frame_x86.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_frame_x86.cpp.incl"
27
28#ifdef ASSERT
29void RegisterMap::check_location_valid() {
30}
31#endif
32
33
34// Profiling/safepoint support
35
36bool frame::safe_for_sender(JavaThread *thread) {
37  address   sp = (address)_sp;
38  address   fp = (address)_fp;
39  address   unextended_sp = (address)_unextended_sp;
40  // sp must be within the stack
41  bool sp_safe = (sp <= thread->stack_base()) &&
42                 (sp >= thread->stack_base() - thread->stack_size());
43
44  if (!sp_safe) {
45    return false;
46  }
47
48  // unextended sp must be within the stack and above or equal sp
49  bool unextended_sp_safe = (unextended_sp <= thread->stack_base()) &&
50                            (unextended_sp >= sp);
51
52  if (!unextended_sp_safe) {
53    return false;
54  }
55
56  // an fp must be within the stack and above (but not equal) sp
57  bool fp_safe = (fp <= thread->stack_base()) && (fp > sp);
58
59  // We know sp/unextended_sp are safe only fp is questionable here
60
61  // If the current frame is known to the code cache then we can attempt to
62  // to construct the sender and do some validation of it. This goes a long way
63  // toward eliminating issues when we get in frame construction code
64
65  if (_cb != NULL ) {
66
67    // First check if frame is complete and tester is reliable
68    // Unfortunately we can only check frame complete for runtime stubs and nmethod
69    // other generic buffer blobs are more problematic so we just assume they are
70    // ok. adapter blobs never have a frame complete and are never ok.
71
72    if (!_cb->is_frame_complete_at(_pc)) {
73      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
74        return false;
75      }
76    }
77    // Entry frame checks
78    if (is_entry_frame()) {
79      // an entry frame must have a valid fp.
80
81      if (!fp_safe) return false;
82
83      // Validate the JavaCallWrapper an entry frame must have
84
85      address jcw = (address)entry_frame_call_wrapper();
86
87      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > fp);
88
89      return jcw_safe;
90
91    }
92
93    intptr_t* sender_sp = NULL;
94    address   sender_pc = NULL;
95
96    if (is_interpreted_frame()) {
97      // fp must be safe
98      if (!fp_safe) {
99        return false;
100      }
101
102      sender_pc = (address) this->fp()[return_addr_offset];
103      sender_sp = (intptr_t*) addr_at(sender_sp_offset);
104
105    } else {
106      // must be some sort of compiled/runtime frame
107      // fp does not have to be safe (although it could be check for c1?)
108
109      sender_sp = _unextended_sp + _cb->frame_size();
110      // On Intel the return_address is always the word on the stack
111      sender_pc = (address) *(sender_sp-1);
112    }
113
114    // We must always be able to find a recognizable pc
115    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
116    if (sender_pc == NULL ||  sender_blob == NULL) {
117      return false;
118    }
119
120
121    // If the potential sender is the interpreter then we can do some more checking
122    if (Interpreter::contains(sender_pc)) {
123
124      // ebp is always saved in a recognizable place in any code we generate. However
125      // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
126      // is really a frame pointer.
127
128      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
129      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
130
131      if (!saved_fp_safe) {
132        return false;
133      }
134
135      // construct the potential sender
136
137      frame sender(sender_sp, saved_fp, sender_pc);
138
139      return sender.is_interpreted_frame_valid(thread);
140
141    }
142
143    // Could just be some random pointer within the codeBlob
144
145    if (!sender_blob->instructions_contains(sender_pc)) return false;
146
147    // We should never be able to see an adapter if the current frame is something from code cache
148
149    if ( sender_blob->is_adapter_blob()) {
150      return false;
151    }
152
153    // Could be the call_stub
154
155    if (StubRoutines::returns_to_call_stub(sender_pc)) {
156      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
157      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
158
159      if (!saved_fp_safe) {
160        return false;
161      }
162
163      // construct the potential sender
164
165      frame sender(sender_sp, saved_fp, sender_pc);
166
167      // Validate the JavaCallWrapper an entry frame must have
168      address jcw = (address)sender.entry_frame_call_wrapper();
169
170      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > (address)sender.fp());
171
172      return jcw_safe;
173    }
174
175    // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
176    // because the return address counts against the callee's frame.
177
178    if (sender_blob->frame_size() == 0) {
179      assert(!sender_blob->is_nmethod(), "should count return address at least");
180      return false;
181    }
182
183    // We should never be able to see anything here except an nmethod. If something in the
184    // code cache (current frame) is called by an entity within the code cache that entity
185    // should not be anything but the call stub (already covered), the interpreter (already covered)
186    // or an nmethod.
187
188    assert(sender_blob->is_nmethod(), "Impossible call chain");
189
190    // Could put some more validation for the potential non-interpreted sender
191    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
192
193    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
194
195    // We've validated the potential sender that would be created
196    return true;
197  }
198
199  // Must be native-compiled frame. Since sender will try and use fp to find
200  // linkages it must be safe
201
202  if (!fp_safe) {
203    return false;
204  }
205
206  // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
207
208  if ( (address) this->fp()[return_addr_offset] == NULL) return false;
209
210
211  // could try and do some more potential verification of native frame if we could think of some...
212
213  return true;
214
215}
216
217
218void frame::patch_pc(Thread* thread, address pc) {
219  if (TracePcPatching) {
220    tty->print_cr("patch_pc at address" INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "] ",
221                  &((address *)sp())[-1], ((address *)sp())[-1], pc);
222  }
223  ((address *)sp())[-1] = pc;
224  _cb = CodeCache::find_blob(pc);
225  address original_pc = nmethod::get_deopt_original_pc(this);
226  if (original_pc != NULL) {
227    assert(original_pc == _pc, "expected original PC to be stored before patching");
228    _deopt_state = is_deoptimized;
229    // leave _pc as is
230  } else {
231    _deopt_state = not_deoptimized;
232    _pc = pc;
233  }
234}
235
236bool frame::is_interpreted_frame() const  {
237  return Interpreter::contains(pc());
238}
239
240int frame::frame_size(RegisterMap* map) const {
241  frame sender = this->sender(map);
242  return sender.sp() - sp();
243}
244
245intptr_t* frame::entry_frame_argument_at(int offset) const {
246  // convert offset to index to deal with tsi
247  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
248  // Entry frame's arguments are always in relation to unextended_sp()
249  return &unextended_sp()[index];
250}
251
252// sender_sp
253#ifdef CC_INTERP
254intptr_t* frame::interpreter_frame_sender_sp() const {
255  assert(is_interpreted_frame(), "interpreted frame expected");
256  // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
257  // seems odd and if we always know interpreted vs. non then sender_sp() is really
258  // doing too much work.
259  return get_interpreterState()->sender_sp();
260}
261
262// monitor elements
263
264BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
265  return get_interpreterState()->monitor_base();
266}
267
268BasicObjectLock* frame::interpreter_frame_monitor_end() const {
269  return (BasicObjectLock*) get_interpreterState()->stack_base();
270}
271
272#else // CC_INTERP
273
274intptr_t* frame::interpreter_frame_sender_sp() const {
275  assert(is_interpreted_frame(), "interpreted frame expected");
276  return (intptr_t*) at(interpreter_frame_sender_sp_offset);
277}
278
279void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
280  assert(is_interpreted_frame(), "interpreted frame expected");
281  ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
282}
283
284
285// monitor elements
286
287BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
288  return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
289}
290
291BasicObjectLock* frame::interpreter_frame_monitor_end() const {
292  BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
293  // make sure the pointer points inside the frame
294  assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
295  assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
296  return result;
297}
298
299void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
300  *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
301}
302
303// Used by template based interpreter deoptimization
304void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
305    *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
306}
307#endif // CC_INTERP
308
309frame frame::sender_for_entry_frame(RegisterMap* map) const {
310  assert(map != NULL, "map must be set");
311  // Java frame called from C; skip all C frames and return top C
312  // frame of that chunk as the sender
313  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
314  assert(!entry_frame_is_first(), "next Java fp must be non zero");
315  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
316  map->clear();
317  assert(map->include_argument_oops(), "should be set by clear");
318  if (jfa->last_Java_pc() != NULL ) {
319    frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
320    return fr;
321  }
322  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
323  return fr;
324}
325
326
327//------------------------------------------------------------------------------
328// frame::verify_deopt_original_pc
329//
330// Verifies the calculated original PC of a deoptimization PC for the
331// given unextended SP.  The unextended SP might also be the saved SP
332// for MethodHandle call sites.
333#if ASSERT
334void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
335  frame fr;
336
337  // This is ugly but it's better than to change {get,set}_original_pc
338  // to take an SP value as argument.  And it's only a debugging
339  // method anyway.
340  fr._unextended_sp = unextended_sp;
341
342  address original_pc = nm->get_original_pc(&fr);
343  assert(nm->code_contains(original_pc), "original PC must be in nmethod");
344  assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
345}
346#endif
347
348
349//------------------------------------------------------------------------------
350// frame::sender_for_interpreter_frame
351frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
352  // SP is the raw SP from the sender after adapter or interpreter
353  // extension.
354  intptr_t* sender_sp = this->sender_sp();
355
356  // This is the sp before any possible extension (adapter/locals).
357  intptr_t* unextended_sp = interpreter_frame_sender_sp();
358
359  // Stored FP.
360  intptr_t* saved_fp = link();
361
362  address sender_pc = this->sender_pc();
363  CodeBlob* sender_cb = CodeCache::find_blob_unsafe(sender_pc);
364  assert(sender_cb, "sanity");
365  nmethod* sender_nm = sender_cb->as_nmethod_or_null();
366
367  if (sender_nm != NULL) {
368    // If the sender PC is a deoptimization point, get the original
369    // PC.  For MethodHandle call site the unextended_sp is stored in
370    // saved_fp.
371    if (sender_nm->is_deopt_mh_entry(sender_pc)) {
372      DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, saved_fp));
373      unextended_sp = saved_fp;
374    }
375    else if (sender_nm->is_deopt_entry(sender_pc)) {
376      DEBUG_ONLY(verify_deopt_original_pc(sender_nm, unextended_sp));
377    }
378    else if (sender_nm->is_method_handle_return(sender_pc)) {
379      unextended_sp = saved_fp;
380    }
381  }
382
383  // The interpreter and compiler(s) always save EBP/RBP in a known
384  // location on entry. We must record where that location is
385  // so this if EBP/RBP was live on callout from c2 we can find
386  // the saved copy no matter what it called.
387
388  // Since the interpreter always saves EBP/RBP if we record where it is then
389  // we don't have to always save EBP/RBP on entry and exit to c2 compiled
390  // code, on entry will be enough.
391#ifdef COMPILER2
392  if (map->update_map()) {
393    map->set_location(rbp->as_VMReg(), (address) addr_at(link_offset));
394#ifdef AMD64
395    // this is weird "H" ought to be at a higher address however the
396    // oopMaps seems to have the "H" regs at the same address and the
397    // vanilla register.
398    // XXXX make this go away
399    if (true) {
400      map->set_location(rbp->as_VMReg()->next(), (address)addr_at(link_offset));
401    }
402#endif // AMD64
403  }
404#endif // COMPILER2
405
406  return frame(sender_sp, unextended_sp, saved_fp, sender_pc);
407}
408
409
410//------------------------------------------------------------------------------
411// frame::sender_for_compiled_frame
412frame frame::sender_for_compiled_frame(RegisterMap* map) const {
413  assert(map != NULL, "map must be set");
414
415  // frame owned by optimizing compiler
416  assert(_cb->frame_size() >= 0, "must have non-zero frame size");
417  intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
418  intptr_t* unextended_sp = sender_sp;
419
420  // On Intel the return_address is always the word on the stack
421  address sender_pc = (address) *(sender_sp-1);
422
423  // This is the saved value of EBP which may or may not really be an FP.
424  // It is only an FP if the sender is an interpreter frame (or C1?).
425  intptr_t* saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
426
427  // If we are returning to a compiled MethodHandle call site, the
428  // saved_fp will in fact be a saved value of the unextended SP.  The
429  // simplest way to tell whether we are returning to such a call site
430  // is as follows:
431  CodeBlob* sender_cb = CodeCache::find_blob_unsafe(sender_pc);
432  assert(sender_cb, "sanity");
433  nmethod* sender_nm = sender_cb->as_nmethod_or_null();
434
435  if (sender_nm != NULL) {
436    // If the sender PC is a deoptimization point, get the original
437    // PC.  For MethodHandle call site the unextended_sp is stored in
438    // saved_fp.
439    if (sender_nm->is_deopt_mh_entry(sender_pc)) {
440      DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, saved_fp));
441      unextended_sp = saved_fp;
442    }
443    else if (sender_nm->is_deopt_entry(sender_pc)) {
444      DEBUG_ONLY(verify_deopt_original_pc(sender_nm, unextended_sp));
445    }
446    else if (sender_nm->is_method_handle_return(sender_pc)) {
447      unextended_sp = saved_fp;
448    }
449  }
450
451  if (map->update_map()) {
452    // Tell GC to use argument oopmaps for some runtime stubs that need it.
453    // For C1, the runtime stub might not have oop maps, so set this flag
454    // outside of update_register_map.
455    map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
456    if (_cb->oop_maps() != NULL) {
457      OopMapSet::update_register_map(this, map);
458    }
459    // Since the prolog does the save and restore of EBP there is no oopmap
460    // for it so we must fill in its location as if there was an oopmap entry
461    // since if our caller was compiled code there could be live jvm state in it.
462    map->set_location(rbp->as_VMReg(), (address) (sender_sp - frame::sender_sp_offset));
463#ifdef AMD64
464    // this is weird "H" ought to be at a higher address however the
465    // oopMaps seems to have the "H" regs at the same address and the
466    // vanilla register.
467    // XXXX make this go away
468    if (true) {
469      map->set_location(rbp->as_VMReg()->next(), (address) (sender_sp - frame::sender_sp_offset));
470    }
471#endif // AMD64
472  }
473
474  assert(sender_sp != sp(), "must have changed");
475  return frame(sender_sp, unextended_sp, saved_fp, sender_pc);
476}
477
478
479//------------------------------------------------------------------------------
480// frame::sender
481frame frame::sender(RegisterMap* map) const {
482  // Default is we done have to follow them. The sender_for_xxx will
483  // update it accordingly
484  map->set_include_argument_oops(false);
485
486  if (is_entry_frame())       return sender_for_entry_frame(map);
487  if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
488  assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
489
490  if (_cb != NULL) {
491    return sender_for_compiled_frame(map);
492  }
493  // Must be native-compiled frame, i.e. the marshaling code for native
494  // methods that exists in the core system.
495  return frame(sender_sp(), link(), sender_pc());
496}
497
498
499bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
500  assert(is_interpreted_frame(), "must be interpreter frame");
501  methodOop method = interpreter_frame_method();
502  // When unpacking an optimized frame the frame pointer is
503  // adjusted with:
504  int diff = (method->max_locals() - method->size_of_parameters()) *
505             Interpreter::stackElementWords;
506  return _fp == (fp - diff);
507}
508
509void frame::pd_gc_epilog() {
510  // nothing done here now
511}
512
513bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
514// QQQ
515#ifdef CC_INTERP
516#else
517  assert(is_interpreted_frame(), "Not an interpreted frame");
518  // These are reasonable sanity checks
519  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
520    return false;
521  }
522  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
523    return false;
524  }
525  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
526    return false;
527  }
528  // These are hacks to keep us out of trouble.
529  // The problem with these is that they mask other problems
530  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
531    return false;
532  }
533
534  // do some validation of frame elements
535
536  // first the method
537
538  methodOop m = *interpreter_frame_method_addr();
539
540  // validate the method we'd find in this potential sender
541  if (!Universe::heap()->is_valid_method(m)) return false;
542
543  // stack frames shouldn't be much larger than max_stack elements
544
545  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
546    return false;
547  }
548
549  // validate bci/bcx
550
551  intptr_t  bcx    = interpreter_frame_bcx();
552  if (m->validate_bci_from_bcx(bcx) < 0) {
553    return false;
554  }
555
556  // validate constantPoolCacheOop
557
558  constantPoolCacheOop cp = *interpreter_frame_cache_addr();
559
560  if (cp == NULL ||
561      !Space::is_aligned(cp) ||
562      !Universe::heap()->is_permanent((void*)cp)) return false;
563
564  // validate locals
565
566  address locals =  (address) *interpreter_frame_locals_addr();
567
568  if (locals > thread->stack_base() || locals < (address) fp()) return false;
569
570  // We'd have to be pretty unlucky to be mislead at this point
571
572#endif // CC_INTERP
573  return true;
574}
575
576BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
577#ifdef CC_INTERP
578  // Needed for JVMTI. The result should always be in the interpreterState object
579  assert(false, "NYI");
580  interpreterState istate = get_interpreterState();
581#endif // CC_INTERP
582  assert(is_interpreted_frame(), "interpreted frame expected");
583  methodOop method = interpreter_frame_method();
584  BasicType type = method->result_type();
585
586  intptr_t* tos_addr;
587  if (method->is_native()) {
588    // Prior to calling into the runtime to report the method_exit the possible
589    // return value is pushed to the native stack. If the result is a jfloat/jdouble
590    // then ST0 is saved before EAX/EDX. See the note in generate_native_result
591    tos_addr = (intptr_t*)sp();
592    if (type == T_FLOAT || type == T_DOUBLE) {
593    // QQQ seems like this code is equivalent on the two platforms
594#ifdef AMD64
595      // This is times two because we do a push(ltos) after pushing XMM0
596      // and that takes two interpreter stack slots.
597      tos_addr += 2 * Interpreter::stackElementWords;
598#else
599      tos_addr += 2;
600#endif // AMD64
601    }
602  } else {
603    tos_addr = (intptr_t*)interpreter_frame_tos_address();
604  }
605
606  switch (type) {
607    case T_OBJECT  :
608    case T_ARRAY   : {
609      oop obj;
610      if (method->is_native()) {
611#ifdef CC_INTERP
612        obj = istate->_oop_temp;
613#else
614        obj = (oop) at(interpreter_frame_oop_temp_offset);
615#endif // CC_INTERP
616      } else {
617        oop* obj_p = (oop*)tos_addr;
618        obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
619      }
620      assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
621      *oop_result = obj;
622      break;
623    }
624    case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
625    case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
626    case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
627    case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
628    case T_INT     : value_result->i = *(jint*)tos_addr; break;
629    case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
630    case T_FLOAT   : {
631#ifdef AMD64
632        value_result->f = *(jfloat*)tos_addr;
633#else
634      if (method->is_native()) {
635        jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
636        value_result->f = (jfloat)d;
637      } else {
638        value_result->f = *(jfloat*)tos_addr;
639      }
640#endif // AMD64
641      break;
642    }
643    case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
644    case T_VOID    : /* Nothing to do */ break;
645    default        : ShouldNotReachHere();
646  }
647
648  return type;
649}
650
651
652intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
653  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
654  return &interpreter_frame_tos_address()[index];
655}
656