frame_x86.cpp revision 6683:08a2164660fb
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interpreter/interpreter.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/method.hpp"
30#include "oops/oop.inline.hpp"
31#include "prims/methodHandles.hpp"
32#include "runtime/frame.inline.hpp"
33#include "runtime/handles.inline.hpp"
34#include "runtime/javaCalls.hpp"
35#include "runtime/monitorChunk.hpp"
36#include "runtime/os.inline.hpp"
37#include "runtime/signature.hpp"
38#include "runtime/stubCodeGenerator.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "vmreg_x86.inline.hpp"
41#ifdef COMPILER1
42#include "c1/c1_Runtime1.hpp"
43#include "runtime/vframeArray.hpp"
44#endif
45
46#ifdef ASSERT
47void RegisterMap::check_location_valid() {
48}
49#endif
50
51PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
52
53// Profiling/safepoint support
54
55bool frame::safe_for_sender(JavaThread *thread) {
56  address   sp = (address)_sp;
57  address   fp = (address)_fp;
58  address   unextended_sp = (address)_unextended_sp;
59
60  // consider stack guards when trying to determine "safe" stack pointers
61  static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
62  size_t usable_stack_size = thread->stack_size() - stack_guard_size;
63
64  // sp must be within the usable part of the stack (not in guards)
65  bool sp_safe = (sp < thread->stack_base()) &&
66                 (sp >= thread->stack_base() - usable_stack_size);
67
68
69  if (!sp_safe) {
70    return false;
71  }
72
73  // unextended sp must be within the stack and above or equal sp
74  bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
75                            (unextended_sp >= sp);
76
77  if (!unextended_sp_safe) {
78    return false;
79  }
80
81  // an fp must be within the stack and above (but not equal) sp
82  // second evaluation on fp+ is added to handle situation where fp is -1
83  bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
84
85  // We know sp/unextended_sp are safe only fp is questionable here
86
87  // If the current frame is known to the code cache then we can attempt to
88  // to construct the sender and do some validation of it. This goes a long way
89  // toward eliminating issues when we get in frame construction code
90
91  if (_cb != NULL ) {
92
93    // First check if frame is complete and tester is reliable
94    // Unfortunately we can only check frame complete for runtime stubs and nmethod
95    // other generic buffer blobs are more problematic so we just assume they are
96    // ok. adapter blobs never have a frame complete and are never ok.
97
98    if (!_cb->is_frame_complete_at(_pc)) {
99      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
100        return false;
101      }
102    }
103
104    // Could just be some random pointer within the codeBlob
105    if (!_cb->code_contains(_pc)) {
106      return false;
107    }
108
109    // Entry frame checks
110    if (is_entry_frame()) {
111      // an entry frame must have a valid fp.
112
113      if (!fp_safe) return false;
114
115      // Validate the JavaCallWrapper an entry frame must have
116
117      address jcw = (address)entry_frame_call_wrapper();
118
119      bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp);
120
121      return jcw_safe;
122
123    }
124
125    intptr_t* sender_sp = NULL;
126    address   sender_pc = NULL;
127
128    if (is_interpreted_frame()) {
129      // fp must be safe
130      if (!fp_safe) {
131        return false;
132      }
133
134      sender_pc = (address) this->fp()[return_addr_offset];
135      sender_sp = (intptr_t*) addr_at(sender_sp_offset);
136
137    } else {
138      // must be some sort of compiled/runtime frame
139      // fp does not have to be safe (although it could be check for c1?)
140
141      // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
142      if (_cb->frame_size() <= 0) {
143        return false;
144      }
145
146      sender_sp = _unextended_sp + _cb->frame_size();
147      // On Intel the return_address is always the word on the stack
148      sender_pc = (address) *(sender_sp-1);
149    }
150
151
152    // If the potential sender is the interpreter then we can do some more checking
153    if (Interpreter::contains(sender_pc)) {
154
155      // ebp is always saved in a recognizable place in any code we generate. However
156      // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
157      // is really a frame pointer.
158
159      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
160      bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
161
162      if (!saved_fp_safe) {
163        return false;
164      }
165
166      // construct the potential sender
167
168      frame sender(sender_sp, saved_fp, sender_pc);
169
170      return sender.is_interpreted_frame_valid(thread);
171
172    }
173
174    // We must always be able to find a recognizable pc
175    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
176    if (sender_pc == NULL ||  sender_blob == NULL) {
177      return false;
178    }
179
180    // Could be a zombie method
181    if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
182      return false;
183    }
184
185    // Could just be some random pointer within the codeBlob
186    if (!sender_blob->code_contains(sender_pc)) {
187      return false;
188    }
189
190    // We should never be able to see an adapter if the current frame is something from code cache
191    if (sender_blob->is_adapter_blob()) {
192      return false;
193    }
194
195    // Could be the call_stub
196    if (StubRoutines::returns_to_call_stub(sender_pc)) {
197      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
198      bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
199
200      if (!saved_fp_safe) {
201        return false;
202      }
203
204      // construct the potential sender
205
206      frame sender(sender_sp, saved_fp, sender_pc);
207
208      // Validate the JavaCallWrapper an entry frame must have
209      address jcw = (address)sender.entry_frame_call_wrapper();
210
211      bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp());
212
213      return jcw_safe;
214    }
215
216    if (sender_blob->is_nmethod()) {
217        nmethod* nm = sender_blob->as_nmethod_or_null();
218        if (nm != NULL) {
219            if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc)) {
220                return false;
221            }
222        }
223    }
224
225    // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
226    // because the return address counts against the callee's frame.
227
228    if (sender_blob->frame_size() <= 0) {
229      assert(!sender_blob->is_nmethod(), "should count return address at least");
230      return false;
231    }
232
233    // We should never be able to see anything here except an nmethod. If something in the
234    // code cache (current frame) is called by an entity within the code cache that entity
235    // should not be anything but the call stub (already covered), the interpreter (already covered)
236    // or an nmethod.
237
238    if (!sender_blob->is_nmethod()) {
239        return false;
240    }
241
242    // Could put some more validation for the potential non-interpreted sender
243    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
244
245    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
246
247    // We've validated the potential sender that would be created
248    return true;
249  }
250
251  // Must be native-compiled frame. Since sender will try and use fp to find
252  // linkages it must be safe
253
254  if (!fp_safe) {
255    return false;
256  }
257
258  // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
259
260  if ( (address) this->fp()[return_addr_offset] == NULL) return false;
261
262
263  // could try and do some more potential verification of native frame if we could think of some...
264
265  return true;
266
267}
268
269
270void frame::patch_pc(Thread* thread, address pc) {
271  address* pc_addr = &(((address*) sp())[-1]);
272  if (TracePcPatching) {
273    tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
274                  pc_addr, *pc_addr, pc);
275  }
276  // Either the return address is the original one or we are going to
277  // patch in the same address that's already there.
278  assert(_pc == *pc_addr || pc == *pc_addr, "must be");
279  *pc_addr = pc;
280  _cb = CodeCache::find_blob(pc);
281  address original_pc = nmethod::get_deopt_original_pc(this);
282  if (original_pc != NULL) {
283    assert(original_pc == _pc, "expected original PC to be stored before patching");
284    _deopt_state = is_deoptimized;
285    // leave _pc as is
286  } else {
287    _deopt_state = not_deoptimized;
288    _pc = pc;
289  }
290}
291
292bool frame::is_interpreted_frame() const  {
293  return Interpreter::contains(pc());
294}
295
296int frame::frame_size(RegisterMap* map) const {
297  frame sender = this->sender(map);
298  return sender.sp() - sp();
299}
300
301intptr_t* frame::entry_frame_argument_at(int offset) const {
302  // convert offset to index to deal with tsi
303  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
304  // Entry frame's arguments are always in relation to unextended_sp()
305  return &unextended_sp()[index];
306}
307
308// sender_sp
309#ifdef CC_INTERP
310intptr_t* frame::interpreter_frame_sender_sp() const {
311  assert(is_interpreted_frame(), "interpreted frame expected");
312  // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
313  // seems odd and if we always know interpreted vs. non then sender_sp() is really
314  // doing too much work.
315  return get_interpreterState()->sender_sp();
316}
317
318// monitor elements
319
320BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
321  return get_interpreterState()->monitor_base();
322}
323
324BasicObjectLock* frame::interpreter_frame_monitor_end() const {
325  return (BasicObjectLock*) get_interpreterState()->stack_base();
326}
327
328#else // CC_INTERP
329
330intptr_t* frame::interpreter_frame_sender_sp() const {
331  assert(is_interpreted_frame(), "interpreted frame expected");
332  return (intptr_t*) at(interpreter_frame_sender_sp_offset);
333}
334
335void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
336  assert(is_interpreted_frame(), "interpreted frame expected");
337  ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
338}
339
340
341// monitor elements
342
343BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
344  return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
345}
346
347BasicObjectLock* frame::interpreter_frame_monitor_end() const {
348  BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
349  // make sure the pointer points inside the frame
350  assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
351  assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
352  return result;
353}
354
355void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
356  *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
357}
358
359// Used by template based interpreter deoptimization
360void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
361    *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
362}
363#endif // CC_INTERP
364
365frame frame::sender_for_entry_frame(RegisterMap* map) const {
366  assert(map != NULL, "map must be set");
367  // Java frame called from C; skip all C frames and return top C
368  // frame of that chunk as the sender
369  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
370  assert(!entry_frame_is_first(), "next Java fp must be non zero");
371  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
372  map->clear();
373  assert(map->include_argument_oops(), "should be set by clear");
374  if (jfa->last_Java_pc() != NULL ) {
375    frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
376    return fr;
377  }
378  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
379  return fr;
380}
381
382//------------------------------------------------------------------------------
383// frame::verify_deopt_original_pc
384//
385// Verifies the calculated original PC of a deoptimization PC for the
386// given unextended SP.  The unextended SP might also be the saved SP
387// for MethodHandle call sites.
388#ifdef ASSERT
389void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
390  frame fr;
391
392  // This is ugly but it's better than to change {get,set}_original_pc
393  // to take an SP value as argument.  And it's only a debugging
394  // method anyway.
395  fr._unextended_sp = unextended_sp;
396
397  address original_pc = nm->get_original_pc(&fr);
398  assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
399  assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
400}
401#endif
402
403//------------------------------------------------------------------------------
404// frame::adjust_unextended_sp
405void frame::adjust_unextended_sp() {
406  // If we are returning to a compiled MethodHandle call site, the
407  // saved_fp will in fact be a saved value of the unextended SP.  The
408  // simplest way to tell whether we are returning to such a call site
409  // is as follows:
410
411  nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
412  if (sender_nm != NULL) {
413    // If the sender PC is a deoptimization point, get the original
414    // PC.  For MethodHandle call site the unextended_sp is stored in
415    // saved_fp.
416    if (sender_nm->is_deopt_mh_entry(_pc)) {
417      DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
418      _unextended_sp = _fp;
419    }
420    else if (sender_nm->is_deopt_entry(_pc)) {
421      DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
422    }
423    else if (sender_nm->is_method_handle_return(_pc)) {
424      _unextended_sp = _fp;
425    }
426  }
427}
428
429//------------------------------------------------------------------------------
430// frame::update_map_with_saved_link
431void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
432  // The interpreter and compiler(s) always save EBP/RBP in a known
433  // location on entry. We must record where that location is
434  // so this if EBP/RBP was live on callout from c2 we can find
435  // the saved copy no matter what it called.
436
437  // Since the interpreter always saves EBP/RBP if we record where it is then
438  // we don't have to always save EBP/RBP on entry and exit to c2 compiled
439  // code, on entry will be enough.
440  map->set_location(rbp->as_VMReg(), (address) link_addr);
441#ifdef AMD64
442  // this is weird "H" ought to be at a higher address however the
443  // oopMaps seems to have the "H" regs at the same address and the
444  // vanilla register.
445  // XXXX make this go away
446  if (true) {
447    map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
448  }
449#endif // AMD64
450}
451
452
453//------------------------------------------------------------------------------
454// frame::sender_for_interpreter_frame
455frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
456  // SP is the raw SP from the sender after adapter or interpreter
457  // extension.
458  intptr_t* sender_sp = this->sender_sp();
459
460  // This is the sp before any possible extension (adapter/locals).
461  intptr_t* unextended_sp = interpreter_frame_sender_sp();
462
463#ifdef COMPILER2
464  if (map->update_map()) {
465    update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
466  }
467#endif // COMPILER2
468
469  return frame(sender_sp, unextended_sp, link(), sender_pc());
470}
471
472
473//------------------------------------------------------------------------------
474// frame::sender_for_compiled_frame
475frame frame::sender_for_compiled_frame(RegisterMap* map) const {
476  assert(map != NULL, "map must be set");
477
478  // frame owned by optimizing compiler
479  assert(_cb->frame_size() >= 0, "must have non-zero frame size");
480  intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
481  intptr_t* unextended_sp = sender_sp;
482
483  // On Intel the return_address is always the word on the stack
484  address sender_pc = (address) *(sender_sp-1);
485
486  // This is the saved value of EBP which may or may not really be an FP.
487  // It is only an FP if the sender is an interpreter frame (or C1?).
488  intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
489
490  if (map->update_map()) {
491    // Tell GC to use argument oopmaps for some runtime stubs that need it.
492    // For C1, the runtime stub might not have oop maps, so set this flag
493    // outside of update_register_map.
494    map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
495    if (_cb->oop_maps() != NULL) {
496      OopMapSet::update_register_map(this, map);
497    }
498
499    // Since the prolog does the save and restore of EBP there is no oopmap
500    // for it so we must fill in its location as if there was an oopmap entry
501    // since if our caller was compiled code there could be live jvm state in it.
502    update_map_with_saved_link(map, saved_fp_addr);
503  }
504
505  assert(sender_sp != sp(), "must have changed");
506  return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
507}
508
509
510//------------------------------------------------------------------------------
511// frame::sender
512frame frame::sender(RegisterMap* map) const {
513  // Default is we done have to follow them. The sender_for_xxx will
514  // update it accordingly
515  map->set_include_argument_oops(false);
516
517  if (is_entry_frame())       return sender_for_entry_frame(map);
518  if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
519  assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
520
521  if (_cb != NULL) {
522    return sender_for_compiled_frame(map);
523  }
524  // Must be native-compiled frame, i.e. the marshaling code for native
525  // methods that exists in the core system.
526  return frame(sender_sp(), link(), sender_pc());
527}
528
529
530bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
531  assert(is_interpreted_frame(), "must be interpreter frame");
532  Method* method = interpreter_frame_method();
533  // When unpacking an optimized frame the frame pointer is
534  // adjusted with:
535  int diff = (method->max_locals() - method->size_of_parameters()) *
536             Interpreter::stackElementWords;
537  return _fp == (fp - diff);
538}
539
540void frame::pd_gc_epilog() {
541  // nothing done here now
542}
543
544bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
545// QQQ
546#ifdef CC_INTERP
547#else
548  assert(is_interpreted_frame(), "Not an interpreted frame");
549  // These are reasonable sanity checks
550  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
551    return false;
552  }
553  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
554    return false;
555  }
556  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
557    return false;
558  }
559  // These are hacks to keep us out of trouble.
560  // The problem with these is that they mask other problems
561  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
562    return false;
563  }
564
565  // do some validation of frame elements
566
567  // first the method
568
569  Method* m = *interpreter_frame_method_addr();
570
571  // validate the method we'd find in this potential sender
572  if (!m->is_valid_method()) return false;
573
574  // stack frames shouldn't be much larger than max_stack elements
575
576  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
577    return false;
578  }
579
580  // validate bci/bcx
581
582  intptr_t  bcx    = interpreter_frame_bcx();
583  if (m->validate_bci_from_bcx(bcx) < 0) {
584    return false;
585  }
586
587  // validate ConstantPoolCache*
588  ConstantPoolCache* cp = *interpreter_frame_cache_addr();
589  if (cp == NULL || !cp->is_metaspace_object()) return false;
590
591  // validate locals
592
593  address locals =  (address) *interpreter_frame_locals_addr();
594
595  if (locals > thread->stack_base() || locals < (address) fp()) return false;
596
597  // We'd have to be pretty unlucky to be mislead at this point
598
599#endif // CC_INTERP
600  return true;
601}
602
603BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
604#ifdef CC_INTERP
605  // Needed for JVMTI. The result should always be in the
606  // interpreterState object
607  interpreterState istate = get_interpreterState();
608#endif // CC_INTERP
609  assert(is_interpreted_frame(), "interpreted frame expected");
610  Method* method = interpreter_frame_method();
611  BasicType type = method->result_type();
612
613  intptr_t* tos_addr;
614  if (method->is_native()) {
615    // Prior to calling into the runtime to report the method_exit the possible
616    // return value is pushed to the native stack. If the result is a jfloat/jdouble
617    // then ST0 is saved before EAX/EDX. See the note in generate_native_result
618    tos_addr = (intptr_t*)sp();
619    if (type == T_FLOAT || type == T_DOUBLE) {
620    // QQQ seems like this code is equivalent on the two platforms
621#ifdef AMD64
622      // This is times two because we do a push(ltos) after pushing XMM0
623      // and that takes two interpreter stack slots.
624      tos_addr += 2 * Interpreter::stackElementWords;
625#else
626      tos_addr += 2;
627#endif // AMD64
628    }
629  } else {
630    tos_addr = (intptr_t*)interpreter_frame_tos_address();
631  }
632
633  switch (type) {
634    case T_OBJECT  :
635    case T_ARRAY   : {
636      oop obj;
637      if (method->is_native()) {
638#ifdef CC_INTERP
639        obj = istate->_oop_temp;
640#else
641        obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
642#endif // CC_INTERP
643      } else {
644        oop* obj_p = (oop*)tos_addr;
645        obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
646      }
647      assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
648      *oop_result = obj;
649      break;
650    }
651    case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
652    case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
653    case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
654    case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
655    case T_INT     : value_result->i = *(jint*)tos_addr; break;
656    case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
657    case T_FLOAT   : {
658#ifdef AMD64
659        value_result->f = *(jfloat*)tos_addr;
660#else
661      if (method->is_native()) {
662        jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
663        value_result->f = (jfloat)d;
664      } else {
665        value_result->f = *(jfloat*)tos_addr;
666      }
667#endif // AMD64
668      break;
669    }
670    case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
671    case T_VOID    : /* Nothing to do */ break;
672    default        : ShouldNotReachHere();
673  }
674
675  return type;
676}
677
678
679intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
680  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
681  return &interpreter_frame_tos_address()[index];
682}
683
684#ifndef PRODUCT
685
686#define DESCRIBE_FP_OFFSET(name) \
687  values.describe(frame_no, fp() + frame::name##_offset, #name)
688
689void frame::describe_pd(FrameValues& values, int frame_no) {
690  if (is_interpreted_frame()) {
691#ifndef CC_INTERP
692    DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
693    DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
694    DESCRIBE_FP_OFFSET(interpreter_frame_method);
695    DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
696    DESCRIBE_FP_OFFSET(interpreter_frame_cache);
697    DESCRIBE_FP_OFFSET(interpreter_frame_locals);
698    DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
699    DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
700#endif
701  }
702}
703#endif
704
705intptr_t *frame::initial_deoptimization_info() {
706  // used to reset the saved FP
707  return fp();
708}
709
710intptr_t* frame::real_fp() const {
711  if (_cb != NULL) {
712    // use the frame size if valid
713    int size = _cb->frame_size();
714    if (size > 0) {
715      return unextended_sp() + size;
716    }
717  }
718  // else rely on fp()
719  assert(! is_compiled_frame(), "unknown compiled frame size");
720  return fp();
721}
722