509  shll(tmp, LogBytesPerHeapOop);
510
511  get_constant_pool(result);
512  // load pointer for resolved_references[] objArray
513  movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
514  // JNIHandles::resolve(obj);
515  movptr(result, Address(result, 0));
516  // Add in the index
517  addptr(result, tmp);
518  load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
519}
520
521
522// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
523// subtype of super_klass.
524//
525// Args:
526//      rax: superklass
527//      Rsub_klass: subklass
528//
529// Kills:
530//      rcx, rdi
531void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
532                                                  Label& ok_is_subtype) {
533  assert(Rsub_klass != rax, "rax holds superklass");
534  LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
535  LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
536  assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
537  assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
538
539  // Profile the not-null value's klass.
540  profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
541
542  // Do the check.
543  check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
544
545  // Profile the failure of the check.
546  profile_typecheck_failed(rcx); // blows rcx
547}
548
549
550#ifndef _LP64
551void InterpreterMacroAssembler::f2ieee() {
552  if (IEEEPrecision) {
553    fstp_s(Address(rsp, 0));
554    fld_s(Address(rsp, 0));
555  }
556}
557
558
559void InterpreterMacroAssembler::d2ieee() {
560  if (IEEEPrecision) {
561    fstp_d(Address(rsp, 0));
562    fld_d(Address(rsp, 0));
563  }
564}
565#endif // _LP64
566
567// Java Expression Stack
568
569void InterpreterMacroAssembler::pop_ptr(Register r) {
570  pop(r);
571}
572
573void InterpreterMacroAssembler::push_ptr(Register r) {
574  push(r);
575}
576
577void InterpreterMacroAssembler::push_i(Register r) {
578  push(r);
579}
580
581#ifdef _LP64
582void InterpreterMacroAssembler::pop_i(Register r) {
583  // XXX can't use pop currently, upper half non clean
584  movl(r, Address(rsp, 0));
585  addptr(rsp, wordSize);
586}
587
588void InterpreterMacroAssembler::pop_l(Register r) {
589  movq(r, Address(rsp, 0));
590  addptr(rsp, 2 * Interpreter::stackElementSize);
591}
592
593void InterpreterMacroAssembler::pop_f(XMMRegister r) {
594  movflt(r, Address(rsp, 0));
595  addptr(rsp, wordSize);
596}
597
598void InterpreterMacroAssembler::pop_d(XMMRegister r) {
599  movdbl(r, Address(rsp, 0));
600  addptr(rsp, 2 * Interpreter::stackElementSize);
601}
602
603void InterpreterMacroAssembler::push_l(Register r) {
604  subptr(rsp, 2 * wordSize);
605  movq(Address(rsp, 0), r);
606}
607
608void InterpreterMacroAssembler::push_f(XMMRegister r) {
609  subptr(rsp, wordSize);
610  movflt(Address(rsp, 0), r);
611}
612
613void InterpreterMacroAssembler::push_d(XMMRegister r) {
614  subptr(rsp, 2 * wordSize);
615  movdbl(Address(rsp, 0), r);
616}
617
618void InterpreterMacroAssembler::pop(TosState state) {
619  switch (state) {
620  case atos: pop_ptr();                 break;
621  case btos:
622  case ctos:
623  case stos:
624  case itos: pop_i();                   break;
625  case ltos: pop_l();                   break;
626  case ftos: pop_f();                   break;
627  case dtos: pop_d();                   break;
628  case vtos: /* nothing to do */        break;
629  default:   ShouldNotReachHere();
630  }
631  verify_oop(rax, state);
632}
633
634void InterpreterMacroAssembler::push(TosState state) {
635  verify_oop(rax, state);
636  switch (state) {
637  case atos: push_ptr();                break;
638  case btos:
639  case ctos:
640  case stos:
641  case itos: push_i();                  break;
642  case ltos: push_l();                  break;
643  case ftos: push_f();                  break;
644  case dtos: push_d();                  break;
645  case vtos: /* nothing to do */        break;
646  default  : ShouldNotReachHere();
647  }
648}
649#else
650void InterpreterMacroAssembler::pop_i(Register r) {
651  pop(r);
652}
653
654void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
655  pop(lo);
656  pop(hi);
657}
658
659void InterpreterMacroAssembler::pop_f() {
660  fld_s(Address(rsp, 0));
661  addptr(rsp, 1 * wordSize);
662}
663
664void InterpreterMacroAssembler::pop_d() {
665  fld_d(Address(rsp, 0));
666  addptr(rsp, 2 * wordSize);
667}
668
669
670void InterpreterMacroAssembler::pop(TosState state) {
671  switch (state) {
672    case atos: pop_ptr(rax);                                 break;
673    case btos:                                               // fall through
674    case ctos:                                               // fall through
675    case stos:                                               // fall through
676    case itos: pop_i(rax);                                   break;
677    case ltos: pop_l(rax, rdx);                              break;
678    case ftos: pop_f();                                      break;
679    case dtos: pop_d();                                      break;
680    case vtos: /* nothing to do */                           break;
681    default  : ShouldNotReachHere();
682  }
683  verify_oop(rax, state);
684}
685
686
687void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
688  push(hi);
689  push(lo);
690}
691
692void InterpreterMacroAssembler::push_f() {
693  // Do not schedule for no AGI! Never write beyond rsp!
694  subptr(rsp, 1 * wordSize);
695  fstp_s(Address(rsp, 0));
696}
697
698void InterpreterMacroAssembler::push_d(Register r) {
699  // Do not schedule for no AGI! Never write beyond rsp!
700  subptr(rsp, 2 * wordSize);
701  fstp_d(Address(rsp, 0));
702}
703
704
705void InterpreterMacroAssembler::push(TosState state) {
706  verify_oop(rax, state);
707  switch (state) {
708    case atos: push_ptr(rax); break;
709    case btos:                                               // fall through
710    case ctos:                                               // fall through
711    case stos:                                               // fall through
712    case itos: push_i(rax);                                    break;
713    case ltos: push_l(rax, rdx);                               break;
714    case ftos: push_f();                                       break;
715    case dtos: push_d(rax);                                    break;
716    case vtos: /* nothing to do */                             break;
717    default  : ShouldNotReachHere();
718  }
719}
720#endif // _LP64
721
722
723// Helpers for swap and dup
724void InterpreterMacroAssembler::load_ptr(int n, Register val) {
725  movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
726}
727
728void InterpreterMacroAssembler::store_ptr(int n, Register val) {
729  movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
730}
731
732
733void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
734  // set sender sp
735  lea(_bcp_register, Address(rsp, wordSize));
736  // record last_sp
737  movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
738}
739
740
741// Jump to from_interpreted entry of a call unless single stepping is possible
742// in this thread in which case we must call the i2i entry
743void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
744  prepare_to_jump_from_interpreted();
745
746  if (JvmtiExport::can_post_interpreter_events()) {
747    Label run_compiled_code;
748    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
749    // compiled code in threads for which the event is enabled.  Check here for
750    // interp_only_mode if these events CAN be enabled.
751    // interp_only is an int, on little endian it is sufficient to test the byte only
752    // Is a cmpl faster?
753    LP64_ONLY(temp = r15_thread;)
754    NOT_LP64(get_thread(temp);)
755    cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
756    jccb(Assembler::zero, run_compiled_code);
757    jmp(Address(method, Method::interpreter_entry_offset()));
758    bind(run_compiled_code);
759  }
760
761  jmp(Address(method, Method::from_interpreted_offset()));
762}
763
764// The following two routines provide a hook so that an implementation
765// can schedule the dispatch in two parts.  x86 does not do this.
766void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
767  // Nothing x86 specific to be done here
768}
769
770void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
771  dispatch_next(state, step);
772}
773
774void InterpreterMacroAssembler::dispatch_base(TosState state,
775                                              address* table,
776                                              bool verifyoop) {
777  verify_FPU(1, state);
778  if (VerifyActivationFrameSize) {
779    Label L;
780    mov(rcx, rbp);
781    subptr(rcx, rsp);
782    int32_t min_frame_size =
783      (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
784      wordSize;
785    cmpptr(rcx, (int32_t)min_frame_size);
786    jcc(Assembler::greaterEqual, L);
787    stop("broken stack frame");
788    bind(L);
789  }
790  if (verifyoop) {
791    verify_oop(rax, state);
792  }
793#ifdef _LP64
794  lea(rscratch1, ExternalAddress((address)table));
795  jmp(Address(rscratch1, rbx, Address::times_8));
796#else
797  Address index(noreg, rbx, Address::times_ptr);
798  ExternalAddress tbl((address)table);
799  ArrayAddress dispatch(tbl, index);
800  jump(dispatch);
801#endif // _LP64
802}
803
804void InterpreterMacroAssembler::dispatch_only(TosState state) {
805  dispatch_base(state, Interpreter::dispatch_table(state));
806}
807
808void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
809  dispatch_base(state, Interpreter::normal_table(state));
810}
811
812void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
813  dispatch_base(state, Interpreter::normal_table(state), false);
814}
815
816
817void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
818  // load next bytecode (load before advancing _bcp_register to prevent AGI)
819  load_unsigned_byte(rbx, Address(_bcp_register, step));
820  // advance _bcp_register
821  increment(_bcp_register, step);
822  dispatch_base(state, Interpreter::dispatch_table(state));
823}
824
825void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
826  // load current bytecode
827  load_unsigned_byte(rbx, Address(_bcp_register, 0));
828  dispatch_base(state, table);
829}
830
831// remove activation
832//
833// Unlock the receiver if this is a synchronized method.
834// Unlock any Java monitors from syncronized blocks.
835// Remove the activation from the stack.
836//
837// If there are locked Java monitors
838//    If throw_monitor_exception
839//       throws IllegalMonitorStateException
840//    Else if install_monitor_exception
841//       installs IllegalMonitorStateException
842//    Else
843//       no error processing
844void InterpreterMacroAssembler::remove_activation(
845        TosState state,
846        Register ret_addr,
847        bool throw_monitor_exception,
848        bool install_monitor_exception,
849        bool notify_jvmdi) {
850  // Note: Registers rdx xmm0 may be in use for the
851  // result check if synchronized method
852  Label unlocked, unlock, no_unlock;
853
854  const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
855  const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
856  const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
857                              // monitor pointers need different register
858                              // because rdx may have the result in it
859  NOT_LP64(get_thread(rcx);)
860
861  // get the value of _do_not_unlock_if_synchronized into rdx
862  const Address do_not_unlock_if_synchronized(rthread,
863    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
864  movbool(rbx, do_not_unlock_if_synchronized);
865  movbool(do_not_unlock_if_synchronized, false); // reset the flag
866
867 // get method access flags
868  movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
869  movl(rcx, Address(rcx, Method::access_flags_offset()));
870  testl(rcx, JVM_ACC_SYNCHRONIZED);
871  jcc(Assembler::zero, unlocked);
872
873  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
874  // is set.
875  testbool(rbx);
876  jcc(Assembler::notZero, no_unlock);
877
878  // unlock monitor
879  push(state); // save result
880
881  // BasicObjectLock will be first in list, since this is a
882  // synchronized method. However, need to check that the object has
883  // not been unlocked by an explicit monitorexit bytecode.
884  const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
885                        wordSize - (int) sizeof(BasicObjectLock));
886  // We use c_rarg1/rdx so that if we go slow path it will be the correct
887  // register for unlock_object to pass to VM directly
888  lea(robj, monitor); // address of first monitor
889
890  movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
891  testptr(rax, rax);
892  jcc(Assembler::notZero, unlock);
893
894  pop(state);
895  if (throw_monitor_exception) {
896    // Entry already unlocked, need to throw exception
897    NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
898    call_VM(noreg, CAST_FROM_FN_PTR(address,
899                   InterpreterRuntime::throw_illegal_monitor_state_exception));
900    should_not_reach_here();
901  } else {
902    // Monitor already unlocked during a stack unroll. If requested,
903    // install an illegal_monitor_state_exception.  Continue with
904    // stack unrolling.
905    if (install_monitor_exception) {
906      NOT_LP64(empty_FPU_stack();)
907      call_VM(noreg, CAST_FROM_FN_PTR(address,
908                     InterpreterRuntime::new_illegal_monitor_state_exception));
909    }
910    jmp(unlocked);
911  }
912
913  bind(unlock);
914  unlock_object(robj);
915  pop(state);
916
917  // Check that for block-structured locking (i.e., that all locked
918  // objects has been unlocked)
919  bind(unlocked);
920
921  // rax, rdx: Might contain return value
922
923  // Check that all monitors are unlocked
924  {
925    Label loop, exception, entry, restart;
926    const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
927    const Address monitor_block_top(
928        rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
929    const Address monitor_block_bot(
930        rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
931
932    bind(restart);
933    // We use c_rarg1 so that if we go slow path it will be the correct
934    // register for unlock_object to pass to VM directly
935    movptr(rmon, monitor_block_top); // points to current entry, starting
936                                  // with top-most entry
937    lea(rbx, monitor_block_bot);  // points to word before bottom of
938                                  // monitor block
939    jmp(entry);
940
941    // Entry already locked, need to throw exception
942    bind(exception);
943
944    if (throw_monitor_exception) {
945      // Throw exception
946      NOT_LP64(empty_FPU_stack();)
947      MacroAssembler::call_VM(noreg,
948                              CAST_FROM_FN_PTR(address, InterpreterRuntime::
949                                   throw_illegal_monitor_state_exception));
950      should_not_reach_here();
951    } else {
952      // Stack unrolling. Unlock object and install illegal_monitor_exception.
953      // Unlock does not block, so don't have to worry about the frame.
954      // We don't have to preserve c_rarg1 since we are going to throw an exception.
955
956      push(state);
957      mov(robj, rmon);   // nop if robj and rmon are the same
958      unlock_object(robj);
959      pop(state);
960
961      if (install_monitor_exception) {
962        NOT_LP64(empty_FPU_stack();)
963        call_VM(noreg, CAST_FROM_FN_PTR(address,
964                                        InterpreterRuntime::
965                                        new_illegal_monitor_state_exception));
966      }
967
968      jmp(restart);
969    }
970
971    bind(loop);
972    // check if current entry is used
973    cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
974    jcc(Assembler::notEqual, exception);
975
976    addptr(rmon, entry_size); // otherwise advance to next entry
977    bind(entry);
978    cmpptr(rmon, rbx); // check if bottom reached
979    jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
980  }
981
982  bind(no_unlock);
983
984  // jvmti support
985  if (notify_jvmdi) {
986    notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
987  } else {
988    notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
989  }
990
991  // remove activation
992  // get sender sp
993  movptr(rbx,
994         Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
995  leave();                           // remove frame anchor
996  pop(ret_addr);                     // get return address
997  mov(rsp, rbx);                     // set sp to sender sp
998#ifndef _LP64
999  if (UseSSE) {
1000    // float and double are returned in xmm register in SSE-mode
1001    if (state == ftos && UseSSE >= 1) {
1002      subptr(rsp, wordSize);
1003      fstp_s(Address(rsp, 0));
1004      movflt(xmm0, Address(rsp, 0));
1005      addptr(rsp, wordSize);
1006    } else if (state == dtos && UseSSE >= 2) {
1007      subptr(rsp, 2*wordSize);
1008      fstp_d(Address(rsp, 0));
1009      movdbl(xmm0, Address(rsp, 0));
1010      addptr(rsp, 2*wordSize);
1011    }
1012  }
1013#endif // _LP64
1014}
1015#endif // !CC_INTERP
1016
1017void InterpreterMacroAssembler::get_method_counters(Register method,
1018                                                    Register mcs, Label& skip) {
1019  Label has_counters;
1020  movptr(mcs, Address(method, Method::method_counters_offset()));
1021  testptr(mcs, mcs);
1022  jcc(Assembler::notZero, has_counters);
1023  call_VM(noreg, CAST_FROM_FN_PTR(address,
1024          InterpreterRuntime::build_method_counters), method);
1025  movptr(mcs, Address(method,Method::method_counters_offset()));
1026  testptr(mcs, mcs);
1027  jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1028  bind(has_counters);
1029}
1030
1031
1032// Lock object
1033//
1034// Args:
1035//      rdx, c_rarg1: BasicObjectLock to be used for locking
1036//
1037// Kills:
1038//      rax
1039//      rscratch1 (scratch regs)
1040void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1041  assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1042         "The argument is only for looks. It must be c_rarg1");
1043
1044  if (UseHeavyMonitors) {
1045    call_VM(noreg,
1046            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1047            lock_reg);
1048  } else {
1049    Label done;
1050
1051    const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1052    const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1053
1054    const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1055    const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1056    const int mark_offset = lock_offset +
1057                            BasicLock::displaced_header_offset_in_bytes();
1058
1059    Label slow_case;
1060
1061    // Load object pointer into obj_reg
1062    movptr(obj_reg, Address(lock_reg, obj_offset));
1063
1064    if (UseBiasedLocking) {
1065      biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
1066    }
1067
1068    // Load immediate 1 into swap_reg %rax
1069    movl(swap_reg, (int32_t)1);
1070
1071    // Load (object->mark() | 1) into swap_reg %rax
1072    orptr(swap_reg, Address(obj_reg, 0));
1073
1074    // Save (object->mark() | 1) into BasicLock's displaced header
1075    movptr(Address(lock_reg, mark_offset), swap_reg);
1076
1077    assert(lock_offset == 0,
1078           "displached header must be first word in BasicObjectLock");
1079
1080    if (os::is_MP()) lock();
1081    cmpxchgptr(lock_reg, Address(obj_reg, 0));
1082    if (PrintBiasedLockingStatistics) {
1083      cond_inc32(Assembler::zero,
1084                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1085    }
1086    jcc(Assembler::zero, done);
1087
1088    const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1089
1090    // Test if the oopMark is an obvious stack pointer, i.e.,
1091    //  1) (mark & zero_bits) == 0, and
1092    //  2) rsp <= mark < mark + os::pagesize()
1093    //
1094    // These 3 tests can be done by evaluating the following
1095    // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1096    // assuming both stack pointer and pagesize have their
1097    // least significant bits clear.
1098    // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1099    subptr(swap_reg, rsp);
1100    andptr(swap_reg, zero_bits - os::vm_page_size());
1101
1102    // Save the test result, for recursive case, the result is zero
1103    movptr(Address(lock_reg, mark_offset), swap_reg);
1104
1105    if (PrintBiasedLockingStatistics) {
1106      cond_inc32(Assembler::zero,
1107                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1108    }
1109    jcc(Assembler::zero, done);
1110
1111    bind(slow_case);
1112
1113    // Call the runtime routine for slow case
1114    call_VM(noreg,
1115            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1116            lock_reg);
1117
1118    bind(done);
1119  }
1120}
1121
1122
1123// Unlocks an object. Used in monitorexit bytecode and
1124// remove_activation.  Throws an IllegalMonitorException if object is
1125// not locked by current thread.
1126//
1127// Args:
1128//      rdx, c_rarg1: BasicObjectLock for lock
1129//
1130// Kills:
1131//      rax
1132//      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1133//      rscratch1, rscratch2 (scratch regs)
1134// rax, rbx, rcx, rdx
1135void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1136  assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1137         "The argument is only for looks. It must be c_rarg1");
1138
1139  if (UseHeavyMonitors) {
1140    call_VM(noreg,
1141            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1142            lock_reg);
1143  } else {
1144    Label done;
1145
1146    const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1147    const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1148    const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1149
1150    save_bcp(); // Save in case of exception
1151
1152    // Convert from BasicObjectLock structure to object and BasicLock
1153    // structure Store the BasicLock address into %rax
1154    lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1155
1156    // Load oop into obj_reg(%c_rarg3)
1157    movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1158
1159    // Free entry
1160    movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1161
1162    if (UseBiasedLocking) {
1163      biased_locking_exit(obj_reg, header_reg, done);
1164    }
1165
1166    // Load the old header from BasicLock structure
1167    movptr(header_reg, Address(swap_reg,
1168                               BasicLock::displaced_header_offset_in_bytes()));
1169
1170    // Test for recursion
1171    testptr(header_reg, header_reg);
1172
1173    // zero for recursive case
1174    jcc(Assembler::zero, done);
1175
1176    // Atomic swap back the old header
1177    if (os::is_MP()) lock();
1178    cmpxchgptr(header_reg, Address(obj_reg, 0));
1179
1180    // zero for recursive case
1181    jcc(Assembler::zero, done);
1182
1183    // Call the runtime routine for slow case.
1184    movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1185         obj_reg); // restore obj
1186    call_VM(noreg,
1187            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1188            lock_reg);
1189
1190    bind(done);
1191
1192    restore_bcp();
1193  }
1194}
1195#ifndef CC_INTERP
1196void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1197                                                         Label& zero_continue) {
1198  assert(ProfileInterpreter, "must be profiling interpreter");
1199  movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1200  testptr(mdp, mdp);
1201  jcc(Assembler::zero, zero_continue);
1202}
1203
1204
1205// Set the method data pointer for the current bcp.
1206void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1207  assert(ProfileInterpreter, "must be profiling interpreter");
1208  Label set_mdp;
1209  push(rax);
1210  push(rbx);
1211
1212  get_method(rbx);
1213  // Test MDO to avoid the call if it is NULL.
1214  movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1215  testptr(rax, rax);
1216  jcc(Assembler::zero, set_mdp);
1217  // rbx: method
1218  // _bcp_register: bcp
1219  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1220  // rax: mdi
1221  // mdo is guaranteed to be non-zero here, we checked for it before the call.
1222  movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1223  addptr(rbx, in_bytes(MethodData::data_offset()));
1224  addptr(rax, rbx);
1225  bind(set_mdp);
1226  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1227  pop(rbx);
1228  pop(rax);
1229}
1230
1231void InterpreterMacroAssembler::verify_method_data_pointer() {
1232  assert(ProfileInterpreter, "must be profiling interpreter");
1233#ifdef ASSERT
1234  Label verify_continue;
1235  push(rax);
1236  push(rbx);
1237  Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1238  Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1239  push(arg3_reg);
1240  push(arg2_reg);
1241  test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1242  get_method(rbx);
1243
1244  // If the mdp is valid, it will point to a DataLayout header which is
1245  // consistent with the bcp.  The converse is highly probable also.
1246  load_unsigned_short(arg2_reg,
1247                      Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1248  addptr(arg2_reg, Address(rbx, Method::const_offset()));
1249  lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1250  cmpptr(arg2_reg, _bcp_register);
1251  jcc(Assembler::equal, verify_continue);
1252  // rbx: method
1253  // _bcp_register: bcp
1254  // c_rarg3: mdp
1255  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1256               rbx, _bcp_register, arg3_reg);
1257  bind(verify_continue);
1258  pop(arg2_reg);
1259  pop(arg3_reg);
1260  pop(rbx);
1261  pop(rax);
1262#endif // ASSERT
1263}
1264
1265
1266void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1267                                                int constant,
1268                                                Register value) {
1269  assert(ProfileInterpreter, "must be profiling interpreter");
1270  Address data(mdp_in, constant);
1271  movptr(data, value);
1272}
1273
1274
1275void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1276                                                      int constant,
1277                                                      bool decrement) {
1278  // Counter address
1279  Address data(mdp_in, constant);
1280
1281  increment_mdp_data_at(data, decrement);
1282}
1283
1284void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1285                                                      bool decrement) {
1286  assert(ProfileInterpreter, "must be profiling interpreter");
1287  // %%% this does 64bit counters at best it is wasting space
1288  // at worst it is a rare bug when counters overflow
1289
1290  if (decrement) {
1291    // Decrement the register.  Set condition codes.
1292    addptr(data, (int32_t) -DataLayout::counter_increment);
1293    // If the decrement causes the counter to overflow, stay negative
1294    Label L;
1295    jcc(Assembler::negative, L);
1296    addptr(data, (int32_t) DataLayout::counter_increment);
1297    bind(L);
1298  } else {
1299    assert(DataLayout::counter_increment == 1,
1300           "flow-free idiom only works with 1");
1301    // Increment the register.  Set carry flag.
1302    addptr(data, DataLayout::counter_increment);
1303    // If the increment causes the counter to overflow, pull back by 1.
1304    sbbptr(data, (int32_t)0);
1305  }
1306}
1307
1308
1309void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1310                                                      Register reg,
1311                                                      int constant,
1312                                                      bool decrement) {
1313  Address data(mdp_in, reg, Address::times_1, constant);
1314
1315  increment_mdp_data_at(data, decrement);
1316}
1317
1318void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1319                                                int flag_byte_constant) {
1320  assert(ProfileInterpreter, "must be profiling interpreter");
1321  int header_offset = in_bytes(DataLayout::header_offset());
1322  int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1323  // Set the flag
1324  orl(Address(mdp_in, header_offset), header_bits);
1325}
1326
1327
1328
1329void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1330                                                 int offset,
1331                                                 Register value,
1332                                                 Register test_value_out,
1333                                                 Label& not_equal_continue) {
1334  assert(ProfileInterpreter, "must be profiling interpreter");
1335  if (test_value_out == noreg) {
1336    cmpptr(value, Address(mdp_in, offset));
1337  } else {
1338    // Put the test value into a register, so caller can use it:
1339    movptr(test_value_out, Address(mdp_in, offset));
1340    cmpptr(test_value_out, value);
1341  }
1342  jcc(Assembler::notEqual, not_equal_continue);
1343}
1344
1345
1346void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1347                                                     int offset_of_disp) {
1348  assert(ProfileInterpreter, "must be profiling interpreter");
1349  Address disp_address(mdp_in, offset_of_disp);
1350  addptr(mdp_in, disp_address);
1351  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1352}
1353
1354
1355void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1356                                                     Register reg,
1357                                                     int offset_of_disp) {
1358  assert(ProfileInterpreter, "must be profiling interpreter");
1359  Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1360  addptr(mdp_in, disp_address);
1361  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1362}
1363
1364
1365void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1366                                                       int constant) {
1367  assert(ProfileInterpreter, "must be profiling interpreter");
1368  addptr(mdp_in, constant);
1369  movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1370}
1371
1372
1373void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1374  assert(ProfileInterpreter, "must be profiling interpreter");
1375  push(return_bci); // save/restore across call_VM
1376  call_VM(noreg,
1377          CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1378          return_bci);
1379  pop(return_bci);
1380}
1381
1382
1383void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1384                                                     Register bumped_count) {
1385  if (ProfileInterpreter) {
1386    Label profile_continue;
1387
1388    // If no method data exists, go to profile_continue.
1389    // Otherwise, assign to mdp
1390    test_method_data_pointer(mdp, profile_continue);
1391
1392    // We are taking a branch.  Increment the taken count.
1393    // We inline increment_mdp_data_at to return bumped_count in a register
1394    //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1395    Address data(mdp, in_bytes(JumpData::taken_offset()));
1396    movptr(bumped_count, data);
1397    assert(DataLayout::counter_increment == 1,
1398            "flow-free idiom only works with 1");
1399    addptr(bumped_count, DataLayout::counter_increment);
1400    sbbptr(bumped_count, 0);
1401    movptr(data, bumped_count); // Store back out
1402
1403    // The method data pointer needs to be updated to reflect the new target.
1404    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1405    bind(profile_continue);
1406  }
1407}
1408
1409
1410void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1411  if (ProfileInterpreter) {
1412    Label profile_continue;
1413
1414    // If no method data exists, go to profile_continue.
1415    test_method_data_pointer(mdp, profile_continue);
1416
1417    // We are taking a branch.  Increment the not taken count.
1418    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1419
1420    // The method data pointer needs to be updated to correspond to
1421    // the next bytecode
1422    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1423    bind(profile_continue);
1424  }
1425}
1426
1427void InterpreterMacroAssembler::profile_call(Register mdp) {
1428  if (ProfileInterpreter) {
1429    Label profile_continue;
1430
1431    // If no method data exists, go to profile_continue.
1432    test_method_data_pointer(mdp, profile_continue);
1433
1434    // We are making a call.  Increment the count.
1435    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1436
1437    // The method data pointer needs to be updated to reflect the new target.
1438    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1439    bind(profile_continue);
1440  }
1441}
1442
1443
1444void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1445  if (ProfileInterpreter) {
1446    Label profile_continue;
1447
1448    // If no method data exists, go to profile_continue.
1449    test_method_data_pointer(mdp, profile_continue);
1450
1451    // We are making a call.  Increment the count.
1452    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1453
1454    // The method data pointer needs to be updated to reflect the new target.
1455    update_mdp_by_constant(mdp,
1456                           in_bytes(VirtualCallData::
1457                                    virtual_call_data_size()));
1458    bind(profile_continue);
1459  }
1460}
1461
1462
1463void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1464                                                     Register mdp,
1465                                                     Register reg2,
1466                                                     bool receiver_can_be_null) {
1467  if (ProfileInterpreter) {
1468    Label profile_continue;
1469
1470    // If no method data exists, go to profile_continue.
1471    test_method_data_pointer(mdp, profile_continue);
1472
1473    Label skip_receiver_profile;
1474    if (receiver_can_be_null) {
1475      Label not_null;
1476      testptr(receiver, receiver);
1477      jccb(Assembler::notZero, not_null);
1478      // We are making a call.  Increment the count for null receiver.
1479      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1480      jmp(skip_receiver_profile);
1481      bind(not_null);
1482    }
1483
1484    // Record the receiver type.
1485    record_klass_in_profile(receiver, mdp, reg2, true);
1486    bind(skip_receiver_profile);
1487
1488    // The method data pointer needs to be updated to reflect the new target.
1489    update_mdp_by_constant(mdp,
1490                           in_bytes(VirtualCallData::
1491                                    virtual_call_data_size()));
1492    bind(profile_continue);
1493  }
1494}
1495
1496// This routine creates a state machine for updating the multi-row
1497// type profile at a virtual call site (or other type-sensitive bytecode).
1498// The machine visits each row (of receiver/count) until the receiver type
1499// is found, or until it runs out of rows.  At the same time, it remembers
1500// the location of the first empty row.  (An empty row records null for its
1501// receiver, and can be allocated for a newly-observed receiver type.)
1502// Because there are two degrees of freedom in the state, a simple linear
1503// search will not work; it must be a decision tree.  Hence this helper
1504// function is recursive, to generate the required tree structured code.
1505// It's the interpreter, so we are trading off code space for speed.
1506// See below for example code.
1507void InterpreterMacroAssembler::record_klass_in_profile_helper(
1508                                        Register receiver, Register mdp,
1509                                        Register reg2, int start_row,
1510                                        Label& done, bool is_virtual_call) {
1511  if (TypeProfileWidth == 0) {
1512    if (is_virtual_call) {
1513      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1514    }
1515    return;
1516  }
1517
1518  int last_row = VirtualCallData::row_limit() - 1;
1519  assert(start_row <= last_row, "must be work left to do");
1520  // Test this row for both the receiver and for null.
1521  // Take any of three different outcomes:
1522  //   1. found receiver => increment count and goto done
1523  //   2. found null => keep looking for case 1, maybe allocate this cell
1524  //   3. found something else => keep looking for cases 1 and 2
1525  // Case 3 is handled by a recursive call.
1526  for (int row = start_row; row <= last_row; row++) {
1527    Label next_test;
1528    bool test_for_null_also = (row == start_row);
1529
1530    // See if the receiver is receiver[n].
1531    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1532    test_mdp_data_at(mdp, recvr_offset, receiver,
1533                     (test_for_null_also ? reg2 : noreg),
1534                     next_test);
1535    // (Reg2 now contains the receiver from the CallData.)
1536
1537    // The receiver is receiver[n].  Increment count[n].
1538    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1539    increment_mdp_data_at(mdp, count_offset);
1540    jmp(done);
1541    bind(next_test);
1542
1543    if (test_for_null_also) {
1544      Label found_null;
1545      // Failed the equality check on receiver[n]...  Test for null.
1546      testptr(reg2, reg2);
1547      if (start_row == last_row) {
1548        // The only thing left to do is handle the null case.
1549        if (is_virtual_call) {
1550          jccb(Assembler::zero, found_null);
1551          // Receiver did not match any saved receiver and there is no empty row for it.
1552          // Increment total counter to indicate polymorphic case.
1553          increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1554          jmp(done);
1555          bind(found_null);
1556        } else {
1557          jcc(Assembler::notZero, done);
1558        }
1559        break;
1560      }
1561      // Since null is rare, make it be the branch-taken case.
1562      jcc(Assembler::zero, found_null);
1563
1564      // Put all the "Case 3" tests here.
1565      record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1566
1567      // Found a null.  Keep searching for a matching receiver,
1568      // but remember that this is an empty (unused) slot.
1569      bind(found_null);
1570    }
1571  }
1572
1573  // In the fall-through case, we found no matching receiver, but we
1574  // observed the receiver[start_row] is NULL.
1575
1576  // Fill in the receiver field and increment the count.
1577  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1578  set_mdp_data_at(mdp, recvr_offset, receiver);
1579  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1580  movl(reg2, DataLayout::counter_increment);
1581  set_mdp_data_at(mdp, count_offset, reg2);
1582  if (start_row > 0) {
1583    jmp(done);
1584  }
1585}
1586
1587// Example state machine code for three profile rows:
1588//   // main copy of decision tree, rooted at row[1]
1589//   if (row[0].rec == rec) { row[0].incr(); goto done; }
1590//   if (row[0].rec != NULL) {
1591//     // inner copy of decision tree, rooted at row[1]
1592//     if (row[1].rec == rec) { row[1].incr(); goto done; }
1593//     if (row[1].rec != NULL) {
1594//       // degenerate decision tree, rooted at row[2]
1595//       if (row[2].rec == rec) { row[2].incr(); goto done; }
1596//       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1597//       row[2].init(rec); goto done;
1598//     } else {
1599//       // remember row[1] is empty
1600//       if (row[2].rec == rec) { row[2].incr(); goto done; }
1601//       row[1].init(rec); goto done;
1602//     }
1603//   } else {
1604//     // remember row[0] is empty
1605//     if (row[1].rec == rec) { row[1].incr(); goto done; }
1606//     if (row[2].rec == rec) { row[2].incr(); goto done; }
1607//     row[0].init(rec); goto done;
1608//   }
1609//   done:
1610
1611void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1612                                                        Register mdp, Register reg2,
1613                                                        bool is_virtual_call) {
1614  assert(ProfileInterpreter, "must be profiling");
1615  Label done;
1616
1617  record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1618
1619  bind (done);
1620}
1621
1622void InterpreterMacroAssembler::profile_ret(Register return_bci,
1623                                            Register mdp) {
1624  if (ProfileInterpreter) {
1625    Label profile_continue;
1626    uint row;
1627
1628    // If no method data exists, go to profile_continue.
1629    test_method_data_pointer(mdp, profile_continue);
1630
1631    // Update the total ret count.
1632    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1633
1634    for (row = 0; row < RetData::row_limit(); row++) {
1635      Label next_test;
1636
1637      // See if return_bci is equal to bci[n]:
1638      test_mdp_data_at(mdp,
1639                       in_bytes(RetData::bci_offset(row)),
1640                       return_bci, noreg,
1641                       next_test);
1642
1643      // return_bci is equal to bci[n].  Increment the count.
1644      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1645
1646      // The method data pointer needs to be updated to reflect the new target.
1647      update_mdp_by_offset(mdp,
1648                           in_bytes(RetData::bci_displacement_offset(row)));
1649      jmp(profile_continue);
1650      bind(next_test);
1651    }
1652
1653    update_mdp_for_ret(return_bci);
1654
1655    bind(profile_continue);
1656  }
1657}
1658
1659
1660void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1661  if (ProfileInterpreter) {
1662    Label profile_continue;
1663
1664    // If no method data exists, go to profile_continue.
1665    test_method_data_pointer(mdp, profile_continue);
1666
1667    set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1668
1669    // The method data pointer needs to be updated.
1670    int mdp_delta = in_bytes(BitData::bit_data_size());
1671    if (TypeProfileCasts) {
1672      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1673    }
1674    update_mdp_by_constant(mdp, mdp_delta);
1675
1676    bind(profile_continue);
1677  }
1678}
1679
1680
1681void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1682  if (ProfileInterpreter && TypeProfileCasts) {
1683    Label profile_continue;
1684
1685    // If no method data exists, go to profile_continue.
1686    test_method_data_pointer(mdp, profile_continue);
1687
1688    int count_offset = in_bytes(CounterData::count_offset());
1689    // Back up the address, since we have already bumped the mdp.
1690    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1691
1692    // *Decrement* the counter.  We expect to see zero or small negatives.
1693    increment_mdp_data_at(mdp, count_offset, true);
1694
1695    bind (profile_continue);
1696  }
1697}
1698
1699
1700void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1701  if (ProfileInterpreter) {
1702    Label profile_continue;
1703
1704    // If no method data exists, go to profile_continue.
1705    test_method_data_pointer(mdp, profile_continue);
1706
1707    // The method data pointer needs to be updated.
1708    int mdp_delta = in_bytes(BitData::bit_data_size());
1709    if (TypeProfileCasts) {
1710      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1711
1712      // Record the object type.
1713      record_klass_in_profile(klass, mdp, reg2, false);
1714      NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1715      NOT_LP64(restore_locals();)         // Restore EDI
1716    }
1717    update_mdp_by_constant(mdp, mdp_delta);
1718
1719    bind(profile_continue);
1720  }
1721}
1722
1723
1724void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1725  if (ProfileInterpreter) {
1726    Label profile_continue;
1727
1728    // If no method data exists, go to profile_continue.
1729    test_method_data_pointer(mdp, profile_continue);
1730
1731    // Update the default case count
1732    increment_mdp_data_at(mdp,
1733                          in_bytes(MultiBranchData::default_count_offset()));
1734
1735    // The method data pointer needs to be updated.
1736    update_mdp_by_offset(mdp,
1737                         in_bytes(MultiBranchData::
1738                                  default_displacement_offset()));
1739
1740    bind(profile_continue);
1741  }
1742}
1743
1744
1745void InterpreterMacroAssembler::profile_switch_case(Register index,
1746                                                    Register mdp,
1747                                                    Register reg2) {
1748  if (ProfileInterpreter) {
1749    Label profile_continue;
1750
1751    // If no method data exists, go to profile_continue.
1752    test_method_data_pointer(mdp, profile_continue);
1753
1754    // Build the base (index * per_case_size_in_bytes()) +
1755    // case_array_offset_in_bytes()
1756    movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1757    imulptr(index, reg2); // XXX l ?
1758    addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1759
1760    // Update the case count
1761    increment_mdp_data_at(mdp,
1762                          index,
1763                          in_bytes(MultiBranchData::relative_count_offset()));
1764
1765    // The method data pointer needs to be updated.
1766    update_mdp_by_offset(mdp,
1767                         index,
1768                         in_bytes(MultiBranchData::
1769                                  relative_displacement_offset()));
1770
1771    bind(profile_continue);
1772  }
1773}
1774
1775
1776
1777void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1778  if (state == atos) {
1779    MacroAssembler::verify_oop(reg);
1780  }
1781}
1782
1783void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1784#ifndef _LP64
1785  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
1786#endif
1787}
1788
1789// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1790void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1791                                                        int increment, Address mask,
1792                                                        Register scratch, bool preloaded,
1793                                                        Condition cond, Label* where) {
1794  if (!preloaded) {
1795    movl(scratch, counter_addr);
1796  }
1797  incrementl(scratch, increment);
1798  movl(counter_addr, scratch);
1799  andl(scratch, mask);
1800  jcc(cond, *where);
1801}
1802#endif // CC_INTERP
1803
1804void InterpreterMacroAssembler::notify_method_entry() {
1805  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1806  // track stack depth.  If it is possible to enter interp_only_mode we add
1807  // the code to check if the event should be sent.
1808  Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1809  Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1810  if (JvmtiExport::can_post_interpreter_events()) {
1811    Label L;
1812    NOT_LP64(get_thread(rthread);)
1813    movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1814    testl(rdx, rdx);
1815    jcc(Assembler::zero, L);
1816    call_VM(noreg, CAST_FROM_FN_PTR(address,
1817                                    InterpreterRuntime::post_method_entry));
1818    bind(L);
1819  }
1820
1821  {
1822    SkipIfEqual skip(this, &DTraceMethodProbes, false);
1823    NOT_LP64(get_thread(rthread);)
1824    get_method(rarg);
1825    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1826                 rthread, rarg);
1827  }
1828
1829  // RedefineClasses() tracing support for obsolete method entry
1830  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1831    NOT_LP64(get_thread(rthread);)
1832    get_method(rarg);
1833    call_VM_leaf(
1834      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1835      rthread, rarg);
1836  }
1837}
1838
1839
1840void InterpreterMacroAssembler::notify_method_exit(
1841    TosState state, NotifyMethodExitMode mode) {
1842  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1843  // track stack depth.  If it is possible to enter interp_only_mode we add
1844  // the code to check if the event should be sent.
1845  Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1846  Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1847  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1848    Label L;
1849    // Note: frame::interpreter_frame_result has a dependency on how the
1850    // method result is saved across the call to post_method_exit. If this
1851    // is changed then the interpreter_frame_result implementation will
1852    // need to be updated too.
1853
1854    // For c++ interpreter the result is always stored at a known location in the frame
1855    // template interpreter will leave it on the top of the stack.
1856    NOT_CC_INTERP(push(state);)
1857    NOT_LP64(get_thread(rthread);)
1858    movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1859    testl(rdx, rdx);
1860    jcc(Assembler::zero, L);
1861    call_VM(noreg,
1862            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1863    bind(L);
1864    NOT_CC_INTERP(pop(state));
1865  }
1866
1867  {
1868    SkipIfEqual skip(this, &DTraceMethodProbes, false);
1869    NOT_CC_INTERP(push(state));
1870    NOT_LP64(get_thread(rthread);)
1871    get_method(rarg);
1872    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1873                 rthread, rarg);
1874    NOT_CC_INTERP(pop(state));
1875  }
1876}
1877