c1_LinearScan_x86.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Instruction.hpp"
27#include "c1/c1_LinearScan.hpp"
28#include "utilities/bitMap.inline.hpp"
29
30
31//----------------------------------------------------------------------
32// Allocation of FPU stack slots (Intel x86 only)
33//----------------------------------------------------------------------
34
35void LinearScan::allocate_fpu_stack() {
36  // First compute which FPU registers are live at the start of each basic block
37  // (To minimize the amount of work we have to do if we have to merge FPU stacks)
38  if (ComputeExactFPURegisterUsage) {
39    Interval* intervals_in_register, *intervals_in_memory;
40    create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
41
42    // ignore memory intervals by overwriting intervals_in_memory
43    // the dummy interval is needed to enforce the walker to walk until the given id:
44    // without it, the walker stops when the unhandled-list is empty -> live information
45    // beyond this point would be incorrect.
46    Interval* dummy_interval = new Interval(any_reg);
47    dummy_interval->add_range(max_jint - 2, max_jint - 1);
48    dummy_interval->set_next(Interval::end());
49    intervals_in_memory = dummy_interval;
50
51    IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
52
53    const int num_blocks = block_count();
54    for (int i = 0; i < num_blocks; i++) {
55      BlockBegin* b = block_at(i);
56
57      // register usage is only needed for merging stacks -> compute only
58      // when more than one predecessor.
59      // the block must not have any spill moves at the beginning (checked by assertions)
60      // spill moves would use intervals that are marked as handled and so the usage bit
61      // would been set incorrectly
62
63      // NOTE: the check for number_of_preds > 1 is necessary. A block with only one
64      //       predecessor may have spill moves at the begin of the block.
65      //       If an interval ends at the current instruction id, it is not possible
66      //       to decide if the register is live or not at the block begin -> the
67      //       register information would be incorrect.
68      if (b->number_of_preds() > 1) {
69        int id = b->first_lir_instruction_id();
70        BitMap regs(FrameMap::nof_fpu_regs);
71        regs.clear();
72
73        iw.walk_to(id);   // walk after the first instruction (always a label) of the block
74        assert(iw.current_position() == id, "did not walk completely to id");
75
76        // Only consider FPU values in registers
77        Interval* interval = iw.active_first(fixedKind);
78        while (interval != Interval::end()) {
79          int reg = interval->assigned_reg();
80          assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
81          assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
82          assert(interval->from() <= id && id < interval->to(), "interval out of range");
83
84#ifndef PRODUCT
85          if (TraceFPURegisterUsage) {
86            tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
87          }
88#endif
89
90          regs.set_bit(reg - pd_first_fpu_reg);
91          interval = interval->next();
92        }
93
94        b->set_fpu_register_usage(regs);
95
96#ifndef PRODUCT
97        if (TraceFPURegisterUsage) {
98          tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->cr();
99        }
100#endif
101      }
102    }
103  }
104
105  FpuStackAllocator alloc(ir()->compilation(), this);
106  _fpu_stack_allocator = &alloc;
107  alloc.allocate();
108  _fpu_stack_allocator = NULL;
109}
110
111
112FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
113  : _compilation(compilation)
114  , _lir(NULL)
115  , _pos(-1)
116  , _allocator(allocator)
117  , _sim(compilation)
118  , _temp_sim(compilation)
119{}
120
121void FpuStackAllocator::allocate() {
122  int num_blocks = allocator()->block_count();
123  for (int i = 0; i < num_blocks; i++) {
124    // Set up to process block
125    BlockBegin* block = allocator()->block_at(i);
126    intArray* fpu_stack_state = block->fpu_stack_state();
127
128#ifndef PRODUCT
129    if (TraceFPUStack) {
130      tty->cr();
131      tty->print_cr("------- Begin of new Block %d -------", block->block_id());
132    }
133#endif
134
135    assert(fpu_stack_state != NULL ||
136           block->end()->as_Base() != NULL ||
137           block->is_set(BlockBegin::exception_entry_flag),
138           "FPU stack state must be present due to linear-scan order for FPU stack allocation");
139    // note: exception handler entries always start with an empty fpu stack
140    //       because stack merging would be too complicated
141
142    if (fpu_stack_state != NULL) {
143      sim()->read_state(fpu_stack_state);
144    } else {
145      sim()->clear();
146    }
147
148#ifndef PRODUCT
149    if (TraceFPUStack) {
150      tty->print("Reading FPU state for block %d:", block->block_id());
151      sim()->print();
152      tty->cr();
153    }
154#endif
155
156    allocate_block(block);
157    CHECK_BAILOUT();
158  }
159}
160
161void FpuStackAllocator::allocate_block(BlockBegin* block) {
162  bool processed_merge = false;
163  LIR_OpList* insts = block->lir()->instructions_list();
164  set_lir(block->lir());
165  set_pos(0);
166
167
168  // Note: insts->length() may change during loop
169  while (pos() < insts->length()) {
170    LIR_Op* op = insts->at(pos());
171    _debug_information_computed = false;
172
173#ifndef PRODUCT
174    if (TraceFPUStack) {
175      op->print();
176    }
177    check_invalid_lir_op(op);
178#endif
179
180    LIR_OpBranch* branch = op->as_OpBranch();
181    LIR_Op1* op1 = op->as_Op1();
182    LIR_Op2* op2 = op->as_Op2();
183    LIR_OpCall* opCall = op->as_OpCall();
184
185    if (branch != NULL && branch->block() != NULL) {
186      if (!processed_merge) {
187        // propagate stack at first branch to a successor
188        processed_merge = true;
189        bool required_merge = merge_fpu_stack_with_successors(block);
190
191        assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
192      }
193
194    } else if (op1 != NULL) {
195      handle_op1(op1);
196    } else if (op2 != NULL) {
197      handle_op2(op2);
198    } else if (opCall != NULL) {
199      handle_opCall(opCall);
200    }
201
202    compute_debug_information(op);
203
204    set_pos(1 + pos());
205  }
206
207  // Propagate stack when block does not end with branch
208  if (!processed_merge) {
209    merge_fpu_stack_with_successors(block);
210  }
211}
212
213
214void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
215  if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
216    visitor.visit(op);
217
218    // exception handling
219    if (allocator()->compilation()->has_exception_handlers()) {
220      XHandlers* xhandlers = visitor.all_xhandler();
221      int n = xhandlers->length();
222      for (int k = 0; k < n; k++) {
223        allocate_exception_handler(xhandlers->handler_at(k));
224      }
225    } else {
226      assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
227    }
228
229    // compute debug information
230    int n = visitor.info_count();
231    assert(n > 0, "should not visit operation otherwise");
232
233    for (int j = 0; j < n; j++) {
234      CodeEmitInfo* info = visitor.info_at(j);
235      // Compute debug information
236      allocator()->compute_debug_info(info, op->id());
237    }
238  }
239  _debug_information_computed = true;
240}
241
242void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
243  if (!sim()->is_empty()) {
244    LIR_List* old_lir = lir();
245    int old_pos = pos();
246    intArray* old_state = sim()->write_state();
247
248#ifndef PRODUCT
249    if (TraceFPUStack) {
250      tty->cr();
251      tty->print_cr("------- begin of exception handler -------");
252    }
253#endif
254
255    if (xhandler->entry_code() == NULL) {
256      // need entry code to clear FPU stack
257      LIR_List* entry_code = new LIR_List(_compilation);
258      entry_code->jump(xhandler->entry_block());
259      xhandler->set_entry_code(entry_code);
260    }
261
262    LIR_OpList* insts = xhandler->entry_code()->instructions_list();
263    set_lir(xhandler->entry_code());
264    set_pos(0);
265
266    // Note: insts->length() may change during loop
267    while (pos() < insts->length()) {
268      LIR_Op* op = insts->at(pos());
269
270#ifndef PRODUCT
271      if (TraceFPUStack) {
272        op->print();
273      }
274      check_invalid_lir_op(op);
275#endif
276
277      switch (op->code()) {
278        case lir_move:
279          assert(op->as_Op1() != NULL, "must be LIR_Op1");
280          assert(pos() != insts->length() - 1, "must not be last operation");
281
282          handle_op1((LIR_Op1*)op);
283          break;
284
285        case lir_branch:
286          assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
287          assert(pos() == insts->length() - 1, "must be last operation");
288
289          // remove all remaining dead registers from FPU stack
290          clear_fpu_stack(LIR_OprFact::illegalOpr);
291          break;
292
293        default:
294          // other operations not allowed in exception entry code
295          ShouldNotReachHere();
296      }
297
298      set_pos(pos() + 1);
299    }
300
301#ifndef PRODUCT
302    if (TraceFPUStack) {
303      tty->cr();
304      tty->print_cr("------- end of exception handler -------");
305    }
306#endif
307
308    set_lir(old_lir);
309    set_pos(old_pos);
310    sim()->read_state(old_state);
311  }
312}
313
314
315int FpuStackAllocator::fpu_num(LIR_Opr opr) {
316  assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
317  return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
318}
319
320int FpuStackAllocator::tos_offset(LIR_Opr opr) {
321  return sim()->offset_from_tos(fpu_num(opr));
322}
323
324
325LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
326  assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
327
328  int stack_offset = tos_offset(opr);
329  if (opr->is_single_fpu()) {
330    return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
331  } else {
332    assert(opr->is_double_fpu(), "shouldn't call this otherwise");
333    return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
334  }
335}
336
337LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
338  assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
339  assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
340
341  int stack_offset = 0;
342  if (opr->is_single_fpu()) {
343    return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
344  } else {
345    assert(opr->is_double_fpu(), "shouldn't call this otherwise");
346    return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
347  }
348}
349
350
351
352void FpuStackAllocator::insert_op(LIR_Op* op) {
353  lir()->insert_before(pos(), op);
354  set_pos(1 + pos());
355}
356
357
358void FpuStackAllocator::insert_exchange(int offset) {
359  if (offset > 0) {
360    LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
361    insert_op(fxch_op);
362    sim()->swap(offset);
363
364#ifndef PRODUCT
365    if (TraceFPUStack) {
366      tty->print("Exchanged register: %d         New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
367    }
368#endif
369
370  }
371}
372
373void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
374  insert_exchange(tos_offset(opr));
375}
376
377
378void FpuStackAllocator::insert_free(int offset) {
379  // move stack slot to the top of stack and then pop it
380  insert_exchange(offset);
381
382  LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
383  insert_op(fpop);
384  sim()->pop();
385
386#ifndef PRODUCT
387    if (TraceFPUStack) {
388      tty->print("Inserted pop                   New state: "); sim()->print(); tty->cr();
389    }
390#endif
391}
392
393
394void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
395  if (sim()->contains(fpu_num(opr))) {
396    int res_slot = tos_offset(opr);
397    insert_free(res_slot);
398  }
399}
400
401void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
402  if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
403    int res_slot = tos_offset(opr);
404    insert_free(res_slot);
405  }
406}
407
408void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
409  int offset = tos_offset(from);
410  LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
411  insert_op(fld);
412
413  sim()->push(fpu_num(to));
414
415#ifndef PRODUCT
416  if (TraceFPUStack) {
417    tty->print("Inserted copy (%d -> %d)         New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
418  }
419#endif
420}
421
422void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
423  sim()->rename(fpu_num(from), fpu_num(to));
424}
425
426void FpuStackAllocator::do_push(LIR_Opr opr) {
427  sim()->push(fpu_num(opr));
428}
429
430void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
431  assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
432  assert(tos_offset(opr) == 0, "can only pop stack top");
433
434  if (opr->is_last_use()) {
435    op->set_fpu_pop_count(1);
436    sim()->pop();
437  }
438}
439
440void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
441  assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
442  assert(tos_offset(opr) == 0, "can only pop stack top");
443
444  op->set_fpu_pop_count(1);
445  sim()->pop();
446}
447
448void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
449  int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
450  while (sim()->stack_size() > result_stack_size) {
451    assert(!sim()->slot_is_empty(0), "not allowed");
452
453    if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
454      insert_free(0);
455    } else {
456      // move "preserve" to bottom of stack so that all other stack slots can be popped
457      insert_exchange(sim()->stack_size() - 1);
458    }
459  }
460}
461
462
463void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
464  LIR_Opr in  = op1->in_opr();
465  LIR_Opr res = op1->result_opr();
466
467  LIR_Opr new_in  = in;  // new operands relative to the actual fpu stack top
468  LIR_Opr new_res = res;
469
470  // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
471  //       so checks for is_float_kind() are necessary inside the cases
472  switch (op1->code()) {
473
474    case lir_return: {
475      // FPU-Stack must only contain the (optional) fpu return value.
476      // All remaining dead values are popped from the stack
477      // If the input operand is a fpu-register, it is exchanged to the bottom of the stack
478
479      clear_fpu_stack(in);
480      if (in->is_fpu_register() && !in->is_xmm_register()) {
481        new_in = to_fpu_stack_top(in);
482      }
483
484      break;
485    }
486
487    case lir_move: {
488      if (in->is_fpu_register() && !in->is_xmm_register()) {
489        if (res->is_xmm_register()) {
490          // move from fpu register to xmm register (necessary for operations that
491          // are not available in the SSE instruction set)
492          insert_exchange(in);
493          new_in = to_fpu_stack_top(in);
494          pop_always(op1, in);
495
496        } else if (res->is_fpu_register() && !res->is_xmm_register()) {
497          // move from fpu-register to fpu-register:
498          // * input and result register equal:
499          //   nothing to do
500          // * input register is last use:
501          //   rename the input register to result register -> input register
502          //   not present on fpu-stack afterwards
503          // * input register not last use:
504          //   duplicate input register to result register to preserve input
505          //
506          // Note: The LIR-Assembler does not produce any code for fpu register moves,
507          //       so input and result stack index must be equal
508
509          if (fpu_num(in) == fpu_num(res)) {
510            // nothing to do
511          } else if (in->is_last_use()) {
512            insert_free_if_dead(res);//, in);
513            do_rename(in, res);
514          } else {
515            insert_free_if_dead(res);
516            insert_copy(in, res);
517          }
518          new_in = to_fpu_stack(res);
519          new_res = new_in;
520
521        } else {
522          // move from fpu-register to memory
523          // input operand must be on top of stack
524
525          insert_exchange(in);
526
527          // create debug information here because afterwards the register may have been popped
528          compute_debug_information(op1);
529
530          new_in = to_fpu_stack_top(in);
531          pop_if_last_use(op1, in);
532        }
533
534      } else if (res->is_fpu_register() && !res->is_xmm_register()) {
535        // move from memory/constant to fpu register
536        // result is pushed on the stack
537
538        insert_free_if_dead(res);
539
540        // create debug information before register is pushed
541        compute_debug_information(op1);
542
543        do_push(res);
544        new_res = to_fpu_stack_top(res);
545      }
546      break;
547    }
548
549    case lir_neg: {
550      if (in->is_fpu_register() && !in->is_xmm_register()) {
551        assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
552        assert(in->is_last_use(), "old value gets destroyed");
553
554        insert_free_if_dead(res, in);
555        insert_exchange(in);
556        new_in = to_fpu_stack_top(in);
557
558        do_rename(in, res);
559        new_res = to_fpu_stack_top(res);
560      }
561      break;
562    }
563
564    case lir_convert: {
565      Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
566      switch (bc) {
567        case Bytecodes::_d2f:
568        case Bytecodes::_f2d:
569          assert(res->is_fpu_register(), "must be");
570          assert(in->is_fpu_register(), "must be");
571
572          if (!in->is_xmm_register() && !res->is_xmm_register()) {
573            // this is quite the same as a move from fpu-register to fpu-register
574            // Note: input and result operands must have different types
575            if (fpu_num(in) == fpu_num(res)) {
576              // nothing to do
577              new_in = to_fpu_stack(in);
578            } else if (in->is_last_use()) {
579              insert_free_if_dead(res);//, in);
580              new_in = to_fpu_stack(in);
581              do_rename(in, res);
582            } else {
583              insert_free_if_dead(res);
584              insert_copy(in, res);
585              new_in = to_fpu_stack_top(in, true);
586            }
587            new_res = to_fpu_stack(res);
588          }
589
590          break;
591
592        case Bytecodes::_i2f:
593        case Bytecodes::_l2f:
594        case Bytecodes::_i2d:
595        case Bytecodes::_l2d:
596          assert(res->is_fpu_register(), "must be");
597          if (!res->is_xmm_register()) {
598            insert_free_if_dead(res);
599            do_push(res);
600            new_res = to_fpu_stack_top(res);
601          }
602          break;
603
604        case Bytecodes::_f2i:
605        case Bytecodes::_d2i:
606          assert(in->is_fpu_register(), "must be");
607          if (!in->is_xmm_register()) {
608            insert_exchange(in);
609            new_in = to_fpu_stack_top(in);
610
611            // TODO: update registes of stub
612          }
613          break;
614
615        case Bytecodes::_f2l:
616        case Bytecodes::_d2l:
617          assert(in->is_fpu_register(), "must be");
618          if (!in->is_xmm_register()) {
619            insert_exchange(in);
620            new_in = to_fpu_stack_top(in);
621            pop_always(op1, in);
622          }
623          break;
624
625        case Bytecodes::_i2l:
626        case Bytecodes::_l2i:
627        case Bytecodes::_i2b:
628        case Bytecodes::_i2c:
629        case Bytecodes::_i2s:
630          // no fpu operands
631          break;
632
633        default:
634          ShouldNotReachHere();
635      }
636      break;
637    }
638
639    case lir_roundfp: {
640      assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
641      assert(res->is_stack(), "result must be on stack");
642
643      insert_exchange(in);
644      new_in = to_fpu_stack_top(in);
645      pop_if_last_use(op1, in);
646      break;
647    }
648
649    default: {
650      assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
651    }
652  }
653
654  op1->set_in_opr(new_in);
655  op1->set_result_opr(new_res);
656}
657
658void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
659  LIR_Opr left  = op2->in_opr1();
660  if (!left->is_float_kind()) {
661    return;
662  }
663  if (left->is_xmm_register()) {
664    return;
665  }
666
667  LIR_Opr right = op2->in_opr2();
668  LIR_Opr res   = op2->result_opr();
669  LIR_Opr new_left  = left;  // new operands relative to the actual fpu stack top
670  LIR_Opr new_right = right;
671  LIR_Opr new_res   = res;
672
673  assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
674
675  switch (op2->code()) {
676    case lir_cmp:
677    case lir_cmp_fd2i:
678    case lir_ucmp_fd2i:
679    case lir_assert: {
680      assert(left->is_fpu_register(), "invalid LIR");
681      assert(right->is_fpu_register(), "invalid LIR");
682
683      // the left-hand side must be on top of stack.
684      // the right-hand side is never popped, even if is_last_use is set
685      insert_exchange(left);
686      new_left = to_fpu_stack_top(left);
687      new_right = to_fpu_stack(right);
688      pop_if_last_use(op2, left);
689      break;
690    }
691
692    case lir_mul_strictfp:
693    case lir_div_strictfp: {
694      assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
695      insert_free_if_dead(op2->tmp1_opr());
696      assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
697      // fall-through: continue with the normal handling of lir_mul and lir_div
698    }
699    case lir_add:
700    case lir_sub:
701    case lir_mul:
702    case lir_div: {
703      assert(left->is_fpu_register(), "must be");
704      assert(res->is_fpu_register(), "must be");
705      assert(left->is_equal(res), "must be");
706
707      // either the left-hand or the right-hand side must be on top of stack
708      // (if right is not a register, left must be on top)
709      if (!right->is_fpu_register()) {
710        insert_exchange(left);
711        new_left = to_fpu_stack_top(left);
712      } else {
713        // no exchange necessary if right is alredy on top of stack
714        if (tos_offset(right) == 0) {
715          new_left = to_fpu_stack(left);
716          new_right = to_fpu_stack_top(right);
717        } else {
718          insert_exchange(left);
719          new_left = to_fpu_stack_top(left);
720          new_right = to_fpu_stack(right);
721        }
722
723        if (right->is_last_use()) {
724          op2->set_fpu_pop_count(1);
725
726          if (tos_offset(right) == 0) {
727            sim()->pop();
728          } else {
729            // if left is on top of stack, the result is placed in the stack
730            // slot of right, so a renaming from right to res is necessary
731            assert(tos_offset(left) == 0, "must be");
732            sim()->pop();
733            do_rename(right, res);
734          }
735        }
736      }
737      new_res = to_fpu_stack(res);
738
739      break;
740    }
741
742    case lir_rem: {
743      assert(left->is_fpu_register(), "must be");
744      assert(right->is_fpu_register(), "must be");
745      assert(res->is_fpu_register(), "must be");
746      assert(left->is_equal(res), "must be");
747
748      // Must bring both operands to top of stack with following operand ordering:
749      // * fpu stack before rem: ... right left
750      // * fpu stack after rem:  ... left
751      if (tos_offset(right) != 1) {
752        insert_exchange(right);
753        insert_exchange(1);
754      }
755      insert_exchange(left);
756      assert(tos_offset(right) == 1, "check");
757      assert(tos_offset(left) == 0, "check");
758
759      new_left = to_fpu_stack_top(left);
760      new_right = to_fpu_stack(right);
761
762      op2->set_fpu_pop_count(1);
763      sim()->pop();
764      do_rename(right, res);
765
766      new_res = to_fpu_stack_top(res);
767      break;
768    }
769
770    case lir_abs:
771    case lir_sqrt: {
772      // Right argument appears to be unused
773      assert(right->is_illegal(), "must be");
774      assert(left->is_fpu_register(), "must be");
775      assert(res->is_fpu_register(), "must be");
776      assert(left->is_last_use(), "old value gets destroyed");
777
778      insert_free_if_dead(res, left);
779      insert_exchange(left);
780      do_rename(left, res);
781
782      new_left = to_fpu_stack_top(res);
783      new_res = new_left;
784
785      op2->set_fpu_stack_size(sim()->stack_size());
786      break;
787    }
788
789    case lir_log:
790    case lir_log10: {
791      // log and log10 need one temporary fpu stack slot, so
792      // there is one temporary registers stored in temp of the
793      // operation. the stack allocator must guarantee that the stack
794      // slots are really free, otherwise there might be a stack
795      // overflow.
796      assert(right->is_illegal(), "must be");
797      assert(left->is_fpu_register(), "must be");
798      assert(res->is_fpu_register(), "must be");
799      assert(op2->tmp1_opr()->is_fpu_register(), "must be");
800
801      insert_free_if_dead(op2->tmp1_opr());
802      insert_free_if_dead(res, left);
803      insert_exchange(left);
804      do_rename(left, res);
805
806      new_left = to_fpu_stack_top(res);
807      new_res = new_left;
808
809      op2->set_fpu_stack_size(sim()->stack_size());
810      assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
811      break;
812    }
813
814
815    case lir_tan:
816    case lir_sin:
817    case lir_cos:
818    case lir_exp: {
819      // sin, cos and exp need two temporary fpu stack slots, so there are two temporary
820      // registers (stored in right and temp of the operation).
821      // the stack allocator must guarantee that the stack slots are really free,
822      // otherwise there might be a stack overflow.
823      assert(left->is_fpu_register(), "must be");
824      assert(res->is_fpu_register(), "must be");
825      // assert(left->is_last_use(), "old value gets destroyed");
826      assert(right->is_fpu_register(), "right is used as the first temporary register");
827      assert(op2->tmp1_opr()->is_fpu_register(), "temp is used as the second temporary register");
828      assert(fpu_num(left) != fpu_num(right) && fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
829
830      insert_free_if_dead(right);
831      insert_free_if_dead(op2->tmp1_opr());
832
833      insert_free_if_dead(res, left);
834      insert_exchange(left);
835      do_rename(left, res);
836
837      new_left = to_fpu_stack_top(res);
838      new_res = new_left;
839
840      op2->set_fpu_stack_size(sim()->stack_size());
841      assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
842      break;
843    }
844
845    case lir_pow: {
846      // pow needs two temporary fpu stack slots, so there are two temporary
847      // registers (stored in tmp1 and tmp2 of the operation).
848      // the stack allocator must guarantee that the stack slots are really free,
849      // otherwise there might be a stack overflow.
850      assert(left->is_fpu_register(), "must be");
851      assert(right->is_fpu_register(), "must be");
852      assert(res->is_fpu_register(), "must be");
853
854      assert(op2->tmp1_opr()->is_fpu_register(), "tmp1 is the first temporary register");
855      assert(op2->tmp2_opr()->is_fpu_register(), "tmp2 is the second temporary register");
856      assert(fpu_num(left) != fpu_num(right) && fpu_num(left) != fpu_num(op2->tmp1_opr()) && fpu_num(left) != fpu_num(op2->tmp2_opr()) && fpu_num(left) != fpu_num(res), "need distinct temp registers");
857      assert(fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(right) != fpu_num(op2->tmp2_opr()) && fpu_num(right) != fpu_num(res), "need distinct temp registers");
858      assert(fpu_num(op2->tmp1_opr()) != fpu_num(op2->tmp2_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
859      assert(fpu_num(op2->tmp2_opr()) != fpu_num(res), "need distinct temp registers");
860
861      insert_free_if_dead(op2->tmp1_opr());
862      insert_free_if_dead(op2->tmp2_opr());
863
864      // Must bring both operands to top of stack with following operand ordering:
865      // * fpu stack before pow: ... right left
866      // * fpu stack after pow:  ... left
867
868      insert_free_if_dead(res, right);
869
870      if (tos_offset(right) != 1) {
871        insert_exchange(right);
872        insert_exchange(1);
873      }
874      insert_exchange(left);
875      assert(tos_offset(right) == 1, "check");
876      assert(tos_offset(left) == 0, "check");
877
878      new_left = to_fpu_stack_top(left);
879      new_right = to_fpu_stack(right);
880
881      op2->set_fpu_stack_size(sim()->stack_size());
882      assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
883
884      sim()->pop();
885
886      do_rename(right, res);
887
888      new_res = to_fpu_stack_top(res);
889      break;
890    }
891
892    default: {
893      assert(false, "missed a fpu-operation");
894    }
895  }
896
897  op2->set_in_opr1(new_left);
898  op2->set_in_opr2(new_right);
899  op2->set_result_opr(new_res);
900}
901
902void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
903  LIR_Opr res = opCall->result_opr();
904
905  // clear fpu-stack before call
906  // it may contain dead values that could not have been remved by previous operations
907  clear_fpu_stack(LIR_OprFact::illegalOpr);
908  assert(sim()->is_empty(), "fpu stack must be empty now");
909
910  // compute debug information before (possible) fpu result is pushed
911  compute_debug_information(opCall);
912
913  if (res->is_fpu_register() && !res->is_xmm_register()) {
914    do_push(res);
915    opCall->set_result_opr(to_fpu_stack_top(res));
916  }
917}
918
919#ifndef PRODUCT
920void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
921  switch (op->code()) {
922    case lir_24bit_FPU:
923    case lir_reset_FPU:
924    case lir_ffree:
925      assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
926      break;
927
928    case lir_fpop_raw:
929    case lir_fxch:
930    case lir_fld:
931      assert(false, "operations only inserted by FpuStackAllocator");
932      break;
933  }
934}
935#endif
936
937
938void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
939  LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
940
941  instrs->instructions_list()->push(move);
942
943  cur_sim->push(reg);
944  move->set_result_opr(to_fpu_stack(move->result_opr()));
945
946  #ifndef PRODUCT
947    if (TraceFPUStack) {
948      tty->print("Added new register: %d         New state: ", reg); cur_sim->print(); tty->cr();
949    }
950  #endif
951}
952
953void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
954  assert(slot > 0, "no exchange necessary");
955
956  LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
957  instrs->instructions_list()->push(fxch);
958  cur_sim->swap(slot);
959
960  #ifndef PRODUCT
961    if (TraceFPUStack) {
962      tty->print("Exchanged register: %d         New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
963    }
964  #endif
965}
966
967void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
968  int reg = cur_sim->get_slot(0);
969
970  LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
971  instrs->instructions_list()->push(fpop);
972  cur_sim->pop(reg);
973
974  #ifndef PRODUCT
975    if (TraceFPUStack) {
976      tty->print("Removed register: %d           New state: ", reg); cur_sim->print(); tty->cr();
977    }
978  #endif
979}
980
981bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
982  int reg = cur_sim->get_slot(change_slot);
983
984  for (int slot = start_slot; slot >= 0; slot--) {
985    int new_reg = sux_sim->get_slot(slot);
986
987    if (!cur_sim->contains(new_reg)) {
988      cur_sim->set_slot(change_slot, new_reg);
989
990      #ifndef PRODUCT
991        if (TraceFPUStack) {
992          tty->print("Renamed register %d to %d       New state: ", reg, new_reg); cur_sim->print(); tty->cr();
993        }
994      #endif
995
996      return true;
997    }
998  }
999  return false;
1000}
1001
1002
1003void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
1004#ifndef PRODUCT
1005  if (TraceFPUStack) {
1006    tty->cr();
1007    tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
1008    tty->print("                 sux: "); sux_sim->print(); tty->cr();
1009  }
1010
1011  int slot;
1012  for (slot = 0; slot < cur_sim->stack_size(); slot++) {
1013    assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
1014  }
1015  for (slot = 0; slot < sux_sim->stack_size(); slot++) {
1016    assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
1017  }
1018#endif
1019
1020  // size difference between cur and sux that must be resolved by adding or removing values form the stack
1021  int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
1022
1023  if (!ComputeExactFPURegisterUsage) {
1024    // add slots that are currently free, but used in successor
1025    // When the exact FPU register usage is computed, the stack does
1026    // not contain dead values at merging -> no values must be added
1027
1028    int sux_slot = sux_sim->stack_size() - 1;
1029    while (size_diff < 0) {
1030      assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
1031
1032      int reg = sux_sim->get_slot(sux_slot);
1033      if (!cur_sim->contains(reg)) {
1034        merge_insert_add(instrs, cur_sim, reg);
1035        size_diff++;
1036
1037        if (sux_slot + size_diff != 0) {
1038          merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
1039        }
1040      }
1041     sux_slot--;
1042    }
1043  }
1044
1045  assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
1046  assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
1047
1048  // stack merge algorithm:
1049  // 1) as long as the current stack top is not in the right location (that meens
1050  //    it should not be on the stack top), exchange it into the right location
1051  // 2) if the stack top is right, but the remaining stack is not ordered correctly,
1052  //    the stack top is exchanged away to get another value on top ->
1053  //    now step 1) can be continued
1054  // the stack can also contain unused items -> these items are removed from stack
1055
1056  int finished_slot = sux_sim->stack_size() - 1;
1057  while (finished_slot >= 0 || size_diff > 0) {
1058    while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
1059      int reg = cur_sim->get_slot(0);
1060      if (sux_sim->contains(reg)) {
1061        int sux_slot = sux_sim->offset_from_tos(reg);
1062        merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
1063
1064      } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
1065        assert(size_diff > 0, "must be");
1066
1067        merge_insert_pop(instrs, cur_sim);
1068        size_diff--;
1069      }
1070      assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
1071    }
1072
1073    while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
1074      finished_slot--;
1075    }
1076
1077    if (finished_slot >= 0) {
1078      int reg = cur_sim->get_slot(finished_slot);
1079
1080      if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
1081        assert(sux_sim->contains(reg) || size_diff > 0, "must be");
1082        merge_insert_xchg(instrs, cur_sim, finished_slot);
1083      }
1084      assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
1085    }
1086  }
1087
1088#ifndef PRODUCT
1089  if (TraceFPUStack) {
1090    tty->print("after merging:  pred: "); cur_sim->print(); tty->cr();
1091    tty->print("                 sux: "); sux_sim->print(); tty->cr();
1092    tty->cr();
1093  }
1094#endif
1095  assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
1096}
1097
1098
1099void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
1100#ifndef PRODUCT
1101  if (TraceFPUStack) {
1102    tty->cr();
1103    tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
1104    tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1105  }
1106#endif
1107
1108  int slot = 0;
1109  while (slot < cur_sim->stack_size()) {
1110    int reg = cur_sim->get_slot(slot);
1111    if (!live_fpu_regs.at(reg)) {
1112      if (slot != 0) {
1113        merge_insert_xchg(instrs, cur_sim, slot);
1114      }
1115      merge_insert_pop(instrs, cur_sim);
1116    } else {
1117      slot++;
1118    }
1119  }
1120
1121#ifndef PRODUCT
1122  if (TraceFPUStack) {
1123    tty->print("after cleanup:  state: "); cur_sim->print(); tty->cr();
1124    tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1125    tty->cr();
1126  }
1127
1128  // check if fpu stack only contains live registers
1129  for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
1130    if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
1131      tty->print_cr("mismatch between required and actual stack content");
1132      break;
1133    }
1134  }
1135#endif
1136}
1137
1138
1139bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
1140#ifndef PRODUCT
1141  if (TraceFPUStack) {
1142    tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
1143                  block->block_id(), pos());
1144    sim()->print();
1145    tty->cr();
1146  }
1147#endif
1148
1149  bool changed = false;
1150  int number_of_sux = block->number_of_sux();
1151
1152  if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
1153    // The successor has at least two incoming edges, so a stack merge will be necessary
1154    // If this block is the first predecessor, cleanup the current stack and propagate it
1155    // If this block is not the first predecessor, a stack merge will be necessary
1156
1157    BlockBegin* sux = block->sux_at(0);
1158    intArray* state = sux->fpu_stack_state();
1159    LIR_List* instrs = new LIR_List(_compilation);
1160
1161    if (state != NULL) {
1162      // Merge with a successors that already has a FPU stack state
1163      // the block must only have one successor because critical edges must been split
1164      FpuStackSim* cur_sim = sim();
1165      FpuStackSim* sux_sim = temp_sim();
1166      sux_sim->read_state(state);
1167
1168      merge_fpu_stack(instrs, cur_sim, sux_sim);
1169
1170    } else {
1171      // propagate current FPU stack state to successor without state
1172      // clean up stack first so that there are no dead values on the stack
1173      if (ComputeExactFPURegisterUsage) {
1174        FpuStackSim* cur_sim = sim();
1175        BitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
1176        assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
1177
1178        merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
1179      }
1180
1181      intArray* state = sim()->write_state();
1182      if (TraceFPUStack) {
1183        tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
1184        sim()->print(); tty->cr();
1185      }
1186      sux->set_fpu_stack_state(state);
1187    }
1188
1189    if (instrs->instructions_list()->length() > 0) {
1190      lir()->insert_before(pos(), instrs);
1191      set_pos(instrs->instructions_list()->length() + pos());
1192      changed = true;
1193    }
1194
1195  } else {
1196    // Propagate unmodified Stack to successors where a stack merge is not necessary
1197    intArray* state = sim()->write_state();
1198    for (int i = 0; i < number_of_sux; i++) {
1199      BlockBegin* sux = block->sux_at(i);
1200
1201#ifdef ASSERT
1202      for (int j = 0; j < sux->number_of_preds(); j++) {
1203        assert(block == sux->pred_at(j), "all critical edges must be broken");
1204      }
1205
1206      // check if new state is same
1207      if (sux->fpu_stack_state() != NULL) {
1208        intArray* sux_state = sux->fpu_stack_state();
1209        assert(state->length() == sux_state->length(), "overwriting existing stack state");
1210        for (int j = 0; j < state->length(); j++) {
1211          assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
1212        }
1213      }
1214#endif
1215#ifndef PRODUCT
1216      if (TraceFPUStack) {
1217        tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
1218        sim()->print(); tty->cr();
1219      }
1220#endif
1221
1222      sux->set_fpu_stack_state(state);
1223    }
1224  }
1225
1226#ifndef PRODUCT
1227  // assertions that FPU stack state conforms to all successors' states
1228  intArray* cur_state = sim()->write_state();
1229  for (int i = 0; i < number_of_sux; i++) {
1230    BlockBegin* sux = block->sux_at(i);
1231    intArray* sux_state = sux->fpu_stack_state();
1232
1233    assert(sux_state != NULL, "no fpu state");
1234    assert(cur_state->length() == sux_state->length(), "incorrect length");
1235    for (int i = 0; i < cur_state->length(); i++) {
1236      assert(cur_state->at(i) == sux_state->at(i), "element not equal");
1237    }
1238  }
1239#endif
1240
1241  return changed;
1242}
1243