frame_x86.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_frame_x86.cpp.incl"
27
28#ifdef ASSERT
29void RegisterMap::check_location_valid() {
30}
31#endif
32
33
34// Profiling/safepoint support
35
36bool frame::safe_for_sender(JavaThread *thread) {
37  address   sp = (address)_sp;
38  address   fp = (address)_fp;
39  address   unextended_sp = (address)_unextended_sp;
40  // sp must be within the stack
41  bool sp_safe = (sp <= thread->stack_base()) &&
42                 (sp >= thread->stack_base() - thread->stack_size());
43
44  if (!sp_safe) {
45    return false;
46  }
47
48  // unextended sp must be within the stack and above or equal sp
49  bool unextended_sp_safe = (unextended_sp <= thread->stack_base()) &&
50                            (unextended_sp >= sp);
51
52  if (!unextended_sp_safe) {
53    return false;
54  }
55
56  // an fp must be within the stack and above (but not equal) sp
57  bool fp_safe = (fp <= thread->stack_base()) && (fp > sp);
58
59  // We know sp/unextended_sp are safe only fp is questionable here
60
61  // If the current frame is known to the code cache then we can attempt to
62  // to construct the sender and do some validation of it. This goes a long way
63  // toward eliminating issues when we get in frame construction code
64
65  if (_cb != NULL ) {
66
67    // First check if frame is complete and tester is reliable
68    // Unfortunately we can only check frame complete for runtime stubs and nmethod
69    // other generic buffer blobs are more problematic so we just assume they are
70    // ok. adapter blobs never have a frame complete and are never ok.
71
72    if (!_cb->is_frame_complete_at(_pc)) {
73      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
74        return false;
75      }
76    }
77    // Entry frame checks
78    if (is_entry_frame()) {
79      // an entry frame must have a valid fp.
80
81      if (!fp_safe) return false;
82
83      // Validate the JavaCallWrapper an entry frame must have
84
85      address jcw = (address)entry_frame_call_wrapper();
86
87      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > fp);
88
89      return jcw_safe;
90
91    }
92
93    intptr_t* sender_sp = NULL;
94    address   sender_pc = NULL;
95
96    if (is_interpreted_frame()) {
97      // fp must be safe
98      if (!fp_safe) {
99        return false;
100      }
101
102      sender_pc = (address) this->fp()[return_addr_offset];
103      sender_sp = (intptr_t*) addr_at(sender_sp_offset);
104
105    } else {
106      // must be some sort of compiled/runtime frame
107      // fp does not have to be safe (although it could be check for c1?)
108
109      sender_sp = _unextended_sp + _cb->frame_size();
110      // On Intel the return_address is always the word on the stack
111      sender_pc = (address) *(sender_sp-1);
112    }
113
114    // We must always be able to find a recognizable pc
115    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
116    if (sender_pc == NULL ||  sender_blob == NULL) {
117      return false;
118    }
119
120
121    // If the potential sender is the interpreter then we can do some more checking
122    if (Interpreter::contains(sender_pc)) {
123
124      // ebp is always saved in a recognizable place in any code we generate. However
125      // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
126      // is really a frame pointer.
127
128      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
129      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
130
131      if (!saved_fp_safe) {
132        return false;
133      }
134
135      // construct the potential sender
136
137      frame sender(sender_sp, saved_fp, sender_pc);
138
139      return sender.is_interpreted_frame_valid(thread);
140
141    }
142
143    // Could just be some random pointer within the codeBlob
144
145    if (!sender_blob->instructions_contains(sender_pc)) return false;
146
147    // We should never be able to see an adapter if the current frame is something from code cache
148
149    if ( sender_blob->is_adapter_blob()) {
150      return false;
151    }
152
153    // Could be the call_stub
154
155    if (StubRoutines::returns_to_call_stub(sender_pc)) {
156      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
157      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
158
159      if (!saved_fp_safe) {
160        return false;
161      }
162
163      // construct the potential sender
164
165      frame sender(sender_sp, saved_fp, sender_pc);
166
167      // Validate the JavaCallWrapper an entry frame must have
168      address jcw = (address)sender.entry_frame_call_wrapper();
169
170      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > (address)sender.fp());
171
172      return jcw_safe;
173    }
174
175    // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
176    // because the return address counts against the callee's frame.
177
178    if (sender_blob->frame_size() == 0) {
179      assert(!sender_blob->is_nmethod(), "should count return address at least");
180      return false;
181    }
182
183    // We should never be able to see anything here except an nmethod. If something in the
184    // code cache (current frame) is called by an entity within the code cache that entity
185    // should not be anything but the call stub (already covered), the interpreter (already covered)
186    // or an nmethod.
187
188    assert(sender_blob->is_nmethod(), "Impossible call chain");
189
190    // Could put some more validation for the potential non-interpreted sender
191    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
192
193    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
194
195    // We've validated the potential sender that would be created
196    return true;
197  }
198
199  // Must be native-compiled frame. Since sender will try and use fp to find
200  // linkages it must be safe
201
202  if (!fp_safe) {
203    return false;
204  }
205
206  // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
207
208  if ( (address) this->fp()[return_addr_offset] == NULL) return false;
209
210
211  // could try and do some more potential verification of native frame if we could think of some...
212
213  return true;
214
215}
216
217
218void frame::patch_pc(Thread* thread, address pc) {
219  if (TracePcPatching) {
220    tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", &((address *)sp())[-1], ((address *)sp())[-1], pc);
221  }
222  ((address *)sp())[-1] = pc;
223  _cb = CodeCache::find_blob(pc);
224  if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
225    address orig = (((nmethod*)_cb)->get_original_pc(this));
226    assert(orig == _pc, "expected original to be stored before patching");
227    _deopt_state = is_deoptimized;
228    // leave _pc as is
229  } else {
230    _deopt_state = not_deoptimized;
231    _pc = pc;
232  }
233}
234
235bool frame::is_interpreted_frame() const  {
236  return Interpreter::contains(pc());
237}
238
239int frame::frame_size() const {
240  RegisterMap map(JavaThread::current(), false);
241  frame sender = this->sender(&map);
242  return sender.sp() - sp();
243}
244
245intptr_t* frame::entry_frame_argument_at(int offset) const {
246  // convert offset to index to deal with tsi
247  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
248  // Entry frame's arguments are always in relation to unextended_sp()
249  return &unextended_sp()[index];
250}
251
252// sender_sp
253#ifdef CC_INTERP
254intptr_t* frame::interpreter_frame_sender_sp() const {
255  assert(is_interpreted_frame(), "interpreted frame expected");
256  // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
257  // seems odd and if we always know interpreted vs. non then sender_sp() is really
258  // doing too much work.
259  return get_interpreterState()->sender_sp();
260}
261
262// monitor elements
263
264BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
265  return get_interpreterState()->monitor_base();
266}
267
268BasicObjectLock* frame::interpreter_frame_monitor_end() const {
269  return (BasicObjectLock*) get_interpreterState()->stack_base();
270}
271
272#else // CC_INTERP
273
274intptr_t* frame::interpreter_frame_sender_sp() const {
275  assert(is_interpreted_frame(), "interpreted frame expected");
276  return (intptr_t*) at(interpreter_frame_sender_sp_offset);
277}
278
279void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
280  assert(is_interpreted_frame(), "interpreted frame expected");
281  ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
282}
283
284
285// monitor elements
286
287BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
288  return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
289}
290
291BasicObjectLock* frame::interpreter_frame_monitor_end() const {
292  BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
293  // make sure the pointer points inside the frame
294  assert((intptr_t) fp() >  (intptr_t) result, "result must <  than frame pointer");
295  assert((intptr_t) sp() <= (intptr_t) result, "result must >= than stack pointer");
296  return result;
297}
298
299void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
300  *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
301}
302
303// Used by template based interpreter deoptimization
304void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
305    *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
306}
307#endif // CC_INTERP
308
309frame frame::sender_for_entry_frame(RegisterMap* map) const {
310  assert(map != NULL, "map must be set");
311  // Java frame called from C; skip all C frames and return top C
312  // frame of that chunk as the sender
313  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
314  assert(!entry_frame_is_first(), "next Java fp must be non zero");
315  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
316  map->clear();
317  assert(map->include_argument_oops(), "should be set by clear");
318  if (jfa->last_Java_pc() != NULL ) {
319    frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
320    return fr;
321  }
322  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
323  return fr;
324}
325
326frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
327  // sp is the raw sp from the sender after adapter or interpreter extension
328  intptr_t* sp = (intptr_t*) addr_at(sender_sp_offset);
329
330  // This is the sp before any possible extension (adapter/locals).
331  intptr_t* unextended_sp = interpreter_frame_sender_sp();
332
333  // The interpreter and compiler(s) always save EBP/RBP in a known
334  // location on entry. We must record where that location is
335  // so this if EBP/RBP was live on callout from c2 we can find
336  // the saved copy no matter what it called.
337
338  // Since the interpreter always saves EBP/RBP if we record where it is then
339  // we don't have to always save EBP/RBP on entry and exit to c2 compiled
340  // code, on entry will be enough.
341#ifdef COMPILER2
342  if (map->update_map()) {
343    map->set_location(rbp->as_VMReg(), (address) addr_at(link_offset));
344#ifdef AMD64
345    // this is weird "H" ought to be at a higher address however the
346    // oopMaps seems to have the "H" regs at the same address and the
347    // vanilla register.
348    // XXXX make this go away
349    if (true) {
350      map->set_location(rbp->as_VMReg()->next(), (address)addr_at(link_offset));
351    }
352#endif // AMD64
353  }
354#endif /* COMPILER2 */
355  return frame(sp, unextended_sp, link(), sender_pc());
356}
357
358
359//------------------------------sender_for_compiled_frame-----------------------
360frame frame::sender_for_compiled_frame(RegisterMap* map) const {
361  assert(map != NULL, "map must be set");
362  const bool c1_compiled = _cb->is_compiled_by_c1();
363
364  // frame owned by optimizing compiler
365  intptr_t* sender_sp = NULL;
366
367  assert(_cb->frame_size() >= 0, "must have non-zero frame size");
368  sender_sp = unextended_sp() + _cb->frame_size();
369
370  // On Intel the return_address is always the word on the stack
371  address sender_pc = (address) *(sender_sp-1);
372
373  // This is the saved value of ebp which may or may not really be an fp.
374  // it is only an fp if the sender is an interpreter frame (or c1?)
375
376  intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
377
378  if (map->update_map()) {
379    // Tell GC to use argument oopmaps for some runtime stubs that need it.
380    // For C1, the runtime stub might not have oop maps, so set this flag
381    // outside of update_register_map.
382    map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
383    if (_cb->oop_maps() != NULL) {
384      OopMapSet::update_register_map(this, map);
385    }
386    // Since the prolog does the save and restore of epb there is no oopmap
387    // for it so we must fill in its location as if there was an oopmap entry
388    // since if our caller was compiled code there could be live jvm state in it.
389    map->set_location(rbp->as_VMReg(), (address) (sender_sp - frame::sender_sp_offset));
390#ifdef AMD64
391    // this is weird "H" ought to be at a higher address however the
392    // oopMaps seems to have the "H" regs at the same address and the
393    // vanilla register.
394    // XXXX make this go away
395    if (true) {
396      map->set_location(rbp->as_VMReg()->next(), (address) (sender_sp - frame::sender_sp_offset));
397    }
398#endif // AMD64
399  }
400
401  assert(sender_sp != sp(), "must have changed");
402  return frame(sender_sp, saved_fp, sender_pc);
403}
404
405frame frame::sender(RegisterMap* map) const {
406  // Default is we done have to follow them. The sender_for_xxx will
407  // update it accordingly
408  map->set_include_argument_oops(false);
409
410  if (is_entry_frame())       return sender_for_entry_frame(map);
411  if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
412  assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
413
414  if (_cb != NULL) {
415    return sender_for_compiled_frame(map);
416  }
417  // Must be native-compiled frame, i.e. the marshaling code for native
418  // methods that exists in the core system.
419  return frame(sender_sp(), link(), sender_pc());
420}
421
422
423bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
424  assert(is_interpreted_frame(), "must be interpreter frame");
425  methodOop method = interpreter_frame_method();
426  // When unpacking an optimized frame the frame pointer is
427  // adjusted with:
428  int diff = (method->max_locals() - method->size_of_parameters()) *
429             Interpreter::stackElementWords();
430  return _fp == (fp - diff);
431}
432
433void frame::pd_gc_epilog() {
434  // nothing done here now
435}
436
437bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
438// QQQ
439#ifdef CC_INTERP
440#else
441  assert(is_interpreted_frame(), "Not an interpreted frame");
442  // These are reasonable sanity checks
443  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
444    return false;
445  }
446  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
447    return false;
448  }
449  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
450    return false;
451  }
452  // These are hacks to keep us out of trouble.
453  // The problem with these is that they mask other problems
454  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
455    return false;
456  }
457
458  // do some validation of frame elements
459
460  // first the method
461
462  methodOop m = *interpreter_frame_method_addr();
463
464  // validate the method we'd find in this potential sender
465  if (!Universe::heap()->is_valid_method(m)) return false;
466
467  // stack frames shouldn't be much larger than max_stack elements
468
469  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize()) {
470    return false;
471  }
472
473  // validate bci/bcx
474
475  intptr_t  bcx    = interpreter_frame_bcx();
476  if (m->validate_bci_from_bcx(bcx) < 0) {
477    return false;
478  }
479
480  // validate constantPoolCacheOop
481
482  constantPoolCacheOop cp = *interpreter_frame_cache_addr();
483
484  if (cp == NULL ||
485      !Space::is_aligned(cp) ||
486      !Universe::heap()->is_permanent((void*)cp)) return false;
487
488  // validate locals
489
490  address locals =  (address) *interpreter_frame_locals_addr();
491
492  if (locals > thread->stack_base() || locals < (address) fp()) return false;
493
494  // We'd have to be pretty unlucky to be mislead at this point
495
496#endif // CC_INTERP
497  return true;
498}
499
500BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
501#ifdef CC_INTERP
502  // Needed for JVMTI. The result should always be in the interpreterState object
503  assert(false, "NYI");
504  interpreterState istate = get_interpreterState();
505#endif // CC_INTERP
506  assert(is_interpreted_frame(), "interpreted frame expected");
507  methodOop method = interpreter_frame_method();
508  BasicType type = method->result_type();
509
510  intptr_t* tos_addr;
511  if (method->is_native()) {
512    // Prior to calling into the runtime to report the method_exit the possible
513    // return value is pushed to the native stack. If the result is a jfloat/jdouble
514    // then ST0 is saved before EAX/EDX. See the note in generate_native_result
515    tos_addr = (intptr_t*)sp();
516    if (type == T_FLOAT || type == T_DOUBLE) {
517    // QQQ seems like this code is equivalent on the two platforms
518#ifdef AMD64
519      // This is times two because we do a push(ltos) after pushing XMM0
520      // and that takes two interpreter stack slots.
521      tos_addr += 2 * Interpreter::stackElementWords();
522#else
523      tos_addr += 2;
524#endif // AMD64
525    }
526  } else {
527    tos_addr = (intptr_t*)interpreter_frame_tos_address();
528  }
529
530  switch (type) {
531    case T_OBJECT  :
532    case T_ARRAY   : {
533      oop obj;
534      if (method->is_native()) {
535#ifdef CC_INTERP
536        obj = istate->_oop_temp;
537#else
538        obj = (oop) at(interpreter_frame_oop_temp_offset);
539#endif // CC_INTERP
540      } else {
541        oop* obj_p = (oop*)tos_addr;
542        obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
543      }
544      assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
545      *oop_result = obj;
546      break;
547    }
548    case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
549    case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
550    case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
551    case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
552    case T_INT     : value_result->i = *(jint*)tos_addr; break;
553    case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
554    case T_FLOAT   : {
555#ifdef AMD64
556        value_result->f = *(jfloat*)tos_addr;
557#else
558      if (method->is_native()) {
559        jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
560        value_result->f = (jfloat)d;
561      } else {
562        value_result->f = *(jfloat*)tos_addr;
563      }
564#endif // AMD64
565      break;
566    }
567    case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
568    case T_VOID    : /* Nothing to do */ break;
569    default        : ShouldNotReachHere();
570  }
571
572  return type;
573}
574
575
576intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
577  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
578  return &interpreter_frame_tos_address()[index];
579}
580