c1_LIRGenerator_x86.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArray.hpp"
34#include "ci/ciObjArrayKlass.hpp"
35#include "ci/ciTypeArrayKlass.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/stubRoutines.hpp"
38#include "vmreg_x86.inline.hpp"
39
40#ifdef ASSERT
41#define __ gen()->lir(__FILE__, __LINE__)->
42#else
43#define __ gen()->lir()->
44#endif
45
46// Item will be loaded into a byte register; Intel only
47void LIRItem::load_byte_item() {
48  load_item();
49  LIR_Opr res = result();
50
51  if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
52    // make sure that it is a byte register
53    assert(!value()->type()->is_float() && !value()->type()->is_double(),
54           "can't load floats in byte register");
55    LIR_Opr reg = _gen->rlock_byte(T_BYTE);
56    __ move(res, reg);
57
58    _result = reg;
59  }
60}
61
62
63void LIRItem::load_nonconstant() {
64  LIR_Opr r = value()->operand();
65  if (r->is_constant()) {
66    _result = r;
67  } else {
68    load_item();
69  }
70}
71
72//--------------------------------------------------------------
73//               LIRGenerator
74//--------------------------------------------------------------
75
76
77LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
78LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
79LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
80LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
81LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
82LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
83LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
84LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
85
86
87LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
88  LIR_Opr opr;
89  switch (type->tag()) {
90    case intTag:     opr = FrameMap::rax_opr;          break;
91    case objectTag:  opr = FrameMap::rax_oop_opr;      break;
92    case longTag:    opr = FrameMap::long0_opr;        break;
93    case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
94    case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
95
96    case addressTag:
97    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
98  }
99
100  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
101  return opr;
102}
103
104
105LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
106  LIR_Opr reg = new_register(T_INT);
107  set_vreg_flag(reg, LIRGenerator::byte_reg);
108  return reg;
109}
110
111
112//--------- loading items into registers --------------------------------
113
114
115// i486 instructions can inline constants
116bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
117  if (type == T_SHORT || type == T_CHAR) {
118    // there is no immediate move of word values in asembler_i486.?pp
119    return false;
120  }
121  Constant* c = v->as_Constant();
122  if (c && c->state_before() == NULL) {
123    // constants of any type can be stored directly, except for
124    // unloaded object constants.
125    return true;
126  }
127  return false;
128}
129
130
131bool LIRGenerator::can_inline_as_constant(Value v) const {
132  if (v->type()->tag() == longTag) return false;
133  return v->type()->tag() != objectTag ||
134    (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
135}
136
137
138bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
139  if (c->type() == T_LONG) return false;
140  return c->type() != T_OBJECT || c->as_jobject() == NULL;
141}
142
143
144LIR_Opr LIRGenerator::safepoint_poll_register() {
145  return LIR_OprFact::illegalOpr;
146}
147
148
149LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
150                                            int shift, int disp, BasicType type) {
151  assert(base->is_register(), "must be");
152  if (index->is_constant()) {
153    return new LIR_Address(base,
154                           (index->as_constant_ptr()->as_jint() << shift) + disp,
155                           type);
156  } else {
157    return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
158  }
159}
160
161
162LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
163                                              BasicType type, bool needs_card_mark) {
164  int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
165
166  LIR_Address* addr;
167  if (index_opr->is_constant()) {
168    int elem_size = type2aelembytes(type);
169    addr = new LIR_Address(array_opr,
170                           offset_in_bytes + index_opr->as_jint() * elem_size, type);
171  } else {
172#ifdef _LP64
173    if (index_opr->type() == T_INT) {
174      LIR_Opr tmp = new_register(T_LONG);
175      __ convert(Bytecodes::_i2l, index_opr, tmp);
176      index_opr = tmp;
177    }
178#endif // _LP64
179    addr =  new LIR_Address(array_opr,
180                            index_opr,
181                            LIR_Address::scale(type),
182                            offset_in_bytes, type);
183  }
184  if (needs_card_mark) {
185    // This store will need a precise card mark, so go ahead and
186    // compute the full adddres instead of computing once for the
187    // store and again for the card mark.
188    LIR_Opr tmp = new_pointer_register();
189    __ leal(LIR_OprFact::address(addr), tmp);
190    return new LIR_Address(tmp, type);
191  } else {
192    return addr;
193  }
194}
195
196
197LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
198  LIR_Opr r;
199  if (type == T_LONG) {
200    r = LIR_OprFact::longConst(x);
201  } else if (type == T_INT) {
202    r = LIR_OprFact::intConst(x);
203  } else {
204    ShouldNotReachHere();
205  }
206  return r;
207}
208
209void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
210  LIR_Opr pointer = new_pointer_register();
211  __ move(LIR_OprFact::intptrConst(counter), pointer);
212  LIR_Address* addr = new LIR_Address(pointer, type);
213  increment_counter(addr, step);
214}
215
216
217void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
218  __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
219}
220
221void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
222  __ cmp_mem_int(condition, base, disp, c, info);
223}
224
225
226void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
227  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
228}
229
230
231void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
232  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
233}
234
235
236bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
237  if (tmp->is_valid()) {
238    if (is_power_of_2(c + 1)) {
239      __ move(left, tmp);
240      __ shift_left(left, log2_intptr(c + 1), left);
241      __ sub(left, tmp, result);
242      return true;
243    } else if (is_power_of_2(c - 1)) {
244      __ move(left, tmp);
245      __ shift_left(left, log2_intptr(c - 1), left);
246      __ add(left, tmp, result);
247      return true;
248    }
249  }
250  return false;
251}
252
253
254void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
255  BasicType type = item->type();
256  __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
257}
258
259//----------------------------------------------------------------------
260//             visitor functions
261//----------------------------------------------------------------------
262
263
264void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
265  assert(x->is_pinned(),"");
266  bool needs_range_check = true;
267  bool use_length = x->length() != NULL;
268  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
269  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
270                                         !get_jobject_constant(x->value())->is_null_object() ||
271                                         x->should_profile());
272
273  LIRItem array(x->array(), this);
274  LIRItem index(x->index(), this);
275  LIRItem value(x->value(), this);
276  LIRItem length(this);
277
278  array.load_item();
279  index.load_nonconstant();
280
281  if (use_length) {
282    needs_range_check = x->compute_needs_range_check();
283    if (needs_range_check) {
284      length.set_instruction(x->length());
285      length.load_item();
286    }
287  }
288  if (needs_store_check) {
289    value.load_item();
290  } else {
291    value.load_for_store(x->elt_type());
292  }
293
294  set_no_result(x);
295
296  // the CodeEmitInfo must be duplicated for each different
297  // LIR-instruction because spilling can occur anywhere between two
298  // instructions and so the debug information must be different
299  CodeEmitInfo* range_check_info = state_for(x);
300  CodeEmitInfo* null_check_info = NULL;
301  if (x->needs_null_check()) {
302    null_check_info = new CodeEmitInfo(range_check_info);
303  }
304
305  // emit array address setup early so it schedules better
306  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
307
308  if (GenerateRangeChecks && needs_range_check) {
309    if (use_length) {
310      __ cmp(lir_cond_belowEqual, length.result(), index.result());
311      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
312    } else {
313      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
314      // range_check also does the null check
315      null_check_info = NULL;
316    }
317  }
318
319  if (GenerateArrayStoreCheck && needs_store_check) {
320    LIR_Opr tmp1 = new_register(objectType);
321    LIR_Opr tmp2 = new_register(objectType);
322    LIR_Opr tmp3 = new_register(objectType);
323
324    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
325    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
326  }
327
328  if (obj_store) {
329    // Needs GC write barriers.
330    pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
331                true /* do_load */, false /* patch */, NULL);
332    __ move(value.result(), array_addr, null_check_info);
333    // Seems to be a precise
334    post_barrier(LIR_OprFact::address(array_addr), value.result());
335  } else {
336    __ move(value.result(), array_addr, null_check_info);
337  }
338}
339
340
341void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
342  assert(x->is_pinned(),"");
343  LIRItem obj(x->obj(), this);
344  obj.load_item();
345
346  set_no_result(x);
347
348  // "lock" stores the address of the monitor stack slot, so this is not an oop
349  LIR_Opr lock = new_register(T_INT);
350  // Need a scratch register for biased locking on x86
351  LIR_Opr scratch = LIR_OprFact::illegalOpr;
352  if (UseBiasedLocking) {
353    scratch = new_register(T_INT);
354  }
355
356  CodeEmitInfo* info_for_exception = NULL;
357  if (x->needs_null_check()) {
358    info_for_exception = state_for(x);
359  }
360  // this CodeEmitInfo must not have the xhandlers because here the
361  // object is already locked (xhandlers expect object to be unlocked)
362  CodeEmitInfo* info = state_for(x, x->state(), true);
363  monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
364                        x->monitor_no(), info_for_exception, info);
365}
366
367
368void LIRGenerator::do_MonitorExit(MonitorExit* x) {
369  assert(x->is_pinned(),"");
370
371  LIRItem obj(x->obj(), this);
372  obj.dont_load_item();
373
374  LIR_Opr lock = new_register(T_INT);
375  LIR_Opr obj_temp = new_register(T_INT);
376  set_no_result(x);
377  monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
378}
379
380
381// _ineg, _lneg, _fneg, _dneg
382void LIRGenerator::do_NegateOp(NegateOp* x) {
383  LIRItem value(x->x(), this);
384  value.set_destroys_register();
385  value.load_item();
386  LIR_Opr reg = rlock(x);
387  __ negate(value.result(), reg);
388
389  set_result(x, round_item(reg));
390}
391
392
393// for  _fadd, _fmul, _fsub, _fdiv, _frem
394//      _dadd, _dmul, _dsub, _ddiv, _drem
395void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
396  LIRItem left(x->x(),  this);
397  LIRItem right(x->y(), this);
398  LIRItem* left_arg  = &left;
399  LIRItem* right_arg = &right;
400  assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
401  bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
402  if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
403    left.load_item();
404  } else {
405    left.dont_load_item();
406  }
407
408  // do not load right operand if it is a constant.  only 0 and 1 are
409  // loaded because there are special instructions for loading them
410  // without memory access (not needed for SSE2 instructions)
411  bool must_load_right = false;
412  if (right.is_constant()) {
413    LIR_Const* c = right.result()->as_constant_ptr();
414    assert(c != NULL, "invalid constant");
415    assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
416
417    if (c->type() == T_FLOAT) {
418      must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
419    } else {
420      must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
421    }
422  }
423
424  if (must_load_both) {
425    // frem and drem destroy also right operand, so move it to a new register
426    right.set_destroys_register();
427    right.load_item();
428  } else if (right.is_register() || must_load_right) {
429    right.load_item();
430  } else {
431    right.dont_load_item();
432  }
433  LIR_Opr reg = rlock(x);
434  LIR_Opr tmp = LIR_OprFact::illegalOpr;
435  if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
436    tmp = new_register(T_DOUBLE);
437  }
438
439  if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
440    // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
441    LIR_Opr fpu0, fpu1;
442    if (x->op() == Bytecodes::_frem) {
443      fpu0 = LIR_OprFact::single_fpu(0);
444      fpu1 = LIR_OprFact::single_fpu(1);
445    } else {
446      fpu0 = LIR_OprFact::double_fpu(0);
447      fpu1 = LIR_OprFact::double_fpu(1);
448    }
449    __ move(right.result(), fpu1); // order of left and right operand is important!
450    __ move(left.result(), fpu0);
451    __ rem (fpu0, fpu1, fpu0);
452    __ move(fpu0, reg);
453
454  } else {
455    arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
456  }
457
458  set_result(x, round_item(reg));
459}
460
461
462// for  _ladd, _lmul, _lsub, _ldiv, _lrem
463void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
464  if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
465    // long division is implemented as a direct call into the runtime
466    LIRItem left(x->x(), this);
467    LIRItem right(x->y(), this);
468
469    // the check for division by zero destroys the right operand
470    right.set_destroys_register();
471
472    BasicTypeList signature(2);
473    signature.append(T_LONG);
474    signature.append(T_LONG);
475    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
476
477    // check for division by zero (destroys registers of right operand!)
478    CodeEmitInfo* info = state_for(x);
479
480    const LIR_Opr result_reg = result_register_for(x->type());
481    left.load_item_force(cc->at(1));
482    right.load_item();
483
484    __ move(right.result(), cc->at(0));
485
486    __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
487    __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
488
489    address entry;
490    switch (x->op()) {
491    case Bytecodes::_lrem:
492      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
493      break; // check if dividend is 0 is done elsewhere
494    case Bytecodes::_ldiv:
495      entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
496      break; // check if dividend is 0 is done elsewhere
497    case Bytecodes::_lmul:
498      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
499      break;
500    default:
501      ShouldNotReachHere();
502    }
503
504    LIR_Opr result = rlock_result(x);
505    __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
506    __ move(result_reg, result);
507  } else if (x->op() == Bytecodes::_lmul) {
508    // missing test if instr is commutative and if we should swap
509    LIRItem left(x->x(), this);
510    LIRItem right(x->y(), this);
511
512    // right register is destroyed by the long mul, so it must be
513    // copied to a new register.
514    right.set_destroys_register();
515
516    left.load_item();
517    right.load_item();
518
519    LIR_Opr reg = FrameMap::long0_opr;
520    arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
521    LIR_Opr result = rlock_result(x);
522    __ move(reg, result);
523  } else {
524    // missing test if instr is commutative and if we should swap
525    LIRItem left(x->x(), this);
526    LIRItem right(x->y(), this);
527
528    left.load_item();
529    // don't load constants to save register
530    right.load_nonconstant();
531    rlock_result(x);
532    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
533  }
534}
535
536
537
538// for: _iadd, _imul, _isub, _idiv, _irem
539void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
540  if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
541    // The requirements for division and modulo
542    // input : rax,: dividend                         min_int
543    //         reg: divisor   (may not be rax,/rdx)   -1
544    //
545    // output: rax,: quotient  (= rax, idiv reg)       min_int
546    //         rdx: remainder (= rax, irem reg)       0
547
548    // rax, and rdx will be destroyed
549
550    // Note: does this invalidate the spec ???
551    LIRItem right(x->y(), this);
552    LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
553
554    // call state_for before load_item_force because state_for may
555    // force the evaluation of other instructions that are needed for
556    // correct debug info.  Otherwise the live range of the fix
557    // register might be too long.
558    CodeEmitInfo* info = state_for(x);
559
560    left.load_item_force(divInOpr());
561
562    right.load_item();
563
564    LIR_Opr result = rlock_result(x);
565    LIR_Opr result_reg;
566    if (x->op() == Bytecodes::_idiv) {
567      result_reg = divOutOpr();
568    } else {
569      result_reg = remOutOpr();
570    }
571
572    if (!ImplicitDiv0Checks) {
573      __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
574      __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
575    }
576    LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
577    if (x->op() == Bytecodes::_irem) {
578      __ irem(left.result(), right.result(), result_reg, tmp, info);
579    } else if (x->op() == Bytecodes::_idiv) {
580      __ idiv(left.result(), right.result(), result_reg, tmp, info);
581    } else {
582      ShouldNotReachHere();
583    }
584
585    __ move(result_reg, result);
586  } else {
587    // missing test if instr is commutative and if we should swap
588    LIRItem left(x->x(),  this);
589    LIRItem right(x->y(), this);
590    LIRItem* left_arg = &left;
591    LIRItem* right_arg = &right;
592    if (x->is_commutative() && left.is_stack() && right.is_register()) {
593      // swap them if left is real stack (or cached) and right is real register(not cached)
594      left_arg = &right;
595      right_arg = &left;
596    }
597
598    left_arg->load_item();
599
600    // do not need to load right, as we can handle stack and constants
601    if (x->op() == Bytecodes::_imul ) {
602      // check if we can use shift instead
603      bool use_constant = false;
604      bool use_tmp = false;
605      if (right_arg->is_constant()) {
606        int iconst = right_arg->get_jint_constant();
607        if (iconst > 0) {
608          if (is_power_of_2(iconst)) {
609            use_constant = true;
610          } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
611            use_constant = true;
612            use_tmp = true;
613          }
614        }
615      }
616      if (use_constant) {
617        right_arg->dont_load_item();
618      } else {
619        right_arg->load_item();
620      }
621      LIR_Opr tmp = LIR_OprFact::illegalOpr;
622      if (use_tmp) {
623        tmp = new_register(T_INT);
624      }
625      rlock_result(x);
626
627      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
628    } else {
629      right_arg->dont_load_item();
630      rlock_result(x);
631      LIR_Opr tmp = LIR_OprFact::illegalOpr;
632      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
633    }
634  }
635}
636
637
638void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
639  // when an operand with use count 1 is the left operand, then it is
640  // likely that no move for 2-operand-LIR-form is necessary
641  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
642    x->swap_operands();
643  }
644
645  ValueTag tag = x->type()->tag();
646  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
647  switch (tag) {
648    case floatTag:
649    case doubleTag:  do_ArithmeticOp_FPU(x);  return;
650    case longTag:    do_ArithmeticOp_Long(x); return;
651    case intTag:     do_ArithmeticOp_Int(x);  return;
652  }
653  ShouldNotReachHere();
654}
655
656
657// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
658void LIRGenerator::do_ShiftOp(ShiftOp* x) {
659  // count must always be in rcx
660  LIRItem value(x->x(), this);
661  LIRItem count(x->y(), this);
662
663  ValueTag elemType = x->type()->tag();
664  bool must_load_count = !count.is_constant() || elemType == longTag;
665  if (must_load_count) {
666    // count for long must be in register
667    count.load_item_force(shiftCountOpr());
668  } else {
669    count.dont_load_item();
670  }
671  value.load_item();
672  LIR_Opr reg = rlock_result(x);
673
674  shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
675}
676
677
678// _iand, _land, _ior, _lor, _ixor, _lxor
679void LIRGenerator::do_LogicOp(LogicOp* x) {
680  // when an operand with use count 1 is the left operand, then it is
681  // likely that no move for 2-operand-LIR-form is necessary
682  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
683    x->swap_operands();
684  }
685
686  LIRItem left(x->x(), this);
687  LIRItem right(x->y(), this);
688
689  left.load_item();
690  right.load_nonconstant();
691  LIR_Opr reg = rlock_result(x);
692
693  logic_op(x->op(), reg, left.result(), right.result());
694}
695
696
697
698// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
699void LIRGenerator::do_CompareOp(CompareOp* x) {
700  LIRItem left(x->x(), this);
701  LIRItem right(x->y(), this);
702  ValueTag tag = x->x()->type()->tag();
703  if (tag == longTag) {
704    left.set_destroys_register();
705  }
706  left.load_item();
707  right.load_item();
708  LIR_Opr reg = rlock_result(x);
709
710  if (x->x()->type()->is_float_kind()) {
711    Bytecodes::Code code = x->op();
712    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
713  } else if (x->x()->type()->tag() == longTag) {
714    __ lcmp2int(left.result(), right.result(), reg);
715  } else {
716    Unimplemented();
717  }
718}
719
720
721void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
722  assert(x->number_of_arguments() == 4, "wrong type");
723  LIRItem obj   (x->argument_at(0), this);  // object
724  LIRItem offset(x->argument_at(1), this);  // offset of field
725  LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
726  LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
727
728  assert(obj.type()->tag() == objectTag, "invalid type");
729
730  // In 64bit the type can be long, sparc doesn't have this assert
731  // assert(offset.type()->tag() == intTag, "invalid type");
732
733  assert(cmp.type()->tag() == type->tag(), "invalid type");
734  assert(val.type()->tag() == type->tag(), "invalid type");
735
736  // get address of field
737  obj.load_item();
738  offset.load_nonconstant();
739
740  if (type == objectType) {
741    cmp.load_item_force(FrameMap::rax_oop_opr);
742    val.load_item();
743  } else if (type == intType) {
744    cmp.load_item_force(FrameMap::rax_opr);
745    val.load_item();
746  } else if (type == longType) {
747    cmp.load_item_force(FrameMap::long0_opr);
748    val.load_item_force(FrameMap::long1_opr);
749  } else {
750    ShouldNotReachHere();
751  }
752
753  LIR_Opr addr = new_pointer_register();
754  LIR_Address* a;
755  if(offset.result()->is_constant()) {
756    a = new LIR_Address(obj.result(),
757                        NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
758                        as_BasicType(type));
759  } else {
760    a = new LIR_Address(obj.result(),
761                        offset.result(),
762                        LIR_Address::times_1,
763                        0,
764                        as_BasicType(type));
765  }
766  __ leal(LIR_OprFact::address(a), addr);
767
768  if (type == objectType) {  // Write-barrier needed for Object fields.
769    // Do the pre-write barrier, if any.
770    pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
771                true /* do_load */, false /* patch */, NULL);
772  }
773
774  LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
775  if (type == objectType)
776    __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
777  else if (type == intType)
778    __ cas_int(addr, cmp.result(), val.result(), ill, ill);
779  else if (type == longType)
780    __ cas_long(addr, cmp.result(), val.result(), ill, ill);
781  else {
782    ShouldNotReachHere();
783  }
784
785  // generate conditional move of boolean result
786  LIR_Opr result = rlock_result(x);
787  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
788           result, as_BasicType(type));
789  if (type == objectType) {   // Write-barrier needed for Object fields.
790    // Seems to be precise
791    post_barrier(addr, val.result());
792  }
793}
794
795
796void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
797  assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
798  LIRItem value(x->argument_at(0), this);
799
800  bool use_fpu = false;
801  if (UseSSE >= 2) {
802    switch(x->id()) {
803      case vmIntrinsics::_dsin:
804      case vmIntrinsics::_dcos:
805      case vmIntrinsics::_dtan:
806      case vmIntrinsics::_dlog:
807      case vmIntrinsics::_dlog10:
808      case vmIntrinsics::_dexp:
809      case vmIntrinsics::_dpow:
810        use_fpu = true;
811    }
812  } else {
813    value.set_destroys_register();
814  }
815
816  value.load_item();
817
818  LIR_Opr calc_input = value.result();
819  LIR_Opr calc_input2 = NULL;
820  if (x->id() == vmIntrinsics::_dpow) {
821    LIRItem extra_arg(x->argument_at(1), this);
822    if (UseSSE < 2) {
823      extra_arg.set_destroys_register();
824    }
825    extra_arg.load_item();
826    calc_input2 = extra_arg.result();
827  }
828  LIR_Opr calc_result = rlock_result(x);
829
830  // sin, cos, pow and exp need two free fpu stack slots, so register
831  // two temporary operands
832  LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
833  LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
834
835  if (use_fpu) {
836    LIR_Opr tmp = FrameMap::fpu0_double_opr;
837    int tmp_start = 1;
838    if (calc_input2 != NULL) {
839      __ move(calc_input2, tmp);
840      tmp_start = 2;
841      calc_input2 = tmp;
842    }
843    __ move(calc_input, tmp);
844
845    calc_input = tmp;
846    calc_result = tmp;
847
848    tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
849    tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
850  }
851
852  switch(x->id()) {
853    case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
854    case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
855    case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
856    case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
857    case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
858    case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
859    case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
860    case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
861    case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
862    default:                    ShouldNotReachHere();
863  }
864
865  if (use_fpu) {
866    __ move(calc_result, x->operand());
867  }
868}
869
870
871void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
872  assert(x->number_of_arguments() == 5, "wrong type");
873
874  // Make all state_for calls early since they can emit code
875  CodeEmitInfo* info = state_for(x, x->state());
876
877  LIRItem src(x->argument_at(0), this);
878  LIRItem src_pos(x->argument_at(1), this);
879  LIRItem dst(x->argument_at(2), this);
880  LIRItem dst_pos(x->argument_at(3), this);
881  LIRItem length(x->argument_at(4), this);
882
883  // operands for arraycopy must use fixed registers, otherwise
884  // LinearScan will fail allocation (because arraycopy always needs a
885  // call)
886
887#ifndef _LP64
888  src.load_item_force     (FrameMap::rcx_oop_opr);
889  src_pos.load_item_force (FrameMap::rdx_opr);
890  dst.load_item_force     (FrameMap::rax_oop_opr);
891  dst_pos.load_item_force (FrameMap::rbx_opr);
892  length.load_item_force  (FrameMap::rdi_opr);
893  LIR_Opr tmp =           (FrameMap::rsi_opr);
894#else
895
896  // The java calling convention will give us enough registers
897  // so that on the stub side the args will be perfect already.
898  // On the other slow/special case side we call C and the arg
899  // positions are not similar enough to pick one as the best.
900  // Also because the java calling convention is a "shifted" version
901  // of the C convention we can process the java args trivially into C
902  // args without worry of overwriting during the xfer
903
904  src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
905  src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
906  dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
907  dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
908  length.load_item_force  (FrameMap::as_opr(j_rarg4));
909
910  LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
911#endif // LP64
912
913  set_no_result(x);
914
915  int flags;
916  ciArrayKlass* expected_type;
917  arraycopy_helper(x, &flags, &expected_type);
918
919  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
920}
921
922
923// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
924// _i2b, _i2c, _i2s
925LIR_Opr fixed_register_for(BasicType type) {
926  switch (type) {
927    case T_FLOAT:  return FrameMap::fpu0_float_opr;
928    case T_DOUBLE: return FrameMap::fpu0_double_opr;
929    case T_INT:    return FrameMap::rax_opr;
930    case T_LONG:   return FrameMap::long0_opr;
931    default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
932  }
933}
934
935void LIRGenerator::do_Convert(Convert* x) {
936  // flags that vary for the different operations and different SSE-settings
937  bool fixed_input, fixed_result, round_result, needs_stub;
938
939  switch (x->op()) {
940    case Bytecodes::_i2l: // fall through
941    case Bytecodes::_l2i: // fall through
942    case Bytecodes::_i2b: // fall through
943    case Bytecodes::_i2c: // fall through
944    case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
945
946    case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
947    case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
948    case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
949    case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
950    case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
951    case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
952    case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
953    case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
954    case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
955    case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
956    default: ShouldNotReachHere();
957  }
958
959  LIRItem value(x->value(), this);
960  value.load_item();
961  LIR_Opr input = value.result();
962  LIR_Opr result = rlock(x);
963
964  // arguments of lir_convert
965  LIR_Opr conv_input = input;
966  LIR_Opr conv_result = result;
967  ConversionStub* stub = NULL;
968
969  if (fixed_input) {
970    conv_input = fixed_register_for(input->type());
971    __ move(input, conv_input);
972  }
973
974  assert(fixed_result == false || round_result == false, "cannot set both");
975  if (fixed_result) {
976    conv_result = fixed_register_for(result->type());
977  } else if (round_result) {
978    result = new_register(result->type());
979    set_vreg_flag(result, must_start_in_memory);
980  }
981
982  if (needs_stub) {
983    stub = new ConversionStub(x->op(), conv_input, conv_result);
984  }
985
986  __ convert(x->op(), conv_input, conv_result, stub);
987
988  if (result != conv_result) {
989    __ move(conv_result, result);
990  }
991
992  assert(result->is_virtual(), "result must be virtual register");
993  set_result(x, result);
994}
995
996
997void LIRGenerator::do_NewInstance(NewInstance* x) {
998#ifndef PRODUCT
999  if (PrintNotLoaded && !x->klass()->is_loaded()) {
1000    tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1001  }
1002#endif
1003  CodeEmitInfo* info = state_for(x, x->state());
1004  LIR_Opr reg = result_register_for(x->type());
1005  LIR_Opr klass_reg = new_register(objectType);
1006  new_instance(reg, x->klass(),
1007                       FrameMap::rcx_oop_opr,
1008                       FrameMap::rdi_oop_opr,
1009                       FrameMap::rsi_oop_opr,
1010                       LIR_OprFact::illegalOpr,
1011                       FrameMap::rdx_oop_opr, info);
1012  LIR_Opr result = rlock_result(x);
1013  __ move(reg, result);
1014}
1015
1016
1017void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1018  CodeEmitInfo* info = state_for(x, x->state());
1019
1020  LIRItem length(x->length(), this);
1021  length.load_item_force(FrameMap::rbx_opr);
1022
1023  LIR_Opr reg = result_register_for(x->type());
1024  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1025  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1026  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1027  LIR_Opr tmp4 = reg;
1028  LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1029  LIR_Opr len = length.result();
1030  BasicType elem_type = x->elt_type();
1031
1032  __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1033
1034  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1035  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1036
1037  LIR_Opr result = rlock_result(x);
1038  __ move(reg, result);
1039}
1040
1041
1042void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1043  LIRItem length(x->length(), this);
1044  // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1045  // and therefore provide the state before the parameters have been consumed
1046  CodeEmitInfo* patching_info = NULL;
1047  if (!x->klass()->is_loaded() || PatchALot) {
1048    patching_info =  state_for(x, x->state_before());
1049  }
1050
1051  CodeEmitInfo* info = state_for(x, x->state());
1052
1053  const LIR_Opr reg = result_register_for(x->type());
1054  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1055  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1056  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1057  LIR_Opr tmp4 = reg;
1058  LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1059
1060  length.load_item_force(FrameMap::rbx_opr);
1061  LIR_Opr len = length.result();
1062
1063  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1064  ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1065  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1066    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1067  }
1068  klass2reg_with_patching(klass_reg, obj, patching_info);
1069  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1070
1071  LIR_Opr result = rlock_result(x);
1072  __ move(reg, result);
1073}
1074
1075
1076void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1077  Values* dims = x->dims();
1078  int i = dims->length();
1079  LIRItemList* items = new LIRItemList(dims->length(), NULL);
1080  while (i-- > 0) {
1081    LIRItem* size = new LIRItem(dims->at(i), this);
1082    items->at_put(i, size);
1083  }
1084
1085  // Evaluate state_for early since it may emit code.
1086  CodeEmitInfo* patching_info = NULL;
1087  if (!x->klass()->is_loaded() || PatchALot) {
1088    patching_info = state_for(x, x->state_before());
1089
1090    // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1091    // clone all handlers (NOTE: Usually this is handled transparently
1092    // by the CodeEmitInfo cloning logic in CodeStub constructors but
1093    // is done explicitly here because a stub isn't being used).
1094    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1095  }
1096  CodeEmitInfo* info = state_for(x, x->state());
1097
1098  i = dims->length();
1099  while (i-- > 0) {
1100    LIRItem* size = items->at(i);
1101    size->load_nonconstant();
1102
1103    store_stack_parameter(size->result(), in_ByteSize(i*4));
1104  }
1105
1106  LIR_Opr reg = result_register_for(x->type());
1107  klass2reg_with_patching(reg, x->klass(), patching_info);
1108
1109  LIR_Opr rank = FrameMap::rbx_opr;
1110  __ move(LIR_OprFact::intConst(x->rank()), rank);
1111  LIR_Opr varargs = FrameMap::rcx_opr;
1112  __ move(FrameMap::rsp_opr, varargs);
1113  LIR_OprList* args = new LIR_OprList(3);
1114  args->append(reg);
1115  args->append(rank);
1116  args->append(varargs);
1117  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1118                  LIR_OprFact::illegalOpr,
1119                  reg, args, info);
1120
1121  LIR_Opr result = rlock_result(x);
1122  __ move(reg, result);
1123}
1124
1125
1126void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1127  // nothing to do for now
1128}
1129
1130
1131void LIRGenerator::do_CheckCast(CheckCast* x) {
1132  LIRItem obj(x->obj(), this);
1133
1134  CodeEmitInfo* patching_info = NULL;
1135  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1136    // must do this before locking the destination register as an oop register,
1137    // and before the obj is loaded (the latter is for deoptimization)
1138    patching_info = state_for(x, x->state_before());
1139  }
1140  obj.load_item();
1141
1142  // info for exceptions
1143  CodeEmitInfo* info_for_exception = state_for(x);
1144
1145  CodeStub* stub;
1146  if (x->is_incompatible_class_change_check()) {
1147    assert(patching_info == NULL, "can't patch this");
1148    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1149  } else {
1150    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1151  }
1152  LIR_Opr reg = rlock_result(x);
1153  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1154  if (!x->klass()->is_loaded() || UseCompressedOops) {
1155    tmp3 = new_register(objectType);
1156  }
1157  __ checkcast(reg, obj.result(), x->klass(),
1158               new_register(objectType), new_register(objectType), tmp3,
1159               x->direct_compare(), info_for_exception, patching_info, stub,
1160               x->profiled_method(), x->profiled_bci());
1161}
1162
1163
1164void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1165  LIRItem obj(x->obj(), this);
1166
1167  // result and test object may not be in same register
1168  LIR_Opr reg = rlock_result(x);
1169  CodeEmitInfo* patching_info = NULL;
1170  if ((!x->klass()->is_loaded() || PatchALot)) {
1171    // must do this before locking the destination register as an oop register
1172    patching_info = state_for(x, x->state_before());
1173  }
1174  obj.load_item();
1175  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1176  if (!x->klass()->is_loaded() || UseCompressedOops) {
1177    tmp3 = new_register(objectType);
1178  }
1179  __ instanceof(reg, obj.result(), x->klass(),
1180                new_register(objectType), new_register(objectType), tmp3,
1181                x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1182}
1183
1184
1185void LIRGenerator::do_If(If* x) {
1186  assert(x->number_of_sux() == 2, "inconsistency");
1187  ValueTag tag = x->x()->type()->tag();
1188  bool is_safepoint = x->is_safepoint();
1189
1190  If::Condition cond = x->cond();
1191
1192  LIRItem xitem(x->x(), this);
1193  LIRItem yitem(x->y(), this);
1194  LIRItem* xin = &xitem;
1195  LIRItem* yin = &yitem;
1196
1197  if (tag == longTag) {
1198    // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1199    // mirror for other conditions
1200    if (cond == If::gtr || cond == If::leq) {
1201      cond = Instruction::mirror(cond);
1202      xin = &yitem;
1203      yin = &xitem;
1204    }
1205    xin->set_destroys_register();
1206  }
1207  xin->load_item();
1208  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1209    // inline long zero
1210    yin->dont_load_item();
1211  } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1212    // longs cannot handle constants at right side
1213    yin->load_item();
1214  } else {
1215    yin->dont_load_item();
1216  }
1217
1218  // add safepoint before generating condition code so it can be recomputed
1219  if (x->is_safepoint()) {
1220    // increment backedge counter if needed
1221    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1222    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1223  }
1224  set_no_result(x);
1225
1226  LIR_Opr left = xin->result();
1227  LIR_Opr right = yin->result();
1228  __ cmp(lir_cond(cond), left, right);
1229  // Generate branch profiling. Profiling code doesn't kill flags.
1230  profile_branch(x, cond);
1231  move_to_phi(x->state());
1232  if (x->x()->type()->is_float_kind()) {
1233    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1234  } else {
1235    __ branch(lir_cond(cond), right->type(), x->tsux());
1236  }
1237  assert(x->default_sux() == x->fsux(), "wrong destination above");
1238  __ jump(x->default_sux());
1239}
1240
1241
1242LIR_Opr LIRGenerator::getThreadPointer() {
1243#ifdef _LP64
1244  return FrameMap::as_pointer_opr(r15_thread);
1245#else
1246  LIR_Opr result = new_register(T_INT);
1247  __ get_thread(result);
1248  return result;
1249#endif //
1250}
1251
1252void LIRGenerator::trace_block_entry(BlockBegin* block) {
1253  store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1254  LIR_OprList* args = new LIR_OprList();
1255  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1256  __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1257}
1258
1259
1260void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1261                                        CodeEmitInfo* info) {
1262  if (address->type() == T_LONG) {
1263    address = new LIR_Address(address->base(),
1264                              address->index(), address->scale(),
1265                              address->disp(), T_DOUBLE);
1266    // Transfer the value atomically by using FP moves.  This means
1267    // the value has to be moved between CPU and FPU registers.  It
1268    // always has to be moved through spill slot since there's no
1269    // quick way to pack the value into an SSE register.
1270    LIR_Opr temp_double = new_register(T_DOUBLE);
1271    LIR_Opr spill = new_register(T_LONG);
1272    set_vreg_flag(spill, must_start_in_memory);
1273    __ move(value, spill);
1274    __ volatile_move(spill, temp_double, T_LONG);
1275    __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1276  } else {
1277    __ store(value, address, info);
1278  }
1279}
1280
1281
1282
1283void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1284                                       CodeEmitInfo* info) {
1285  if (address->type() == T_LONG) {
1286    address = new LIR_Address(address->base(),
1287                              address->index(), address->scale(),
1288                              address->disp(), T_DOUBLE);
1289    // Transfer the value atomically by using FP moves.  This means
1290    // the value has to be moved between CPU and FPU registers.  In
1291    // SSE0 and SSE1 mode it has to be moved through spill slot but in
1292    // SSE2+ mode it can be moved directly.
1293    LIR_Opr temp_double = new_register(T_DOUBLE);
1294    __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1295    __ volatile_move(temp_double, result, T_LONG);
1296    if (UseSSE < 2) {
1297      // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1298      set_vreg_flag(result, must_start_in_memory);
1299    }
1300  } else {
1301    __ load(address, result, info);
1302  }
1303}
1304
1305void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1306                                     BasicType type, bool is_volatile) {
1307  if (is_volatile && type == T_LONG) {
1308    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1309    LIR_Opr tmp = new_register(T_DOUBLE);
1310    __ load(addr, tmp);
1311    LIR_Opr spill = new_register(T_LONG);
1312    set_vreg_flag(spill, must_start_in_memory);
1313    __ move(tmp, spill);
1314    __ move(spill, dst);
1315  } else {
1316    LIR_Address* addr = new LIR_Address(src, offset, type);
1317    __ load(addr, dst);
1318  }
1319}
1320
1321
1322void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1323                                     BasicType type, bool is_volatile) {
1324  if (is_volatile && type == T_LONG) {
1325    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1326    LIR_Opr tmp = new_register(T_DOUBLE);
1327    LIR_Opr spill = new_register(T_DOUBLE);
1328    set_vreg_flag(spill, must_start_in_memory);
1329    __ move(data, spill);
1330    __ move(spill, tmp);
1331    __ move(tmp, addr);
1332  } else {
1333    LIR_Address* addr = new LIR_Address(src, offset, type);
1334    bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1335    if (is_obj) {
1336      // Do the pre-write barrier, if any.
1337      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1338                  true /* do_load */, false /* patch */, NULL);
1339      __ move(data, addr);
1340      assert(src->is_register(), "must be register");
1341      // Seems to be a precise address
1342      post_barrier(LIR_OprFact::address(addr), data);
1343    } else {
1344      __ move(data, addr);
1345    }
1346  }
1347}
1348