frame_x86.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interpreter/interpreter.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/method.hpp"
30#include "oops/oop.inline.hpp"
31#include "prims/methodHandles.hpp"
32#include "runtime/frame.inline.hpp"
33#include "runtime/handles.inline.hpp"
34#include "runtime/javaCalls.hpp"
35#include "runtime/monitorChunk.hpp"
36#include "runtime/signature.hpp"
37#include "runtime/stubCodeGenerator.hpp"
38#include "runtime/stubRoutines.hpp"
39#include "vmreg_x86.inline.hpp"
40#ifdef COMPILER1
41#include "c1/c1_Runtime1.hpp"
42#include "runtime/vframeArray.hpp"
43#endif
44
45#ifdef ASSERT
46void RegisterMap::check_location_valid() {
47}
48#endif
49
50
51// Profiling/safepoint support
52
53bool frame::safe_for_sender(JavaThread *thread) {
54  address   sp = (address)_sp;
55  address   fp = (address)_fp;
56  address   unextended_sp = (address)_unextended_sp;
57  // sp must be within the stack
58  bool sp_safe = (sp <= thread->stack_base()) &&
59                 (sp >= thread->stack_base() - thread->stack_size());
60
61  if (!sp_safe) {
62    return false;
63  }
64
65  // unextended sp must be within the stack and above or equal sp
66  bool unextended_sp_safe = (unextended_sp <= thread->stack_base()) &&
67                            (unextended_sp >= sp);
68
69  if (!unextended_sp_safe) {
70    return false;
71  }
72
73  // an fp must be within the stack and above (but not equal) sp
74  bool fp_safe = (fp <= thread->stack_base()) && (fp > sp);
75
76  // We know sp/unextended_sp are safe only fp is questionable here
77
78  // If the current frame is known to the code cache then we can attempt to
79  // to construct the sender and do some validation of it. This goes a long way
80  // toward eliminating issues when we get in frame construction code
81
82  if (_cb != NULL ) {
83
84    // First check if frame is complete and tester is reliable
85    // Unfortunately we can only check frame complete for runtime stubs and nmethod
86    // other generic buffer blobs are more problematic so we just assume they are
87    // ok. adapter blobs never have a frame complete and are never ok.
88
89    if (!_cb->is_frame_complete_at(_pc)) {
90      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
91        return false;
92      }
93    }
94    // Entry frame checks
95    if (is_entry_frame()) {
96      // an entry frame must have a valid fp.
97
98      if (!fp_safe) return false;
99
100      // Validate the JavaCallWrapper an entry frame must have
101
102      address jcw = (address)entry_frame_call_wrapper();
103
104      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > fp);
105
106      return jcw_safe;
107
108    }
109
110    intptr_t* sender_sp = NULL;
111    address   sender_pc = NULL;
112
113    if (is_interpreted_frame()) {
114      // fp must be safe
115      if (!fp_safe) {
116        return false;
117      }
118
119      sender_pc = (address) this->fp()[return_addr_offset];
120      sender_sp = (intptr_t*) addr_at(sender_sp_offset);
121
122    } else {
123      // must be some sort of compiled/runtime frame
124      // fp does not have to be safe (although it could be check for c1?)
125
126      sender_sp = _unextended_sp + _cb->frame_size();
127      // On Intel the return_address is always the word on the stack
128      sender_pc = (address) *(sender_sp-1);
129    }
130
131    // We must always be able to find a recognizable pc
132    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
133    if (sender_pc == NULL ||  sender_blob == NULL) {
134      return false;
135    }
136
137
138    // If the potential sender is the interpreter then we can do some more checking
139    if (Interpreter::contains(sender_pc)) {
140
141      // ebp is always saved in a recognizable place in any code we generate. However
142      // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
143      // is really a frame pointer.
144
145      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
146      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
147
148      if (!saved_fp_safe) {
149        return false;
150      }
151
152      // construct the potential sender
153
154      frame sender(sender_sp, saved_fp, sender_pc);
155
156      return sender.is_interpreted_frame_valid(thread);
157
158    }
159
160    // Could just be some random pointer within the codeBlob
161    if (!sender_blob->code_contains(sender_pc)) {
162      return false;
163    }
164
165    // We should never be able to see an adapter if the current frame is something from code cache
166    if (sender_blob->is_adapter_blob()) {
167      return false;
168    }
169
170    // Could be the call_stub
171
172    if (StubRoutines::returns_to_call_stub(sender_pc)) {
173      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
174      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
175
176      if (!saved_fp_safe) {
177        return false;
178      }
179
180      // construct the potential sender
181
182      frame sender(sender_sp, saved_fp, sender_pc);
183
184      // Validate the JavaCallWrapper an entry frame must have
185      address jcw = (address)sender.entry_frame_call_wrapper();
186
187      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > (address)sender.fp());
188
189      return jcw_safe;
190    }
191
192    // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
193    // because the return address counts against the callee's frame.
194
195    if (sender_blob->frame_size() == 0) {
196      assert(!sender_blob->is_nmethod(), "should count return address at least");
197      return false;
198    }
199
200    // We should never be able to see anything here except an nmethod. If something in the
201    // code cache (current frame) is called by an entity within the code cache that entity
202    // should not be anything but the call stub (already covered), the interpreter (already covered)
203    // or an nmethod.
204
205    assert(sender_blob->is_nmethod(), "Impossible call chain");
206
207    // Could put some more validation for the potential non-interpreted sender
208    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
209
210    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
211
212    // We've validated the potential sender that would be created
213    return true;
214  }
215
216  // Must be native-compiled frame. Since sender will try and use fp to find
217  // linkages it must be safe
218
219  if (!fp_safe) {
220    return false;
221  }
222
223  // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
224
225  if ( (address) this->fp()[return_addr_offset] == NULL) return false;
226
227
228  // could try and do some more potential verification of native frame if we could think of some...
229
230  return true;
231
232}
233
234
235void frame::patch_pc(Thread* thread, address pc) {
236  address* pc_addr = &(((address*) sp())[-1]);
237  if (TracePcPatching) {
238    tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
239                  pc_addr, *pc_addr, pc);
240  }
241  // Either the return address is the original one or we are going to
242  // patch in the same address that's already there.
243  assert(_pc == *pc_addr || pc == *pc_addr, "must be");
244  *pc_addr = pc;
245  _cb = CodeCache::find_blob(pc);
246  address original_pc = nmethod::get_deopt_original_pc(this);
247  if (original_pc != NULL) {
248    assert(original_pc == _pc, "expected original PC to be stored before patching");
249    _deopt_state = is_deoptimized;
250    // leave _pc as is
251  } else {
252    _deopt_state = not_deoptimized;
253    _pc = pc;
254  }
255}
256
257bool frame::is_interpreted_frame() const  {
258  return Interpreter::contains(pc());
259}
260
261int frame::frame_size(RegisterMap* map) const {
262  frame sender = this->sender(map);
263  return sender.sp() - sp();
264}
265
266intptr_t* frame::entry_frame_argument_at(int offset) const {
267  // convert offset to index to deal with tsi
268  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
269  // Entry frame's arguments are always in relation to unextended_sp()
270  return &unextended_sp()[index];
271}
272
273// sender_sp
274#ifdef CC_INTERP
275intptr_t* frame::interpreter_frame_sender_sp() const {
276  assert(is_interpreted_frame(), "interpreted frame expected");
277  // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
278  // seems odd and if we always know interpreted vs. non then sender_sp() is really
279  // doing too much work.
280  return get_interpreterState()->sender_sp();
281}
282
283// monitor elements
284
285BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
286  return get_interpreterState()->monitor_base();
287}
288
289BasicObjectLock* frame::interpreter_frame_monitor_end() const {
290  return (BasicObjectLock*) get_interpreterState()->stack_base();
291}
292
293#else // CC_INTERP
294
295intptr_t* frame::interpreter_frame_sender_sp() const {
296  assert(is_interpreted_frame(), "interpreted frame expected");
297  return (intptr_t*) at(interpreter_frame_sender_sp_offset);
298}
299
300void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
301  assert(is_interpreted_frame(), "interpreted frame expected");
302  ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
303}
304
305
306// monitor elements
307
308BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
309  return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
310}
311
312BasicObjectLock* frame::interpreter_frame_monitor_end() const {
313  BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
314  // make sure the pointer points inside the frame
315  assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
316  assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
317  return result;
318}
319
320void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
321  *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
322}
323
324// Used by template based interpreter deoptimization
325void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
326    *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
327}
328#endif // CC_INTERP
329
330frame frame::sender_for_entry_frame(RegisterMap* map) const {
331  assert(map != NULL, "map must be set");
332  // Java frame called from C; skip all C frames and return top C
333  // frame of that chunk as the sender
334  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
335  assert(!entry_frame_is_first(), "next Java fp must be non zero");
336  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
337  map->clear();
338  assert(map->include_argument_oops(), "should be set by clear");
339  if (jfa->last_Java_pc() != NULL ) {
340    frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
341    return fr;
342  }
343  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
344  return fr;
345}
346
347//------------------------------------------------------------------------------
348// frame::verify_deopt_original_pc
349//
350// Verifies the calculated original PC of a deoptimization PC for the
351// given unextended SP.  The unextended SP might also be the saved SP
352// for MethodHandle call sites.
353#if ASSERT
354void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
355  frame fr;
356
357  // This is ugly but it's better than to change {get,set}_original_pc
358  // to take an SP value as argument.  And it's only a debugging
359  // method anyway.
360  fr._unextended_sp = unextended_sp;
361
362  address original_pc = nm->get_original_pc(&fr);
363  assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
364  assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
365}
366#endif
367
368//------------------------------------------------------------------------------
369// frame::adjust_unextended_sp
370void frame::adjust_unextended_sp() {
371  // If we are returning to a compiled MethodHandle call site, the
372  // saved_fp will in fact be a saved value of the unextended SP.  The
373  // simplest way to tell whether we are returning to such a call site
374  // is as follows:
375
376  nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
377  if (sender_nm != NULL) {
378    // If the sender PC is a deoptimization point, get the original
379    // PC.  For MethodHandle call site the unextended_sp is stored in
380    // saved_fp.
381    if (sender_nm->is_deopt_mh_entry(_pc)) {
382      DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
383      _unextended_sp = _fp;
384    }
385    else if (sender_nm->is_deopt_entry(_pc)) {
386      DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
387    }
388    else if (sender_nm->is_method_handle_return(_pc)) {
389      _unextended_sp = _fp;
390    }
391  }
392}
393
394//------------------------------------------------------------------------------
395// frame::update_map_with_saved_link
396void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
397  // The interpreter and compiler(s) always save EBP/RBP in a known
398  // location on entry. We must record where that location is
399  // so this if EBP/RBP was live on callout from c2 we can find
400  // the saved copy no matter what it called.
401
402  // Since the interpreter always saves EBP/RBP if we record where it is then
403  // we don't have to always save EBP/RBP on entry and exit to c2 compiled
404  // code, on entry will be enough.
405  map->set_location(rbp->as_VMReg(), (address) link_addr);
406#ifdef AMD64
407  // this is weird "H" ought to be at a higher address however the
408  // oopMaps seems to have the "H" regs at the same address and the
409  // vanilla register.
410  // XXXX make this go away
411  if (true) {
412    map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
413  }
414#endif // AMD64
415}
416
417
418//------------------------------------------------------------------------------
419// frame::sender_for_interpreter_frame
420frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
421  // SP is the raw SP from the sender after adapter or interpreter
422  // extension.
423  intptr_t* sender_sp = this->sender_sp();
424
425  // This is the sp before any possible extension (adapter/locals).
426  intptr_t* unextended_sp = interpreter_frame_sender_sp();
427
428#ifdef COMPILER2
429  if (map->update_map()) {
430    update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
431  }
432#endif // COMPILER2
433
434  return frame(sender_sp, unextended_sp, link(), sender_pc());
435}
436
437
438//------------------------------------------------------------------------------
439// frame::sender_for_compiled_frame
440frame frame::sender_for_compiled_frame(RegisterMap* map) const {
441  assert(map != NULL, "map must be set");
442
443  // frame owned by optimizing compiler
444  assert(_cb->frame_size() >= 0, "must have non-zero frame size");
445  intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
446  intptr_t* unextended_sp = sender_sp;
447
448  // On Intel the return_address is always the word on the stack
449  address sender_pc = (address) *(sender_sp-1);
450
451  // This is the saved value of EBP which may or may not really be an FP.
452  // It is only an FP if the sender is an interpreter frame (or C1?).
453  intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
454
455  if (map->update_map()) {
456    // Tell GC to use argument oopmaps for some runtime stubs that need it.
457    // For C1, the runtime stub might not have oop maps, so set this flag
458    // outside of update_register_map.
459    map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
460    if (_cb->oop_maps() != NULL) {
461      OopMapSet::update_register_map(this, map);
462    }
463
464    // Since the prolog does the save and restore of EBP there is no oopmap
465    // for it so we must fill in its location as if there was an oopmap entry
466    // since if our caller was compiled code there could be live jvm state in it.
467    update_map_with_saved_link(map, saved_fp_addr);
468  }
469
470  assert(sender_sp != sp(), "must have changed");
471  return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
472}
473
474
475//------------------------------------------------------------------------------
476// frame::sender
477frame frame::sender(RegisterMap* map) const {
478  // Default is we done have to follow them. The sender_for_xxx will
479  // update it accordingly
480  map->set_include_argument_oops(false);
481
482  if (is_entry_frame())       return sender_for_entry_frame(map);
483  if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
484  assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
485
486  if (_cb != NULL) {
487    return sender_for_compiled_frame(map);
488  }
489  // Must be native-compiled frame, i.e. the marshaling code for native
490  // methods that exists in the core system.
491  return frame(sender_sp(), link(), sender_pc());
492}
493
494
495bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
496  assert(is_interpreted_frame(), "must be interpreter frame");
497  Method* method = interpreter_frame_method();
498  // When unpacking an optimized frame the frame pointer is
499  // adjusted with:
500  int diff = (method->max_locals() - method->size_of_parameters()) *
501             Interpreter::stackElementWords;
502  return _fp == (fp - diff);
503}
504
505void frame::pd_gc_epilog() {
506  // nothing done here now
507}
508
509bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
510// QQQ
511#ifdef CC_INTERP
512#else
513  assert(is_interpreted_frame(), "Not an interpreted frame");
514  // These are reasonable sanity checks
515  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
516    return false;
517  }
518  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
519    return false;
520  }
521  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
522    return false;
523  }
524  // These are hacks to keep us out of trouble.
525  // The problem with these is that they mask other problems
526  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
527    return false;
528  }
529
530  // do some validation of frame elements
531
532  // first the method
533
534  Method* m = *interpreter_frame_method_addr();
535
536  // validate the method we'd find in this potential sender
537  if (!Universe::heap()->is_valid_method(m)) return false;
538
539  // stack frames shouldn't be much larger than max_stack elements
540
541  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
542    return false;
543  }
544
545  // validate bci/bcx
546
547  intptr_t  bcx    = interpreter_frame_bcx();
548  if (m->validate_bci_from_bcx(bcx) < 0) {
549    return false;
550  }
551
552  // validate ConstantPoolCache*
553  ConstantPoolCache* cp = *interpreter_frame_cache_addr();
554  if (cp == NULL || !cp->is_metadata()) return false;
555
556  // validate locals
557
558  address locals =  (address) *interpreter_frame_locals_addr();
559
560  if (locals > thread->stack_base() || locals < (address) fp()) return false;
561
562  // We'd have to be pretty unlucky to be mislead at this point
563
564#endif // CC_INTERP
565  return true;
566}
567
568BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
569#ifdef CC_INTERP
570  // Needed for JVMTI. The result should always be in the
571  // interpreterState object
572  interpreterState istate = get_interpreterState();
573#endif // CC_INTERP
574  assert(is_interpreted_frame(), "interpreted frame expected");
575  Method* method = interpreter_frame_method();
576  BasicType type = method->result_type();
577
578  intptr_t* tos_addr;
579  if (method->is_native()) {
580    // Prior to calling into the runtime to report the method_exit the possible
581    // return value is pushed to the native stack. If the result is a jfloat/jdouble
582    // then ST0 is saved before EAX/EDX. See the note in generate_native_result
583    tos_addr = (intptr_t*)sp();
584    if (type == T_FLOAT || type == T_DOUBLE) {
585    // QQQ seems like this code is equivalent on the two platforms
586#ifdef AMD64
587      // This is times two because we do a push(ltos) after pushing XMM0
588      // and that takes two interpreter stack slots.
589      tos_addr += 2 * Interpreter::stackElementWords;
590#else
591      tos_addr += 2;
592#endif // AMD64
593    }
594  } else {
595    tos_addr = (intptr_t*)interpreter_frame_tos_address();
596  }
597
598  switch (type) {
599    case T_OBJECT  :
600    case T_ARRAY   : {
601      oop obj;
602      if (method->is_native()) {
603#ifdef CC_INTERP
604        obj = istate->_oop_temp;
605#else
606        obj = (oop) at(interpreter_frame_oop_temp_offset);
607#endif // CC_INTERP
608      } else {
609        oop* obj_p = (oop*)tos_addr;
610        obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
611      }
612      assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
613      *oop_result = obj;
614      break;
615    }
616    case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
617    case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
618    case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
619    case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
620    case T_INT     : value_result->i = *(jint*)tos_addr; break;
621    case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
622    case T_FLOAT   : {
623#ifdef AMD64
624        value_result->f = *(jfloat*)tos_addr;
625#else
626      if (method->is_native()) {
627        jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
628        value_result->f = (jfloat)d;
629      } else {
630        value_result->f = *(jfloat*)tos_addr;
631      }
632#endif // AMD64
633      break;
634    }
635    case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
636    case T_VOID    : /* Nothing to do */ break;
637    default        : ShouldNotReachHere();
638  }
639
640  return type;
641}
642
643
644intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
645  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
646  return &interpreter_frame_tos_address()[index];
647}
648
649#ifndef PRODUCT
650
651#define DESCRIBE_FP_OFFSET(name) \
652  values.describe(frame_no, fp() + frame::name##_offset, #name)
653
654void frame::describe_pd(FrameValues& values, int frame_no) {
655  if (is_interpreted_frame()) {
656    DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
657    DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
658    DESCRIBE_FP_OFFSET(interpreter_frame_method);
659    DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
660    DESCRIBE_FP_OFFSET(interpreter_frame_cache);
661    DESCRIBE_FP_OFFSET(interpreter_frame_locals);
662    DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
663    DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
664  }
665}
666#endif
667
668intptr_t *frame::initial_deoptimization_info() {
669  // used to reset the saved FP
670  return fp();
671}
672
673intptr_t* frame::real_fp() const {
674  if (_cb != NULL) {
675    // use the frame size if valid
676    int size = _cb->frame_size();
677    if (size > 0) {
678      return unextended_sp() + size;
679    }
680  }
681  // else rely on fp()
682  assert(! is_compiled_frame(), "unknown compiled frame size");
683  return fp();
684}
685