c1_FrameMap_x86.cpp revision 3718:b9a9ed0f8eeb
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_FrameMap.hpp"
27#include "c1/c1_LIR.hpp"
28#include "runtime/sharedRuntime.hpp"
29#include "vmreg_x86.inline.hpp"
30
31const int FrameMap::pd_c_runtime_reserved_arg_size = 0;
32
33LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
34  LIR_Opr opr = LIR_OprFact::illegalOpr;
35  VMReg r_1 = reg->first();
36  VMReg r_2 = reg->second();
37  if (r_1->is_stack()) {
38    // Convert stack slot to an SP offset
39    // The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
40    // so we must add it in here.
41    int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
42    opr = LIR_OprFact::address(new LIR_Address(rsp_opr, st_off, type));
43  } else if (r_1->is_Register()) {
44    Register reg = r_1->as_Register();
45    if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
46      Register reg2 = r_2->as_Register();
47#ifdef _LP64
48      assert(reg2 == reg, "must be same register");
49      opr = as_long_opr(reg);
50#else
51      opr = as_long_opr(reg2, reg);
52#endif // _LP64
53    } else if (type == T_OBJECT || type == T_ARRAY) {
54      opr = as_oop_opr(reg);
55    } else {
56      opr = as_opr(reg);
57    }
58  } else if (r_1->is_FloatRegister()) {
59    assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
60    int num = r_1->as_FloatRegister()->encoding();
61    if (type == T_FLOAT) {
62      opr = LIR_OprFact::single_fpu(num);
63    } else {
64      opr = LIR_OprFact::double_fpu(num);
65    }
66  } else if (r_1->is_XMMRegister()) {
67    assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
68    int num = r_1->as_XMMRegister()->encoding();
69    if (type == T_FLOAT) {
70      opr = LIR_OprFact::single_xmm(num);
71    } else {
72      opr = LIR_OprFact::double_xmm(num);
73    }
74  } else {
75    ShouldNotReachHere();
76  }
77  return opr;
78}
79
80
81LIR_Opr FrameMap::rsi_opr;
82LIR_Opr FrameMap::rdi_opr;
83LIR_Opr FrameMap::rbx_opr;
84LIR_Opr FrameMap::rax_opr;
85LIR_Opr FrameMap::rdx_opr;
86LIR_Opr FrameMap::rcx_opr;
87LIR_Opr FrameMap::rsp_opr;
88LIR_Opr FrameMap::rbp_opr;
89
90LIR_Opr FrameMap::receiver_opr;
91
92LIR_Opr FrameMap::rsi_oop_opr;
93LIR_Opr FrameMap::rdi_oop_opr;
94LIR_Opr FrameMap::rbx_oop_opr;
95LIR_Opr FrameMap::rax_oop_opr;
96LIR_Opr FrameMap::rdx_oop_opr;
97LIR_Opr FrameMap::rcx_oop_opr;
98
99LIR_Opr FrameMap::rsi_metadata_opr;
100LIR_Opr FrameMap::rdi_metadata_opr;
101LIR_Opr FrameMap::rbx_metadata_opr;
102LIR_Opr FrameMap::rax_metadata_opr;
103LIR_Opr FrameMap::rdx_metadata_opr;
104LIR_Opr FrameMap::rcx_metadata_opr;
105
106LIR_Opr FrameMap::long0_opr;
107LIR_Opr FrameMap::long1_opr;
108LIR_Opr FrameMap::fpu0_float_opr;
109LIR_Opr FrameMap::fpu0_double_opr;
110LIR_Opr FrameMap::xmm0_float_opr;
111LIR_Opr FrameMap::xmm0_double_opr;
112
113#ifdef _LP64
114
115LIR_Opr  FrameMap::r8_opr;
116LIR_Opr  FrameMap::r9_opr;
117LIR_Opr FrameMap::r10_opr;
118LIR_Opr FrameMap::r11_opr;
119LIR_Opr FrameMap::r12_opr;
120LIR_Opr FrameMap::r13_opr;
121LIR_Opr FrameMap::r14_opr;
122LIR_Opr FrameMap::r15_opr;
123
124// r10 and r15 can never contain oops since they aren't available to
125// the allocator
126LIR_Opr  FrameMap::r8_oop_opr;
127LIR_Opr  FrameMap::r9_oop_opr;
128LIR_Opr FrameMap::r11_oop_opr;
129LIR_Opr FrameMap::r12_oop_opr;
130LIR_Opr FrameMap::r13_oop_opr;
131LIR_Opr FrameMap::r14_oop_opr;
132
133LIR_Opr  FrameMap::r8_metadata_opr;
134LIR_Opr  FrameMap::r9_metadata_opr;
135LIR_Opr FrameMap::r11_metadata_opr;
136LIR_Opr FrameMap::r12_metadata_opr;
137LIR_Opr FrameMap::r13_metadata_opr;
138LIR_Opr FrameMap::r14_metadata_opr;
139#endif // _LP64
140
141LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
142LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
143LIR_Opr FrameMap::_caller_save_xmm_regs[] = { 0, };
144
145XMMRegister FrameMap::_xmm_regs [] = { 0, };
146
147XMMRegister FrameMap::nr2xmmreg(int rnr) {
148  assert(_init_done, "tables not initialized");
149  return _xmm_regs[rnr];
150}
151
152//--------------------------------------------------------
153//               FrameMap
154//--------------------------------------------------------
155
156void FrameMap::initialize() {
157  assert(!_init_done, "once");
158
159  assert(nof_cpu_regs == LP64_ONLY(16) NOT_LP64(8), "wrong number of CPU registers");
160  map_register(0, rsi);  rsi_opr = LIR_OprFact::single_cpu(0);
161  map_register(1, rdi);  rdi_opr = LIR_OprFact::single_cpu(1);
162  map_register(2, rbx);  rbx_opr = LIR_OprFact::single_cpu(2);
163  map_register(3, rax);  rax_opr = LIR_OprFact::single_cpu(3);
164  map_register(4, rdx);  rdx_opr = LIR_OprFact::single_cpu(4);
165  map_register(5, rcx);  rcx_opr = LIR_OprFact::single_cpu(5);
166
167#ifndef _LP64
168  // The unallocatable registers are at the end
169  map_register(6, rsp);
170  map_register(7, rbp);
171#else
172  map_register( 6, r8);    r8_opr = LIR_OprFact::single_cpu(6);
173  map_register( 7, r9);    r9_opr = LIR_OprFact::single_cpu(7);
174  map_register( 8, r11);  r11_opr = LIR_OprFact::single_cpu(8);
175  map_register( 9, r13);  r13_opr = LIR_OprFact::single_cpu(9);
176  map_register(10, r14);  r14_opr = LIR_OprFact::single_cpu(10);
177  // r12 is allocated conditionally. With compressed oops it holds
178  // the heapbase value and is not visible to the allocator.
179  map_register(11, r12);  r12_opr = LIR_OprFact::single_cpu(11);
180  // The unallocatable registers are at the end
181  map_register(12, r10);  r10_opr = LIR_OprFact::single_cpu(12);
182  map_register(13, r15);  r15_opr = LIR_OprFact::single_cpu(13);
183  map_register(14, rsp);
184  map_register(15, rbp);
185#endif // _LP64
186
187#ifdef _LP64
188  long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 3 /*eax*/);
189  long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 2 /*ebx*/);
190#else
191  long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 4 /*edx*/);
192  long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 5 /*ecx*/);
193#endif // _LP64
194  fpu0_float_opr   = LIR_OprFact::single_fpu(0);
195  fpu0_double_opr  = LIR_OprFact::double_fpu(0);
196  xmm0_float_opr   = LIR_OprFact::single_xmm(0);
197  xmm0_double_opr  = LIR_OprFact::double_xmm(0);
198
199  _caller_save_cpu_regs[0] = rsi_opr;
200  _caller_save_cpu_regs[1] = rdi_opr;
201  _caller_save_cpu_regs[2] = rbx_opr;
202  _caller_save_cpu_regs[3] = rax_opr;
203  _caller_save_cpu_regs[4] = rdx_opr;
204  _caller_save_cpu_regs[5] = rcx_opr;
205
206#ifdef _LP64
207  _caller_save_cpu_regs[6]  = r8_opr;
208  _caller_save_cpu_regs[7]  = r9_opr;
209  _caller_save_cpu_regs[8]  = r11_opr;
210  _caller_save_cpu_regs[9]  = r13_opr;
211  _caller_save_cpu_regs[10] = r14_opr;
212  _caller_save_cpu_regs[11] = r12_opr;
213#endif // _LP64
214
215
216  _xmm_regs[0] = xmm0;
217  _xmm_regs[1] = xmm1;
218  _xmm_regs[2] = xmm2;
219  _xmm_regs[3] = xmm3;
220  _xmm_regs[4] = xmm4;
221  _xmm_regs[5] = xmm5;
222  _xmm_regs[6] = xmm6;
223  _xmm_regs[7] = xmm7;
224
225#ifdef _LP64
226  _xmm_regs[8]   = xmm8;
227  _xmm_regs[9]   = xmm9;
228  _xmm_regs[10]  = xmm10;
229  _xmm_regs[11]  = xmm11;
230  _xmm_regs[12]  = xmm12;
231  _xmm_regs[13]  = xmm13;
232  _xmm_regs[14]  = xmm14;
233  _xmm_regs[15]  = xmm15;
234#endif // _LP64
235
236  for (int i = 0; i < 8; i++) {
237    _caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
238  }
239
240  for (int i = 0; i < nof_caller_save_xmm_regs ; i++) {
241    _caller_save_xmm_regs[i] = LIR_OprFact::single_xmm(i);
242  }
243
244  _init_done = true;
245
246  rsi_oop_opr = as_oop_opr(rsi);
247  rdi_oop_opr = as_oop_opr(rdi);
248  rbx_oop_opr = as_oop_opr(rbx);
249  rax_oop_opr = as_oop_opr(rax);
250  rdx_oop_opr = as_oop_opr(rdx);
251  rcx_oop_opr = as_oop_opr(rcx);
252
253  rsi_metadata_opr = as_metadata_opr(rsi);
254  rdi_metadata_opr = as_metadata_opr(rdi);
255  rbx_metadata_opr = as_metadata_opr(rbx);
256  rax_metadata_opr = as_metadata_opr(rax);
257  rdx_metadata_opr = as_metadata_opr(rdx);
258  rcx_metadata_opr = as_metadata_opr(rcx);
259
260  rsp_opr = as_pointer_opr(rsp);
261  rbp_opr = as_pointer_opr(rbp);
262
263#ifdef _LP64
264  r8_oop_opr = as_oop_opr(r8);
265  r9_oop_opr = as_oop_opr(r9);
266  r11_oop_opr = as_oop_opr(r11);
267  r12_oop_opr = as_oop_opr(r12);
268  r13_oop_opr = as_oop_opr(r13);
269  r14_oop_opr = as_oop_opr(r14);
270
271  r8_metadata_opr = as_metadata_opr(r8);
272  r9_metadata_opr = as_metadata_opr(r9);
273  r11_metadata_opr = as_metadata_opr(r11);
274  r12_metadata_opr = as_metadata_opr(r12);
275  r13_metadata_opr = as_metadata_opr(r13);
276  r14_metadata_opr = as_metadata_opr(r14);
277#endif // _LP64
278
279  VMRegPair regs;
280  BasicType sig_bt = T_OBJECT;
281  SharedRuntime::java_calling_convention(&sig_bt, &regs, 1, true);
282  receiver_opr = as_oop_opr(regs.first()->as_Register());
283
284}
285
286
287Address FrameMap::make_new_address(ByteSize sp_offset) const {
288  // for rbp, based address use this:
289  // return Address(rbp, in_bytes(sp_offset) - (framesize() - 2) * 4);
290  return Address(rsp, in_bytes(sp_offset));
291}
292
293
294// ----------------mapping-----------------------
295// all mapping is based on rbp, addressing, except for simple leaf methods where we access
296// the locals rsp based (and no frame is built)
297
298
299// Frame for simple leaf methods (quick entries)
300//
301//   +----------+
302//   | ret addr |   <- TOS
303//   +----------+
304//   | args     |
305//   | ......   |
306
307// Frame for standard methods
308//
309//   | .........|  <- TOS
310//   | locals   |
311//   +----------+
312//   | old rbp,  |  <- EBP
313//   +----------+
314//   | ret addr |
315//   +----------+
316//   |  args    |
317//   | .........|
318
319
320// For OopMaps, map a local variable or spill index to an VMRegImpl name.
321// This is the offset from sp() in the frame of the slot for the index,
322// skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.)
323//
324//           framesize +
325//           stack0         stack0          0  <- VMReg
326//             |              | <registers> |
327//  ...........|..............|.............|
328//      0 1 2 3 x x 4 5 6 ... |                <- local indices
329//      ^           ^        sp()                 ( x x indicate link
330//      |           |                               and return addr)
331//  arguments   non-argument locals
332
333
334VMReg FrameMap::fpu_regname (int n) {
335  // Return the OptoReg name for the fpu stack slot "n"
336  // A spilled fpu stack slot comprises to two single-word OptoReg's.
337  return as_FloatRegister(n)->as_VMReg();
338}
339
340LIR_Opr FrameMap::stack_pointer() {
341  return FrameMap::rsp_opr;
342}
343
344
345// JSR 292
346LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() {
347  assert(rbp == rbp_mh_SP_save, "must be same register");
348  return rbp_opr;
349}
350
351
352bool FrameMap::validate_frame() {
353  return true;
354}
355