c1_LIRGenerator_x86.cpp revision 304:dc7f315e41f7
1/*
2 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_LIRGenerator_x86.cpp.incl"
27
28#ifdef ASSERT
29#define __ gen()->lir(__FILE__, __LINE__)->
30#else
31#define __ gen()->lir()->
32#endif
33
34// Item will be loaded into a byte register; Intel only
35void LIRItem::load_byte_item() {
36  load_item();
37  LIR_Opr res = result();
38
39  if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
40    // make sure that it is a byte register
41    assert(!value()->type()->is_float() && !value()->type()->is_double(),
42           "can't load floats in byte register");
43    LIR_Opr reg = _gen->rlock_byte(T_BYTE);
44    __ move(res, reg);
45
46    _result = reg;
47  }
48}
49
50
51void LIRItem::load_nonconstant() {
52  LIR_Opr r = value()->operand();
53  if (r->is_constant()) {
54    _result = r;
55  } else {
56    load_item();
57  }
58}
59
60//--------------------------------------------------------------
61//               LIRGenerator
62//--------------------------------------------------------------
63
64
65LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
66LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
67LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
68LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
69LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
70LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
71LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
72LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
73
74
75LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
76  LIR_Opr opr;
77  switch (type->tag()) {
78    case intTag:     opr = FrameMap::rax_opr;          break;
79    case objectTag:  opr = FrameMap::rax_oop_opr;      break;
80    case longTag:    opr = FrameMap::long0_opr;        break;
81    case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
82    case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
83
84    case addressTag:
85    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
86  }
87
88  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
89  return opr;
90}
91
92
93LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
94  LIR_Opr reg = new_register(T_INT);
95  set_vreg_flag(reg, LIRGenerator::byte_reg);
96  return reg;
97}
98
99
100//--------- loading items into registers --------------------------------
101
102
103// i486 instructions can inline constants
104bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
105  if (type == T_SHORT || type == T_CHAR) {
106    // there is no immediate move of word values in asembler_i486.?pp
107    return false;
108  }
109  Constant* c = v->as_Constant();
110  if (c && c->state() == NULL) {
111    // constants of any type can be stored directly, except for
112    // unloaded object constants.
113    return true;
114  }
115  return false;
116}
117
118
119bool LIRGenerator::can_inline_as_constant(Value v) const {
120  if (v->type()->tag() == longTag) return false;
121  return v->type()->tag() != objectTag ||
122    (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
123}
124
125
126bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
127  if (c->type() == T_LONG) return false;
128  return c->type() != T_OBJECT || c->as_jobject() == NULL;
129}
130
131
132LIR_Opr LIRGenerator::safepoint_poll_register() {
133  return LIR_OprFact::illegalOpr;
134}
135
136
137LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
138                                            int shift, int disp, BasicType type) {
139  assert(base->is_register(), "must be");
140  if (index->is_constant()) {
141    return new LIR_Address(base,
142                           (index->as_constant_ptr()->as_jint() << shift) + disp,
143                           type);
144  } else {
145    return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
146  }
147}
148
149
150LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
151                                              BasicType type, bool needs_card_mark) {
152  int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
153
154  LIR_Address* addr;
155  if (index_opr->is_constant()) {
156    int elem_size = type2aelembytes(type);
157    addr = new LIR_Address(array_opr,
158                           offset_in_bytes + index_opr->as_jint() * elem_size, type);
159  } else {
160#ifdef _LP64
161    if (index_opr->type() == T_INT) {
162      LIR_Opr tmp = new_register(T_LONG);
163      __ convert(Bytecodes::_i2l, index_opr, tmp);
164      index_opr = tmp;
165    }
166#endif // _LP64
167    addr =  new LIR_Address(array_opr,
168                            index_opr,
169                            LIR_Address::scale(type),
170                            offset_in_bytes, type);
171  }
172  if (needs_card_mark) {
173    // This store will need a precise card mark, so go ahead and
174    // compute the full adddres instead of computing once for the
175    // store and again for the card mark.
176    LIR_Opr tmp = new_pointer_register();
177    __ leal(LIR_OprFact::address(addr), tmp);
178    return new LIR_Address(tmp, 0, type);
179  } else {
180    return addr;
181  }
182}
183
184
185void LIRGenerator::increment_counter(address counter, int step) {
186  LIR_Opr pointer = new_pointer_register();
187  __ move(LIR_OprFact::intptrConst(counter), pointer);
188  LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
189  increment_counter(addr, step);
190}
191
192
193void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
194  __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
195}
196
197
198void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
199  __ cmp_mem_int(condition, base, disp, c, info);
200}
201
202
203void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
204  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
205}
206
207
208void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
209  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
210}
211
212
213bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
214  if (tmp->is_valid()) {
215    if (is_power_of_2(c + 1)) {
216      __ move(left, tmp);
217      __ shift_left(left, log2_intptr(c + 1), left);
218      __ sub(left, tmp, result);
219      return true;
220    } else if (is_power_of_2(c - 1)) {
221      __ move(left, tmp);
222      __ shift_left(left, log2_intptr(c - 1), left);
223      __ add(left, tmp, result);
224      return true;
225    }
226  }
227  return false;
228}
229
230
231void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
232  BasicType type = item->type();
233  __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
234}
235
236//----------------------------------------------------------------------
237//             visitor functions
238//----------------------------------------------------------------------
239
240
241void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
242  assert(x->is_root(),"");
243  bool needs_range_check = true;
244  bool use_length = x->length() != NULL;
245  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
246  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
247                                         !get_jobject_constant(x->value())->is_null_object());
248
249  LIRItem array(x->array(), this);
250  LIRItem index(x->index(), this);
251  LIRItem value(x->value(), this);
252  LIRItem length(this);
253
254  array.load_item();
255  index.load_nonconstant();
256
257  if (use_length) {
258    needs_range_check = x->compute_needs_range_check();
259    if (needs_range_check) {
260      length.set_instruction(x->length());
261      length.load_item();
262    }
263  }
264  if (needs_store_check) {
265    value.load_item();
266  } else {
267    value.load_for_store(x->elt_type());
268  }
269
270  set_no_result(x);
271
272  // the CodeEmitInfo must be duplicated for each different
273  // LIR-instruction because spilling can occur anywhere between two
274  // instructions and so the debug information must be different
275  CodeEmitInfo* range_check_info = state_for(x);
276  CodeEmitInfo* null_check_info = NULL;
277  if (x->needs_null_check()) {
278    null_check_info = new CodeEmitInfo(range_check_info);
279  }
280
281  // emit array address setup early so it schedules better
282  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
283
284  if (GenerateRangeChecks && needs_range_check) {
285    if (use_length) {
286      __ cmp(lir_cond_belowEqual, length.result(), index.result());
287      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
288    } else {
289      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
290      // range_check also does the null check
291      null_check_info = NULL;
292    }
293  }
294
295  if (GenerateArrayStoreCheck && needs_store_check) {
296    LIR_Opr tmp1 = new_register(objectType);
297    LIR_Opr tmp2 = new_register(objectType);
298    LIR_Opr tmp3 = new_register(objectType);
299
300    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
301    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
302  }
303
304  if (obj_store) {
305    __ move(value.result(), array_addr, null_check_info);
306    // Seems to be a precise
307    post_barrier(LIR_OprFact::address(array_addr), value.result());
308  } else {
309    __ move(value.result(), array_addr, null_check_info);
310  }
311}
312
313
314void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
315  assert(x->is_root(),"");
316  LIRItem obj(x->obj(), this);
317  obj.load_item();
318
319  set_no_result(x);
320
321  // "lock" stores the address of the monitor stack slot, so this is not an oop
322  LIR_Opr lock = new_register(T_INT);
323  // Need a scratch register for biased locking on x86
324  LIR_Opr scratch = LIR_OprFact::illegalOpr;
325  if (UseBiasedLocking) {
326    scratch = new_register(T_INT);
327  }
328
329  CodeEmitInfo* info_for_exception = NULL;
330  if (x->needs_null_check()) {
331    info_for_exception = state_for(x, x->lock_stack_before());
332  }
333  // this CodeEmitInfo must not have the xhandlers because here the
334  // object is already locked (xhandlers expect object to be unlocked)
335  CodeEmitInfo* info = state_for(x, x->state(), true);
336  monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
337                        x->monitor_no(), info_for_exception, info);
338}
339
340
341void LIRGenerator::do_MonitorExit(MonitorExit* x) {
342  assert(x->is_root(),"");
343
344  LIRItem obj(x->obj(), this);
345  obj.dont_load_item();
346
347  LIR_Opr lock = new_register(T_INT);
348  LIR_Opr obj_temp = new_register(T_INT);
349  set_no_result(x);
350  monitor_exit(obj_temp, lock, syncTempOpr(), x->monitor_no());
351}
352
353
354// _ineg, _lneg, _fneg, _dneg
355void LIRGenerator::do_NegateOp(NegateOp* x) {
356  LIRItem value(x->x(), this);
357  value.set_destroys_register();
358  value.load_item();
359  LIR_Opr reg = rlock(x);
360  __ negate(value.result(), reg);
361
362  set_result(x, round_item(reg));
363}
364
365
366// for  _fadd, _fmul, _fsub, _fdiv, _frem
367//      _dadd, _dmul, _dsub, _ddiv, _drem
368void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
369  LIRItem left(x->x(),  this);
370  LIRItem right(x->y(), this);
371  LIRItem* left_arg  = &left;
372  LIRItem* right_arg = &right;
373  assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
374  bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
375  if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
376    left.load_item();
377  } else {
378    left.dont_load_item();
379  }
380
381  // do not load right operand if it is a constant.  only 0 and 1 are
382  // loaded because there are special instructions for loading them
383  // without memory access (not needed for SSE2 instructions)
384  bool must_load_right = false;
385  if (right.is_constant()) {
386    LIR_Const* c = right.result()->as_constant_ptr();
387    assert(c != NULL, "invalid constant");
388    assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
389
390    if (c->type() == T_FLOAT) {
391      must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
392    } else {
393      must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
394    }
395  }
396
397  if (must_load_both) {
398    // frem and drem destroy also right operand, so move it to a new register
399    right.set_destroys_register();
400    right.load_item();
401  } else if (right.is_register() || must_load_right) {
402    right.load_item();
403  } else {
404    right.dont_load_item();
405  }
406  LIR_Opr reg = rlock(x);
407  LIR_Opr tmp = LIR_OprFact::illegalOpr;
408  if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
409    tmp = new_register(T_DOUBLE);
410  }
411
412  if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
413    // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
414    LIR_Opr fpu0, fpu1;
415    if (x->op() == Bytecodes::_frem) {
416      fpu0 = LIR_OprFact::single_fpu(0);
417      fpu1 = LIR_OprFact::single_fpu(1);
418    } else {
419      fpu0 = LIR_OprFact::double_fpu(0);
420      fpu1 = LIR_OprFact::double_fpu(1);
421    }
422    __ move(right.result(), fpu1); // order of left and right operand is important!
423    __ move(left.result(), fpu0);
424    __ rem (fpu0, fpu1, fpu0);
425    __ move(fpu0, reg);
426
427  } else {
428    arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
429  }
430
431  set_result(x, round_item(reg));
432}
433
434
435// for  _ladd, _lmul, _lsub, _ldiv, _lrem
436void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
437  if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
438    // long division is implemented as a direct call into the runtime
439    LIRItem left(x->x(), this);
440    LIRItem right(x->y(), this);
441
442    // the check for division by zero destroys the right operand
443    right.set_destroys_register();
444
445    BasicTypeList signature(2);
446    signature.append(T_LONG);
447    signature.append(T_LONG);
448    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
449
450    // check for division by zero (destroys registers of right operand!)
451    CodeEmitInfo* info = state_for(x);
452
453    const LIR_Opr result_reg = result_register_for(x->type());
454    left.load_item_force(cc->at(1));
455    right.load_item();
456
457    __ move(right.result(), cc->at(0));
458
459    __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
460    __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
461
462    address entry;
463    switch (x->op()) {
464    case Bytecodes::_lrem:
465      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
466      break; // check if dividend is 0 is done elsewhere
467    case Bytecodes::_ldiv:
468      entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
469      break; // check if dividend is 0 is done elsewhere
470    case Bytecodes::_lmul:
471      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
472      break;
473    default:
474      ShouldNotReachHere();
475    }
476
477    LIR_Opr result = rlock_result(x);
478    __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
479    __ move(result_reg, result);
480  } else if (x->op() == Bytecodes::_lmul) {
481    // missing test if instr is commutative and if we should swap
482    LIRItem left(x->x(), this);
483    LIRItem right(x->y(), this);
484
485    // right register is destroyed by the long mul, so it must be
486    // copied to a new register.
487    right.set_destroys_register();
488
489    left.load_item();
490    right.load_item();
491
492    LIR_Opr reg = FrameMap::long0_opr;
493    arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
494    LIR_Opr result = rlock_result(x);
495    __ move(reg, result);
496  } else {
497    // missing test if instr is commutative and if we should swap
498    LIRItem left(x->x(), this);
499    LIRItem right(x->y(), this);
500
501    left.load_item();
502    // dont load constants to save register
503    right.load_nonconstant();
504    rlock_result(x);
505    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
506  }
507}
508
509
510
511// for: _iadd, _imul, _isub, _idiv, _irem
512void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
513  if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
514    // The requirements for division and modulo
515    // input : rax,: dividend                         min_int
516    //         reg: divisor   (may not be rax,/rdx)   -1
517    //
518    // output: rax,: quotient  (= rax, idiv reg)       min_int
519    //         rdx: remainder (= rax, irem reg)       0
520
521    // rax, and rdx will be destroyed
522
523    // Note: does this invalidate the spec ???
524    LIRItem right(x->y(), this);
525    LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
526
527    // call state_for before load_item_force because state_for may
528    // force the evaluation of other instructions that are needed for
529    // correct debug info.  Otherwise the live range of the fix
530    // register might be too long.
531    CodeEmitInfo* info = state_for(x);
532
533    left.load_item_force(divInOpr());
534
535    right.load_item();
536
537    LIR_Opr result = rlock_result(x);
538    LIR_Opr result_reg;
539    if (x->op() == Bytecodes::_idiv) {
540      result_reg = divOutOpr();
541    } else {
542      result_reg = remOutOpr();
543    }
544
545    if (!ImplicitDiv0Checks) {
546      __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
547      __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
548    }
549    LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
550    if (x->op() == Bytecodes::_irem) {
551      __ irem(left.result(), right.result(), result_reg, tmp, info);
552    } else if (x->op() == Bytecodes::_idiv) {
553      __ idiv(left.result(), right.result(), result_reg, tmp, info);
554    } else {
555      ShouldNotReachHere();
556    }
557
558    __ move(result_reg, result);
559  } else {
560    // missing test if instr is commutative and if we should swap
561    LIRItem left(x->x(),  this);
562    LIRItem right(x->y(), this);
563    LIRItem* left_arg = &left;
564    LIRItem* right_arg = &right;
565    if (x->is_commutative() && left.is_stack() && right.is_register()) {
566      // swap them if left is real stack (or cached) and right is real register(not cached)
567      left_arg = &right;
568      right_arg = &left;
569    }
570
571    left_arg->load_item();
572
573    // do not need to load right, as we can handle stack and constants
574    if (x->op() == Bytecodes::_imul ) {
575      // check if we can use shift instead
576      bool use_constant = false;
577      bool use_tmp = false;
578      if (right_arg->is_constant()) {
579        int iconst = right_arg->get_jint_constant();
580        if (iconst > 0) {
581          if (is_power_of_2(iconst)) {
582            use_constant = true;
583          } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
584            use_constant = true;
585            use_tmp = true;
586          }
587        }
588      }
589      if (use_constant) {
590        right_arg->dont_load_item();
591      } else {
592        right_arg->load_item();
593      }
594      LIR_Opr tmp = LIR_OprFact::illegalOpr;
595      if (use_tmp) {
596        tmp = new_register(T_INT);
597      }
598      rlock_result(x);
599
600      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
601    } else {
602      right_arg->dont_load_item();
603      rlock_result(x);
604      LIR_Opr tmp = LIR_OprFact::illegalOpr;
605      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
606    }
607  }
608}
609
610
611void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
612  // when an operand with use count 1 is the left operand, then it is
613  // likely that no move for 2-operand-LIR-form is necessary
614  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
615    x->swap_operands();
616  }
617
618  ValueTag tag = x->type()->tag();
619  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
620  switch (tag) {
621    case floatTag:
622    case doubleTag:  do_ArithmeticOp_FPU(x);  return;
623    case longTag:    do_ArithmeticOp_Long(x); return;
624    case intTag:     do_ArithmeticOp_Int(x);  return;
625  }
626  ShouldNotReachHere();
627}
628
629
630// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
631void LIRGenerator::do_ShiftOp(ShiftOp* x) {
632  // count must always be in rcx
633  LIRItem value(x->x(), this);
634  LIRItem count(x->y(), this);
635
636  ValueTag elemType = x->type()->tag();
637  bool must_load_count = !count.is_constant() || elemType == longTag;
638  if (must_load_count) {
639    // count for long must be in register
640    count.load_item_force(shiftCountOpr());
641  } else {
642    count.dont_load_item();
643  }
644  value.load_item();
645  LIR_Opr reg = rlock_result(x);
646
647  shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
648}
649
650
651// _iand, _land, _ior, _lor, _ixor, _lxor
652void LIRGenerator::do_LogicOp(LogicOp* x) {
653  // when an operand with use count 1 is the left operand, then it is
654  // likely that no move for 2-operand-LIR-form is necessary
655  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
656    x->swap_operands();
657  }
658
659  LIRItem left(x->x(), this);
660  LIRItem right(x->y(), this);
661
662  left.load_item();
663  right.load_nonconstant();
664  LIR_Opr reg = rlock_result(x);
665
666  logic_op(x->op(), reg, left.result(), right.result());
667}
668
669
670
671// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
672void LIRGenerator::do_CompareOp(CompareOp* x) {
673  LIRItem left(x->x(), this);
674  LIRItem right(x->y(), this);
675  ValueTag tag = x->x()->type()->tag();
676  if (tag == longTag) {
677    left.set_destroys_register();
678  }
679  left.load_item();
680  right.load_item();
681  LIR_Opr reg = rlock_result(x);
682
683  if (x->x()->type()->is_float_kind()) {
684    Bytecodes::Code code = x->op();
685    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
686  } else if (x->x()->type()->tag() == longTag) {
687    __ lcmp2int(left.result(), right.result(), reg);
688  } else {
689    Unimplemented();
690  }
691}
692
693
694void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
695  assert(x->number_of_arguments() == 3, "wrong type");
696  LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
697  LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
698  LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
699
700  // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
701  cmp_value.load_item_force(FrameMap::long0_opr);
702
703  // new value must be in rcx,ebx (hi,lo)
704  new_value.load_item_force(FrameMap::long1_opr);
705
706  // object pointer register is overwritten with field address
707  obj.load_item();
708
709  // generate compare-and-swap; produces zero condition if swap occurs
710  int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
711  LIR_Opr addr = obj.result();
712  __ add(addr, LIR_OprFact::intConst(value_offset), addr);
713  LIR_Opr t1 = LIR_OprFact::illegalOpr;  // no temp needed
714  LIR_Opr t2 = LIR_OprFact::illegalOpr;  // no temp needed
715  __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
716
717  // generate conditional move of boolean result
718  LIR_Opr result = rlock_result(x);
719  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
720}
721
722
723void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
724  assert(x->number_of_arguments() == 4, "wrong type");
725  LIRItem obj   (x->argument_at(0), this);  // object
726  LIRItem offset(x->argument_at(1), this);  // offset of field
727  LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
728  LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
729
730  assert(obj.type()->tag() == objectTag, "invalid type");
731
732  // In 64bit the type can be long, sparc doesn't have this assert
733  // assert(offset.type()->tag() == intTag, "invalid type");
734
735  assert(cmp.type()->tag() == type->tag(), "invalid type");
736  assert(val.type()->tag() == type->tag(), "invalid type");
737
738  // get address of field
739  obj.load_item();
740  offset.load_nonconstant();
741
742  if (type == objectType) {
743    cmp.load_item_force(FrameMap::rax_oop_opr);
744    val.load_item();
745  } else if (type == intType) {
746    cmp.load_item_force(FrameMap::rax_opr);
747    val.load_item();
748  } else if (type == longType) {
749    cmp.load_item_force(FrameMap::long0_opr);
750    val.load_item_force(FrameMap::long1_opr);
751  } else {
752    ShouldNotReachHere();
753  }
754
755  LIR_Opr addr = new_pointer_register();
756  __ move(obj.result(), addr);
757  __ add(addr, offset.result(), addr);
758
759
760
761  LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
762  if (type == objectType)
763    __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
764  else if (type == intType)
765    __ cas_int(addr, cmp.result(), val.result(), ill, ill);
766  else if (type == longType)
767    __ cas_long(addr, cmp.result(), val.result(), ill, ill);
768  else {
769    ShouldNotReachHere();
770  }
771
772  // generate conditional move of boolean result
773  LIR_Opr result = rlock_result(x);
774  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
775  if (type == objectType) {   // Write-barrier needed for Object fields.
776    // Seems to be precise
777    post_barrier(addr, val.result());
778  }
779}
780
781
782void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
783  assert(x->number_of_arguments() == 1, "wrong type");
784  LIRItem value(x->argument_at(0), this);
785
786  bool use_fpu = false;
787  if (UseSSE >= 2) {
788    switch(x->id()) {
789      case vmIntrinsics::_dsin:
790      case vmIntrinsics::_dcos:
791      case vmIntrinsics::_dtan:
792      case vmIntrinsics::_dlog:
793      case vmIntrinsics::_dlog10:
794        use_fpu = true;
795    }
796  } else {
797    value.set_destroys_register();
798  }
799
800  value.load_item();
801
802  LIR_Opr calc_input = value.result();
803  LIR_Opr calc_result = rlock_result(x);
804
805  // sin and cos need two free fpu stack slots, so register two temporary operands
806  LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
807  LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
808
809  if (use_fpu) {
810    LIR_Opr tmp = FrameMap::fpu0_double_opr;
811    __ move(calc_input, tmp);
812
813    calc_input = tmp;
814    calc_result = tmp;
815    tmp1 = FrameMap::caller_save_fpu_reg_at(1);
816    tmp2 = FrameMap::caller_save_fpu_reg_at(2);
817  }
818
819  switch(x->id()) {
820    case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
821    case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
822    case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
823    case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
824    case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
825    case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
826    case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, LIR_OprFact::illegalOpr); break;
827    default:                    ShouldNotReachHere();
828  }
829
830  if (use_fpu) {
831    __ move(calc_result, x->operand());
832  }
833}
834
835
836void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
837  assert(x->number_of_arguments() == 5, "wrong type");
838  LIRItem src(x->argument_at(0), this);
839  LIRItem src_pos(x->argument_at(1), this);
840  LIRItem dst(x->argument_at(2), this);
841  LIRItem dst_pos(x->argument_at(3), this);
842  LIRItem length(x->argument_at(4), this);
843
844  // operands for arraycopy must use fixed registers, otherwise
845  // LinearScan will fail allocation (because arraycopy always needs a
846  // call)
847
848#ifndef _LP64
849  src.load_item_force     (FrameMap::rcx_oop_opr);
850  src_pos.load_item_force (FrameMap::rdx_opr);
851  dst.load_item_force     (FrameMap::rax_oop_opr);
852  dst_pos.load_item_force (FrameMap::rbx_opr);
853  length.load_item_force  (FrameMap::rdi_opr);
854  LIR_Opr tmp =           (FrameMap::rsi_opr);
855#else
856
857  // The java calling convention will give us enough registers
858  // so that on the stub side the args will be perfect already.
859  // On the other slow/special case side we call C and the arg
860  // positions are not similar enough to pick one as the best.
861  // Also because the java calling convention is a "shifted" version
862  // of the C convention we can process the java args trivially into C
863  // args without worry of overwriting during the xfer
864
865  src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
866  src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
867  dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
868  dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
869  length.load_item_force  (FrameMap::as_opr(j_rarg4));
870
871  LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
872#endif // LP64
873
874  set_no_result(x);
875
876  int flags;
877  ciArrayKlass* expected_type;
878  arraycopy_helper(x, &flags, &expected_type);
879
880  CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
881  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
882}
883
884
885// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
886// _i2b, _i2c, _i2s
887LIR_Opr fixed_register_for(BasicType type) {
888  switch (type) {
889    case T_FLOAT:  return FrameMap::fpu0_float_opr;
890    case T_DOUBLE: return FrameMap::fpu0_double_opr;
891    case T_INT:    return FrameMap::rax_opr;
892    case T_LONG:   return FrameMap::long0_opr;
893    default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
894  }
895}
896
897void LIRGenerator::do_Convert(Convert* x) {
898  // flags that vary for the different operations and different SSE-settings
899  bool fixed_input, fixed_result, round_result, needs_stub;
900
901  switch (x->op()) {
902    case Bytecodes::_i2l: // fall through
903    case Bytecodes::_l2i: // fall through
904    case Bytecodes::_i2b: // fall through
905    case Bytecodes::_i2c: // fall through
906    case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
907
908    case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
909    case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
910    case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
911    case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
912    case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
913    case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
914    case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
915    case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
916    case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
917    case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
918    default: ShouldNotReachHere();
919  }
920
921  LIRItem value(x->value(), this);
922  value.load_item();
923  LIR_Opr input = value.result();
924  LIR_Opr result = rlock(x);
925
926  // arguments of lir_convert
927  LIR_Opr conv_input = input;
928  LIR_Opr conv_result = result;
929  ConversionStub* stub = NULL;
930
931  if (fixed_input) {
932    conv_input = fixed_register_for(input->type());
933    __ move(input, conv_input);
934  }
935
936  assert(fixed_result == false || round_result == false, "cannot set both");
937  if (fixed_result) {
938    conv_result = fixed_register_for(result->type());
939  } else if (round_result) {
940    result = new_register(result->type());
941    set_vreg_flag(result, must_start_in_memory);
942  }
943
944  if (needs_stub) {
945    stub = new ConversionStub(x->op(), conv_input, conv_result);
946  }
947
948  __ convert(x->op(), conv_input, conv_result, stub);
949
950  if (result != conv_result) {
951    __ move(conv_result, result);
952  }
953
954  assert(result->is_virtual(), "result must be virtual register");
955  set_result(x, result);
956}
957
958
959void LIRGenerator::do_NewInstance(NewInstance* x) {
960  if (PrintNotLoaded && !x->klass()->is_loaded()) {
961    tty->print_cr("   ###class not loaded at new bci %d", x->bci());
962  }
963  CodeEmitInfo* info = state_for(x, x->state());
964  LIR_Opr reg = result_register_for(x->type());
965  LIR_Opr klass_reg = new_register(objectType);
966  new_instance(reg, x->klass(),
967                       FrameMap::rcx_oop_opr,
968                       FrameMap::rdi_oop_opr,
969                       FrameMap::rsi_oop_opr,
970                       LIR_OprFact::illegalOpr,
971                       FrameMap::rdx_oop_opr, info);
972  LIR_Opr result = rlock_result(x);
973  __ move(reg, result);
974}
975
976
977void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
978  CodeEmitInfo* info = state_for(x, x->state());
979
980  LIRItem length(x->length(), this);
981  length.load_item_force(FrameMap::rbx_opr);
982
983  LIR_Opr reg = result_register_for(x->type());
984  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
985  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
986  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
987  LIR_Opr tmp4 = reg;
988  LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
989  LIR_Opr len = length.result();
990  BasicType elem_type = x->elt_type();
991
992  __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
993
994  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
995  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
996
997  LIR_Opr result = rlock_result(x);
998  __ move(reg, result);
999}
1000
1001
1002void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1003  LIRItem length(x->length(), this);
1004  // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1005  // and therefore provide the state before the parameters have been consumed
1006  CodeEmitInfo* patching_info = NULL;
1007  if (!x->klass()->is_loaded() || PatchALot) {
1008    patching_info =  state_for(x, x->state_before());
1009  }
1010
1011  CodeEmitInfo* info = state_for(x, x->state());
1012
1013  const LIR_Opr reg = result_register_for(x->type());
1014  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1015  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1016  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1017  LIR_Opr tmp4 = reg;
1018  LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1019
1020  length.load_item_force(FrameMap::rbx_opr);
1021  LIR_Opr len = length.result();
1022
1023  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1024  ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
1025  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1026    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1027  }
1028  jobject2reg_with_patching(klass_reg, obj, patching_info);
1029  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1030
1031  LIR_Opr result = rlock_result(x);
1032  __ move(reg, result);
1033}
1034
1035
1036void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1037  Values* dims = x->dims();
1038  int i = dims->length();
1039  LIRItemList* items = new LIRItemList(dims->length(), NULL);
1040  while (i-- > 0) {
1041    LIRItem* size = new LIRItem(dims->at(i), this);
1042    items->at_put(i, size);
1043  }
1044
1045  // need to get the info before, as the items may become invalid through item_free
1046  CodeEmitInfo* patching_info = NULL;
1047  if (!x->klass()->is_loaded() || PatchALot) {
1048    patching_info = state_for(x, x->state_before());
1049
1050    // cannot re-use same xhandlers for multiple CodeEmitInfos, so
1051    // clone all handlers.
1052    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1053  }
1054
1055  CodeEmitInfo* info = state_for(x, x->state());
1056
1057  i = dims->length();
1058  while (i-- > 0) {
1059    LIRItem* size = items->at(i);
1060    size->load_nonconstant();
1061
1062    store_stack_parameter(size->result(), in_ByteSize(i*4));
1063  }
1064
1065  LIR_Opr reg = result_register_for(x->type());
1066  jobject2reg_with_patching(reg, x->klass(), patching_info);
1067
1068  LIR_Opr rank = FrameMap::rbx_opr;
1069  __ move(LIR_OprFact::intConst(x->rank()), rank);
1070  LIR_Opr varargs = FrameMap::rcx_opr;
1071  __ move(FrameMap::rsp_opr, varargs);
1072  LIR_OprList* args = new LIR_OprList(3);
1073  args->append(reg);
1074  args->append(rank);
1075  args->append(varargs);
1076  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1077                  LIR_OprFact::illegalOpr,
1078                  reg, args, info);
1079
1080  LIR_Opr result = rlock_result(x);
1081  __ move(reg, result);
1082}
1083
1084
1085void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1086  // nothing to do for now
1087}
1088
1089
1090void LIRGenerator::do_CheckCast(CheckCast* x) {
1091  LIRItem obj(x->obj(), this);
1092
1093  CodeEmitInfo* patching_info = NULL;
1094  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1095    // must do this before locking the destination register as an oop register,
1096    // and before the obj is loaded (the latter is for deoptimization)
1097    patching_info = state_for(x, x->state_before());
1098  }
1099  obj.load_item();
1100
1101  // info for exceptions
1102  CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
1103
1104  CodeStub* stub;
1105  if (x->is_incompatible_class_change_check()) {
1106    assert(patching_info == NULL, "can't patch this");
1107    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1108  } else {
1109    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1110  }
1111  LIR_Opr reg = rlock_result(x);
1112  __ checkcast(reg, obj.result(), x->klass(),
1113               new_register(objectType), new_register(objectType),
1114               !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
1115               x->direct_compare(), info_for_exception, patching_info, stub,
1116               x->profiled_method(), x->profiled_bci());
1117}
1118
1119
1120void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1121  LIRItem obj(x->obj(), this);
1122
1123  // result and test object may not be in same register
1124  LIR_Opr reg = rlock_result(x);
1125  CodeEmitInfo* patching_info = NULL;
1126  if ((!x->klass()->is_loaded() || PatchALot)) {
1127    // must do this before locking the destination register as an oop register
1128    patching_info = state_for(x, x->state_before());
1129  }
1130  obj.load_item();
1131  LIR_Opr tmp = new_register(objectType);
1132  __ instanceof(reg, obj.result(), x->klass(),
1133                tmp, new_register(objectType), LIR_OprFact::illegalOpr,
1134                x->direct_compare(), patching_info);
1135}
1136
1137
1138void LIRGenerator::do_If(If* x) {
1139  assert(x->number_of_sux() == 2, "inconsistency");
1140  ValueTag tag = x->x()->type()->tag();
1141  bool is_safepoint = x->is_safepoint();
1142
1143  If::Condition cond = x->cond();
1144
1145  LIRItem xitem(x->x(), this);
1146  LIRItem yitem(x->y(), this);
1147  LIRItem* xin = &xitem;
1148  LIRItem* yin = &yitem;
1149
1150  if (tag == longTag) {
1151    // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1152    // mirror for other conditions
1153    if (cond == If::gtr || cond == If::leq) {
1154      cond = Instruction::mirror(cond);
1155      xin = &yitem;
1156      yin = &xitem;
1157    }
1158    xin->set_destroys_register();
1159  }
1160  xin->load_item();
1161  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1162    // inline long zero
1163    yin->dont_load_item();
1164  } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1165    // longs cannot handle constants at right side
1166    yin->load_item();
1167  } else {
1168    yin->dont_load_item();
1169  }
1170
1171  // add safepoint before generating condition code so it can be recomputed
1172  if (x->is_safepoint()) {
1173    // increment backedge counter if needed
1174    increment_backedge_counter(state_for(x, x->state_before()));
1175
1176    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1177  }
1178  set_no_result(x);
1179
1180  LIR_Opr left = xin->result();
1181  LIR_Opr right = yin->result();
1182  __ cmp(lir_cond(cond), left, right);
1183  profile_branch(x, cond);
1184  move_to_phi(x->state());
1185  if (x->x()->type()->is_float_kind()) {
1186    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1187  } else {
1188    __ branch(lir_cond(cond), right->type(), x->tsux());
1189  }
1190  assert(x->default_sux() == x->fsux(), "wrong destination above");
1191  __ jump(x->default_sux());
1192}
1193
1194
1195LIR_Opr LIRGenerator::getThreadPointer() {
1196#ifdef _LP64
1197  return FrameMap::as_pointer_opr(r15_thread);
1198#else
1199  LIR_Opr result = new_register(T_INT);
1200  __ get_thread(result);
1201  return result;
1202#endif //
1203}
1204
1205void LIRGenerator::trace_block_entry(BlockBegin* block) {
1206  store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1207  LIR_OprList* args = new LIR_OprList();
1208  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1209  __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1210}
1211
1212
1213void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1214                                        CodeEmitInfo* info) {
1215  if (address->type() == T_LONG) {
1216    address = new LIR_Address(address->base(),
1217                              address->index(), address->scale(),
1218                              address->disp(), T_DOUBLE);
1219    // Transfer the value atomically by using FP moves.  This means
1220    // the value has to be moved between CPU and FPU registers.  It
1221    // always has to be moved through spill slot since there's no
1222    // quick way to pack the value into an SSE register.
1223    LIR_Opr temp_double = new_register(T_DOUBLE);
1224    LIR_Opr spill = new_register(T_LONG);
1225    set_vreg_flag(spill, must_start_in_memory);
1226    __ move(value, spill);
1227    __ volatile_move(spill, temp_double, T_LONG);
1228    __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1229  } else {
1230    __ store(value, address, info);
1231  }
1232}
1233
1234
1235
1236void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1237                                       CodeEmitInfo* info) {
1238  if (address->type() == T_LONG) {
1239    address = new LIR_Address(address->base(),
1240                              address->index(), address->scale(),
1241                              address->disp(), T_DOUBLE);
1242    // Transfer the value atomically by using FP moves.  This means
1243    // the value has to be moved between CPU and FPU registers.  In
1244    // SSE0 and SSE1 mode it has to be moved through spill slot but in
1245    // SSE2+ mode it can be moved directly.
1246    LIR_Opr temp_double = new_register(T_DOUBLE);
1247    __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1248    __ volatile_move(temp_double, result, T_LONG);
1249    if (UseSSE < 2) {
1250      // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1251      set_vreg_flag(result, must_start_in_memory);
1252    }
1253  } else {
1254    __ load(address, result, info);
1255  }
1256}
1257
1258void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1259                                     BasicType type, bool is_volatile) {
1260  if (is_volatile && type == T_LONG) {
1261    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1262    LIR_Opr tmp = new_register(T_DOUBLE);
1263    __ load(addr, tmp);
1264    LIR_Opr spill = new_register(T_LONG);
1265    set_vreg_flag(spill, must_start_in_memory);
1266    __ move(tmp, spill);
1267    __ move(spill, dst);
1268  } else {
1269    LIR_Address* addr = new LIR_Address(src, offset, type);
1270    __ load(addr, dst);
1271  }
1272}
1273
1274
1275void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1276                                     BasicType type, bool is_volatile) {
1277  if (is_volatile && type == T_LONG) {
1278    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1279    LIR_Opr tmp = new_register(T_DOUBLE);
1280    LIR_Opr spill = new_register(T_DOUBLE);
1281    set_vreg_flag(spill, must_start_in_memory);
1282    __ move(data, spill);
1283    __ move(spill, tmp);
1284    __ move(tmp, addr);
1285  } else {
1286    LIR_Address* addr = new LIR_Address(src, offset, type);
1287    bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1288    if (is_obj) {
1289      __ move(data, addr);
1290      assert(src->is_register(), "must be register");
1291      // Seems to be a precise address
1292      post_barrier(LIR_OprFact::address(addr), data);
1293    } else {
1294      __ move(data, addr);
1295    }
1296  }
1297}
1298