frame_x86.cpp revision 13213:4358b7205556
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interpreter/interpreter.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/method.hpp"
30#include "oops/oop.inline.hpp"
31#include "prims/methodHandles.hpp"
32#include "runtime/frame.inline.hpp"
33#include "runtime/handles.inline.hpp"
34#include "runtime/javaCalls.hpp"
35#include "runtime/monitorChunk.hpp"
36#include "runtime/os.inline.hpp"
37#include "runtime/signature.hpp"
38#include "runtime/stubCodeGenerator.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "vmreg_x86.inline.hpp"
41#ifdef COMPILER1
42#include "c1/c1_Runtime1.hpp"
43#include "runtime/vframeArray.hpp"
44#endif
45
46#ifdef ASSERT
47void RegisterMap::check_location_valid() {
48}
49#endif
50
51// Profiling/safepoint support
52
53bool frame::safe_for_sender(JavaThread *thread) {
54  address   sp = (address)_sp;
55  address   fp = (address)_fp;
56  address   unextended_sp = (address)_unextended_sp;
57
58  // consider stack guards when trying to determine "safe" stack pointers
59  static size_t stack_guard_size = os::uses_stack_guard_pages() ?
60    JavaThread::stack_red_zone_size() + JavaThread::stack_yellow_zone_size() : 0;
61  size_t usable_stack_size = thread->stack_size() - stack_guard_size;
62
63  // sp must be within the usable part of the stack (not in guards)
64  bool sp_safe = (sp < thread->stack_base()) &&
65                 (sp >= thread->stack_base() - usable_stack_size);
66
67
68  if (!sp_safe) {
69    return false;
70  }
71
72  // unextended sp must be within the stack and above or equal sp
73  bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
74                            (unextended_sp >= sp);
75
76  if (!unextended_sp_safe) {
77    return false;
78  }
79
80  // an fp must be within the stack and above (but not equal) sp
81  // second evaluation on fp+ is added to handle situation where fp is -1
82  bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
83
84  // We know sp/unextended_sp are safe only fp is questionable here
85
86  // If the current frame is known to the code cache then we can attempt to
87  // to construct the sender and do some validation of it. This goes a long way
88  // toward eliminating issues when we get in frame construction code
89
90  if (_cb != NULL ) {
91
92    // First check if frame is complete and tester is reliable
93    // Unfortunately we can only check frame complete for runtime stubs and nmethod
94    // other generic buffer blobs are more problematic so we just assume they are
95    // ok. adapter blobs never have a frame complete and are never ok.
96
97    if (!_cb->is_frame_complete_at(_pc)) {
98      if (_cb->is_compiled() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
99        return false;
100      }
101    }
102
103    // Could just be some random pointer within the codeBlob
104    if (!_cb->code_contains(_pc)) {
105      return false;
106    }
107
108    // Entry frame checks
109    if (is_entry_frame()) {
110      // an entry frame must have a valid fp.
111      return fp_safe && is_entry_frame_valid(thread);
112    }
113
114    intptr_t* sender_sp = NULL;
115    intptr_t* sender_unextended_sp = NULL;
116    address   sender_pc = NULL;
117    intptr_t* saved_fp =  NULL;
118
119    if (is_interpreted_frame()) {
120      // fp must be safe
121      if (!fp_safe) {
122        return false;
123      }
124
125      sender_pc = (address) this->fp()[return_addr_offset];
126      // for interpreted frames, the value below is the sender "raw" sp,
127      // which can be different from the sender unextended sp (the sp seen
128      // by the sender) because of current frame local variables
129      sender_sp = (intptr_t*) addr_at(sender_sp_offset);
130      sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
131      saved_fp = (intptr_t*) this->fp()[link_offset];
132
133    } else {
134      // must be some sort of compiled/runtime frame
135      // fp does not have to be safe (although it could be check for c1?)
136
137      // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
138      if (_cb->frame_size() <= 0) {
139        return false;
140      }
141
142      sender_sp = _unextended_sp + _cb->frame_size();
143      // Is sender_sp safe?
144      if ((address)sender_sp >= thread->stack_base()) {
145        return false;
146      }
147      sender_unextended_sp = sender_sp;
148      // On Intel the return_address is always the word on the stack
149      sender_pc = (address) *(sender_sp-1);
150      // Note: frame::sender_sp_offset is only valid for compiled frame
151      saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
152    }
153
154
155    // If the potential sender is the interpreter then we can do some more checking
156    if (Interpreter::contains(sender_pc)) {
157
158      // ebp is always saved in a recognizable place in any code we generate. However
159      // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
160      // is really a frame pointer.
161
162      bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
163
164      if (!saved_fp_safe) {
165        return false;
166      }
167
168      // construct the potential sender
169
170      frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
171
172      return sender.is_interpreted_frame_valid(thread);
173
174    }
175
176    // We must always be able to find a recognizable pc
177    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
178    if (sender_pc == NULL ||  sender_blob == NULL) {
179      return false;
180    }
181
182    // Could be a zombie method
183    if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
184      return false;
185    }
186
187    // Could just be some random pointer within the codeBlob
188    if (!sender_blob->code_contains(sender_pc)) {
189      return false;
190    }
191
192    // We should never be able to see an adapter if the current frame is something from code cache
193    if (sender_blob->is_adapter_blob()) {
194      return false;
195    }
196
197    // Could be the call_stub
198    if (StubRoutines::returns_to_call_stub(sender_pc)) {
199      bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
200
201      if (!saved_fp_safe) {
202        return false;
203      }
204
205      // construct the potential sender
206
207      frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
208
209      // Validate the JavaCallWrapper an entry frame must have
210      address jcw = (address)sender.entry_frame_call_wrapper();
211
212      bool jcw_safe = (jcw < thread->stack_base()) && (jcw > (address)sender.fp());
213
214      return jcw_safe;
215    }
216
217    CompiledMethod* nm = sender_blob->as_compiled_method_or_null();
218    if (nm != NULL) {
219        if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) ||
220            nm->method()->is_method_handle_intrinsic()) {
221            return false;
222        }
223    }
224
225    // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
226    // because the return address counts against the callee's frame.
227
228    if (sender_blob->frame_size() <= 0) {
229      assert(!sender_blob->is_compiled(), "should count return address at least");
230      return false;
231    }
232
233    // We should never be able to see anything here except an nmethod. If something in the
234    // code cache (current frame) is called by an entity within the code cache that entity
235    // should not be anything but the call stub (already covered), the interpreter (already covered)
236    // or an nmethod.
237
238    if (!sender_blob->is_compiled()) {
239        return false;
240    }
241
242    // Could put some more validation for the potential non-interpreted sender
243    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
244
245    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
246
247    // We've validated the potential sender that would be created
248    return true;
249  }
250
251  // Must be native-compiled frame. Since sender will try and use fp to find
252  // linkages it must be safe
253
254  if (!fp_safe) {
255    return false;
256  }
257
258  // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
259
260  if ( (address) this->fp()[return_addr_offset] == NULL) return false;
261
262
263  // could try and do some more potential verification of native frame if we could think of some...
264
265  return true;
266
267}
268
269
270void frame::patch_pc(Thread* thread, address pc) {
271  address* pc_addr = &(((address*) sp())[-1]);
272  if (TracePcPatching) {
273    tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
274                  p2i(pc_addr), p2i(*pc_addr), p2i(pc));
275  }
276  // Either the return address is the original one or we are going to
277  // patch in the same address that's already there.
278  assert(_pc == *pc_addr || pc == *pc_addr, "must be");
279  *pc_addr = pc;
280  _cb = CodeCache::find_blob(pc);
281  address original_pc = CompiledMethod::get_deopt_original_pc(this);
282  if (original_pc != NULL) {
283    assert(original_pc == _pc, "expected original PC to be stored before patching");
284    _deopt_state = is_deoptimized;
285    // leave _pc as is
286  } else {
287    _deopt_state = not_deoptimized;
288    _pc = pc;
289  }
290}
291
292bool frame::is_interpreted_frame() const  {
293  return Interpreter::contains(pc());
294}
295
296int frame::frame_size(RegisterMap* map) const {
297  frame sender = this->sender(map);
298  return sender.sp() - sp();
299}
300
301intptr_t* frame::entry_frame_argument_at(int offset) const {
302  // convert offset to index to deal with tsi
303  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
304  // Entry frame's arguments are always in relation to unextended_sp()
305  return &unextended_sp()[index];
306}
307
308// sender_sp
309
310intptr_t* frame::interpreter_frame_sender_sp() const {
311  assert(is_interpreted_frame(), "interpreted frame expected");
312  return (intptr_t*) at(interpreter_frame_sender_sp_offset);
313}
314
315void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
316  assert(is_interpreted_frame(), "interpreted frame expected");
317  ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
318}
319
320
321// monitor elements
322
323BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
324  return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
325}
326
327BasicObjectLock* frame::interpreter_frame_monitor_end() const {
328  BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
329  // make sure the pointer points inside the frame
330  assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
331  assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
332  return result;
333}
334
335void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
336  *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
337}
338
339// Used by template based interpreter deoptimization
340void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
341    *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
342}
343
344frame frame::sender_for_entry_frame(RegisterMap* map) const {
345  assert(map != NULL, "map must be set");
346  // Java frame called from C; skip all C frames and return top C
347  // frame of that chunk as the sender
348  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
349  assert(!entry_frame_is_first(), "next Java fp must be non zero");
350  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
351  // Since we are walking the stack now this nested anchor is obviously walkable
352  // even if it wasn't when it was stacked.
353  if (!jfa->walkable()) {
354    // Capture _last_Java_pc (if needed) and mark anchor walkable.
355    jfa->capture_last_Java_pc();
356  }
357  map->clear();
358  assert(map->include_argument_oops(), "should be set by clear");
359  vmassert(jfa->last_Java_pc() != NULL, "not walkable");
360  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
361  return fr;
362}
363
364//------------------------------------------------------------------------------
365// frame::verify_deopt_original_pc
366//
367// Verifies the calculated original PC of a deoptimization PC for the
368// given unextended SP.
369#ifdef ASSERT
370void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) {
371  frame fr;
372
373  // This is ugly but it's better than to change {get,set}_original_pc
374  // to take an SP value as argument.  And it's only a debugging
375  // method anyway.
376  fr._unextended_sp = unextended_sp;
377
378  address original_pc = nm->get_original_pc(&fr);
379  assert(nm->insts_contains_inclusive(original_pc),
380         "original PC must be in the main code section of the the compiled method (or must be immediately following it)");
381}
382#endif
383
384//------------------------------------------------------------------------------
385// frame::adjust_unextended_sp
386void frame::adjust_unextended_sp() {
387  // On x86, sites calling method handle intrinsics and lambda forms are treated
388  // as any other call site. Therefore, no special action is needed when we are
389  // returning to any of these call sites.
390
391  if (_cb != NULL) {
392    CompiledMethod* sender_cm = _cb->as_compiled_method_or_null();
393    if (sender_cm != NULL) {
394      // If the sender PC is a deoptimization point, get the original PC.
395      if (sender_cm->is_deopt_entry(_pc) ||
396          sender_cm->is_deopt_mh_entry(_pc)) {
397        DEBUG_ONLY(verify_deopt_original_pc(sender_cm, _unextended_sp));
398      }
399    }
400  }
401}
402
403//------------------------------------------------------------------------------
404// frame::update_map_with_saved_link
405void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
406  // The interpreter and compiler(s) always save EBP/RBP in a known
407  // location on entry. We must record where that location is
408  // so this if EBP/RBP was live on callout from c2 we can find
409  // the saved copy no matter what it called.
410
411  // Since the interpreter always saves EBP/RBP if we record where it is then
412  // we don't have to always save EBP/RBP on entry and exit to c2 compiled
413  // code, on entry will be enough.
414  map->set_location(rbp->as_VMReg(), (address) link_addr);
415#ifdef AMD64
416  // this is weird "H" ought to be at a higher address however the
417  // oopMaps seems to have the "H" regs at the same address and the
418  // vanilla register.
419  // XXXX make this go away
420  if (true) {
421    map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
422  }
423#endif // AMD64
424}
425
426
427//------------------------------------------------------------------------------
428// frame::sender_for_interpreter_frame
429frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
430  // SP is the raw SP from the sender after adapter or interpreter
431  // extension.
432  intptr_t* sender_sp = this->sender_sp();
433
434  // This is the sp before any possible extension (adapter/locals).
435  intptr_t* unextended_sp = interpreter_frame_sender_sp();
436
437#if defined(COMPILER2) || INCLUDE_JVMCI
438  if (map->update_map()) {
439    update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
440  }
441#endif // COMPILER2 || INCLUDE_JVMCI
442
443  return frame(sender_sp, unextended_sp, link(), sender_pc());
444}
445
446
447//------------------------------------------------------------------------------
448// frame::sender_for_compiled_frame
449frame frame::sender_for_compiled_frame(RegisterMap* map) const {
450  assert(map != NULL, "map must be set");
451
452  // frame owned by optimizing compiler
453  assert(_cb->frame_size() >= 0, "must have non-zero frame size");
454  intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
455  intptr_t* unextended_sp = sender_sp;
456
457  // On Intel the return_address is always the word on the stack
458  address sender_pc = (address) *(sender_sp-1);
459
460  // This is the saved value of EBP which may or may not really be an FP.
461  // It is only an FP if the sender is an interpreter frame (or C1?).
462  intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
463
464  if (map->update_map()) {
465    // Tell GC to use argument oopmaps for some runtime stubs that need it.
466    // For C1, the runtime stub might not have oop maps, so set this flag
467    // outside of update_register_map.
468    map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
469    if (_cb->oop_maps() != NULL) {
470      OopMapSet::update_register_map(this, map);
471    }
472
473    // Since the prolog does the save and restore of EBP there is no oopmap
474    // for it so we must fill in its location as if there was an oopmap entry
475    // since if our caller was compiled code there could be live jvm state in it.
476    update_map_with_saved_link(map, saved_fp_addr);
477  }
478
479  assert(sender_sp != sp(), "must have changed");
480  return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
481}
482
483
484//------------------------------------------------------------------------------
485// frame::sender
486frame frame::sender(RegisterMap* map) const {
487  // Default is we done have to follow them. The sender_for_xxx will
488  // update it accordingly
489  map->set_include_argument_oops(false);
490
491  if (is_entry_frame())       return sender_for_entry_frame(map);
492  if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
493  assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
494
495  if (_cb != NULL) {
496    return sender_for_compiled_frame(map);
497  }
498  // Must be native-compiled frame, i.e. the marshaling code for native
499  // methods that exists in the core system.
500  return frame(sender_sp(), link(), sender_pc());
501}
502
503bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
504  assert(is_interpreted_frame(), "Not an interpreted frame");
505  // These are reasonable sanity checks
506  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
507    return false;
508  }
509  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
510    return false;
511  }
512  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
513    return false;
514  }
515  // These are hacks to keep us out of trouble.
516  // The problem with these is that they mask other problems
517  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
518    return false;
519  }
520
521  // do some validation of frame elements
522  // first the method
523
524  Method* m = *interpreter_frame_method_addr();
525
526  // validate the method we'd find in this potential sender
527  if (!m->is_valid_method()) return false;
528
529  // stack frames shouldn't be much larger than max_stack elements
530  // this test requires the use the unextended_sp which is the sp as seen by
531  // the current frame, and not sp which is the "raw" pc which could point
532  // further because of local variables of the callee method inserted after
533  // method arguments
534  if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
535    return false;
536  }
537
538  // validate bci/bcp
539
540  address bcp = interpreter_frame_bcp();
541  if (m->validate_bci_from_bcp(bcp) < 0) {
542    return false;
543  }
544
545  // validate ConstantPoolCache*
546  ConstantPoolCache* cp = *interpreter_frame_cache_addr();
547  if (cp == NULL || !cp->is_metaspace_object()) return false;
548
549  // validate locals
550
551  address locals =  (address) *interpreter_frame_locals_addr();
552
553  if (locals > thread->stack_base() || locals < (address) fp()) return false;
554
555  // We'd have to be pretty unlucky to be mislead at this point
556  return true;
557}
558
559BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
560  assert(is_interpreted_frame(), "interpreted frame expected");
561  Method* method = interpreter_frame_method();
562  BasicType type = method->result_type();
563
564  intptr_t* tos_addr;
565  if (method->is_native()) {
566    // Prior to calling into the runtime to report the method_exit the possible
567    // return value is pushed to the native stack. If the result is a jfloat/jdouble
568    // then ST0 is saved before EAX/EDX. See the note in generate_native_result
569    tos_addr = (intptr_t*)sp();
570    if (type == T_FLOAT || type == T_DOUBLE) {
571    // QQQ seems like this code is equivalent on the two platforms
572#ifdef AMD64
573      // This is times two because we do a push(ltos) after pushing XMM0
574      // and that takes two interpreter stack slots.
575      tos_addr += 2 * Interpreter::stackElementWords;
576#else
577      tos_addr += 2;
578#endif // AMD64
579    }
580  } else {
581    tos_addr = (intptr_t*)interpreter_frame_tos_address();
582  }
583
584  switch (type) {
585    case T_OBJECT  :
586    case T_ARRAY   : {
587      oop obj;
588      if (method->is_native()) {
589        obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
590      } else {
591        oop* obj_p = (oop*)tos_addr;
592        obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
593      }
594      assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
595      *oop_result = obj;
596      break;
597    }
598    case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
599    case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
600    case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
601    case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
602    case T_INT     : value_result->i = *(jint*)tos_addr; break;
603    case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
604    case T_FLOAT   : {
605#ifdef AMD64
606        value_result->f = *(jfloat*)tos_addr;
607#else
608      if (method->is_native()) {
609        jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
610        value_result->f = (jfloat)d;
611      } else {
612        value_result->f = *(jfloat*)tos_addr;
613      }
614#endif // AMD64
615      break;
616    }
617    case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
618    case T_VOID    : /* Nothing to do */ break;
619    default        : ShouldNotReachHere();
620  }
621
622  return type;
623}
624
625
626intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
627  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
628  return &interpreter_frame_tos_address()[index];
629}
630
631#ifndef PRODUCT
632
633#define DESCRIBE_FP_OFFSET(name) \
634  values.describe(frame_no, fp() + frame::name##_offset, #name)
635
636void frame::describe_pd(FrameValues& values, int frame_no) {
637  if (is_interpreted_frame()) {
638    DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
639    DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
640    DESCRIBE_FP_OFFSET(interpreter_frame_method);
641    DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
642    DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
643    DESCRIBE_FP_OFFSET(interpreter_frame_cache);
644    DESCRIBE_FP_OFFSET(interpreter_frame_locals);
645    DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
646    DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
647#ifdef AMD64
648  } else if (is_entry_frame()) {
649    // This could be more descriptive if we use the enum in
650    // stubGenerator to map to real names but it's most important to
651    // claim these frame slots so the error checking works.
652    for (int i = 0; i < entry_frame_after_call_words; i++) {
653      values.describe(frame_no, fp() - i, err_msg("call_stub word fp - %d", i));
654    }
655#endif // AMD64
656  }
657}
658#endif // !PRODUCT
659
660intptr_t *frame::initial_deoptimization_info() {
661  // used to reset the saved FP
662  return fp();
663}
664
665intptr_t* frame::real_fp() const {
666  if (_cb != NULL) {
667    // use the frame size if valid
668    int size = _cb->frame_size();
669    if (size > 0) {
670      return unextended_sp() + size;
671    }
672  }
673  // else rely on fp()
674  assert(! is_compiled_frame(), "unknown compiled frame size");
675  return fp();
676}
677
678#ifndef PRODUCT
679// This is a generic constructor which is only used by pns() in debug.cpp.
680frame::frame(void* sp, void* fp, void* pc) {
681  init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
682}
683
684void frame::pd_ps() {}
685#endif
686
687void JavaFrameAnchor::make_walkable(JavaThread* thread) {
688  // last frame set?
689  if (last_Java_sp() == NULL) return;
690  // already walkable?
691  if (walkable()) return;
692  vmassert(Thread::current() == (Thread*)thread, "not current thread");
693  vmassert(last_Java_sp() != NULL, "not called from Java code?");
694  vmassert(last_Java_pc() == NULL, "already walkable");
695  capture_last_Java_pc();
696  vmassert(walkable(), "something went wrong");
697}
698
699void JavaFrameAnchor::capture_last_Java_pc() {
700  vmassert(_last_Java_sp != NULL, "no last frame set");
701  vmassert(_last_Java_pc == NULL, "already walkable");
702  _last_Java_pc = (address)_last_Java_sp[-1];
703}
704