assembler_x86.hpp revision 1915:2f644f85485d
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
26#define CPU_X86_VM_ASSEMBLER_X86_HPP
27
28class BiasedLockingCounters;
29
30// Contains all the definitions needed for x86 assembly code generation.
31
32// Calling convention
33class Argument VALUE_OBJ_CLASS_SPEC {
34 public:
35  enum {
36#ifdef _LP64
37#ifdef _WIN64
38    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
39    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
40#else
41    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
42    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
43#endif // _WIN64
44    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
45    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
46#else
47    n_register_parameters = 0   // 0 registers used to pass arguments
48#endif // _LP64
49  };
50};
51
52
53#ifdef _LP64
54// Symbolically name the register arguments used by the c calling convention.
55// Windows is different from linux/solaris. So much for standards...
56
57#ifdef _WIN64
58
59REGISTER_DECLARATION(Register, c_rarg0, rcx);
60REGISTER_DECLARATION(Register, c_rarg1, rdx);
61REGISTER_DECLARATION(Register, c_rarg2, r8);
62REGISTER_DECLARATION(Register, c_rarg3, r9);
63
64REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
65REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
66REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
67REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
68
69#else
70
71REGISTER_DECLARATION(Register, c_rarg0, rdi);
72REGISTER_DECLARATION(Register, c_rarg1, rsi);
73REGISTER_DECLARATION(Register, c_rarg2, rdx);
74REGISTER_DECLARATION(Register, c_rarg3, rcx);
75REGISTER_DECLARATION(Register, c_rarg4, r8);
76REGISTER_DECLARATION(Register, c_rarg5, r9);
77
78REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
79REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
80REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
81REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
82REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
83REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
84REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
85REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
86
87#endif // _WIN64
88
89// Symbolically name the register arguments used by the Java calling convention.
90// We have control over the convention for java so we can do what we please.
91// What pleases us is to offset the java calling convention so that when
92// we call a suitable jni method the arguments are lined up and we don't
93// have to do little shuffling. A suitable jni method is non-static and a
94// small number of arguments (two fewer args on windows)
95//
96//        |-------------------------------------------------------|
97//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
98//        |-------------------------------------------------------|
99//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
100//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
101//        |-------------------------------------------------------|
102//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
103//        |-------------------------------------------------------|
104
105REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
106REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
107REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
108// Windows runs out of register args here
109#ifdef _WIN64
110REGISTER_DECLARATION(Register, j_rarg3, rdi);
111REGISTER_DECLARATION(Register, j_rarg4, rsi);
112#else
113REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
114REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
115#endif /* _WIN64 */
116REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
117
118REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
119REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
120REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
121REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
122REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
123REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
124REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
125REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
126
127REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
128REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
129
130REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
131REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
132
133#else
134// rscratch1 will apear in 32bit code that is dead but of course must compile
135// Using noreg ensures if the dead code is incorrectly live and executed it
136// will cause an assertion failure
137#define rscratch1 noreg
138#define rscratch2 noreg
139
140#endif // _LP64
141
142// JSR 292 fixed register usages:
143REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
144
145// Address is an abstraction used to represent a memory location
146// using any of the amd64 addressing modes with one object.
147//
148// Note: A register location is represented via a Register, not
149//       via an address for efficiency & simplicity reasons.
150
151class ArrayAddress;
152
153class Address VALUE_OBJ_CLASS_SPEC {
154 public:
155  enum ScaleFactor {
156    no_scale = -1,
157    times_1  =  0,
158    times_2  =  1,
159    times_4  =  2,
160    times_8  =  3,
161    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
162  };
163  static ScaleFactor times(int size) {
164    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
165    if (size == 8)  return times_8;
166    if (size == 4)  return times_4;
167    if (size == 2)  return times_2;
168    return times_1;
169  }
170  static int scale_size(ScaleFactor scale) {
171    assert(scale != no_scale, "");
172    assert(((1 << (int)times_1) == 1 &&
173            (1 << (int)times_2) == 2 &&
174            (1 << (int)times_4) == 4 &&
175            (1 << (int)times_8) == 8), "");
176    return (1 << (int)scale);
177  }
178
179 private:
180  Register         _base;
181  Register         _index;
182  ScaleFactor      _scale;
183  int              _disp;
184  RelocationHolder _rspec;
185
186  // Easily misused constructors make them private
187  // %%% can we make these go away?
188  NOT_LP64(Address(address loc, RelocationHolder spec);)
189  Address(int disp, address loc, relocInfo::relocType rtype);
190  Address(int disp, address loc, RelocationHolder spec);
191
192 public:
193
194 int disp() { return _disp; }
195  // creation
196  Address()
197    : _base(noreg),
198      _index(noreg),
199      _scale(no_scale),
200      _disp(0) {
201  }
202
203  // No default displacement otherwise Register can be implicitly
204  // converted to 0(Register) which is quite a different animal.
205
206  Address(Register base, int disp)
207    : _base(base),
208      _index(noreg),
209      _scale(no_scale),
210      _disp(disp) {
211  }
212
213  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
214    : _base (base),
215      _index(index),
216      _scale(scale),
217      _disp (disp) {
218    assert(!index->is_valid() == (scale == Address::no_scale),
219           "inconsistent address");
220  }
221
222  Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
223    : _base (base),
224      _index(index.register_or_noreg()),
225      _scale(scale),
226      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
227    if (!index.is_register())  scale = Address::no_scale;
228    assert(!_index->is_valid() == (scale == Address::no_scale),
229           "inconsistent address");
230  }
231
232  Address plus_disp(int disp) const {
233    Address a = (*this);
234    a._disp += disp;
235    return a;
236  }
237
238  // The following two overloads are used in connection with the
239  // ByteSize type (see sizes.hpp).  They simplify the use of
240  // ByteSize'd arguments in assembly code. Note that their equivalent
241  // for the optimized build are the member functions with int disp
242  // argument since ByteSize is mapped to an int type in that case.
243  //
244  // Note: DO NOT introduce similar overloaded functions for WordSize
245  // arguments as in the optimized mode, both ByteSize and WordSize
246  // are mapped to the same type and thus the compiler cannot make a
247  // distinction anymore (=> compiler errors).
248
249#ifdef ASSERT
250  Address(Register base, ByteSize disp)
251    : _base(base),
252      _index(noreg),
253      _scale(no_scale),
254      _disp(in_bytes(disp)) {
255  }
256
257  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
258    : _base(base),
259      _index(index),
260      _scale(scale),
261      _disp(in_bytes(disp)) {
262    assert(!index->is_valid() == (scale == Address::no_scale),
263           "inconsistent address");
264  }
265
266  Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
267    : _base (base),
268      _index(index.register_or_noreg()),
269      _scale(scale),
270      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
271    if (!index.is_register())  scale = Address::no_scale;
272    assert(!_index->is_valid() == (scale == Address::no_scale),
273           "inconsistent address");
274  }
275
276#endif // ASSERT
277
278  // accessors
279  bool        uses(Register reg) const { return _base == reg || _index == reg; }
280  Register    base()             const { return _base;  }
281  Register    index()            const { return _index; }
282  ScaleFactor scale()            const { return _scale; }
283  int         disp()             const { return _disp;  }
284
285  // Convert the raw encoding form into the form expected by the constructor for
286  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
287  // that to noreg for the Address constructor.
288  static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
289
290  static Address make_array(ArrayAddress);
291
292 private:
293  bool base_needs_rex() const {
294    return _base != noreg && _base->encoding() >= 8;
295  }
296
297  bool index_needs_rex() const {
298    return _index != noreg &&_index->encoding() >= 8;
299  }
300
301  relocInfo::relocType reloc() const { return _rspec.type(); }
302
303  friend class Assembler;
304  friend class MacroAssembler;
305  friend class LIR_Assembler; // base/index/scale/disp
306};
307
308//
309// AddressLiteral has been split out from Address because operands of this type
310// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
311// the few instructions that need to deal with address literals are unique and the
312// MacroAssembler does not have to implement every instruction in the Assembler
313// in order to search for address literals that may need special handling depending
314// on the instruction and the platform. As small step on the way to merging i486/amd64
315// directories.
316//
317class AddressLiteral VALUE_OBJ_CLASS_SPEC {
318  friend class ArrayAddress;
319  RelocationHolder _rspec;
320  // Typically we use AddressLiterals we want to use their rval
321  // However in some situations we want the lval (effect address) of the item.
322  // We provide a special factory for making those lvals.
323  bool _is_lval;
324
325  // If the target is far we'll need to load the ea of this to
326  // a register to reach it. Otherwise if near we can do rip
327  // relative addressing.
328
329  address          _target;
330
331 protected:
332  // creation
333  AddressLiteral()
334    : _is_lval(false),
335      _target(NULL)
336  {}
337
338  public:
339
340
341  AddressLiteral(address target, relocInfo::relocType rtype);
342
343  AddressLiteral(address target, RelocationHolder const& rspec)
344    : _rspec(rspec),
345      _is_lval(false),
346      _target(target)
347  {}
348
349  AddressLiteral addr() {
350    AddressLiteral ret = *this;
351    ret._is_lval = true;
352    return ret;
353  }
354
355
356 private:
357
358  address target() { return _target; }
359  bool is_lval() { return _is_lval; }
360
361  relocInfo::relocType reloc() const { return _rspec.type(); }
362  const RelocationHolder& rspec() const { return _rspec; }
363
364  friend class Assembler;
365  friend class MacroAssembler;
366  friend class Address;
367  friend class LIR_Assembler;
368};
369
370// Convience classes
371class RuntimeAddress: public AddressLiteral {
372
373  public:
374
375  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
376
377};
378
379class OopAddress: public AddressLiteral {
380
381  public:
382
383  OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
384
385};
386
387class ExternalAddress: public AddressLiteral {
388
389  public:
390
391  ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
392
393};
394
395class InternalAddress: public AddressLiteral {
396
397  public:
398
399  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
400
401};
402
403// x86 can do array addressing as a single operation since disp can be an absolute
404// address amd64 can't. We create a class that expresses the concept but does extra
405// magic on amd64 to get the final result
406
407class ArrayAddress VALUE_OBJ_CLASS_SPEC {
408  private:
409
410  AddressLiteral _base;
411  Address        _index;
412
413  public:
414
415  ArrayAddress() {};
416  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
417  AddressLiteral base() { return _base; }
418  Address index() { return _index; }
419
420};
421
422const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
423
424// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
425// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
426// is what you get. The Assembler is generating code into a CodeBuffer.
427
428class Assembler : public AbstractAssembler  {
429  friend class AbstractAssembler; // for the non-virtual hack
430  friend class LIR_Assembler; // as_Address()
431  friend class StubGenerator;
432
433 public:
434  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
435    zero          = 0x4,
436    notZero       = 0x5,
437    equal         = 0x4,
438    notEqual      = 0x5,
439    less          = 0xc,
440    lessEqual     = 0xe,
441    greater       = 0xf,
442    greaterEqual  = 0xd,
443    below         = 0x2,
444    belowEqual    = 0x6,
445    above         = 0x7,
446    aboveEqual    = 0x3,
447    overflow      = 0x0,
448    noOverflow    = 0x1,
449    carrySet      = 0x2,
450    carryClear    = 0x3,
451    negative      = 0x8,
452    positive      = 0x9,
453    parity        = 0xa,
454    noParity      = 0xb
455  };
456
457  enum Prefix {
458    // segment overrides
459    CS_segment = 0x2e,
460    SS_segment = 0x36,
461    DS_segment = 0x3e,
462    ES_segment = 0x26,
463    FS_segment = 0x64,
464    GS_segment = 0x65,
465
466    REX        = 0x40,
467
468    REX_B      = 0x41,
469    REX_X      = 0x42,
470    REX_XB     = 0x43,
471    REX_R      = 0x44,
472    REX_RB     = 0x45,
473    REX_RX     = 0x46,
474    REX_RXB    = 0x47,
475
476    REX_W      = 0x48,
477
478    REX_WB     = 0x49,
479    REX_WX     = 0x4A,
480    REX_WXB    = 0x4B,
481    REX_WR     = 0x4C,
482    REX_WRB    = 0x4D,
483    REX_WRX    = 0x4E,
484    REX_WRXB   = 0x4F
485  };
486
487  enum WhichOperand {
488    // input to locate_operand, and format code for relocations
489    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
490    disp32_operand = 1,          // embedded 32-bit displacement or address
491    call32_operand = 2,          // embedded 32-bit self-relative displacement
492#ifndef _LP64
493    _WhichOperand_limit = 3
494#else
495     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
496    _WhichOperand_limit = 4
497#endif
498  };
499
500
501
502  // NOTE: The general philopsophy of the declarations here is that 64bit versions
503  // of instructions are freely declared without the need for wrapping them an ifdef.
504  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
505  // In the .cpp file the implementations are wrapped so that they are dropped out
506  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
507  // to the size it was prior to merging up the 32bit and 64bit assemblers.
508  //
509  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
510  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
511
512private:
513
514
515  // 64bit prefixes
516  int prefix_and_encode(int reg_enc, bool byteinst = false);
517  int prefixq_and_encode(int reg_enc);
518
519  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
520  int prefixq_and_encode(int dst_enc, int src_enc);
521
522  void prefix(Register reg);
523  void prefix(Address adr);
524  void prefixq(Address adr);
525
526  void prefix(Address adr, Register reg,  bool byteinst = false);
527  void prefixq(Address adr, Register reg);
528
529  void prefix(Address adr, XMMRegister reg);
530
531  void prefetch_prefix(Address src);
532
533  // Helper functions for groups of instructions
534  void emit_arith_b(int op1, int op2, Register dst, int imm8);
535
536  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
537  // only 32bit??
538  void emit_arith(int op1, int op2, Register dst, jobject obj);
539  void emit_arith(int op1, int op2, Register dst, Register src);
540
541  void emit_operand(Register reg,
542                    Register base, Register index, Address::ScaleFactor scale,
543                    int disp,
544                    RelocationHolder const& rspec,
545                    int rip_relative_correction = 0);
546
547  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
548
549  // operands that only take the original 32bit registers
550  void emit_operand32(Register reg, Address adr);
551
552  void emit_operand(XMMRegister reg,
553                    Register base, Register index, Address::ScaleFactor scale,
554                    int disp,
555                    RelocationHolder const& rspec);
556
557  void emit_operand(XMMRegister reg, Address adr);
558
559  void emit_operand(MMXRegister reg, Address adr);
560
561  // workaround gcc (3.2.1-7) bug
562  void emit_operand(Address adr, MMXRegister reg);
563
564
565  // Immediate-to-memory forms
566  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
567
568  void emit_farith(int b1, int b2, int i);
569
570
571 protected:
572  #ifdef ASSERT
573  void check_relocation(RelocationHolder const& rspec, int format);
574  #endif
575
576  inline void emit_long64(jlong x);
577
578  void emit_data(jint data, relocInfo::relocType    rtype, int format);
579  void emit_data(jint data, RelocationHolder const& rspec, int format);
580  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
581  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
582
583
584  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
585
586  // These are all easily abused and hence protected
587
588  // 32BIT ONLY SECTION
589#ifndef _LP64
590  // Make these disappear in 64bit mode since they would never be correct
591  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
592  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
593
594  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
595  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
596
597  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
598#else
599  // 64BIT ONLY SECTION
600  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
601
602  void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
603  void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
604
605  void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
606  void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
607#endif // _LP64
608
609  // These are unique in that we are ensured by the caller that the 32bit
610  // relative in these instructions will always be able to reach the potentially
611  // 64bit address described by entry. Since they can take a 64bit address they
612  // don't have the 32 suffix like the other instructions in this class.
613
614  void call_literal(address entry, RelocationHolder const& rspec);
615  void jmp_literal(address entry, RelocationHolder const& rspec);
616
617  // Avoid using directly section
618  // Instructions in this section are actually usable by anyone without danger
619  // of failure but have performance issues that are addressed my enhanced
620  // instructions which will do the proper thing base on the particular cpu.
621  // We protect them because we don't trust you...
622
623  // Don't use next inc() and dec() methods directly. INC & DEC instructions
624  // could cause a partial flag stall since they don't set CF flag.
625  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
626  // which call inc() & dec() or add() & sub() in accordance with
627  // the product flag UseIncDec value.
628
629  void decl(Register dst);
630  void decl(Address dst);
631  void decq(Register dst);
632  void decq(Address dst);
633
634  void incl(Register dst);
635  void incl(Address dst);
636  void incq(Register dst);
637  void incq(Address dst);
638
639  // New cpus require use of movsd and movss to avoid partial register stall
640  // when loading from memory. But for old Opteron use movlpd instead of movsd.
641  // The selection is done in MacroAssembler::movdbl() and movflt().
642
643  // Move Scalar Single-Precision Floating-Point Values
644  void movss(XMMRegister dst, Address src);
645  void movss(XMMRegister dst, XMMRegister src);
646  void movss(Address dst, XMMRegister src);
647
648  // Move Scalar Double-Precision Floating-Point Values
649  void movsd(XMMRegister dst, Address src);
650  void movsd(XMMRegister dst, XMMRegister src);
651  void movsd(Address dst, XMMRegister src);
652  void movlpd(XMMRegister dst, Address src);
653
654  // New cpus require use of movaps and movapd to avoid partial register stall
655  // when moving between registers.
656  void movaps(XMMRegister dst, XMMRegister src);
657  void movapd(XMMRegister dst, XMMRegister src);
658
659  // End avoid using directly
660
661
662  // Instruction prefixes
663  void prefix(Prefix p);
664
665  public:
666
667  // Creation
668  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
669
670  // Decoding
671  static address locate_operand(address inst, WhichOperand which);
672  static address locate_next_instruction(address inst);
673
674  // Utilities
675
676#ifdef _LP64
677 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
678 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
679#else
680 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
681 static bool is_simm32(int32_t x) { return true; }
682#endif // LP64
683
684  // Generic instructions
685  // Does 32bit or 64bit as needed for the platform. In some sense these
686  // belong in macro assembler but there is no need for both varieties to exist
687
688  void lea(Register dst, Address src);
689
690  void mov(Register dst, Register src);
691
692  void pusha();
693  void popa();
694
695  void pushf();
696  void popf();
697
698  void push(int32_t imm32);
699
700  void push(Register src);
701
702  void pop(Register dst);
703
704  // These are dummies to prevent surprise implicit conversions to Register
705  void push(void* v);
706  void pop(void* v);
707
708
709  // These do register sized moves/scans
710  void rep_mov();
711  void rep_set();
712  void repne_scan();
713#ifdef _LP64
714  void repne_scanl();
715#endif
716
717  // Vanilla instructions in lexical order
718
719  void adcl(Register dst, int32_t imm32);
720  void adcl(Register dst, Address src);
721  void adcl(Register dst, Register src);
722
723  void adcq(Register dst, int32_t imm32);
724  void adcq(Register dst, Address src);
725  void adcq(Register dst, Register src);
726
727
728  void addl(Address dst, int32_t imm32);
729  void addl(Address dst, Register src);
730  void addl(Register dst, int32_t imm32);
731  void addl(Register dst, Address src);
732  void addl(Register dst, Register src);
733
734  void addq(Address dst, int32_t imm32);
735  void addq(Address dst, Register src);
736  void addq(Register dst, int32_t imm32);
737  void addq(Register dst, Address src);
738  void addq(Register dst, Register src);
739
740
741  void addr_nop_4();
742  void addr_nop_5();
743  void addr_nop_7();
744  void addr_nop_8();
745
746  // Add Scalar Double-Precision Floating-Point Values
747  void addsd(XMMRegister dst, Address src);
748  void addsd(XMMRegister dst, XMMRegister src);
749
750  // Add Scalar Single-Precision Floating-Point Values
751  void addss(XMMRegister dst, Address src);
752  void addss(XMMRegister dst, XMMRegister src);
753
754  void andl(Register dst, int32_t imm32);
755  void andl(Register dst, Address src);
756  void andl(Register dst, Register src);
757
758  void andq(Register dst, int32_t imm32);
759  void andq(Register dst, Address src);
760  void andq(Register dst, Register src);
761
762
763  // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
764  void andpd(XMMRegister dst, Address src);
765  void andpd(XMMRegister dst, XMMRegister src);
766
767  void bsfl(Register dst, Register src);
768  void bsrl(Register dst, Register src);
769
770#ifdef _LP64
771  void bsfq(Register dst, Register src);
772  void bsrq(Register dst, Register src);
773#endif
774
775  void bswapl(Register reg);
776
777  void bswapq(Register reg);
778
779  void call(Label& L, relocInfo::relocType rtype);
780  void call(Register reg);  // push pc; pc <- reg
781  void call(Address adr);   // push pc; pc <- adr
782
783  void cdql();
784
785  void cdqq();
786
787  void cld() { emit_byte(0xfc); }
788
789  void clflush(Address adr);
790
791  void cmovl(Condition cc, Register dst, Register src);
792  void cmovl(Condition cc, Register dst, Address src);
793
794  void cmovq(Condition cc, Register dst, Register src);
795  void cmovq(Condition cc, Register dst, Address src);
796
797
798  void cmpb(Address dst, int imm8);
799
800  void cmpl(Address dst, int32_t imm32);
801
802  void cmpl(Register dst, int32_t imm32);
803  void cmpl(Register dst, Register src);
804  void cmpl(Register dst, Address src);
805
806  void cmpq(Address dst, int32_t imm32);
807  void cmpq(Address dst, Register src);
808
809  void cmpq(Register dst, int32_t imm32);
810  void cmpq(Register dst, Register src);
811  void cmpq(Register dst, Address src);
812
813  // these are dummies used to catch attempting to convert NULL to Register
814  void cmpl(Register dst, void* junk); // dummy
815  void cmpq(Register dst, void* junk); // dummy
816
817  void cmpw(Address dst, int imm16);
818
819  void cmpxchg8 (Address adr);
820
821  void cmpxchgl(Register reg, Address adr);
822
823  void cmpxchgq(Register reg, Address adr);
824
825  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
826  void comisd(XMMRegister dst, Address src);
827
828  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
829  void comiss(XMMRegister dst, Address src);
830
831  // Identify processor type and features
832  void cpuid() {
833    emit_byte(0x0F);
834    emit_byte(0xA2);
835  }
836
837  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
838  void cvtsd2ss(XMMRegister dst, XMMRegister src);
839
840  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
841  void cvtsi2sdl(XMMRegister dst, Register src);
842  void cvtsi2sdq(XMMRegister dst, Register src);
843
844  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
845  void cvtsi2ssl(XMMRegister dst, Register src);
846  void cvtsi2ssq(XMMRegister dst, Register src);
847
848  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
849  void cvtdq2pd(XMMRegister dst, XMMRegister src);
850
851  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
852  void cvtdq2ps(XMMRegister dst, XMMRegister src);
853
854  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
855  void cvtss2sd(XMMRegister dst, XMMRegister src);
856
857  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
858  void cvttsd2sil(Register dst, Address src);
859  void cvttsd2sil(Register dst, XMMRegister src);
860  void cvttsd2siq(Register dst, XMMRegister src);
861
862  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
863  void cvttss2sil(Register dst, XMMRegister src);
864  void cvttss2siq(Register dst, XMMRegister src);
865
866  // Divide Scalar Double-Precision Floating-Point Values
867  void divsd(XMMRegister dst, Address src);
868  void divsd(XMMRegister dst, XMMRegister src);
869
870  // Divide Scalar Single-Precision Floating-Point Values
871  void divss(XMMRegister dst, Address src);
872  void divss(XMMRegister dst, XMMRegister src);
873
874  void emms();
875
876  void fabs();
877
878  void fadd(int i);
879
880  void fadd_d(Address src);
881  void fadd_s(Address src);
882
883  // "Alternate" versions of x87 instructions place result down in FPU
884  // stack instead of on TOS
885
886  void fadda(int i); // "alternate" fadd
887  void faddp(int i = 1);
888
889  void fchs();
890
891  void fcom(int i);
892
893  void fcomp(int i = 1);
894  void fcomp_d(Address src);
895  void fcomp_s(Address src);
896
897  void fcompp();
898
899  void fcos();
900
901  void fdecstp();
902
903  void fdiv(int i);
904  void fdiv_d(Address src);
905  void fdivr_s(Address src);
906  void fdiva(int i);  // "alternate" fdiv
907  void fdivp(int i = 1);
908
909  void fdivr(int i);
910  void fdivr_d(Address src);
911  void fdiv_s(Address src);
912
913  void fdivra(int i); // "alternate" reversed fdiv
914
915  void fdivrp(int i = 1);
916
917  void ffree(int i = 0);
918
919  void fild_d(Address adr);
920  void fild_s(Address adr);
921
922  void fincstp();
923
924  void finit();
925
926  void fist_s (Address adr);
927  void fistp_d(Address adr);
928  void fistp_s(Address adr);
929
930  void fld1();
931
932  void fld_d(Address adr);
933  void fld_s(Address adr);
934  void fld_s(int index);
935  void fld_x(Address adr);  // extended-precision (80-bit) format
936
937  void fldcw(Address src);
938
939  void fldenv(Address src);
940
941  void fldlg2();
942
943  void fldln2();
944
945  void fldz();
946
947  void flog();
948  void flog10();
949
950  void fmul(int i);
951
952  void fmul_d(Address src);
953  void fmul_s(Address src);
954
955  void fmula(int i);  // "alternate" fmul
956
957  void fmulp(int i = 1);
958
959  void fnsave(Address dst);
960
961  void fnstcw(Address src);
962
963  void fnstsw_ax();
964
965  void fprem();
966  void fprem1();
967
968  void frstor(Address src);
969
970  void fsin();
971
972  void fsqrt();
973
974  void fst_d(Address adr);
975  void fst_s(Address adr);
976
977  void fstp_d(Address adr);
978  void fstp_d(int index);
979  void fstp_s(Address adr);
980  void fstp_x(Address adr); // extended-precision (80-bit) format
981
982  void fsub(int i);
983  void fsub_d(Address src);
984  void fsub_s(Address src);
985
986  void fsuba(int i);  // "alternate" fsub
987
988  void fsubp(int i = 1);
989
990  void fsubr(int i);
991  void fsubr_d(Address src);
992  void fsubr_s(Address src);
993
994  void fsubra(int i); // "alternate" reversed fsub
995
996  void fsubrp(int i = 1);
997
998  void ftan();
999
1000  void ftst();
1001
1002  void fucomi(int i = 1);
1003  void fucomip(int i = 1);
1004
1005  void fwait();
1006
1007  void fxch(int i = 1);
1008
1009  void fxrstor(Address src);
1010
1011  void fxsave(Address dst);
1012
1013  void fyl2x();
1014
1015  void hlt();
1016
1017  void idivl(Register src);
1018  void divl(Register src); // Unsigned division
1019
1020  void idivq(Register src);
1021
1022  void imull(Register dst, Register src);
1023  void imull(Register dst, Register src, int value);
1024
1025  void imulq(Register dst, Register src);
1026  void imulq(Register dst, Register src, int value);
1027
1028
1029  // jcc is the generic conditional branch generator to run-
1030  // time routines, jcc is used for branches to labels. jcc
1031  // takes a branch opcode (cc) and a label (L) and generates
1032  // either a backward branch or a forward branch and links it
1033  // to the label fixup chain. Usage:
1034  //
1035  // Label L;      // unbound label
1036  // jcc(cc, L);   // forward branch to unbound label
1037  // bind(L);      // bind label to the current pc
1038  // jcc(cc, L);   // backward branch to bound label
1039  // bind(L);      // illegal: a label may be bound only once
1040  //
1041  // Note: The same Label can be used for forward and backward branches
1042  // but it may be bound only once.
1043
1044  void jcc(Condition cc, Label& L,
1045           relocInfo::relocType rtype = relocInfo::none);
1046
1047  // Conditional jump to a 8-bit offset to L.
1048  // WARNING: be very careful using this for forward jumps.  If the label is
1049  // not bound within an 8-bit offset of this instruction, a run-time error
1050  // will occur.
1051  void jccb(Condition cc, Label& L);
1052
1053  void jmp(Address entry);    // pc <- entry
1054
1055  // Label operations & relative jumps (PPUM Appendix D)
1056  void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1057
1058  void jmp(Register entry); // pc <- entry
1059
1060  // Unconditional 8-bit offset jump to L.
1061  // WARNING: be very careful using this for forward jumps.  If the label is
1062  // not bound within an 8-bit offset of this instruction, a run-time error
1063  // will occur.
1064  void jmpb(Label& L);
1065
1066  void ldmxcsr( Address src );
1067
1068  void leal(Register dst, Address src);
1069
1070  void leaq(Register dst, Address src);
1071
1072  void lfence() {
1073    emit_byte(0x0F);
1074    emit_byte(0xAE);
1075    emit_byte(0xE8);
1076  }
1077
1078  void lock();
1079
1080  void lzcntl(Register dst, Register src);
1081
1082#ifdef _LP64
1083  void lzcntq(Register dst, Register src);
1084#endif
1085
1086  enum Membar_mask_bits {
1087    StoreStore = 1 << 3,
1088    LoadStore  = 1 << 2,
1089    StoreLoad  = 1 << 1,
1090    LoadLoad   = 1 << 0
1091  };
1092
1093  // Serializes memory and blows flags
1094  void membar(Membar_mask_bits order_constraint) {
1095    if (os::is_MP()) {
1096      // We only have to handle StoreLoad
1097      if (order_constraint & StoreLoad) {
1098        // All usable chips support "locked" instructions which suffice
1099        // as barriers, and are much faster than the alternative of
1100        // using cpuid instruction. We use here a locked add [esp],0.
1101        // This is conveniently otherwise a no-op except for blowing
1102        // flags.
1103        // Any change to this code may need to revisit other places in
1104        // the code where this idiom is used, in particular the
1105        // orderAccess code.
1106        lock();
1107        addl(Address(rsp, 0), 0);// Assert the lock# signal here
1108      }
1109    }
1110  }
1111
1112  void mfence();
1113
1114  // Moves
1115
1116  void mov64(Register dst, int64_t imm64);
1117
1118  void movb(Address dst, Register src);
1119  void movb(Address dst, int imm8);
1120  void movb(Register dst, Address src);
1121
1122  void movdl(XMMRegister dst, Register src);
1123  void movdl(Register dst, XMMRegister src);
1124
1125  // Move Double Quadword
1126  void movdq(XMMRegister dst, Register src);
1127  void movdq(Register dst, XMMRegister src);
1128
1129  // Move Aligned Double Quadword
1130  void movdqa(Address     dst, XMMRegister src);
1131  void movdqa(XMMRegister dst, Address src);
1132  void movdqa(XMMRegister dst, XMMRegister src);
1133
1134  // Move Unaligned Double Quadword
1135  void movdqu(Address     dst, XMMRegister src);
1136  void movdqu(XMMRegister dst, Address src);
1137  void movdqu(XMMRegister dst, XMMRegister src);
1138
1139  void movl(Register dst, int32_t imm32);
1140  void movl(Address dst, int32_t imm32);
1141  void movl(Register dst, Register src);
1142  void movl(Register dst, Address src);
1143  void movl(Address dst, Register src);
1144
1145  // These dummies prevent using movl from converting a zero (like NULL) into Register
1146  // by giving the compiler two choices it can't resolve
1147
1148  void movl(Address  dst, void* junk);
1149  void movl(Register dst, void* junk);
1150
1151#ifdef _LP64
1152  void movq(Register dst, Register src);
1153  void movq(Register dst, Address src);
1154  void movq(Address dst, Register src);
1155#endif
1156
1157  void movq(Address     dst, MMXRegister src );
1158  void movq(MMXRegister dst, Address src );
1159
1160#ifdef _LP64
1161  // These dummies prevent using movq from converting a zero (like NULL) into Register
1162  // by giving the compiler two choices it can't resolve
1163
1164  void movq(Address  dst, void* dummy);
1165  void movq(Register dst, void* dummy);
1166#endif
1167
1168  // Move Quadword
1169  void movq(Address     dst, XMMRegister src);
1170  void movq(XMMRegister dst, Address src);
1171
1172  void movsbl(Register dst, Address src);
1173  void movsbl(Register dst, Register src);
1174
1175#ifdef _LP64
1176  void movsbq(Register dst, Address src);
1177  void movsbq(Register dst, Register src);
1178
1179  // Move signed 32bit immediate to 64bit extending sign
1180  void movslq(Address dst, int32_t imm64);
1181  void movslq(Register dst, int32_t imm64);
1182
1183  void movslq(Register dst, Address src);
1184  void movslq(Register dst, Register src);
1185  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1186#endif
1187
1188  void movswl(Register dst, Address src);
1189  void movswl(Register dst, Register src);
1190
1191#ifdef _LP64
1192  void movswq(Register dst, Address src);
1193  void movswq(Register dst, Register src);
1194#endif
1195
1196  void movw(Address dst, int imm16);
1197  void movw(Register dst, Address src);
1198  void movw(Address dst, Register src);
1199
1200  void movzbl(Register dst, Address src);
1201  void movzbl(Register dst, Register src);
1202
1203#ifdef _LP64
1204  void movzbq(Register dst, Address src);
1205  void movzbq(Register dst, Register src);
1206#endif
1207
1208  void movzwl(Register dst, Address src);
1209  void movzwl(Register dst, Register src);
1210
1211#ifdef _LP64
1212  void movzwq(Register dst, Address src);
1213  void movzwq(Register dst, Register src);
1214#endif
1215
1216  void mull(Address src);
1217  void mull(Register src);
1218
1219  // Multiply Scalar Double-Precision Floating-Point Values
1220  void mulsd(XMMRegister dst, Address src);
1221  void mulsd(XMMRegister dst, XMMRegister src);
1222
1223  // Multiply Scalar Single-Precision Floating-Point Values
1224  void mulss(XMMRegister dst, Address src);
1225  void mulss(XMMRegister dst, XMMRegister src);
1226
1227  void negl(Register dst);
1228
1229#ifdef _LP64
1230  void negq(Register dst);
1231#endif
1232
1233  void nop(int i = 1);
1234
1235  void notl(Register dst);
1236
1237#ifdef _LP64
1238  void notq(Register dst);
1239#endif
1240
1241  void orl(Address dst, int32_t imm32);
1242  void orl(Register dst, int32_t imm32);
1243  void orl(Register dst, Address src);
1244  void orl(Register dst, Register src);
1245
1246  void orq(Address dst, int32_t imm32);
1247  void orq(Register dst, int32_t imm32);
1248  void orq(Register dst, Address src);
1249  void orq(Register dst, Register src);
1250
1251  // SSE4.2 string instructions
1252  void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1253  void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1254
1255#ifndef _LP64 // no 32bit push/pop on amd64
1256  void popl(Address dst);
1257#endif
1258
1259#ifdef _LP64
1260  void popq(Address dst);
1261#endif
1262
1263  void popcntl(Register dst, Address src);
1264  void popcntl(Register dst, Register src);
1265
1266#ifdef _LP64
1267  void popcntq(Register dst, Address src);
1268  void popcntq(Register dst, Register src);
1269#endif
1270
1271  // Prefetches (SSE, SSE2, 3DNOW only)
1272
1273  void prefetchnta(Address src);
1274  void prefetchr(Address src);
1275  void prefetcht0(Address src);
1276  void prefetcht1(Address src);
1277  void prefetcht2(Address src);
1278  void prefetchw(Address src);
1279
1280  // Shuffle Packed Doublewords
1281  void pshufd(XMMRegister dst, XMMRegister src, int mode);
1282  void pshufd(XMMRegister dst, Address src,     int mode);
1283
1284  // Shuffle Packed Low Words
1285  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1286  void pshuflw(XMMRegister dst, Address src,     int mode);
1287
1288  // Shift Right Logical Quadword Immediate
1289  void psrlq(XMMRegister dst, int shift);
1290
1291  // Logical Compare Double Quadword
1292  void ptest(XMMRegister dst, XMMRegister src);
1293  void ptest(XMMRegister dst, Address src);
1294
1295  // Interleave Low Bytes
1296  void punpcklbw(XMMRegister dst, XMMRegister src);
1297
1298#ifndef _LP64 // no 32bit push/pop on amd64
1299  void pushl(Address src);
1300#endif
1301
1302  void pushq(Address src);
1303
1304  // Xor Packed Byte Integer Values
1305  void pxor(XMMRegister dst, Address src);
1306  void pxor(XMMRegister dst, XMMRegister src);
1307
1308  void rcll(Register dst, int imm8);
1309
1310  void rclq(Register dst, int imm8);
1311
1312  void ret(int imm16);
1313
1314  void sahf();
1315
1316  void sarl(Register dst, int imm8);
1317  void sarl(Register dst);
1318
1319  void sarq(Register dst, int imm8);
1320  void sarq(Register dst);
1321
1322  void sbbl(Address dst, int32_t imm32);
1323  void sbbl(Register dst, int32_t imm32);
1324  void sbbl(Register dst, Address src);
1325  void sbbl(Register dst, Register src);
1326
1327  void sbbq(Address dst, int32_t imm32);
1328  void sbbq(Register dst, int32_t imm32);
1329  void sbbq(Register dst, Address src);
1330  void sbbq(Register dst, Register src);
1331
1332  void setb(Condition cc, Register dst);
1333
1334  void shldl(Register dst, Register src);
1335
1336  void shll(Register dst, int imm8);
1337  void shll(Register dst);
1338
1339  void shlq(Register dst, int imm8);
1340  void shlq(Register dst);
1341
1342  void shrdl(Register dst, Register src);
1343
1344  void shrl(Register dst, int imm8);
1345  void shrl(Register dst);
1346
1347  void shrq(Register dst, int imm8);
1348  void shrq(Register dst);
1349
1350  void smovl(); // QQQ generic?
1351
1352  // Compute Square Root of Scalar Double-Precision Floating-Point Value
1353  void sqrtsd(XMMRegister dst, Address src);
1354  void sqrtsd(XMMRegister dst, XMMRegister src);
1355
1356  // Compute Square Root of Scalar Single-Precision Floating-Point Value
1357  void sqrtss(XMMRegister dst, Address src);
1358  void sqrtss(XMMRegister dst, XMMRegister src);
1359
1360  void std() { emit_byte(0xfd); }
1361
1362  void stmxcsr( Address dst );
1363
1364  void subl(Address dst, int32_t imm32);
1365  void subl(Address dst, Register src);
1366  void subl(Register dst, int32_t imm32);
1367  void subl(Register dst, Address src);
1368  void subl(Register dst, Register src);
1369
1370  void subq(Address dst, int32_t imm32);
1371  void subq(Address dst, Register src);
1372  void subq(Register dst, int32_t imm32);
1373  void subq(Register dst, Address src);
1374  void subq(Register dst, Register src);
1375
1376
1377  // Subtract Scalar Double-Precision Floating-Point Values
1378  void subsd(XMMRegister dst, Address src);
1379  void subsd(XMMRegister dst, XMMRegister src);
1380
1381  // Subtract Scalar Single-Precision Floating-Point Values
1382  void subss(XMMRegister dst, Address src);
1383  void subss(XMMRegister dst, XMMRegister src);
1384
1385  void testb(Register dst, int imm8);
1386
1387  void testl(Register dst, int32_t imm32);
1388  void testl(Register dst, Register src);
1389  void testl(Register dst, Address src);
1390
1391  void testq(Register dst, int32_t imm32);
1392  void testq(Register dst, Register src);
1393
1394
1395  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1396  void ucomisd(XMMRegister dst, Address src);
1397  void ucomisd(XMMRegister dst, XMMRegister src);
1398
1399  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1400  void ucomiss(XMMRegister dst, Address src);
1401  void ucomiss(XMMRegister dst, XMMRegister src);
1402
1403  void xaddl(Address dst, Register src);
1404
1405  void xaddq(Address dst, Register src);
1406
1407  void xchgl(Register reg, Address adr);
1408  void xchgl(Register dst, Register src);
1409
1410  void xchgq(Register reg, Address adr);
1411  void xchgq(Register dst, Register src);
1412
1413  void xorl(Register dst, int32_t imm32);
1414  void xorl(Register dst, Address src);
1415  void xorl(Register dst, Register src);
1416
1417  void xorq(Register dst, Address src);
1418  void xorq(Register dst, Register src);
1419
1420  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1421  void xorpd(XMMRegister dst, Address src);
1422  void xorpd(XMMRegister dst, XMMRegister src);
1423
1424  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1425  void xorps(XMMRegister dst, Address src);
1426  void xorps(XMMRegister dst, XMMRegister src);
1427
1428  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1429};
1430
1431
1432// MacroAssembler extends Assembler by frequently used macros.
1433//
1434// Instructions for which a 'better' code sequence exists depending
1435// on arguments should also go in here.
1436
1437class MacroAssembler: public Assembler {
1438  friend class LIR_Assembler;
1439  friend class Runtime1;      // as_Address()
1440 protected:
1441
1442  Address as_Address(AddressLiteral adr);
1443  Address as_Address(ArrayAddress adr);
1444
1445  // Support for VM calls
1446  //
1447  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1448  // may customize this version by overriding it for its purposes (e.g., to save/restore
1449  // additional registers when doing a VM call).
1450#ifdef CC_INTERP
1451  // c++ interpreter never wants to use interp_masm version of call_VM
1452  #define VIRTUAL
1453#else
1454  #define VIRTUAL virtual
1455#endif
1456
1457  VIRTUAL void call_VM_leaf_base(
1458    address entry_point,               // the entry point
1459    int     number_of_arguments        // the number of arguments to pop after the call
1460  );
1461
1462  // This is the base routine called by the different versions of call_VM. The interpreter
1463  // may customize this version by overriding it for its purposes (e.g., to save/restore
1464  // additional registers when doing a VM call).
1465  //
1466  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1467  // returns the register which contains the thread upon return. If a thread register has been
1468  // specified, the return value will correspond to that register. If no last_java_sp is specified
1469  // (noreg) than rsp will be used instead.
1470  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1471    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1472    Register java_thread,              // the thread if computed before     ; use noreg otherwise
1473    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1474    address  entry_point,              // the entry point
1475    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1476    bool     check_exceptions          // whether to check for pending exceptions after return
1477  );
1478
1479  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1480  // The implementation is only non-empty for the InterpreterMacroAssembler,
1481  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1482  virtual void check_and_handle_popframe(Register java_thread);
1483  virtual void check_and_handle_earlyret(Register java_thread);
1484
1485  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1486
1487  // helpers for FPU flag access
1488  // tmp is a temporary register, if none is available use noreg
1489  void save_rax   (Register tmp);
1490  void restore_rax(Register tmp);
1491
1492 public:
1493  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1494
1495  // Support for NULL-checks
1496  //
1497  // Generates code that causes a NULL OS exception if the content of reg is NULL.
1498  // If the accessed location is M[reg + offset] and the offset is known, provide the
1499  // offset. No explicit code generation is needed if the offset is within a certain
1500  // range (0 <= offset <= page_size).
1501
1502  void null_check(Register reg, int offset = -1);
1503  static bool needs_explicit_null_check(intptr_t offset);
1504
1505  // Required platform-specific helpers for Label::patch_instructions.
1506  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1507  void pd_patch_instruction(address branch, address target);
1508#ifndef PRODUCT
1509  static void pd_print_patched_instruction(address branch);
1510#endif
1511
1512  // The following 4 methods return the offset of the appropriate move instruction
1513
1514  // Support for fast byte/short loading with zero extension (depending on particular CPU)
1515  int load_unsigned_byte(Register dst, Address src);
1516  int load_unsigned_short(Register dst, Address src);
1517
1518  // Support for fast byte/short loading with sign extension (depending on particular CPU)
1519  int load_signed_byte(Register dst, Address src);
1520  int load_signed_short(Register dst, Address src);
1521
1522  // Support for sign-extension (hi:lo = extend_sign(lo))
1523  void extend_sign(Register hi, Register lo);
1524
1525  // Loading values by size and signed-ness
1526  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
1527
1528  // Support for inc/dec with optimal instruction selection depending on value
1529
1530  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1531  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1532
1533  void decrementl(Address dst, int value = 1);
1534  void decrementl(Register reg, int value = 1);
1535
1536  void decrementq(Register reg, int value = 1);
1537  void decrementq(Address dst, int value = 1);
1538
1539  void incrementl(Address dst, int value = 1);
1540  void incrementl(Register reg, int value = 1);
1541
1542  void incrementq(Register reg, int value = 1);
1543  void incrementq(Address dst, int value = 1);
1544
1545
1546  // Support optimal SSE move instructions.
1547  void movflt(XMMRegister dst, XMMRegister src) {
1548    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1549    else                       { movss (dst, src); return; }
1550  }
1551  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1552  void movflt(XMMRegister dst, AddressLiteral src);
1553  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1554
1555  void movdbl(XMMRegister dst, XMMRegister src) {
1556    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1557    else                       { movsd (dst, src); return; }
1558  }
1559
1560  void movdbl(XMMRegister dst, AddressLiteral src);
1561
1562  void movdbl(XMMRegister dst, Address src) {
1563    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1564    else                         { movlpd(dst, src); return; }
1565  }
1566  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1567
1568  void incrementl(AddressLiteral dst);
1569  void incrementl(ArrayAddress dst);
1570
1571  // Alignment
1572  void align(int modulus);
1573
1574  // Misc
1575  void fat_nop(); // 5 byte nop
1576
1577  // Stack frame creation/removal
1578  void enter();
1579  void leave();
1580
1581  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1582  // The pointer will be loaded into the thread register.
1583  void get_thread(Register thread);
1584
1585
1586  // Support for VM calls
1587  //
1588  // It is imperative that all calls into the VM are handled via the call_VM macros.
1589  // They make sure that the stack linkage is setup correctly. call_VM's correspond
1590  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1591
1592
1593  void call_VM(Register oop_result,
1594               address entry_point,
1595               bool check_exceptions = true);
1596  void call_VM(Register oop_result,
1597               address entry_point,
1598               Register arg_1,
1599               bool check_exceptions = true);
1600  void call_VM(Register oop_result,
1601               address entry_point,
1602               Register arg_1, Register arg_2,
1603               bool check_exceptions = true);
1604  void call_VM(Register oop_result,
1605               address entry_point,
1606               Register arg_1, Register arg_2, Register arg_3,
1607               bool check_exceptions = true);
1608
1609  // Overloadings with last_Java_sp
1610  void call_VM(Register oop_result,
1611               Register last_java_sp,
1612               address entry_point,
1613               int number_of_arguments = 0,
1614               bool check_exceptions = true);
1615  void call_VM(Register oop_result,
1616               Register last_java_sp,
1617               address entry_point,
1618               Register arg_1, bool
1619               check_exceptions = true);
1620  void call_VM(Register oop_result,
1621               Register last_java_sp,
1622               address entry_point,
1623               Register arg_1, Register arg_2,
1624               bool check_exceptions = true);
1625  void call_VM(Register oop_result,
1626               Register last_java_sp,
1627               address entry_point,
1628               Register arg_1, Register arg_2, Register arg_3,
1629               bool check_exceptions = true);
1630
1631  void call_VM_leaf(address entry_point,
1632                    int number_of_arguments = 0);
1633  void call_VM_leaf(address entry_point,
1634                    Register arg_1);
1635  void call_VM_leaf(address entry_point,
1636                    Register arg_1, Register arg_2);
1637  void call_VM_leaf(address entry_point,
1638                    Register arg_1, Register arg_2, Register arg_3);
1639
1640  // last Java Frame (fills frame anchor)
1641  void set_last_Java_frame(Register thread,
1642                           Register last_java_sp,
1643                           Register last_java_fp,
1644                           address last_java_pc);
1645
1646  // thread in the default location (r15_thread on 64bit)
1647  void set_last_Java_frame(Register last_java_sp,
1648                           Register last_java_fp,
1649                           address last_java_pc);
1650
1651  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1652
1653  // thread in the default location (r15_thread on 64bit)
1654  void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1655
1656  // Stores
1657  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1658  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1659
1660  void g1_write_barrier_pre(Register obj,
1661#ifndef _LP64
1662                            Register thread,
1663#endif
1664                            Register tmp,
1665                            Register tmp2,
1666                            bool     tosca_live);
1667  void g1_write_barrier_post(Register store_addr,
1668                             Register new_val,
1669#ifndef _LP64
1670                             Register thread,
1671#endif
1672                             Register tmp,
1673                             Register tmp2);
1674
1675
1676  // split store_check(Register obj) to enhance instruction interleaving
1677  void store_check_part_1(Register obj);
1678  void store_check_part_2(Register obj);
1679
1680  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1681  void c2bool(Register x);
1682
1683  // C++ bool manipulation
1684
1685  void movbool(Register dst, Address src);
1686  void movbool(Address dst, bool boolconst);
1687  void movbool(Address dst, Register src);
1688  void testbool(Register dst);
1689
1690  // oop manipulations
1691  void load_klass(Register dst, Register src);
1692  void store_klass(Register dst, Register src);
1693
1694  void load_heap_oop(Register dst, Address src);
1695  void store_heap_oop(Address dst, Register src);
1696
1697  // Used for storing NULL. All other oop constants should be
1698  // stored using routines that take a jobject.
1699  void store_heap_oop_null(Address dst);
1700
1701  void load_prototype_header(Register dst, Register src);
1702
1703#ifdef _LP64
1704  void store_klass_gap(Register dst, Register src);
1705
1706  // This dummy is to prevent a call to store_heap_oop from
1707  // converting a zero (like NULL) into a Register by giving
1708  // the compiler two choices it can't resolve
1709
1710  void store_heap_oop(Address dst, void* dummy);
1711
1712  void encode_heap_oop(Register r);
1713  void decode_heap_oop(Register r);
1714  void encode_heap_oop_not_null(Register r);
1715  void decode_heap_oop_not_null(Register r);
1716  void encode_heap_oop_not_null(Register dst, Register src);
1717  void decode_heap_oop_not_null(Register dst, Register src);
1718
1719  void set_narrow_oop(Register dst, jobject obj);
1720  void set_narrow_oop(Address dst, jobject obj);
1721  void cmp_narrow_oop(Register dst, jobject obj);
1722  void cmp_narrow_oop(Address dst, jobject obj);
1723
1724  // if heap base register is used - reinit it with the correct value
1725  void reinit_heapbase();
1726
1727  DEBUG_ONLY(void verify_heapbase(const char* msg);)
1728
1729#endif // _LP64
1730
1731  // Int division/remainder for Java
1732  // (as idivl, but checks for special case as described in JVM spec.)
1733  // returns idivl instruction offset for implicit exception handling
1734  int corrected_idivl(Register reg);
1735
1736  // Long division/remainder for Java
1737  // (as idivq, but checks for special case as described in JVM spec.)
1738  // returns idivq instruction offset for implicit exception handling
1739  int corrected_idivq(Register reg);
1740
1741  void int3();
1742
1743  // Long operation macros for a 32bit cpu
1744  // Long negation for Java
1745  void lneg(Register hi, Register lo);
1746
1747  // Long multiplication for Java
1748  // (destroys contents of eax, ebx, ecx and edx)
1749  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1750
1751  // Long shifts for Java
1752  // (semantics as described in JVM spec.)
1753  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1754  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1755
1756  // Long compare for Java
1757  // (semantics as described in JVM spec.)
1758  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1759
1760
1761  // misc
1762
1763  // Sign extension
1764  void sign_extend_short(Register reg);
1765  void sign_extend_byte(Register reg);
1766
1767  // Division by power of 2, rounding towards 0
1768  void division_with_shift(Register reg, int shift_value);
1769
1770  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1771  //
1772  // CF (corresponds to C0) if x < y
1773  // PF (corresponds to C2) if unordered
1774  // ZF (corresponds to C3) if x = y
1775  //
1776  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1777  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1778  void fcmp(Register tmp);
1779  // Variant of the above which allows y to be further down the stack
1780  // and which only pops x and y if specified. If pop_right is
1781  // specified then pop_left must also be specified.
1782  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1783
1784  // Floating-point comparison for Java
1785  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1786  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1787  // (semantics as described in JVM spec.)
1788  void fcmp2int(Register dst, bool unordered_is_less);
1789  // Variant of the above which allows y to be further down the stack
1790  // and which only pops x and y if specified. If pop_right is
1791  // specified then pop_left must also be specified.
1792  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1793
1794  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1795  // tmp is a temporary register, if none is available use noreg
1796  void fremr(Register tmp);
1797
1798
1799  // same as fcmp2int, but using SSE2
1800  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1801  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1802
1803  // Inlined sin/cos generator for Java; must not use CPU instruction
1804  // directly on Intel as it does not have high enough precision
1805  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1806  // number of FPU stack slots in use; all but the topmost will
1807  // require saving if a slow case is necessary. Assumes argument is
1808  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1809  // this code.
1810  void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1811
1812  // branch to L if FPU flag C2 is set/not set
1813  // tmp is a temporary register, if none is available use noreg
1814  void jC2 (Register tmp, Label& L);
1815  void jnC2(Register tmp, Label& L);
1816
1817  // Pop ST (ffree & fincstp combined)
1818  void fpop();
1819
1820  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1821  void push_fTOS();
1822
1823  // pops double TOS element from CPU stack and pushes on FPU stack
1824  void pop_fTOS();
1825
1826  void empty_FPU_stack();
1827
1828  void push_IU_state();
1829  void pop_IU_state();
1830
1831  void push_FPU_state();
1832  void pop_FPU_state();
1833
1834  void push_CPU_state();
1835  void pop_CPU_state();
1836
1837  // Round up to a power of two
1838  void round_to(Register reg, int modulus);
1839
1840  // Callee saved registers handling
1841  void push_callee_saved_registers();
1842  void pop_callee_saved_registers();
1843
1844  // allocation
1845  void eden_allocate(
1846    Register obj,                      // result: pointer to object after successful allocation
1847    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1848    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1849    Register t1,                       // temp register
1850    Label&   slow_case                 // continuation point if fast allocation fails
1851  );
1852  void tlab_allocate(
1853    Register obj,                      // result: pointer to object after successful allocation
1854    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1855    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1856    Register t1,                       // temp register
1857    Register t2,                       // temp register
1858    Label&   slow_case                 // continuation point if fast allocation fails
1859  );
1860  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
1861
1862  // interface method calling
1863  void lookup_interface_method(Register recv_klass,
1864                               Register intf_klass,
1865                               RegisterOrConstant itable_index,
1866                               Register method_result,
1867                               Register scan_temp,
1868                               Label& no_such_interface);
1869
1870  // Test sub_klass against super_klass, with fast and slow paths.
1871
1872  // The fast path produces a tri-state answer: yes / no / maybe-slow.
1873  // One of the three labels can be NULL, meaning take the fall-through.
1874  // If super_check_offset is -1, the value is loaded up from super_klass.
1875  // No registers are killed, except temp_reg.
1876  void check_klass_subtype_fast_path(Register sub_klass,
1877                                     Register super_klass,
1878                                     Register temp_reg,
1879                                     Label* L_success,
1880                                     Label* L_failure,
1881                                     Label* L_slow_path,
1882                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1883
1884  // The rest of the type check; must be wired to a corresponding fast path.
1885  // It does not repeat the fast path logic, so don't use it standalone.
1886  // The temp_reg and temp2_reg can be noreg, if no temps are available.
1887  // Updates the sub's secondary super cache as necessary.
1888  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1889  void check_klass_subtype_slow_path(Register sub_klass,
1890                                     Register super_klass,
1891                                     Register temp_reg,
1892                                     Register temp2_reg,
1893                                     Label* L_success,
1894                                     Label* L_failure,
1895                                     bool set_cond_codes = false);
1896
1897  // Simplified, combined version, good for typical uses.
1898  // Falls through on failure.
1899  void check_klass_subtype(Register sub_klass,
1900                           Register super_klass,
1901                           Register temp_reg,
1902                           Label& L_success);
1903
1904  // method handles (JSR 292)
1905  void check_method_handle_type(Register mtype_reg, Register mh_reg,
1906                                Register temp_reg,
1907                                Label& wrong_method_type);
1908  void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
1909                                  Register temp_reg);
1910  void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
1911  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1912
1913
1914  //----
1915  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1916
1917  // Debugging
1918
1919  // only if +VerifyOops
1920  void verify_oop(Register reg, const char* s = "broken oop");
1921  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1922
1923  // only if +VerifyFPU
1924  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1925
1926  // prints msg, dumps registers and stops execution
1927  void stop(const char* msg);
1928
1929  // prints msg and continues
1930  void warn(const char* msg);
1931
1932  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1933  static void debug64(char* msg, int64_t pc, int64_t regs[]);
1934
1935  void os_breakpoint();
1936
1937  void untested()                                { stop("untested"); }
1938
1939  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
1940
1941  void should_not_reach_here()                   { stop("should not reach here"); }
1942
1943  void print_CPU_state();
1944
1945  // Stack overflow checking
1946  void bang_stack_with_offset(int offset) {
1947    // stack grows down, caller passes positive offset
1948    assert(offset > 0, "must bang with negative offset");
1949    movl(Address(rsp, (-offset)), rax);
1950  }
1951
1952  // Writes to stack successive pages until offset reached to check for
1953  // stack overflow + shadow pages.  Also, clobbers tmp
1954  void bang_stack_size(Register size, Register tmp);
1955
1956  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1957                                                Register tmp,
1958                                                int offset);
1959
1960  // Support for serializing memory accesses between threads
1961  void serialize_memory(Register thread, Register tmp);
1962
1963  void verify_tlab();
1964
1965  // Biased locking support
1966  // lock_reg and obj_reg must be loaded up with the appropriate values.
1967  // swap_reg must be rax, and is killed.
1968  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1969  // be killed; if not supplied, push/pop will be used internally to
1970  // allocate a temporary (inefficient, avoid if possible).
1971  // Optional slow case is for implementations (interpreter and C1) which branch to
1972  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1973  // Returns offset of first potentially-faulting instruction for null
1974  // check info (currently consumed only by C1). If
1975  // swap_reg_contains_mark is true then returns -1 as it is assumed
1976  // the calling code has already passed any potential faults.
1977  int biased_locking_enter(Register lock_reg, Register obj_reg,
1978                           Register swap_reg, Register tmp_reg,
1979                           bool swap_reg_contains_mark,
1980                           Label& done, Label* slow_case = NULL,
1981                           BiasedLockingCounters* counters = NULL);
1982  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
1983
1984
1985  Condition negate_condition(Condition cond);
1986
1987  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
1988  // operands. In general the names are modified to avoid hiding the instruction in Assembler
1989  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
1990  // here in MacroAssembler. The major exception to this rule is call
1991
1992  // Arithmetics
1993
1994
1995  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
1996  void addptr(Address dst, Register src);
1997
1998  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
1999  void addptr(Register dst, int32_t src);
2000  void addptr(Register dst, Register src);
2001
2002  void andptr(Register dst, int32_t src);
2003  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
2004
2005  void cmp8(AddressLiteral src1, int imm);
2006
2007  // renamed to drag out the casting of address to int32_t/intptr_t
2008  void cmp32(Register src1, int32_t imm);
2009
2010  void cmp32(AddressLiteral src1, int32_t imm);
2011  // compare reg - mem, or reg - &mem
2012  void cmp32(Register src1, AddressLiteral src2);
2013
2014  void cmp32(Register src1, Address src2);
2015
2016#ifndef _LP64
2017  void cmpoop(Address dst, jobject obj);
2018  void cmpoop(Register dst, jobject obj);
2019#endif // _LP64
2020
2021  // NOTE src2 must be the lval. This is NOT an mem-mem compare
2022  void cmpptr(Address src1, AddressLiteral src2);
2023
2024  void cmpptr(Register src1, AddressLiteral src2);
2025
2026  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2027  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2028  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2029
2030  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2031  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2032
2033  // cmp64 to avoild hiding cmpq
2034  void cmp64(Register src1, AddressLiteral src);
2035
2036  void cmpxchgptr(Register reg, Address adr);
2037
2038  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2039
2040
2041  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2042
2043
2044  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2045
2046  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2047
2048  void shlptr(Register dst, int32_t shift);
2049  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2050
2051  void shrptr(Register dst, int32_t shift);
2052  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2053
2054  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2055  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2056
2057  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2058
2059  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2060  void subptr(Register dst, int32_t src);
2061  void subptr(Register dst, Register src);
2062
2063
2064  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2065  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2066
2067  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2068  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2069
2070  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2071
2072
2073
2074  // Helper functions for statistics gathering.
2075  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2076  void cond_inc32(Condition cond, AddressLiteral counter_addr);
2077  // Unconditional atomic increment.
2078  void atomic_incl(AddressLiteral counter_addr);
2079
2080  void lea(Register dst, AddressLiteral adr);
2081  void lea(Address dst, AddressLiteral adr);
2082  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2083
2084  void leal32(Register dst, Address src) { leal(dst, src); }
2085
2086  void test32(Register src1, AddressLiteral src2);
2087
2088  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2089  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2090  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2091
2092  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2093  void testptr(Register src1, Register src2);
2094
2095  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2096  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2097
2098  // Calls
2099
2100  void call(Label& L, relocInfo::relocType rtype);
2101  void call(Register entry);
2102
2103  // NOTE: this call tranfers to the effective address of entry NOT
2104  // the address contained by entry. This is because this is more natural
2105  // for jumps/calls.
2106  void call(AddressLiteral entry);
2107
2108  // Jumps
2109
2110  // NOTE: these jumps tranfer to the effective address of dst NOT
2111  // the address contained by dst. This is because this is more natural
2112  // for jumps/calls.
2113  void jump(AddressLiteral dst);
2114  void jump_cc(Condition cc, AddressLiteral dst);
2115
2116  // 32bit can do a case table jump in one instruction but we no longer allow the base
2117  // to be installed in the Address class. This jump will tranfers to the address
2118  // contained in the location described by entry (not the address of entry)
2119  void jump(ArrayAddress entry);
2120
2121  // Floating
2122
2123  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2124  void andpd(XMMRegister dst, AddressLiteral src);
2125
2126  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2127  void comiss(XMMRegister dst, AddressLiteral src);
2128
2129  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2130  void comisd(XMMRegister dst, AddressLiteral src);
2131
2132  void fadd_s(Address src)        { Assembler::fadd_s(src); }
2133  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
2134
2135  void fldcw(Address src) { Assembler::fldcw(src); }
2136  void fldcw(AddressLiteral src);
2137
2138  void fld_s(int index)   { Assembler::fld_s(index); }
2139  void fld_s(Address src) { Assembler::fld_s(src); }
2140  void fld_s(AddressLiteral src);
2141
2142  void fld_d(Address src) { Assembler::fld_d(src); }
2143  void fld_d(AddressLiteral src);
2144
2145  void fld_x(Address src) { Assembler::fld_x(src); }
2146  void fld_x(AddressLiteral src);
2147
2148  void fmul_s(Address src)        { Assembler::fmul_s(src); }
2149  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
2150
2151  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2152  void ldmxcsr(AddressLiteral src);
2153
2154private:
2155  // these are private because users should be doing movflt/movdbl
2156
2157  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2158  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2159  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2160  void movss(XMMRegister dst, AddressLiteral src);
2161
2162  void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2163  void movlpd(XMMRegister dst, AddressLiteral src);
2164
2165public:
2166
2167  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
2168  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
2169  void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
2170
2171  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
2172  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
2173  void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
2174
2175  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
2176  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
2177  void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
2178
2179  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
2180  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
2181  void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
2182
2183  void movsd(XMMRegister dst, XMMRegister src)    { Assembler::movsd(dst, src); }
2184  void movsd(Address dst, XMMRegister src)        { Assembler::movsd(dst, src); }
2185  void movsd(XMMRegister dst, Address src)        { Assembler::movsd(dst, src); }
2186  void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
2187
2188  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
2189  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
2190  void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
2191
2192  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
2193  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
2194  void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
2195
2196  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
2197  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
2198  void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
2199
2200  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
2201  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
2202  void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
2203
2204  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
2205  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
2206  void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
2207
2208  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
2209  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
2210  void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
2211
2212  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2213  void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2214  void ucomiss(XMMRegister dst, AddressLiteral src);
2215
2216  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2217  void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2218  void ucomisd(XMMRegister dst, AddressLiteral src);
2219
2220  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2221  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2222  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2223  void xorpd(XMMRegister dst, AddressLiteral src);
2224
2225  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2226  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2227  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2228  void xorps(XMMRegister dst, AddressLiteral src);
2229
2230  // Data
2231
2232  void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2233
2234  void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2235  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2236
2237  void movoop(Register dst, jobject obj);
2238  void movoop(Address dst, jobject obj);
2239
2240  void movptr(ArrayAddress dst, Register src);
2241  // can this do an lea?
2242  void movptr(Register dst, ArrayAddress src);
2243
2244  void movptr(Register dst, Address src);
2245
2246  void movptr(Register dst, AddressLiteral src);
2247
2248  void movptr(Register dst, intptr_t src);
2249  void movptr(Register dst, Register src);
2250  void movptr(Address dst, intptr_t src);
2251
2252  void movptr(Address dst, Register src);
2253
2254#ifdef _LP64
2255  // Generally the next two are only used for moving NULL
2256  // Although there are situations in initializing the mark word where
2257  // they could be used. They are dangerous.
2258
2259  // They only exist on LP64 so that int32_t and intptr_t are not the same
2260  // and we have ambiguous declarations.
2261
2262  void movptr(Address dst, int32_t imm32);
2263  void movptr(Register dst, int32_t imm32);
2264#endif // _LP64
2265
2266  // to avoid hiding movl
2267  void mov32(AddressLiteral dst, Register src);
2268  void mov32(Register dst, AddressLiteral src);
2269
2270  // to avoid hiding movb
2271  void movbyte(ArrayAddress dst, int src);
2272
2273  // Can push value or effective address
2274  void pushptr(AddressLiteral src);
2275
2276  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2277  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2278
2279  void pushoop(jobject obj);
2280
2281  // sign extend as need a l to ptr sized element
2282  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2283  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2284
2285  // IndexOf strings.
2286  void string_indexof(Register str1, Register str2,
2287                      Register cnt1, Register cnt2, Register result,
2288                      XMMRegister vec, Register tmp);
2289
2290  // Compare strings.
2291  void string_compare(Register str1, Register str2,
2292                      Register cnt1, Register cnt2, Register result,
2293                      XMMRegister vec1, XMMRegister vec2);
2294
2295  // Compare char[] arrays.
2296  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2297                          Register limit, Register result, Register chr,
2298                          XMMRegister vec1, XMMRegister vec2);
2299
2300  // Fill primitive arrays
2301  void generate_fill(BasicType t, bool aligned,
2302                     Register to, Register value, Register count,
2303                     Register rtmp, XMMRegister xtmp);
2304
2305#undef VIRTUAL
2306
2307};
2308
2309/**
2310 * class SkipIfEqual:
2311 *
2312 * Instantiating this class will result in assembly code being output that will
2313 * jump around any code emitted between the creation of the instance and it's
2314 * automatic destruction at the end of a scope block, depending on the value of
2315 * the flag passed to the constructor, which will be checked at run-time.
2316 */
2317class SkipIfEqual {
2318 private:
2319  MacroAssembler* _masm;
2320  Label _label;
2321
2322 public:
2323   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2324   ~SkipIfEqual();
2325};
2326
2327#ifdef ASSERT
2328inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2329#endif
2330
2331#endif // CPU_X86_VM_ASSEMBLER_X86_HPP
2332