c1_Runtime1_x86.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "c1/c1_Defs.hpp"
28#include "c1/c1_MacroAssembler.hpp"
29#include "c1/c1_Runtime1.hpp"
30#include "interpreter/interpreter.hpp"
31#include "nativeInst_x86.hpp"
32#include "oops/compiledICHolder.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/jvmtiExport.hpp"
35#include "register_x86.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/signature.hpp"
38#include "runtime/vframeArray.hpp"
39#include "vmreg_x86.inline.hpp"
40
41
42// Implementation of StubAssembler
43
44int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
45  // setup registers
46  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
47  assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
48  assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
49  assert(args_size >= 0, "illegal args_size");
50  bool align_stack = false;
51#ifdef _LP64
52  // At a method handle call, the stack may not be properly aligned
53  // when returning with an exception.
54  align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
55#endif
56
57#ifdef _LP64
58  mov(c_rarg0, thread);
59  set_num_rt_args(0); // Nothing on stack
60#else
61  set_num_rt_args(1 + args_size);
62
63  // push java thread (becomes first argument of C function)
64  get_thread(thread);
65  push(thread);
66#endif // _LP64
67
68  int call_offset;
69  if (!align_stack) {
70    set_last_Java_frame(thread, noreg, rbp, NULL);
71  } else {
72    address the_pc = pc();
73    call_offset = offset();
74    set_last_Java_frame(thread, noreg, rbp, the_pc);
75    andptr(rsp, -(StackAlignmentInBytes));    // Align stack
76  }
77
78  // do the call
79  call(RuntimeAddress(entry));
80  if (!align_stack) {
81    call_offset = offset();
82  }
83  // verify callee-saved register
84#ifdef ASSERT
85  guarantee(thread != rax, "change this code");
86  push(rax);
87  { Label L;
88    get_thread(rax);
89    cmpptr(thread, rax);
90    jcc(Assembler::equal, L);
91    int3();
92    stop("StubAssembler::call_RT: rdi not callee saved?");
93    bind(L);
94  }
95  pop(rax);
96#endif
97  reset_last_Java_frame(thread, true, align_stack);
98
99  // discard thread and arguments
100  NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
101
102  // check for pending exceptions
103  { Label L;
104    cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
105    jcc(Assembler::equal, L);
106    // exception pending => remove activation and forward to exception handler
107    movptr(rax, Address(thread, Thread::pending_exception_offset()));
108    // make sure that the vm_results are cleared
109    if (oop_result1->is_valid()) {
110      movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
111    }
112    if (metadata_result->is_valid()) {
113      movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
114    }
115    if (frame_size() == no_frame_size) {
116      leave();
117      jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
118    } else if (_stub_id == Runtime1::forward_exception_id) {
119      should_not_reach_here();
120    } else {
121      jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
122    }
123    bind(L);
124  }
125  // get oop results if there are any and reset the values in the thread
126  if (oop_result1->is_valid()) {
127    get_vm_result(oop_result1, thread);
128  }
129  if (metadata_result->is_valid()) {
130    get_vm_result_2(metadata_result, thread);
131  }
132  return call_offset;
133}
134
135
136int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
137#ifdef _LP64
138  mov(c_rarg1, arg1);
139#else
140  push(arg1);
141#endif // _LP64
142  return call_RT(oop_result1, metadata_result, entry, 1);
143}
144
145
146int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
147#ifdef _LP64
148  if (c_rarg1 == arg2) {
149    if (c_rarg2 == arg1) {
150      xchgq(arg1, arg2);
151    } else {
152      mov(c_rarg2, arg2);
153      mov(c_rarg1, arg1);
154    }
155  } else {
156    mov(c_rarg1, arg1);
157    mov(c_rarg2, arg2);
158  }
159#else
160  push(arg2);
161  push(arg1);
162#endif // _LP64
163  return call_RT(oop_result1, metadata_result, entry, 2);
164}
165
166
167int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
168#ifdef _LP64
169  // if there is any conflict use the stack
170  if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
171      arg2 == c_rarg1 || arg1 == c_rarg3 ||
172      arg3 == c_rarg1 || arg1 == c_rarg2) {
173    push(arg3);
174    push(arg2);
175    push(arg1);
176    pop(c_rarg1);
177    pop(c_rarg2);
178    pop(c_rarg3);
179  } else {
180    mov(c_rarg1, arg1);
181    mov(c_rarg2, arg2);
182    mov(c_rarg3, arg3);
183  }
184#else
185  push(arg3);
186  push(arg2);
187  push(arg1);
188#endif // _LP64
189  return call_RT(oop_result1, metadata_result, entry, 3);
190}
191
192
193// Implementation of StubFrame
194
195class StubFrame: public StackObj {
196 private:
197  StubAssembler* _sasm;
198
199 public:
200  StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
201  void load_argument(int offset_in_words, Register reg);
202
203  ~StubFrame();
204};
205
206
207#define __ _sasm->
208
209StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
210  _sasm = sasm;
211  __ set_info(name, must_gc_arguments);
212  __ enter();
213}
214
215// load parameters that were stored with LIR_Assembler::store_parameter
216// Note: offsets for store_parameter and load_argument must match
217void StubFrame::load_argument(int offset_in_words, Register reg) {
218  // rbp, + 0: link
219  //     + 1: return address
220  //     + 2: argument with offset 0
221  //     + 3: argument with offset 1
222  //     + 4: ...
223
224  __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
225}
226
227
228StubFrame::~StubFrame() {
229  __ leave();
230  __ ret(0);
231}
232
233#undef __
234
235
236// Implementation of Runtime1
237
238#define __ sasm->
239
240const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
241const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
242
243// Stack layout for saving/restoring  all the registers needed during a runtime
244// call (this includes deoptimization)
245// Note: note that users of this frame may well have arguments to some runtime
246// while these values are on the stack. These positions neglect those arguments
247// but the code in save_live_registers will take the argument count into
248// account.
249//
250#ifdef _LP64
251  #define SLOT2(x) x,
252  #define SLOT_PER_WORD 2
253#else
254  #define SLOT2(x)
255  #define SLOT_PER_WORD 1
256#endif // _LP64
257
258enum reg_save_layout {
259  // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
260  // happen and will assert if the stack size we create is misaligned
261#ifdef _LP64
262  align_dummy_0, align_dummy_1,
263#endif // _LP64
264#ifdef _WIN64
265  // Windows always allocates space for it's argument registers (see
266  // frame::arg_reg_save_area_bytes).
267  arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
268  arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
269  arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
270  arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
271#endif // _WIN64
272  xmm_regs_as_doubles_off,                                                                  // 32
273  float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
274  fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
275  // fpu_state_end_off is exclusive
276  fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
277  marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
278  extra_space_offset,                                                                       // 360
279#ifdef _LP64
280  r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
281  r14_off, r14H_off,                                                                        // 368, 372
282  r13_off, r13H_off,                                                                        // 376, 380
283  r12_off, r12H_off,                                                                        // 384, 388
284  r11_off, r11H_off,                                                                        // 392, 396
285  r10_off, r10H_off,                                                                        // 400, 404
286  r9_off, r9H_off,                                                                          // 408, 412
287  r8_off, r8H_off,                                                                          // 416, 420
288  rdi_off, rdiH_off,                                                                        // 424, 428
289#else
290  rdi_off = extra_space_offset,
291#endif // _LP64
292  rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
293  rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
294  rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
295  rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
296  rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
297  rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
298  rax_off, SLOT2(raxH_off)                                                                  // 480, 484
299  saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
300  return_off, SLOT2(returnH_off)                                                            // 496, 500
301  reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
302};
303
304
305
306// Save off registers which might be killed by calls into the runtime.
307// Tries to smart of about FP registers.  In particular we separate
308// saving and describing the FPU registers for deoptimization since we
309// have to save the FPU registers twice if we describe them and on P4
310// saving FPU registers which don't contain anything appears
311// expensive.  The deopt blob is the only thing which needs to
312// describe FPU registers.  In all other cases it should be sufficient
313// to simply save their current value.
314
315static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
316                                bool save_fpu_registers = true) {
317
318  // In 64bit all the args are in regs so there are no additional stack slots
319  LP64_ONLY(num_rt_args = 0);
320  LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
321  int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
322  sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
323
324  // record saved value locations in an OopMap
325  // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
326  OopMap* map = new OopMap(frame_size_in_slots, 0);
327  map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
328  map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
329  map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
330  map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
331  map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
332  map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
333#ifdef _LP64
334  map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
335  map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
336  map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
337  map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
338  map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
339  map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
340  map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
341  map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
342
343  // This is stupid but needed.
344  map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
345  map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
346  map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
347  map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
348  map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
349  map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
350
351  map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
352  map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
353  map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
354  map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
355  map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
356  map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
357  map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
358  map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
359#endif // _LP64
360
361  if (save_fpu_registers) {
362    if (UseSSE < 2) {
363      int fpu_off = float_regs_as_doubles_off;
364      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
365        VMReg fpu_name_0 = FrameMap::fpu_regname(n);
366        map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
367        // %%% This is really a waste but we'll keep things as they were for now
368        if (true) {
369          map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
370        }
371        fpu_off += 2;
372      }
373      assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
374    }
375
376    if (UseSSE >= 2) {
377      int xmm_off = xmm_regs_as_doubles_off;
378      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
379        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
380        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
381        // %%% This is really a waste but we'll keep things as they were for now
382        if (true) {
383          map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
384        }
385        xmm_off += 2;
386      }
387      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
388
389    } else if (UseSSE == 1) {
390      int xmm_off = xmm_regs_as_doubles_off;
391      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
392        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
393        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
394        xmm_off += 2;
395      }
396      assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
397    }
398  }
399
400  return map;
401}
402
403static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
404                                   bool save_fpu_registers = true) {
405  __ block_comment("save_live_registers");
406
407  __ pusha();         // integer registers
408
409  // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
410  // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
411
412  __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
413
414#ifdef ASSERT
415  __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
416#endif
417
418  if (save_fpu_registers) {
419    if (UseSSE < 2) {
420      // save FPU stack
421      __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
422      __ fwait();
423
424#ifdef ASSERT
425      Label ok;
426      __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
427      __ jccb(Assembler::equal, ok);
428      __ stop("corrupted control word detected");
429      __ bind(ok);
430#endif
431
432      // Reset the control word to guard against exceptions being unmasked
433      // since fstp_d can cause FPU stack underflow exceptions.  Write it
434      // into the on stack copy and then reload that to make sure that the
435      // current and future values are correct.
436      __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
437      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
438
439      // Save the FPU registers in de-opt-able form
440      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
441      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
442      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
443      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
444      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
445      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
446      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
447      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
448    }
449
450    if (UseSSE >= 2) {
451      // save XMM registers
452      // XMM registers can contain float or double values, but this is not known here,
453      // so always save them as doubles.
454      // note that float values are _not_ converted automatically, so for float values
455      // the second word contains only garbage data.
456      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
457      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
458      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
459      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
460      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
461      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
462      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
463      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
464#ifdef _LP64
465      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
466      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
467      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
468      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
469      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
470      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
471      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
472      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
473#endif // _LP64
474    } else if (UseSSE == 1) {
475      // save XMM registers as float because double not supported without SSE2
476      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
477      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
478      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
479      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
480      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
481      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
482      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
483      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
484    }
485  }
486
487  // FPU stack must be empty now
488  __ verify_FPU(0, "save_live_registers");
489
490  return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
491}
492
493
494static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
495  if (restore_fpu_registers) {
496    if (UseSSE >= 2) {
497      // restore XMM registers
498      __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
499      __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
500      __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
501      __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
502      __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
503      __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
504      __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
505      __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
506#ifdef _LP64
507      __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
508      __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
509      __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
510      __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
511      __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
512      __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
513      __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
514      __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
515#endif // _LP64
516    } else if (UseSSE == 1) {
517      // restore XMM registers
518      __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
519      __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
520      __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
521      __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
522      __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
523      __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
524      __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
525      __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
526    }
527
528    if (UseSSE < 2) {
529      __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
530    } else {
531      // check that FPU stack is really empty
532      __ verify_FPU(0, "restore_live_registers");
533    }
534
535  } else {
536    // check that FPU stack is really empty
537    __ verify_FPU(0, "restore_live_registers");
538  }
539
540#ifdef ASSERT
541  {
542    Label ok;
543    __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
544    __ jcc(Assembler::equal, ok);
545    __ stop("bad offsets in frame");
546    __ bind(ok);
547  }
548#endif // ASSERT
549
550  __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
551}
552
553
554static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
555  __ block_comment("restore_live_registers");
556
557  restore_fpu(sasm, restore_fpu_registers);
558  __ popa();
559}
560
561
562static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
563  __ block_comment("restore_live_registers_except_rax");
564
565  restore_fpu(sasm, restore_fpu_registers);
566
567#ifdef _LP64
568  __ movptr(r15, Address(rsp, 0));
569  __ movptr(r14, Address(rsp, wordSize));
570  __ movptr(r13, Address(rsp, 2 * wordSize));
571  __ movptr(r12, Address(rsp, 3 * wordSize));
572  __ movptr(r11, Address(rsp, 4 * wordSize));
573  __ movptr(r10, Address(rsp, 5 * wordSize));
574  __ movptr(r9,  Address(rsp, 6 * wordSize));
575  __ movptr(r8,  Address(rsp, 7 * wordSize));
576  __ movptr(rdi, Address(rsp, 8 * wordSize));
577  __ movptr(rsi, Address(rsp, 9 * wordSize));
578  __ movptr(rbp, Address(rsp, 10 * wordSize));
579  // skip rsp
580  __ movptr(rbx, Address(rsp, 12 * wordSize));
581  __ movptr(rdx, Address(rsp, 13 * wordSize));
582  __ movptr(rcx, Address(rsp, 14 * wordSize));
583
584  __ addptr(rsp, 16 * wordSize);
585#else
586
587  __ pop(rdi);
588  __ pop(rsi);
589  __ pop(rbp);
590  __ pop(rbx); // skip this value
591  __ pop(rbx);
592  __ pop(rdx);
593  __ pop(rcx);
594  __ addptr(rsp, BytesPerWord);
595#endif // _LP64
596}
597
598
599void Runtime1::initialize_pd() {
600  // nothing to do
601}
602
603
604// target: the entry point of the method that creates and posts the exception oop
605// has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
606
607OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
608  // preserve all registers
609  int num_rt_args = has_argument ? 2 : 1;
610  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
611
612  // now all registers are saved and can be used freely
613  // verify that no old value is used accidentally
614  __ invalidate_registers(true, true, true, true, true, true);
615
616  // registers used by this stub
617  const Register temp_reg = rbx;
618
619  // load argument for exception that is passed as an argument into the stub
620  if (has_argument) {
621#ifdef _LP64
622    __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
623#else
624    __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
625    __ push(temp_reg);
626#endif // _LP64
627  }
628  int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
629
630  OopMapSet* oop_maps = new OopMapSet();
631  oop_maps->add_gc_map(call_offset, oop_map);
632
633  __ stop("should not reach here");
634
635  return oop_maps;
636}
637
638
639OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
640  __ block_comment("generate_handle_exception");
641
642  // incoming parameters
643  const Register exception_oop = rax;
644  const Register exception_pc  = rdx;
645  // other registers used in this stub
646  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
647
648  // Save registers, if required.
649  OopMapSet* oop_maps = new OopMapSet();
650  OopMap* oop_map = NULL;
651  switch (id) {
652  case forward_exception_id:
653    // We're handling an exception in the context of a compiled frame.
654    // The registers have been saved in the standard places.  Perform
655    // an exception lookup in the caller and dispatch to the handler
656    // if found.  Otherwise unwind and dispatch to the callers
657    // exception handler.
658    oop_map = generate_oop_map(sasm, 1 /*thread*/);
659
660    // load and clear pending exception oop into RAX
661    __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
662    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
663
664    // load issuing PC (the return address for this stub) into rdx
665    __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
666
667    // make sure that the vm_results are cleared (may be unnecessary)
668    __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
669    __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
670    break;
671  case handle_exception_nofpu_id:
672  case handle_exception_id:
673    // At this point all registers MAY be live.
674    oop_map = save_live_registers(sasm, 1 /*thread*/, id == handle_exception_nofpu_id);
675    break;
676  case handle_exception_from_callee_id: {
677    // At this point all registers except exception oop (RAX) and
678    // exception pc (RDX) are dead.
679    const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
680    oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
681    sasm->set_frame_size(frame_size);
682    WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
683    break;
684  }
685  default:  ShouldNotReachHere();
686  }
687
688#ifdef TIERED
689  // C2 can leave the fpu stack dirty
690  if (UseSSE < 2) {
691    __ empty_FPU_stack();
692  }
693#endif // TIERED
694
695  // verify that only rax, and rdx is valid at this time
696  __ invalidate_registers(false, true, true, false, true, true);
697  // verify that rax, contains a valid exception
698  __ verify_not_null_oop(exception_oop);
699
700  // load address of JavaThread object for thread-local data
701  NOT_LP64(__ get_thread(thread);)
702
703#ifdef ASSERT
704  // check that fields in JavaThread for exception oop and issuing pc are
705  // empty before writing to them
706  Label oop_empty;
707  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
708  __ jcc(Assembler::equal, oop_empty);
709  __ stop("exception oop already set");
710  __ bind(oop_empty);
711
712  Label pc_empty;
713  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
714  __ jcc(Assembler::equal, pc_empty);
715  __ stop("exception pc already set");
716  __ bind(pc_empty);
717#endif
718
719  // save exception oop and issuing pc into JavaThread
720  // (exception handler will load it from here)
721  __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
722  __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
723
724  // patch throwing pc into return address (has bci & oop map)
725  __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
726
727  // compute the exception handler.
728  // the exception oop and the throwing pc are read from the fields in JavaThread
729  int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
730  oop_maps->add_gc_map(call_offset, oop_map);
731
732  // rax: handler address
733  //      will be the deopt blob if nmethod was deoptimized while we looked up
734  //      handler regardless of whether handler existed in the nmethod.
735
736  // only rax, is valid at this time, all other registers have been destroyed by the runtime call
737  __ invalidate_registers(false, true, true, true, true, true);
738
739  // patch the return address, this stub will directly return to the exception handler
740  __ movptr(Address(rbp, 1*BytesPerWord), rax);
741
742  switch (id) {
743  case forward_exception_id:
744  case handle_exception_nofpu_id:
745  case handle_exception_id:
746    // Restore the registers that were saved at the beginning.
747    restore_live_registers(sasm, id == handle_exception_nofpu_id);
748    break;
749  case handle_exception_from_callee_id:
750    // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
751    // since we do a leave anyway.
752
753    // Pop the return address since we are possibly changing SP (restoring from BP).
754    __ leave();
755    __ pop(rcx);
756
757    // Restore SP from BP if the exception PC is a method handle call site.
758    NOT_LP64(__ get_thread(thread);)
759    __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
760    __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
761    __ jmp(rcx);  // jump to exception handler
762    break;
763  default:  ShouldNotReachHere();
764  }
765
766  return oop_maps;
767}
768
769
770void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
771  // incoming parameters
772  const Register exception_oop = rax;
773  // callee-saved copy of exception_oop during runtime call
774  const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
775  // other registers used in this stub
776  const Register exception_pc = rdx;
777  const Register handler_addr = rbx;
778  const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
779
780  // verify that only rax, is valid at this time
781  __ invalidate_registers(false, true, true, true, true, true);
782
783#ifdef ASSERT
784  // check that fields in JavaThread for exception oop and issuing pc are empty
785  NOT_LP64(__ get_thread(thread);)
786  Label oop_empty;
787  __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
788  __ jcc(Assembler::equal, oop_empty);
789  __ stop("exception oop must be empty");
790  __ bind(oop_empty);
791
792  Label pc_empty;
793  __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
794  __ jcc(Assembler::equal, pc_empty);
795  __ stop("exception pc must be empty");
796  __ bind(pc_empty);
797#endif
798
799  // clear the FPU stack in case any FPU results are left behind
800  __ empty_FPU_stack();
801
802  // save exception_oop in callee-saved register to preserve it during runtime calls
803  __ verify_not_null_oop(exception_oop);
804  __ movptr(exception_oop_callee_saved, exception_oop);
805
806  NOT_LP64(__ get_thread(thread);)
807  // Get return address (is on top of stack after leave).
808  __ movptr(exception_pc, Address(rsp, 0));
809
810  // search the exception handler address of the caller (using the return address)
811  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
812  // rax: exception handler address of the caller
813
814  // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
815  __ invalidate_registers(false, true, true, true, false, true);
816
817  // move result of call into correct register
818  __ movptr(handler_addr, rax);
819
820  // Restore exception oop to RAX (required convention of exception handler).
821  __ movptr(exception_oop, exception_oop_callee_saved);
822
823  // verify that there is really a valid exception in rax
824  __ verify_not_null_oop(exception_oop);
825
826  // get throwing pc (= return address).
827  // rdx has been destroyed by the call, so it must be set again
828  // the pop is also necessary to simulate the effect of a ret(0)
829  __ pop(exception_pc);
830
831  // Restore SP from BP if the exception PC is a method handle call site.
832  NOT_LP64(__ get_thread(thread);)
833  __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
834  __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
835
836  // continue at exception handler (return address removed)
837  // note: do *not* remove arguments when unwinding the
838  //       activation since the caller assumes having
839  //       all arguments on the stack when entering the
840  //       runtime to determine the exception handler
841  //       (GC happens at call site with arguments!)
842  // rax: exception oop
843  // rdx: throwing pc
844  // rbx: exception handler
845  __ jmp(handler_addr);
846}
847
848
849OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
850  // use the maximum number of runtime-arguments here because it is difficult to
851  // distinguish each RT-Call.
852  // Note: This number affects also the RT-Call in generate_handle_exception because
853  //       the oop-map is shared for all calls.
854  const int num_rt_args = 2;  // thread + dummy
855
856  DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
857  assert(deopt_blob != NULL, "deoptimization blob must have been created");
858
859  OopMap* oop_map = save_live_registers(sasm, num_rt_args);
860
861#ifdef _LP64
862  const Register thread = r15_thread;
863  // No need to worry about dummy
864  __ mov(c_rarg0, thread);
865#else
866  __ push(rax); // push dummy
867
868  const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
869  // push java thread (becomes first argument of C function)
870  __ get_thread(thread);
871  __ push(thread);
872#endif // _LP64
873  __ set_last_Java_frame(thread, noreg, rbp, NULL);
874  // do the call
875  __ call(RuntimeAddress(target));
876  OopMapSet* oop_maps = new OopMapSet();
877  oop_maps->add_gc_map(__ offset(), oop_map);
878  // verify callee-saved register
879#ifdef ASSERT
880  guarantee(thread != rax, "change this code");
881  __ push(rax);
882  { Label L;
883    __ get_thread(rax);
884    __ cmpptr(thread, rax);
885    __ jcc(Assembler::equal, L);
886    __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
887    __ bind(L);
888  }
889  __ pop(rax);
890#endif
891  __ reset_last_Java_frame(thread, true, false);
892#ifndef _LP64
893  __ pop(rcx); // discard thread arg
894  __ pop(rcx); // discard dummy
895#endif // _LP64
896
897  // check for pending exceptions
898  { Label L;
899    __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
900    __ jcc(Assembler::equal, L);
901    // exception pending => remove activation and forward to exception handler
902
903    __ testptr(rax, rax);                                   // have we deoptimized?
904    __ jump_cc(Assembler::equal,
905               RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
906
907    // the deopt blob expects exceptions in the special fields of
908    // JavaThread, so copy and clear pending exception.
909
910    // load and clear pending exception
911    __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
912    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
913
914    // check that there is really a valid exception
915    __ verify_not_null_oop(rax);
916
917    // load throwing pc: this is the return address of the stub
918    __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
919
920#ifdef ASSERT
921    // check that fields in JavaThread for exception oop and issuing pc are empty
922    Label oop_empty;
923    __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
924    __ jcc(Assembler::equal, oop_empty);
925    __ stop("exception oop must be empty");
926    __ bind(oop_empty);
927
928    Label pc_empty;
929    __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
930    __ jcc(Assembler::equal, pc_empty);
931    __ stop("exception pc must be empty");
932    __ bind(pc_empty);
933#endif
934
935    // store exception oop and throwing pc to JavaThread
936    __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
937    __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
938
939    restore_live_registers(sasm);
940
941    __ leave();
942    __ addptr(rsp, BytesPerWord);  // remove return address from stack
943
944    // Forward the exception directly to deopt blob. We can blow no
945    // registers and must leave throwing pc on the stack.  A patch may
946    // have values live in registers so the entry point with the
947    // exception in tls.
948    __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
949
950    __ bind(L);
951  }
952
953
954  // Runtime will return true if the nmethod has been deoptimized during
955  // the patching process. In that case we must do a deopt reexecute instead.
956
957  Label reexecuteEntry, cont;
958
959  __ testptr(rax, rax);                                 // have we deoptimized?
960  __ jcc(Assembler::equal, cont);                       // no
961
962  // Will reexecute. Proper return address is already on the stack we just restore
963  // registers, pop all of our frame but the return address and jump to the deopt blob
964  restore_live_registers(sasm);
965  __ leave();
966  __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
967
968  __ bind(cont);
969  restore_live_registers(sasm);
970  __ leave();
971  __ ret(0);
972
973  return oop_maps;
974}
975
976
977OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
978
979  // for better readability
980  const bool must_gc_arguments = true;
981  const bool dont_gc_arguments = false;
982
983  // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
984  bool save_fpu_registers = true;
985
986  // stub code & info for the different stubs
987  OopMapSet* oop_maps = NULL;
988  switch (id) {
989    case forward_exception_id:
990      {
991        oop_maps = generate_handle_exception(id, sasm);
992        __ leave();
993        __ ret(0);
994      }
995      break;
996
997    case new_instance_id:
998    case fast_new_instance_id:
999    case fast_new_instance_init_check_id:
1000      {
1001        Register klass = rdx; // Incoming
1002        Register obj   = rax; // Result
1003
1004        if (id == new_instance_id) {
1005          __ set_info("new_instance", dont_gc_arguments);
1006        } else if (id == fast_new_instance_id) {
1007          __ set_info("fast new_instance", dont_gc_arguments);
1008        } else {
1009          assert(id == fast_new_instance_init_check_id, "bad StubID");
1010          __ set_info("fast new_instance init check", dont_gc_arguments);
1011        }
1012
1013        if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
1014            UseTLAB && FastTLABRefill) {
1015          Label slow_path;
1016          Register obj_size = rcx;
1017          Register t1       = rbx;
1018          Register t2       = rsi;
1019          assert_different_registers(klass, obj, obj_size, t1, t2);
1020
1021          __ push(rdi);
1022          __ push(rbx);
1023
1024          if (id == fast_new_instance_init_check_id) {
1025            // make sure the klass is initialized
1026            __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1027            __ jcc(Assembler::notEqual, slow_path);
1028          }
1029
1030#ifdef ASSERT
1031          // assert object can be fast path allocated
1032          {
1033            Label ok, not_ok;
1034            __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1035            __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1036            __ jcc(Assembler::lessEqual, not_ok);
1037            __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1038            __ jcc(Assembler::zero, ok);
1039            __ bind(not_ok);
1040            __ stop("assert(can be fast path allocated)");
1041            __ should_not_reach_here();
1042            __ bind(ok);
1043          }
1044#endif // ASSERT
1045
1046          // if we got here then the TLAB allocation failed, so try
1047          // refilling the TLAB or allocating directly from eden.
1048          Label retry_tlab, try_eden;
1049          const Register thread =
1050            __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
1051
1052          __ bind(retry_tlab);
1053
1054          // get the instance size (size is postive so movl is fine for 64bit)
1055          __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1056
1057          __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1058
1059          __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1060          __ verify_oop(obj);
1061          __ pop(rbx);
1062          __ pop(rdi);
1063          __ ret(0);
1064
1065          __ bind(try_eden);
1066          // get the instance size (size is postive so movl is fine for 64bit)
1067          __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1068
1069          __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1070          __ incr_allocated_bytes(thread, obj_size, 0);
1071
1072          __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1073          __ verify_oop(obj);
1074          __ pop(rbx);
1075          __ pop(rdi);
1076          __ ret(0);
1077
1078          __ bind(slow_path);
1079          __ pop(rbx);
1080          __ pop(rdi);
1081        }
1082
1083        __ enter();
1084        OopMap* map = save_live_registers(sasm, 2);
1085        int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1086        oop_maps = new OopMapSet();
1087        oop_maps->add_gc_map(call_offset, map);
1088        restore_live_registers_except_rax(sasm);
1089        __ verify_oop(obj);
1090        __ leave();
1091        __ ret(0);
1092
1093        // rax,: new instance
1094      }
1095
1096      break;
1097
1098    case counter_overflow_id:
1099      {
1100        Register bci = rax, method = rbx;
1101        __ enter();
1102        OopMap* map = save_live_registers(sasm, 3);
1103        // Retrieve bci
1104        __ movl(bci, Address(rbp, 2*BytesPerWord));
1105        // And a pointer to the Method*
1106        __ movptr(method, Address(rbp, 3*BytesPerWord));
1107        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1108        oop_maps = new OopMapSet();
1109        oop_maps->add_gc_map(call_offset, map);
1110        restore_live_registers(sasm);
1111        __ leave();
1112        __ ret(0);
1113      }
1114      break;
1115
1116    case new_type_array_id:
1117    case new_object_array_id:
1118      {
1119        Register length   = rbx; // Incoming
1120        Register klass    = rdx; // Incoming
1121        Register obj      = rax; // Result
1122
1123        if (id == new_type_array_id) {
1124          __ set_info("new_type_array", dont_gc_arguments);
1125        } else {
1126          __ set_info("new_object_array", dont_gc_arguments);
1127        }
1128
1129#ifdef ASSERT
1130        // assert object type is really an array of the proper kind
1131        {
1132          Label ok;
1133          Register t0 = obj;
1134          __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1135          __ sarl(t0, Klass::_lh_array_tag_shift);
1136          int tag = ((id == new_type_array_id)
1137                     ? Klass::_lh_array_tag_type_value
1138                     : Klass::_lh_array_tag_obj_value);
1139          __ cmpl(t0, tag);
1140          __ jcc(Assembler::equal, ok);
1141          __ stop("assert(is an array klass)");
1142          __ should_not_reach_here();
1143          __ bind(ok);
1144        }
1145#endif // ASSERT
1146
1147        if (UseTLAB && FastTLABRefill) {
1148          Register arr_size = rsi;
1149          Register t1       = rcx;  // must be rcx for use as shift count
1150          Register t2       = rdi;
1151          Label slow_path;
1152          assert_different_registers(length, klass, obj, arr_size, t1, t2);
1153
1154          // check that array length is small enough for fast path.
1155          __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1156          __ jcc(Assembler::above, slow_path);
1157
1158          // if we got here then the TLAB allocation failed, so try
1159          // refilling the TLAB or allocating directly from eden.
1160          Label retry_tlab, try_eden;
1161          const Register thread =
1162            __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
1163
1164          __ bind(retry_tlab);
1165
1166          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1167          // since size is positive movl does right thing on 64bit
1168          __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1169          // since size is postive movl does right thing on 64bit
1170          __ movl(arr_size, length);
1171          assert(t1 == rcx, "fixed register usage");
1172          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1173          __ shrptr(t1, Klass::_lh_header_size_shift);
1174          __ andptr(t1, Klass::_lh_header_size_mask);
1175          __ addptr(arr_size, t1);
1176          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1177          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1178
1179          __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1180
1181          __ initialize_header(obj, klass, length, t1, t2);
1182          __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1183          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1184          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1185          __ andptr(t1, Klass::_lh_header_size_mask);
1186          __ subptr(arr_size, t1);  // body length
1187          __ addptr(t1, obj);       // body start
1188          __ initialize_body(t1, arr_size, 0, t2);
1189          __ verify_oop(obj);
1190          __ ret(0);
1191
1192          __ bind(try_eden);
1193          // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1194          // since size is positive movl does right thing on 64bit
1195          __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1196          // since size is postive movl does right thing on 64bit
1197          __ movl(arr_size, length);
1198          assert(t1 == rcx, "fixed register usage");
1199          __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1200          __ shrptr(t1, Klass::_lh_header_size_shift);
1201          __ andptr(t1, Klass::_lh_header_size_mask);
1202          __ addptr(arr_size, t1);
1203          __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1204          __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1205
1206          __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1207          __ incr_allocated_bytes(thread, arr_size, 0);
1208
1209          __ initialize_header(obj, klass, length, t1, t2);
1210          __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1211          assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1212          assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1213          __ andptr(t1, Klass::_lh_header_size_mask);
1214          __ subptr(arr_size, t1);  // body length
1215          __ addptr(t1, obj);       // body start
1216          __ initialize_body(t1, arr_size, 0, t2);
1217          __ verify_oop(obj);
1218          __ ret(0);
1219
1220          __ bind(slow_path);
1221        }
1222
1223        __ enter();
1224        OopMap* map = save_live_registers(sasm, 3);
1225        int call_offset;
1226        if (id == new_type_array_id) {
1227          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1228        } else {
1229          call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1230        }
1231
1232        oop_maps = new OopMapSet();
1233        oop_maps->add_gc_map(call_offset, map);
1234        restore_live_registers_except_rax(sasm);
1235
1236        __ verify_oop(obj);
1237        __ leave();
1238        __ ret(0);
1239
1240        // rax,: new array
1241      }
1242      break;
1243
1244    case new_multi_array_id:
1245      { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1246        // rax,: klass
1247        // rbx,: rank
1248        // rcx: address of 1st dimension
1249        OopMap* map = save_live_registers(sasm, 4);
1250        int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1251
1252        oop_maps = new OopMapSet();
1253        oop_maps->add_gc_map(call_offset, map);
1254        restore_live_registers_except_rax(sasm);
1255
1256        // rax,: new multi array
1257        __ verify_oop(rax);
1258      }
1259      break;
1260
1261    case register_finalizer_id:
1262      {
1263        __ set_info("register_finalizer", dont_gc_arguments);
1264
1265        // This is called via call_runtime so the arguments
1266        // will be place in C abi locations
1267
1268#ifdef _LP64
1269        __ verify_oop(c_rarg0);
1270        __ mov(rax, c_rarg0);
1271#else
1272        // The object is passed on the stack and we haven't pushed a
1273        // frame yet so it's one work away from top of stack.
1274        __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1275        __ verify_oop(rax);
1276#endif // _LP64
1277
1278        // load the klass and check the has finalizer flag
1279        Label register_finalizer;
1280        Register t = rsi;
1281        __ load_klass(t, rax);
1282        __ movl(t, Address(t, Klass::access_flags_offset()));
1283        __ testl(t, JVM_ACC_HAS_FINALIZER);
1284        __ jcc(Assembler::notZero, register_finalizer);
1285        __ ret(0);
1286
1287        __ bind(register_finalizer);
1288        __ enter();
1289        OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1290        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1291        oop_maps = new OopMapSet();
1292        oop_maps->add_gc_map(call_offset, oop_map);
1293
1294        // Now restore all the live registers
1295        restore_live_registers(sasm);
1296
1297        __ leave();
1298        __ ret(0);
1299      }
1300      break;
1301
1302    case throw_range_check_failed_id:
1303      { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1304        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1305      }
1306      break;
1307
1308    case throw_index_exception_id:
1309      { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1310        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1311      }
1312      break;
1313
1314    case throw_div0_exception_id:
1315      { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1316        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1317      }
1318      break;
1319
1320    case throw_null_pointer_exception_id:
1321      { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1322        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1323      }
1324      break;
1325
1326    case handle_exception_nofpu_id:
1327    case handle_exception_id:
1328      { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1329        oop_maps = generate_handle_exception(id, sasm);
1330      }
1331      break;
1332
1333    case handle_exception_from_callee_id:
1334      { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1335        oop_maps = generate_handle_exception(id, sasm);
1336      }
1337      break;
1338
1339    case unwind_exception_id:
1340      { __ set_info("unwind_exception", dont_gc_arguments);
1341        // note: no stubframe since we are about to leave the current
1342        //       activation and we are calling a leaf VM function only.
1343        generate_unwind_exception(sasm);
1344      }
1345      break;
1346
1347    case throw_array_store_exception_id:
1348      { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1349        // tos + 0: link
1350        //     + 1: return address
1351        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1352      }
1353      break;
1354
1355    case throw_class_cast_exception_id:
1356      { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1357        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1358      }
1359      break;
1360
1361    case throw_incompatible_class_change_error_id:
1362      { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1363        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1364      }
1365      break;
1366
1367    case slow_subtype_check_id:
1368      {
1369        // Typical calling sequence:
1370        // __ push(klass_RInfo);  // object klass or other subclass
1371        // __ push(sup_k_RInfo);  // array element klass or other superclass
1372        // __ call(slow_subtype_check);
1373        // Note that the subclass is pushed first, and is therefore deepest.
1374        // Previous versions of this code reversed the names 'sub' and 'super'.
1375        // This was operationally harmless but made the code unreadable.
1376        enum layout {
1377          rax_off, SLOT2(raxH_off)
1378          rcx_off, SLOT2(rcxH_off)
1379          rsi_off, SLOT2(rsiH_off)
1380          rdi_off, SLOT2(rdiH_off)
1381          // saved_rbp_off, SLOT2(saved_rbpH_off)
1382          return_off, SLOT2(returnH_off)
1383          sup_k_off, SLOT2(sup_kH_off)
1384          klass_off, SLOT2(superH_off)
1385          framesize,
1386          result_off = klass_off  // deepest argument is also the return value
1387        };
1388
1389        __ set_info("slow_subtype_check", dont_gc_arguments);
1390        __ push(rdi);
1391        __ push(rsi);
1392        __ push(rcx);
1393        __ push(rax);
1394
1395        // This is called by pushing args and not with C abi
1396        __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1397        __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1398
1399        Label miss;
1400        __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1401
1402        // fallthrough on success:
1403        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1404        __ pop(rax);
1405        __ pop(rcx);
1406        __ pop(rsi);
1407        __ pop(rdi);
1408        __ ret(0);
1409
1410        __ bind(miss);
1411        __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1412        __ pop(rax);
1413        __ pop(rcx);
1414        __ pop(rsi);
1415        __ pop(rdi);
1416        __ ret(0);
1417      }
1418      break;
1419
1420    case monitorenter_nofpu_id:
1421      save_fpu_registers = false;
1422      // fall through
1423    case monitorenter_id:
1424      {
1425        StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1426        OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1427
1428        // Called with store_parameter and not C abi
1429
1430        f.load_argument(1, rax); // rax,: object
1431        f.load_argument(0, rbx); // rbx,: lock address
1432
1433        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1434
1435        oop_maps = new OopMapSet();
1436        oop_maps->add_gc_map(call_offset, map);
1437        restore_live_registers(sasm, save_fpu_registers);
1438      }
1439      break;
1440
1441    case monitorexit_nofpu_id:
1442      save_fpu_registers = false;
1443      // fall through
1444    case monitorexit_id:
1445      {
1446        StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1447        OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1448
1449        // Called with store_parameter and not C abi
1450
1451        f.load_argument(0, rax); // rax,: lock address
1452
1453        // note: really a leaf routine but must setup last java sp
1454        //       => use call_RT for now (speed can be improved by
1455        //       doing last java sp setup manually)
1456        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1457
1458        oop_maps = new OopMapSet();
1459        oop_maps->add_gc_map(call_offset, map);
1460        restore_live_registers(sasm, save_fpu_registers);
1461      }
1462      break;
1463
1464    case deoptimize_id:
1465      {
1466        StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1467        const int num_rt_args = 1;  // thread
1468        OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1469        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
1470        oop_maps = new OopMapSet();
1471        oop_maps->add_gc_map(call_offset, oop_map);
1472        restore_live_registers(sasm);
1473        DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1474        assert(deopt_blob != NULL, "deoptimization blob must have been created");
1475        __ leave();
1476        __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1477      }
1478      break;
1479
1480    case access_field_patching_id:
1481      { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1482        // we should set up register map
1483        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1484      }
1485      break;
1486
1487    case load_klass_patching_id:
1488      { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1489        // we should set up register map
1490        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1491      }
1492      break;
1493
1494    case load_mirror_patching_id:
1495      { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1496        // we should set up register map
1497        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1498      }
1499      break;
1500
1501    case dtrace_object_alloc_id:
1502      { // rax,: object
1503        StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1504        // we can't gc here so skip the oopmap but make sure that all
1505        // the live registers get saved.
1506        save_live_registers(sasm, 1);
1507
1508        __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1509        __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1510        NOT_LP64(__ pop(rax));
1511
1512        restore_live_registers(sasm);
1513      }
1514      break;
1515
1516    case fpu2long_stub_id:
1517      {
1518        // rax, and rdx are destroyed, but should be free since the result is returned there
1519        // preserve rsi,ecx
1520        __ push(rsi);
1521        __ push(rcx);
1522        LP64_ONLY(__ push(rdx);)
1523
1524        // check for NaN
1525        Label return0, do_return, return_min_jlong, do_convert;
1526
1527        Address value_high_word(rsp, wordSize + 4);
1528        Address value_low_word(rsp, wordSize);
1529        Address result_high_word(rsp, 3*wordSize + 4);
1530        Address result_low_word(rsp, 3*wordSize);
1531
1532        __ subptr(rsp, 32);                    // more than enough on 32bit
1533        __ fst_d(value_low_word);
1534        __ movl(rax, value_high_word);
1535        __ andl(rax, 0x7ff00000);
1536        __ cmpl(rax, 0x7ff00000);
1537        __ jcc(Assembler::notEqual, do_convert);
1538        __ movl(rax, value_high_word);
1539        __ andl(rax, 0xfffff);
1540        __ orl(rax, value_low_word);
1541        __ jcc(Assembler::notZero, return0);
1542
1543        __ bind(do_convert);
1544        __ fnstcw(Address(rsp, 0));
1545        __ movzwl(rax, Address(rsp, 0));
1546        __ orl(rax, 0xc00);
1547        __ movw(Address(rsp, 2), rax);
1548        __ fldcw(Address(rsp, 2));
1549        __ fwait();
1550        __ fistp_d(result_low_word);
1551        __ fldcw(Address(rsp, 0));
1552        __ fwait();
1553        // This gets the entire long in rax on 64bit
1554        __ movptr(rax, result_low_word);
1555        // testing of high bits
1556        __ movl(rdx, result_high_word);
1557        __ mov(rcx, rax);
1558        // What the heck is the point of the next instruction???
1559        __ xorl(rcx, 0x0);
1560        __ movl(rsi, 0x80000000);
1561        __ xorl(rsi, rdx);
1562        __ orl(rcx, rsi);
1563        __ jcc(Assembler::notEqual, do_return);
1564        __ fldz();
1565        __ fcomp_d(value_low_word);
1566        __ fnstsw_ax();
1567#ifdef _LP64
1568        __ testl(rax, 0x4100);  // ZF & CF == 0
1569        __ jcc(Assembler::equal, return_min_jlong);
1570#else
1571        __ sahf();
1572        __ jcc(Assembler::above, return_min_jlong);
1573#endif // _LP64
1574        // return max_jlong
1575#ifndef _LP64
1576        __ movl(rdx, 0x7fffffff);
1577        __ movl(rax, 0xffffffff);
1578#else
1579        __ mov64(rax, CONST64(0x7fffffffffffffff));
1580#endif // _LP64
1581        __ jmp(do_return);
1582
1583        __ bind(return_min_jlong);
1584#ifndef _LP64
1585        __ movl(rdx, 0x80000000);
1586        __ xorl(rax, rax);
1587#else
1588        __ mov64(rax, CONST64(0x8000000000000000));
1589#endif // _LP64
1590        __ jmp(do_return);
1591
1592        __ bind(return0);
1593        __ fpop();
1594#ifndef _LP64
1595        __ xorptr(rdx,rdx);
1596        __ xorptr(rax,rax);
1597#else
1598        __ xorptr(rax, rax);
1599#endif // _LP64
1600
1601        __ bind(do_return);
1602        __ addptr(rsp, 32);
1603        LP64_ONLY(__ pop(rdx);)
1604        __ pop(rcx);
1605        __ pop(rsi);
1606        __ ret(0);
1607      }
1608      break;
1609
1610#ifndef SERIALGC
1611    case g1_pre_barrier_slow_id:
1612      {
1613        StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1614        // arg0 : previous value of memory
1615
1616        BarrierSet* bs = Universe::heap()->barrier_set();
1617        if (bs->kind() != BarrierSet::G1SATBCTLogging) {
1618          __ movptr(rax, (int)id);
1619          __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1620          __ should_not_reach_here();
1621          break;
1622        }
1623        __ push(rax);
1624        __ push(rdx);
1625
1626        const Register pre_val = rax;
1627        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1628        const Register tmp = rdx;
1629
1630        NOT_LP64(__ get_thread(thread);)
1631
1632        Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1633                                             PtrQueue::byte_offset_of_active()));
1634
1635        Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1636                                             PtrQueue::byte_offset_of_index()));
1637        Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1638                                        PtrQueue::byte_offset_of_buf()));
1639
1640
1641        Label done;
1642        Label runtime;
1643
1644        // Can we store original value in the thread's buffer?
1645
1646#ifdef _LP64
1647        __ movslq(tmp, queue_index);
1648        __ cmpq(tmp, 0);
1649#else
1650        __ cmpl(queue_index, 0);
1651#endif
1652        __ jcc(Assembler::equal, runtime);
1653#ifdef _LP64
1654        __ subq(tmp, wordSize);
1655        __ movl(queue_index, tmp);
1656        __ addq(tmp, buffer);
1657#else
1658        __ subl(queue_index, wordSize);
1659        __ movl(tmp, buffer);
1660        __ addl(tmp, queue_index);
1661#endif
1662
1663        // prev_val (rax)
1664        f.load_argument(0, pre_val);
1665        __ movptr(Address(tmp, 0), pre_val);
1666        __ jmp(done);
1667
1668        __ bind(runtime);
1669        __ push(rcx);
1670#ifdef _LP64
1671        __ push(r8);
1672        __ push(r9);
1673        __ push(r10);
1674        __ push(r11);
1675#  ifndef _WIN64
1676        __ push(rdi);
1677        __ push(rsi);
1678#  endif
1679#endif
1680        // load the pre-value
1681        f.load_argument(0, rcx);
1682        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1683#ifdef _LP64
1684#  ifndef _WIN64
1685        __ pop(rsi);
1686        __ pop(rdi);
1687#  endif
1688        __ pop(r11);
1689        __ pop(r10);
1690        __ pop(r9);
1691        __ pop(r8);
1692#endif
1693        __ pop(rcx);
1694        __ bind(done);
1695
1696        __ pop(rdx);
1697        __ pop(rax);
1698      }
1699      break;
1700
1701    case g1_post_barrier_slow_id:
1702      {
1703        StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1704
1705
1706        // arg0: store_address
1707        Address store_addr(rbp, 2*BytesPerWord);
1708
1709        BarrierSet* bs = Universe::heap()->barrier_set();
1710        CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1711        Label done;
1712        Label runtime;
1713
1714        // At this point we know new_value is non-NULL and the new_value crosses regsion.
1715        // Must check to see if card is already dirty
1716
1717        const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1718
1719        Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1720                                             PtrQueue::byte_offset_of_index()));
1721        Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1722                                        PtrQueue::byte_offset_of_buf()));
1723
1724        __ push(rax);
1725        __ push(rcx);
1726
1727        NOT_LP64(__ get_thread(thread);)
1728        ExternalAddress cardtable((address)ct->byte_map_base);
1729        assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1730
1731        const Register card_addr = rcx;
1732#ifdef _LP64
1733        const Register tmp = rscratch1;
1734        f.load_argument(0, card_addr);
1735        __ shrq(card_addr, CardTableModRefBS::card_shift);
1736        __ lea(tmp, cardtable);
1737        // get the address of the card
1738        __ addq(card_addr, tmp);
1739#else
1740        const Register card_index = rcx;
1741        f.load_argument(0, card_index);
1742        __ shrl(card_index, CardTableModRefBS::card_shift);
1743
1744        Address index(noreg, card_index, Address::times_1);
1745        __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
1746#endif
1747
1748        __ cmpb(Address(card_addr, 0), 0);
1749        __ jcc(Assembler::equal, done);
1750
1751        // storing region crossing non-NULL, card is clean.
1752        // dirty card and log.
1753
1754        __ movb(Address(card_addr, 0), 0);
1755
1756        __ cmpl(queue_index, 0);
1757        __ jcc(Assembler::equal, runtime);
1758        __ subl(queue_index, wordSize);
1759
1760        const Register buffer_addr = rbx;
1761        __ push(rbx);
1762
1763        __ movptr(buffer_addr, buffer);
1764
1765#ifdef _LP64
1766        __ movslq(rscratch1, queue_index);
1767        __ addptr(buffer_addr, rscratch1);
1768#else
1769        __ addptr(buffer_addr, queue_index);
1770#endif
1771        __ movptr(Address(buffer_addr, 0), card_addr);
1772
1773        __ pop(rbx);
1774        __ jmp(done);
1775
1776        __ bind(runtime);
1777        __ push(rdx);
1778#ifdef _LP64
1779        __ push(r8);
1780        __ push(r9);
1781        __ push(r10);
1782        __ push(r11);
1783#  ifndef _WIN64
1784        __ push(rdi);
1785        __ push(rsi);
1786#  endif
1787#endif
1788        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1789#ifdef _LP64
1790#  ifndef _WIN64
1791        __ pop(rsi);
1792        __ pop(rdi);
1793#  endif
1794        __ pop(r11);
1795        __ pop(r10);
1796        __ pop(r9);
1797        __ pop(r8);
1798#endif
1799        __ pop(rdx);
1800        __ bind(done);
1801
1802        __ pop(rcx);
1803        __ pop(rax);
1804
1805      }
1806      break;
1807#endif // !SERIALGC
1808
1809    default:
1810      { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1811        __ movptr(rax, (int)id);
1812        __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1813        __ should_not_reach_here();
1814      }
1815      break;
1816  }
1817  return oop_maps;
1818}
1819
1820#undef __
1821
1822const char *Runtime1::pd_name_for_address(address entry) {
1823  return "<unknown function>";
1824}
1825