assembler_x86.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25class BiasedLockingCounters;
26
27// Contains all the definitions needed for x86 assembly code generation.
28
29// Calling convention
30class Argument VALUE_OBJ_CLASS_SPEC {
31 public:
32  enum {
33#ifdef _LP64
34#ifdef _WIN64
35    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
36    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
37#else
38    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
39    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
40#endif // _WIN64
41    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
42    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
43#else
44    n_register_parameters = 0   // 0 registers used to pass arguments
45#endif // _LP64
46  };
47};
48
49
50#ifdef _LP64
51// Symbolically name the register arguments used by the c calling convention.
52// Windows is different from linux/solaris. So much for standards...
53
54#ifdef _WIN64
55
56REGISTER_DECLARATION(Register, c_rarg0, rcx);
57REGISTER_DECLARATION(Register, c_rarg1, rdx);
58REGISTER_DECLARATION(Register, c_rarg2, r8);
59REGISTER_DECLARATION(Register, c_rarg3, r9);
60
61REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
62REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
63REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
64REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
65
66#else
67
68REGISTER_DECLARATION(Register, c_rarg0, rdi);
69REGISTER_DECLARATION(Register, c_rarg1, rsi);
70REGISTER_DECLARATION(Register, c_rarg2, rdx);
71REGISTER_DECLARATION(Register, c_rarg3, rcx);
72REGISTER_DECLARATION(Register, c_rarg4, r8);
73REGISTER_DECLARATION(Register, c_rarg5, r9);
74
75REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
76REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
77REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
78REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
79REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
80REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
81REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
82REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
83
84#endif // _WIN64
85
86// Symbolically name the register arguments used by the Java calling convention.
87// We have control over the convention for java so we can do what we please.
88// What pleases us is to offset the java calling convention so that when
89// we call a suitable jni method the arguments are lined up and we don't
90// have to do little shuffling. A suitable jni method is non-static and a
91// small number of arguments (two fewer args on windows)
92//
93//        |-------------------------------------------------------|
94//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
95//        |-------------------------------------------------------|
96//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
97//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
98//        |-------------------------------------------------------|
99//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
100//        |-------------------------------------------------------|
101
102REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
103REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
104REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
105// Windows runs out of register args here
106#ifdef _WIN64
107REGISTER_DECLARATION(Register, j_rarg3, rdi);
108REGISTER_DECLARATION(Register, j_rarg4, rsi);
109#else
110REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
111REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
112#endif /* _WIN64 */
113REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
114
115REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
116REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
117REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
118REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
119REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
120REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
121REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
122REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
123
124REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
125REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
126
127REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
128REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
129
130#else
131// rscratch1 will apear in 32bit code that is dead but of course must compile
132// Using noreg ensures if the dead code is incorrectly live and executed it
133// will cause an assertion failure
134#define rscratch1 noreg
135
136#endif // _LP64
137
138// Address is an abstraction used to represent a memory location
139// using any of the amd64 addressing modes with one object.
140//
141// Note: A register location is represented via a Register, not
142//       via an address for efficiency & simplicity reasons.
143
144class ArrayAddress;
145
146class Address VALUE_OBJ_CLASS_SPEC {
147 public:
148  enum ScaleFactor {
149    no_scale = -1,
150    times_1  =  0,
151    times_2  =  1,
152    times_4  =  2,
153    times_8  =  3,
154    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
155  };
156  static ScaleFactor times(int size) {
157    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
158    if (size == 8)  return times_8;
159    if (size == 4)  return times_4;
160    if (size == 2)  return times_2;
161    return times_1;
162  }
163  static int scale_size(ScaleFactor scale) {
164    assert(scale != no_scale, "");
165    assert(((1 << (int)times_1) == 1 &&
166            (1 << (int)times_2) == 2 &&
167            (1 << (int)times_4) == 4 &&
168            (1 << (int)times_8) == 8), "");
169    return (1 << (int)scale);
170  }
171
172 private:
173  Register         _base;
174  Register         _index;
175  ScaleFactor      _scale;
176  int              _disp;
177  RelocationHolder _rspec;
178
179  // Easily misused constructors make them private
180  // %%% can we make these go away?
181  NOT_LP64(Address(address loc, RelocationHolder spec);)
182  Address(int disp, address loc, relocInfo::relocType rtype);
183  Address(int disp, address loc, RelocationHolder spec);
184
185 public:
186
187 int disp() { return _disp; }
188  // creation
189  Address()
190    : _base(noreg),
191      _index(noreg),
192      _scale(no_scale),
193      _disp(0) {
194  }
195
196  // No default displacement otherwise Register can be implicitly
197  // converted to 0(Register) which is quite a different animal.
198
199  Address(Register base, int disp)
200    : _base(base),
201      _index(noreg),
202      _scale(no_scale),
203      _disp(disp) {
204  }
205
206  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
207    : _base (base),
208      _index(index),
209      _scale(scale),
210      _disp (disp) {
211    assert(!index->is_valid() == (scale == Address::no_scale),
212           "inconsistent address");
213  }
214
215  Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
216    : _base (base),
217      _index(index.register_or_noreg()),
218      _scale(scale),
219      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
220    if (!index.is_register())  scale = Address::no_scale;
221    assert(!_index->is_valid() == (scale == Address::no_scale),
222           "inconsistent address");
223  }
224
225  Address plus_disp(int disp) const {
226    Address a = (*this);
227    a._disp += disp;
228    return a;
229  }
230
231  // The following two overloads are used in connection with the
232  // ByteSize type (see sizes.hpp).  They simplify the use of
233  // ByteSize'd arguments in assembly code. Note that their equivalent
234  // for the optimized build are the member functions with int disp
235  // argument since ByteSize is mapped to an int type in that case.
236  //
237  // Note: DO NOT introduce similar overloaded functions for WordSize
238  // arguments as in the optimized mode, both ByteSize and WordSize
239  // are mapped to the same type and thus the compiler cannot make a
240  // distinction anymore (=> compiler errors).
241
242#ifdef ASSERT
243  Address(Register base, ByteSize disp)
244    : _base(base),
245      _index(noreg),
246      _scale(no_scale),
247      _disp(in_bytes(disp)) {
248  }
249
250  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
251    : _base(base),
252      _index(index),
253      _scale(scale),
254      _disp(in_bytes(disp)) {
255    assert(!index->is_valid() == (scale == Address::no_scale),
256           "inconsistent address");
257  }
258
259  Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
260    : _base (base),
261      _index(index.register_or_noreg()),
262      _scale(scale),
263      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
264    if (!index.is_register())  scale = Address::no_scale;
265    assert(!_index->is_valid() == (scale == Address::no_scale),
266           "inconsistent address");
267  }
268
269#endif // ASSERT
270
271  // accessors
272  bool        uses(Register reg) const { return _base == reg || _index == reg; }
273  Register    base()             const { return _base;  }
274  Register    index()            const { return _index; }
275  ScaleFactor scale()            const { return _scale; }
276  int         disp()             const { return _disp;  }
277
278  // Convert the raw encoding form into the form expected by the constructor for
279  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
280  // that to noreg for the Address constructor.
281  static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
282
283  static Address make_array(ArrayAddress);
284
285 private:
286  bool base_needs_rex() const {
287    return _base != noreg && _base->encoding() >= 8;
288  }
289
290  bool index_needs_rex() const {
291    return _index != noreg &&_index->encoding() >= 8;
292  }
293
294  relocInfo::relocType reloc() const { return _rspec.type(); }
295
296  friend class Assembler;
297  friend class MacroAssembler;
298  friend class LIR_Assembler; // base/index/scale/disp
299};
300
301//
302// AddressLiteral has been split out from Address because operands of this type
303// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
304// the few instructions that need to deal with address literals are unique and the
305// MacroAssembler does not have to implement every instruction in the Assembler
306// in order to search for address literals that may need special handling depending
307// on the instruction and the platform. As small step on the way to merging i486/amd64
308// directories.
309//
310class AddressLiteral VALUE_OBJ_CLASS_SPEC {
311  friend class ArrayAddress;
312  RelocationHolder _rspec;
313  // Typically we use AddressLiterals we want to use their rval
314  // However in some situations we want the lval (effect address) of the item.
315  // We provide a special factory for making those lvals.
316  bool _is_lval;
317
318  // If the target is far we'll need to load the ea of this to
319  // a register to reach it. Otherwise if near we can do rip
320  // relative addressing.
321
322  address          _target;
323
324 protected:
325  // creation
326  AddressLiteral()
327    : _is_lval(false),
328      _target(NULL)
329  {}
330
331  public:
332
333
334  AddressLiteral(address target, relocInfo::relocType rtype);
335
336  AddressLiteral(address target, RelocationHolder const& rspec)
337    : _rspec(rspec),
338      _is_lval(false),
339      _target(target)
340  {}
341
342  AddressLiteral addr() {
343    AddressLiteral ret = *this;
344    ret._is_lval = true;
345    return ret;
346  }
347
348
349 private:
350
351  address target() { return _target; }
352  bool is_lval() { return _is_lval; }
353
354  relocInfo::relocType reloc() const { return _rspec.type(); }
355  const RelocationHolder& rspec() const { return _rspec; }
356
357  friend class Assembler;
358  friend class MacroAssembler;
359  friend class Address;
360  friend class LIR_Assembler;
361};
362
363// Convience classes
364class RuntimeAddress: public AddressLiteral {
365
366  public:
367
368  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
369
370};
371
372class OopAddress: public AddressLiteral {
373
374  public:
375
376  OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
377
378};
379
380class ExternalAddress: public AddressLiteral {
381
382  public:
383
384  ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
385
386};
387
388class InternalAddress: public AddressLiteral {
389
390  public:
391
392  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
393
394};
395
396// x86 can do array addressing as a single operation since disp can be an absolute
397// address amd64 can't. We create a class that expresses the concept but does extra
398// magic on amd64 to get the final result
399
400class ArrayAddress VALUE_OBJ_CLASS_SPEC {
401  private:
402
403  AddressLiteral _base;
404  Address        _index;
405
406  public:
407
408  ArrayAddress() {};
409  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
410  AddressLiteral base() { return _base; }
411  Address index() { return _index; }
412
413};
414
415const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
416
417// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
418// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
419// is what you get. The Assembler is generating code into a CodeBuffer.
420
421class Assembler : public AbstractAssembler  {
422  friend class AbstractAssembler; // for the non-virtual hack
423  friend class LIR_Assembler; // as_Address()
424  friend class StubGenerator;
425
426 public:
427  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
428    zero          = 0x4,
429    notZero       = 0x5,
430    equal         = 0x4,
431    notEqual      = 0x5,
432    less          = 0xc,
433    lessEqual     = 0xe,
434    greater       = 0xf,
435    greaterEqual  = 0xd,
436    below         = 0x2,
437    belowEqual    = 0x6,
438    above         = 0x7,
439    aboveEqual    = 0x3,
440    overflow      = 0x0,
441    noOverflow    = 0x1,
442    carrySet      = 0x2,
443    carryClear    = 0x3,
444    negative      = 0x8,
445    positive      = 0x9,
446    parity        = 0xa,
447    noParity      = 0xb
448  };
449
450  enum Prefix {
451    // segment overrides
452    CS_segment = 0x2e,
453    SS_segment = 0x36,
454    DS_segment = 0x3e,
455    ES_segment = 0x26,
456    FS_segment = 0x64,
457    GS_segment = 0x65,
458
459    REX        = 0x40,
460
461    REX_B      = 0x41,
462    REX_X      = 0x42,
463    REX_XB     = 0x43,
464    REX_R      = 0x44,
465    REX_RB     = 0x45,
466    REX_RX     = 0x46,
467    REX_RXB    = 0x47,
468
469    REX_W      = 0x48,
470
471    REX_WB     = 0x49,
472    REX_WX     = 0x4A,
473    REX_WXB    = 0x4B,
474    REX_WR     = 0x4C,
475    REX_WRB    = 0x4D,
476    REX_WRX    = 0x4E,
477    REX_WRXB   = 0x4F
478  };
479
480  enum WhichOperand {
481    // input to locate_operand, and format code for relocations
482    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
483    disp32_operand = 1,          // embedded 32-bit displacement or address
484    call32_operand = 2,          // embedded 32-bit self-relative displacement
485#ifndef _LP64
486    _WhichOperand_limit = 3
487#else
488     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
489    _WhichOperand_limit = 4
490#endif
491  };
492
493
494
495  // NOTE: The general philopsophy of the declarations here is that 64bit versions
496  // of instructions are freely declared without the need for wrapping them an ifdef.
497  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
498  // In the .cpp file the implementations are wrapped so that they are dropped out
499  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
500  // to the size it was prior to merging up the 32bit and 64bit assemblers.
501  //
502  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
503  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
504
505private:
506
507
508  // 64bit prefixes
509  int prefix_and_encode(int reg_enc, bool byteinst = false);
510  int prefixq_and_encode(int reg_enc);
511
512  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
513  int prefixq_and_encode(int dst_enc, int src_enc);
514
515  void prefix(Register reg);
516  void prefix(Address adr);
517  void prefixq(Address adr);
518
519  void prefix(Address adr, Register reg,  bool byteinst = false);
520  void prefixq(Address adr, Register reg);
521
522  void prefix(Address adr, XMMRegister reg);
523
524  void prefetch_prefix(Address src);
525
526  // Helper functions for groups of instructions
527  void emit_arith_b(int op1, int op2, Register dst, int imm8);
528
529  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
530  // only 32bit??
531  void emit_arith(int op1, int op2, Register dst, jobject obj);
532  void emit_arith(int op1, int op2, Register dst, Register src);
533
534  void emit_operand(Register reg,
535                    Register base, Register index, Address::ScaleFactor scale,
536                    int disp,
537                    RelocationHolder const& rspec,
538                    int rip_relative_correction = 0);
539
540  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
541
542  // operands that only take the original 32bit registers
543  void emit_operand32(Register reg, Address adr);
544
545  void emit_operand(XMMRegister reg,
546                    Register base, Register index, Address::ScaleFactor scale,
547                    int disp,
548                    RelocationHolder const& rspec);
549
550  void emit_operand(XMMRegister reg, Address adr);
551
552  void emit_operand(MMXRegister reg, Address adr);
553
554  // workaround gcc (3.2.1-7) bug
555  void emit_operand(Address adr, MMXRegister reg);
556
557
558  // Immediate-to-memory forms
559  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
560
561  void emit_farith(int b1, int b2, int i);
562
563
564 protected:
565  #ifdef ASSERT
566  void check_relocation(RelocationHolder const& rspec, int format);
567  #endif
568
569  inline void emit_long64(jlong x);
570
571  void emit_data(jint data, relocInfo::relocType    rtype, int format);
572  void emit_data(jint data, RelocationHolder const& rspec, int format);
573  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
574  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
575
576
577  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
578
579  // These are all easily abused and hence protected
580
581  // 32BIT ONLY SECTION
582#ifndef _LP64
583  // Make these disappear in 64bit mode since they would never be correct
584  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
585  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
586
587  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
588  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
589
590  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
591#else
592  // 64BIT ONLY SECTION
593  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
594
595  void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
596  void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
597
598  void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
599  void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
600#endif // _LP64
601
602  // These are unique in that we are ensured by the caller that the 32bit
603  // relative in these instructions will always be able to reach the potentially
604  // 64bit address described by entry. Since they can take a 64bit address they
605  // don't have the 32 suffix like the other instructions in this class.
606
607  void call_literal(address entry, RelocationHolder const& rspec);
608  void jmp_literal(address entry, RelocationHolder const& rspec);
609
610  // Avoid using directly section
611  // Instructions in this section are actually usable by anyone without danger
612  // of failure but have performance issues that are addressed my enhanced
613  // instructions which will do the proper thing base on the particular cpu.
614  // We protect them because we don't trust you...
615
616  // Don't use next inc() and dec() methods directly. INC & DEC instructions
617  // could cause a partial flag stall since they don't set CF flag.
618  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
619  // which call inc() & dec() or add() & sub() in accordance with
620  // the product flag UseIncDec value.
621
622  void decl(Register dst);
623  void decl(Address dst);
624  void decq(Register dst);
625  void decq(Address dst);
626
627  void incl(Register dst);
628  void incl(Address dst);
629  void incq(Register dst);
630  void incq(Address dst);
631
632  // New cpus require use of movsd and movss to avoid partial register stall
633  // when loading from memory. But for old Opteron use movlpd instead of movsd.
634  // The selection is done in MacroAssembler::movdbl() and movflt().
635
636  // Move Scalar Single-Precision Floating-Point Values
637  void movss(XMMRegister dst, Address src);
638  void movss(XMMRegister dst, XMMRegister src);
639  void movss(Address dst, XMMRegister src);
640
641  // Move Scalar Double-Precision Floating-Point Values
642  void movsd(XMMRegister dst, Address src);
643  void movsd(XMMRegister dst, XMMRegister src);
644  void movsd(Address dst, XMMRegister src);
645  void movlpd(XMMRegister dst, Address src);
646
647  // New cpus require use of movaps and movapd to avoid partial register stall
648  // when moving between registers.
649  void movaps(XMMRegister dst, XMMRegister src);
650  void movapd(XMMRegister dst, XMMRegister src);
651
652  // End avoid using directly
653
654
655  // Instruction prefixes
656  void prefix(Prefix p);
657
658  public:
659
660  // Creation
661  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
662
663  // Decoding
664  static address locate_operand(address inst, WhichOperand which);
665  static address locate_next_instruction(address inst);
666
667  // Utilities
668
669#ifdef _LP64
670 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
671 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
672#else
673 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
674 static bool is_simm32(int32_t x) { return true; }
675#endif // LP64
676
677  // Generic instructions
678  // Does 32bit or 64bit as needed for the platform. In some sense these
679  // belong in macro assembler but there is no need for both varieties to exist
680
681  void lea(Register dst, Address src);
682
683  void mov(Register dst, Register src);
684
685  void pusha();
686  void popa();
687
688  void pushf();
689  void popf();
690
691  void push(int32_t imm32);
692
693  void push(Register src);
694
695  void pop(Register dst);
696
697  // These are dummies to prevent surprise implicit conversions to Register
698  void push(void* v);
699  void pop(void* v);
700
701
702  // These do register sized moves/scans
703  void rep_mov();
704  void rep_set();
705  void repne_scan();
706#ifdef _LP64
707  void repne_scanl();
708#endif
709
710  // Vanilla instructions in lexical order
711
712  void adcl(Register dst, int32_t imm32);
713  void adcl(Register dst, Address src);
714  void adcl(Register dst, Register src);
715
716  void adcq(Register dst, int32_t imm32);
717  void adcq(Register dst, Address src);
718  void adcq(Register dst, Register src);
719
720
721  void addl(Address dst, int32_t imm32);
722  void addl(Address dst, Register src);
723  void addl(Register dst, int32_t imm32);
724  void addl(Register dst, Address src);
725  void addl(Register dst, Register src);
726
727  void addq(Address dst, int32_t imm32);
728  void addq(Address dst, Register src);
729  void addq(Register dst, int32_t imm32);
730  void addq(Register dst, Address src);
731  void addq(Register dst, Register src);
732
733
734  void addr_nop_4();
735  void addr_nop_5();
736  void addr_nop_7();
737  void addr_nop_8();
738
739  // Add Scalar Double-Precision Floating-Point Values
740  void addsd(XMMRegister dst, Address src);
741  void addsd(XMMRegister dst, XMMRegister src);
742
743  // Add Scalar Single-Precision Floating-Point Values
744  void addss(XMMRegister dst, Address src);
745  void addss(XMMRegister dst, XMMRegister src);
746
747  void andl(Register dst, int32_t imm32);
748  void andl(Register dst, Address src);
749  void andl(Register dst, Register src);
750
751  void andq(Register dst, int32_t imm32);
752  void andq(Register dst, Address src);
753  void andq(Register dst, Register src);
754
755
756  // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
757  void andpd(XMMRegister dst, Address src);
758  void andpd(XMMRegister dst, XMMRegister src);
759
760  void bsfl(Register dst, Register src);
761  void bsrl(Register dst, Register src);
762
763#ifdef _LP64
764  void bsfq(Register dst, Register src);
765  void bsrq(Register dst, Register src);
766#endif
767
768  void bswapl(Register reg);
769
770  void bswapq(Register reg);
771
772  void call(Label& L, relocInfo::relocType rtype);
773  void call(Register reg);  // push pc; pc <- reg
774  void call(Address adr);   // push pc; pc <- adr
775
776  void cdql();
777
778  void cdqq();
779
780  void cld() { emit_byte(0xfc); }
781
782  void clflush(Address adr);
783
784  void cmovl(Condition cc, Register dst, Register src);
785  void cmovl(Condition cc, Register dst, Address src);
786
787  void cmovq(Condition cc, Register dst, Register src);
788  void cmovq(Condition cc, Register dst, Address src);
789
790
791  void cmpb(Address dst, int imm8);
792
793  void cmpl(Address dst, int32_t imm32);
794
795  void cmpl(Register dst, int32_t imm32);
796  void cmpl(Register dst, Register src);
797  void cmpl(Register dst, Address src);
798
799  void cmpq(Address dst, int32_t imm32);
800  void cmpq(Address dst, Register src);
801
802  void cmpq(Register dst, int32_t imm32);
803  void cmpq(Register dst, Register src);
804  void cmpq(Register dst, Address src);
805
806  // these are dummies used to catch attempting to convert NULL to Register
807  void cmpl(Register dst, void* junk); // dummy
808  void cmpq(Register dst, void* junk); // dummy
809
810  void cmpw(Address dst, int imm16);
811
812  void cmpxchg8 (Address adr);
813
814  void cmpxchgl(Register reg, Address adr);
815
816  void cmpxchgq(Register reg, Address adr);
817
818  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
819  void comisd(XMMRegister dst, Address src);
820
821  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
822  void comiss(XMMRegister dst, Address src);
823
824  // Identify processor type and features
825  void cpuid() {
826    emit_byte(0x0F);
827    emit_byte(0xA2);
828  }
829
830  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
831  void cvtsd2ss(XMMRegister dst, XMMRegister src);
832
833  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
834  void cvtsi2sdl(XMMRegister dst, Register src);
835  void cvtsi2sdq(XMMRegister dst, Register src);
836
837  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
838  void cvtsi2ssl(XMMRegister dst, Register src);
839  void cvtsi2ssq(XMMRegister dst, Register src);
840
841  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
842  void cvtdq2pd(XMMRegister dst, XMMRegister src);
843
844  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
845  void cvtdq2ps(XMMRegister dst, XMMRegister src);
846
847  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
848  void cvtss2sd(XMMRegister dst, XMMRegister src);
849
850  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
851  void cvttsd2sil(Register dst, Address src);
852  void cvttsd2sil(Register dst, XMMRegister src);
853  void cvttsd2siq(Register dst, XMMRegister src);
854
855  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
856  void cvttss2sil(Register dst, XMMRegister src);
857  void cvttss2siq(Register dst, XMMRegister src);
858
859  // Divide Scalar Double-Precision Floating-Point Values
860  void divsd(XMMRegister dst, Address src);
861  void divsd(XMMRegister dst, XMMRegister src);
862
863  // Divide Scalar Single-Precision Floating-Point Values
864  void divss(XMMRegister dst, Address src);
865  void divss(XMMRegister dst, XMMRegister src);
866
867  void emms();
868
869  void fabs();
870
871  void fadd(int i);
872
873  void fadd_d(Address src);
874  void fadd_s(Address src);
875
876  // "Alternate" versions of x87 instructions place result down in FPU
877  // stack instead of on TOS
878
879  void fadda(int i); // "alternate" fadd
880  void faddp(int i = 1);
881
882  void fchs();
883
884  void fcom(int i);
885
886  void fcomp(int i = 1);
887  void fcomp_d(Address src);
888  void fcomp_s(Address src);
889
890  void fcompp();
891
892  void fcos();
893
894  void fdecstp();
895
896  void fdiv(int i);
897  void fdiv_d(Address src);
898  void fdivr_s(Address src);
899  void fdiva(int i);  // "alternate" fdiv
900  void fdivp(int i = 1);
901
902  void fdivr(int i);
903  void fdivr_d(Address src);
904  void fdiv_s(Address src);
905
906  void fdivra(int i); // "alternate" reversed fdiv
907
908  void fdivrp(int i = 1);
909
910  void ffree(int i = 0);
911
912  void fild_d(Address adr);
913  void fild_s(Address adr);
914
915  void fincstp();
916
917  void finit();
918
919  void fist_s (Address adr);
920  void fistp_d(Address adr);
921  void fistp_s(Address adr);
922
923  void fld1();
924
925  void fld_d(Address adr);
926  void fld_s(Address adr);
927  void fld_s(int index);
928  void fld_x(Address adr);  // extended-precision (80-bit) format
929
930  void fldcw(Address src);
931
932  void fldenv(Address src);
933
934  void fldlg2();
935
936  void fldln2();
937
938  void fldz();
939
940  void flog();
941  void flog10();
942
943  void fmul(int i);
944
945  void fmul_d(Address src);
946  void fmul_s(Address src);
947
948  void fmula(int i);  // "alternate" fmul
949
950  void fmulp(int i = 1);
951
952  void fnsave(Address dst);
953
954  void fnstcw(Address src);
955
956  void fnstsw_ax();
957
958  void fprem();
959  void fprem1();
960
961  void frstor(Address src);
962
963  void fsin();
964
965  void fsqrt();
966
967  void fst_d(Address adr);
968  void fst_s(Address adr);
969
970  void fstp_d(Address adr);
971  void fstp_d(int index);
972  void fstp_s(Address adr);
973  void fstp_x(Address adr); // extended-precision (80-bit) format
974
975  void fsub(int i);
976  void fsub_d(Address src);
977  void fsub_s(Address src);
978
979  void fsuba(int i);  // "alternate" fsub
980
981  void fsubp(int i = 1);
982
983  void fsubr(int i);
984  void fsubr_d(Address src);
985  void fsubr_s(Address src);
986
987  void fsubra(int i); // "alternate" reversed fsub
988
989  void fsubrp(int i = 1);
990
991  void ftan();
992
993  void ftst();
994
995  void fucomi(int i = 1);
996  void fucomip(int i = 1);
997
998  void fwait();
999
1000  void fxch(int i = 1);
1001
1002  void fxrstor(Address src);
1003
1004  void fxsave(Address dst);
1005
1006  void fyl2x();
1007
1008  void hlt();
1009
1010  void idivl(Register src);
1011
1012  void idivq(Register src);
1013
1014  void imull(Register dst, Register src);
1015  void imull(Register dst, Register src, int value);
1016
1017  void imulq(Register dst, Register src);
1018  void imulq(Register dst, Register src, int value);
1019
1020
1021  // jcc is the generic conditional branch generator to run-
1022  // time routines, jcc is used for branches to labels. jcc
1023  // takes a branch opcode (cc) and a label (L) and generates
1024  // either a backward branch or a forward branch and links it
1025  // to the label fixup chain. Usage:
1026  //
1027  // Label L;      // unbound label
1028  // jcc(cc, L);   // forward branch to unbound label
1029  // bind(L);      // bind label to the current pc
1030  // jcc(cc, L);   // backward branch to bound label
1031  // bind(L);      // illegal: a label may be bound only once
1032  //
1033  // Note: The same Label can be used for forward and backward branches
1034  // but it may be bound only once.
1035
1036  void jcc(Condition cc, Label& L,
1037           relocInfo::relocType rtype = relocInfo::none);
1038
1039  // Conditional jump to a 8-bit offset to L.
1040  // WARNING: be very careful using this for forward jumps.  If the label is
1041  // not bound within an 8-bit offset of this instruction, a run-time error
1042  // will occur.
1043  void jccb(Condition cc, Label& L);
1044
1045  void jmp(Address entry);    // pc <- entry
1046
1047  // Label operations & relative jumps (PPUM Appendix D)
1048  void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1049
1050  void jmp(Register entry); // pc <- entry
1051
1052  // Unconditional 8-bit offset jump to L.
1053  // WARNING: be very careful using this for forward jumps.  If the label is
1054  // not bound within an 8-bit offset of this instruction, a run-time error
1055  // will occur.
1056  void jmpb(Label& L);
1057
1058  void ldmxcsr( Address src );
1059
1060  void leal(Register dst, Address src);
1061
1062  void leaq(Register dst, Address src);
1063
1064  void lfence() {
1065    emit_byte(0x0F);
1066    emit_byte(0xAE);
1067    emit_byte(0xE8);
1068  }
1069
1070  void lock();
1071
1072  void lzcntl(Register dst, Register src);
1073
1074#ifdef _LP64
1075  void lzcntq(Register dst, Register src);
1076#endif
1077
1078  enum Membar_mask_bits {
1079    StoreStore = 1 << 3,
1080    LoadStore  = 1 << 2,
1081    StoreLoad  = 1 << 1,
1082    LoadLoad   = 1 << 0
1083  };
1084
1085  // Serializes memory and blows flags
1086  void membar(Membar_mask_bits order_constraint) {
1087    if (os::is_MP()) {
1088      // We only have to handle StoreLoad
1089      if (order_constraint & StoreLoad) {
1090        // All usable chips support "locked" instructions which suffice
1091        // as barriers, and are much faster than the alternative of
1092        // using cpuid instruction. We use here a locked add [esp],0.
1093        // This is conveniently otherwise a no-op except for blowing
1094        // flags.
1095        // Any change to this code may need to revisit other places in
1096        // the code where this idiom is used, in particular the
1097        // orderAccess code.
1098        lock();
1099        addl(Address(rsp, 0), 0);// Assert the lock# signal here
1100      }
1101    }
1102  }
1103
1104  void mfence();
1105
1106  // Moves
1107
1108  void mov64(Register dst, int64_t imm64);
1109
1110  void movb(Address dst, Register src);
1111  void movb(Address dst, int imm8);
1112  void movb(Register dst, Address src);
1113
1114  void movdl(XMMRegister dst, Register src);
1115  void movdl(Register dst, XMMRegister src);
1116
1117  // Move Double Quadword
1118  void movdq(XMMRegister dst, Register src);
1119  void movdq(Register dst, XMMRegister src);
1120
1121  // Move Aligned Double Quadword
1122  void movdqa(Address     dst, XMMRegister src);
1123  void movdqa(XMMRegister dst, Address src);
1124  void movdqa(XMMRegister dst, XMMRegister src);
1125
1126  // Move Unaligned Double Quadword
1127  void movdqu(Address     dst, XMMRegister src);
1128  void movdqu(XMMRegister dst, Address src);
1129  void movdqu(XMMRegister dst, XMMRegister src);
1130
1131  void movl(Register dst, int32_t imm32);
1132  void movl(Address dst, int32_t imm32);
1133  void movl(Register dst, Register src);
1134  void movl(Register dst, Address src);
1135  void movl(Address dst, Register src);
1136
1137  // These dummies prevent using movl from converting a zero (like NULL) into Register
1138  // by giving the compiler two choices it can't resolve
1139
1140  void movl(Address  dst, void* junk);
1141  void movl(Register dst, void* junk);
1142
1143#ifdef _LP64
1144  void movq(Register dst, Register src);
1145  void movq(Register dst, Address src);
1146  void movq(Address dst, Register src);
1147#endif
1148
1149  void movq(Address     dst, MMXRegister src );
1150  void movq(MMXRegister dst, Address src );
1151
1152#ifdef _LP64
1153  // These dummies prevent using movq from converting a zero (like NULL) into Register
1154  // by giving the compiler two choices it can't resolve
1155
1156  void movq(Address  dst, void* dummy);
1157  void movq(Register dst, void* dummy);
1158#endif
1159
1160  // Move Quadword
1161  void movq(Address     dst, XMMRegister src);
1162  void movq(XMMRegister dst, Address src);
1163
1164  void movsbl(Register dst, Address src);
1165  void movsbl(Register dst, Register src);
1166
1167#ifdef _LP64
1168  void movsbq(Register dst, Address src);
1169  void movsbq(Register dst, Register src);
1170
1171  // Move signed 32bit immediate to 64bit extending sign
1172  void movslq(Address dst, int32_t imm64);
1173  void movslq(Register dst, int32_t imm64);
1174
1175  void movslq(Register dst, Address src);
1176  void movslq(Register dst, Register src);
1177  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1178#endif
1179
1180  void movswl(Register dst, Address src);
1181  void movswl(Register dst, Register src);
1182
1183#ifdef _LP64
1184  void movswq(Register dst, Address src);
1185  void movswq(Register dst, Register src);
1186#endif
1187
1188  void movw(Address dst, int imm16);
1189  void movw(Register dst, Address src);
1190  void movw(Address dst, Register src);
1191
1192  void movzbl(Register dst, Address src);
1193  void movzbl(Register dst, Register src);
1194
1195#ifdef _LP64
1196  void movzbq(Register dst, Address src);
1197  void movzbq(Register dst, Register src);
1198#endif
1199
1200  void movzwl(Register dst, Address src);
1201  void movzwl(Register dst, Register src);
1202
1203#ifdef _LP64
1204  void movzwq(Register dst, Address src);
1205  void movzwq(Register dst, Register src);
1206#endif
1207
1208  void mull(Address src);
1209  void mull(Register src);
1210
1211  // Multiply Scalar Double-Precision Floating-Point Values
1212  void mulsd(XMMRegister dst, Address src);
1213  void mulsd(XMMRegister dst, XMMRegister src);
1214
1215  // Multiply Scalar Single-Precision Floating-Point Values
1216  void mulss(XMMRegister dst, Address src);
1217  void mulss(XMMRegister dst, XMMRegister src);
1218
1219  void negl(Register dst);
1220
1221#ifdef _LP64
1222  void negq(Register dst);
1223#endif
1224
1225  void nop(int i = 1);
1226
1227  void notl(Register dst);
1228
1229#ifdef _LP64
1230  void notq(Register dst);
1231#endif
1232
1233  void orl(Address dst, int32_t imm32);
1234  void orl(Register dst, int32_t imm32);
1235  void orl(Register dst, Address src);
1236  void orl(Register dst, Register src);
1237
1238  void orq(Address dst, int32_t imm32);
1239  void orq(Register dst, int32_t imm32);
1240  void orq(Register dst, Address src);
1241  void orq(Register dst, Register src);
1242
1243  // SSE4.2 string instructions
1244  void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1245  void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1246
1247#ifndef _LP64 // no 32bit push/pop on amd64
1248  void popl(Address dst);
1249#endif
1250
1251#ifdef _LP64
1252  void popq(Address dst);
1253#endif
1254
1255  void popcntl(Register dst, Address src);
1256  void popcntl(Register dst, Register src);
1257
1258#ifdef _LP64
1259  void popcntq(Register dst, Address src);
1260  void popcntq(Register dst, Register src);
1261#endif
1262
1263  // Prefetches (SSE, SSE2, 3DNOW only)
1264
1265  void prefetchnta(Address src);
1266  void prefetchr(Address src);
1267  void prefetcht0(Address src);
1268  void prefetcht1(Address src);
1269  void prefetcht2(Address src);
1270  void prefetchw(Address src);
1271
1272  // Shuffle Packed Doublewords
1273  void pshufd(XMMRegister dst, XMMRegister src, int mode);
1274  void pshufd(XMMRegister dst, Address src,     int mode);
1275
1276  // Shuffle Packed Low Words
1277  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1278  void pshuflw(XMMRegister dst, Address src,     int mode);
1279
1280  // Shift Right Logical Quadword Immediate
1281  void psrlq(XMMRegister dst, int shift);
1282
1283  // Logical Compare Double Quadword
1284  void ptest(XMMRegister dst, XMMRegister src);
1285  void ptest(XMMRegister dst, Address src);
1286
1287  // Interleave Low Bytes
1288  void punpcklbw(XMMRegister dst, XMMRegister src);
1289
1290#ifndef _LP64 // no 32bit push/pop on amd64
1291  void pushl(Address src);
1292#endif
1293
1294  void pushq(Address src);
1295
1296  // Xor Packed Byte Integer Values
1297  void pxor(XMMRegister dst, Address src);
1298  void pxor(XMMRegister dst, XMMRegister src);
1299
1300  void rcll(Register dst, int imm8);
1301
1302  void rclq(Register dst, int imm8);
1303
1304  void ret(int imm16);
1305
1306  void sahf();
1307
1308  void sarl(Register dst, int imm8);
1309  void sarl(Register dst);
1310
1311  void sarq(Register dst, int imm8);
1312  void sarq(Register dst);
1313
1314  void sbbl(Address dst, int32_t imm32);
1315  void sbbl(Register dst, int32_t imm32);
1316  void sbbl(Register dst, Address src);
1317  void sbbl(Register dst, Register src);
1318
1319  void sbbq(Address dst, int32_t imm32);
1320  void sbbq(Register dst, int32_t imm32);
1321  void sbbq(Register dst, Address src);
1322  void sbbq(Register dst, Register src);
1323
1324  void setb(Condition cc, Register dst);
1325
1326  void shldl(Register dst, Register src);
1327
1328  void shll(Register dst, int imm8);
1329  void shll(Register dst);
1330
1331  void shlq(Register dst, int imm8);
1332  void shlq(Register dst);
1333
1334  void shrdl(Register dst, Register src);
1335
1336  void shrl(Register dst, int imm8);
1337  void shrl(Register dst);
1338
1339  void shrq(Register dst, int imm8);
1340  void shrq(Register dst);
1341
1342  void smovl(); // QQQ generic?
1343
1344  // Compute Square Root of Scalar Double-Precision Floating-Point Value
1345  void sqrtsd(XMMRegister dst, Address src);
1346  void sqrtsd(XMMRegister dst, XMMRegister src);
1347
1348  void std() { emit_byte(0xfd); }
1349
1350  void stmxcsr( Address dst );
1351
1352  void subl(Address dst, int32_t imm32);
1353  void subl(Address dst, Register src);
1354  void subl(Register dst, int32_t imm32);
1355  void subl(Register dst, Address src);
1356  void subl(Register dst, Register src);
1357
1358  void subq(Address dst, int32_t imm32);
1359  void subq(Address dst, Register src);
1360  void subq(Register dst, int32_t imm32);
1361  void subq(Register dst, Address src);
1362  void subq(Register dst, Register src);
1363
1364
1365  // Subtract Scalar Double-Precision Floating-Point Values
1366  void subsd(XMMRegister dst, Address src);
1367  void subsd(XMMRegister dst, XMMRegister src);
1368
1369  // Subtract Scalar Single-Precision Floating-Point Values
1370  void subss(XMMRegister dst, Address src);
1371  void subss(XMMRegister dst, XMMRegister src);
1372
1373  void testb(Register dst, int imm8);
1374
1375  void testl(Register dst, int32_t imm32);
1376  void testl(Register dst, Register src);
1377  void testl(Register dst, Address src);
1378
1379  void testq(Register dst, int32_t imm32);
1380  void testq(Register dst, Register src);
1381
1382
1383  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1384  void ucomisd(XMMRegister dst, Address src);
1385  void ucomisd(XMMRegister dst, XMMRegister src);
1386
1387  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1388  void ucomiss(XMMRegister dst, Address src);
1389  void ucomiss(XMMRegister dst, XMMRegister src);
1390
1391  void xaddl(Address dst, Register src);
1392
1393  void xaddq(Address dst, Register src);
1394
1395  void xchgl(Register reg, Address adr);
1396  void xchgl(Register dst, Register src);
1397
1398  void xchgq(Register reg, Address adr);
1399  void xchgq(Register dst, Register src);
1400
1401  void xorl(Register dst, int32_t imm32);
1402  void xorl(Register dst, Address src);
1403  void xorl(Register dst, Register src);
1404
1405  void xorq(Register dst, Address src);
1406  void xorq(Register dst, Register src);
1407
1408  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1409  void xorpd(XMMRegister dst, Address src);
1410  void xorpd(XMMRegister dst, XMMRegister src);
1411
1412  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1413  void xorps(XMMRegister dst, Address src);
1414  void xorps(XMMRegister dst, XMMRegister src);
1415
1416  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1417};
1418
1419
1420// MacroAssembler extends Assembler by frequently used macros.
1421//
1422// Instructions for which a 'better' code sequence exists depending
1423// on arguments should also go in here.
1424
1425class MacroAssembler: public Assembler {
1426  friend class LIR_Assembler;
1427  friend class Runtime1;      // as_Address()
1428 protected:
1429
1430  Address as_Address(AddressLiteral adr);
1431  Address as_Address(ArrayAddress adr);
1432
1433  // Support for VM calls
1434  //
1435  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1436  // may customize this version by overriding it for its purposes (e.g., to save/restore
1437  // additional registers when doing a VM call).
1438#ifdef CC_INTERP
1439  // c++ interpreter never wants to use interp_masm version of call_VM
1440  #define VIRTUAL
1441#else
1442  #define VIRTUAL virtual
1443#endif
1444
1445  VIRTUAL void call_VM_leaf_base(
1446    address entry_point,               // the entry point
1447    int     number_of_arguments        // the number of arguments to pop after the call
1448  );
1449
1450  // This is the base routine called by the different versions of call_VM. The interpreter
1451  // may customize this version by overriding it for its purposes (e.g., to save/restore
1452  // additional registers when doing a VM call).
1453  //
1454  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1455  // returns the register which contains the thread upon return. If a thread register has been
1456  // specified, the return value will correspond to that register. If no last_java_sp is specified
1457  // (noreg) than rsp will be used instead.
1458  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1459    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1460    Register java_thread,              // the thread if computed before     ; use noreg otherwise
1461    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1462    address  entry_point,              // the entry point
1463    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1464    bool     check_exceptions          // whether to check for pending exceptions after return
1465  );
1466
1467  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1468  // The implementation is only non-empty for the InterpreterMacroAssembler,
1469  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1470  virtual void check_and_handle_popframe(Register java_thread);
1471  virtual void check_and_handle_earlyret(Register java_thread);
1472
1473  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1474
1475  // helpers for FPU flag access
1476  // tmp is a temporary register, if none is available use noreg
1477  void save_rax   (Register tmp);
1478  void restore_rax(Register tmp);
1479
1480 public:
1481  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1482
1483  // Support for NULL-checks
1484  //
1485  // Generates code that causes a NULL OS exception if the content of reg is NULL.
1486  // If the accessed location is M[reg + offset] and the offset is known, provide the
1487  // offset. No explicit code generation is needed if the offset is within a certain
1488  // range (0 <= offset <= page_size).
1489
1490  void null_check(Register reg, int offset = -1);
1491  static bool needs_explicit_null_check(intptr_t offset);
1492
1493  // Required platform-specific helpers for Label::patch_instructions.
1494  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1495  void pd_patch_instruction(address branch, address target);
1496#ifndef PRODUCT
1497  static void pd_print_patched_instruction(address branch);
1498#endif
1499
1500  // The following 4 methods return the offset of the appropriate move instruction
1501
1502  // Support for fast byte/short loading with zero extension (depending on particular CPU)
1503  int load_unsigned_byte(Register dst, Address src);
1504  int load_unsigned_short(Register dst, Address src);
1505
1506  // Support for fast byte/short loading with sign extension (depending on particular CPU)
1507  int load_signed_byte(Register dst, Address src);
1508  int load_signed_short(Register dst, Address src);
1509
1510  // Support for sign-extension (hi:lo = extend_sign(lo))
1511  void extend_sign(Register hi, Register lo);
1512
1513  // Loading values by size and signed-ness
1514  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
1515
1516  // Support for inc/dec with optimal instruction selection depending on value
1517
1518  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1519  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1520
1521  void decrementl(Address dst, int value = 1);
1522  void decrementl(Register reg, int value = 1);
1523
1524  void decrementq(Register reg, int value = 1);
1525  void decrementq(Address dst, int value = 1);
1526
1527  void incrementl(Address dst, int value = 1);
1528  void incrementl(Register reg, int value = 1);
1529
1530  void incrementq(Register reg, int value = 1);
1531  void incrementq(Address dst, int value = 1);
1532
1533
1534  // Support optimal SSE move instructions.
1535  void movflt(XMMRegister dst, XMMRegister src) {
1536    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1537    else                       { movss (dst, src); return; }
1538  }
1539  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1540  void movflt(XMMRegister dst, AddressLiteral src);
1541  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1542
1543  void movdbl(XMMRegister dst, XMMRegister src) {
1544    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1545    else                       { movsd (dst, src); return; }
1546  }
1547
1548  void movdbl(XMMRegister dst, AddressLiteral src);
1549
1550  void movdbl(XMMRegister dst, Address src) {
1551    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1552    else                         { movlpd(dst, src); return; }
1553  }
1554  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1555
1556  void incrementl(AddressLiteral dst);
1557  void incrementl(ArrayAddress dst);
1558
1559  // Alignment
1560  void align(int modulus);
1561
1562  // Misc
1563  void fat_nop(); // 5 byte nop
1564
1565  // Stack frame creation/removal
1566  void enter();
1567  void leave();
1568
1569  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1570  // The pointer will be loaded into the thread register.
1571  void get_thread(Register thread);
1572
1573
1574  // Support for VM calls
1575  //
1576  // It is imperative that all calls into the VM are handled via the call_VM macros.
1577  // They make sure that the stack linkage is setup correctly. call_VM's correspond
1578  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1579
1580
1581  void call_VM(Register oop_result,
1582               address entry_point,
1583               bool check_exceptions = true);
1584  void call_VM(Register oop_result,
1585               address entry_point,
1586               Register arg_1,
1587               bool check_exceptions = true);
1588  void call_VM(Register oop_result,
1589               address entry_point,
1590               Register arg_1, Register arg_2,
1591               bool check_exceptions = true);
1592  void call_VM(Register oop_result,
1593               address entry_point,
1594               Register arg_1, Register arg_2, Register arg_3,
1595               bool check_exceptions = true);
1596
1597  // Overloadings with last_Java_sp
1598  void call_VM(Register oop_result,
1599               Register last_java_sp,
1600               address entry_point,
1601               int number_of_arguments = 0,
1602               bool check_exceptions = true);
1603  void call_VM(Register oop_result,
1604               Register last_java_sp,
1605               address entry_point,
1606               Register arg_1, bool
1607               check_exceptions = true);
1608  void call_VM(Register oop_result,
1609               Register last_java_sp,
1610               address entry_point,
1611               Register arg_1, Register arg_2,
1612               bool check_exceptions = true);
1613  void call_VM(Register oop_result,
1614               Register last_java_sp,
1615               address entry_point,
1616               Register arg_1, Register arg_2, Register arg_3,
1617               bool check_exceptions = true);
1618
1619  void call_VM_leaf(address entry_point,
1620                    int number_of_arguments = 0);
1621  void call_VM_leaf(address entry_point,
1622                    Register arg_1);
1623  void call_VM_leaf(address entry_point,
1624                    Register arg_1, Register arg_2);
1625  void call_VM_leaf(address entry_point,
1626                    Register arg_1, Register arg_2, Register arg_3);
1627
1628  // last Java Frame (fills frame anchor)
1629  void set_last_Java_frame(Register thread,
1630                           Register last_java_sp,
1631                           Register last_java_fp,
1632                           address last_java_pc);
1633
1634  // thread in the default location (r15_thread on 64bit)
1635  void set_last_Java_frame(Register last_java_sp,
1636                           Register last_java_fp,
1637                           address last_java_pc);
1638
1639  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1640
1641  // thread in the default location (r15_thread on 64bit)
1642  void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1643
1644  // Stores
1645  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1646  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1647
1648  void g1_write_barrier_pre(Register obj,
1649#ifndef _LP64
1650                            Register thread,
1651#endif
1652                            Register tmp,
1653                            Register tmp2,
1654                            bool     tosca_live);
1655  void g1_write_barrier_post(Register store_addr,
1656                             Register new_val,
1657#ifndef _LP64
1658                             Register thread,
1659#endif
1660                             Register tmp,
1661                             Register tmp2);
1662
1663
1664  // split store_check(Register obj) to enhance instruction interleaving
1665  void store_check_part_1(Register obj);
1666  void store_check_part_2(Register obj);
1667
1668  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1669  void c2bool(Register x);
1670
1671  // C++ bool manipulation
1672
1673  void movbool(Register dst, Address src);
1674  void movbool(Address dst, bool boolconst);
1675  void movbool(Address dst, Register src);
1676  void testbool(Register dst);
1677
1678  // oop manipulations
1679  void load_klass(Register dst, Register src);
1680  void store_klass(Register dst, Register src);
1681
1682  void load_prototype_header(Register dst, Register src);
1683
1684#ifdef _LP64
1685  void store_klass_gap(Register dst, Register src);
1686
1687  void load_heap_oop(Register dst, Address src);
1688  void store_heap_oop(Address dst, Register src);
1689
1690  // This dummy is to prevent a call to store_heap_oop from
1691  // converting a zero (like NULL) into a Register by giving
1692  // the compiler two choices it can't resolve
1693
1694  void store_heap_oop(Address dst, void* dummy);
1695
1696  // Used for storing NULL. All other oop constants should be
1697  // stored using routines that take a jobject.
1698  void store_heap_oop_null(Address dst);
1699
1700  void encode_heap_oop(Register r);
1701  void decode_heap_oop(Register r);
1702  void encode_heap_oop_not_null(Register r);
1703  void decode_heap_oop_not_null(Register r);
1704  void encode_heap_oop_not_null(Register dst, Register src);
1705  void decode_heap_oop_not_null(Register dst, Register src);
1706
1707  void set_narrow_oop(Register dst, jobject obj);
1708  void set_narrow_oop(Address dst, jobject obj);
1709  void cmp_narrow_oop(Register dst, jobject obj);
1710  void cmp_narrow_oop(Address dst, jobject obj);
1711
1712  // if heap base register is used - reinit it with the correct value
1713  void reinit_heapbase();
1714#endif // _LP64
1715
1716  // Int division/remainder for Java
1717  // (as idivl, but checks for special case as described in JVM spec.)
1718  // returns idivl instruction offset for implicit exception handling
1719  int corrected_idivl(Register reg);
1720
1721  // Long division/remainder for Java
1722  // (as idivq, but checks for special case as described in JVM spec.)
1723  // returns idivq instruction offset for implicit exception handling
1724  int corrected_idivq(Register reg);
1725
1726  void int3();
1727
1728  // Long operation macros for a 32bit cpu
1729  // Long negation for Java
1730  void lneg(Register hi, Register lo);
1731
1732  // Long multiplication for Java
1733  // (destroys contents of eax, ebx, ecx and edx)
1734  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1735
1736  // Long shifts for Java
1737  // (semantics as described in JVM spec.)
1738  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1739  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1740
1741  // Long compare for Java
1742  // (semantics as described in JVM spec.)
1743  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1744
1745
1746  // misc
1747
1748  // Sign extension
1749  void sign_extend_short(Register reg);
1750  void sign_extend_byte(Register reg);
1751
1752  // Division by power of 2, rounding towards 0
1753  void division_with_shift(Register reg, int shift_value);
1754
1755  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1756  //
1757  // CF (corresponds to C0) if x < y
1758  // PF (corresponds to C2) if unordered
1759  // ZF (corresponds to C3) if x = y
1760  //
1761  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1762  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1763  void fcmp(Register tmp);
1764  // Variant of the above which allows y to be further down the stack
1765  // and which only pops x and y if specified. If pop_right is
1766  // specified then pop_left must also be specified.
1767  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1768
1769  // Floating-point comparison for Java
1770  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1771  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1772  // (semantics as described in JVM spec.)
1773  void fcmp2int(Register dst, bool unordered_is_less);
1774  // Variant of the above which allows y to be further down the stack
1775  // and which only pops x and y if specified. If pop_right is
1776  // specified then pop_left must also be specified.
1777  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1778
1779  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1780  // tmp is a temporary register, if none is available use noreg
1781  void fremr(Register tmp);
1782
1783
1784  // same as fcmp2int, but using SSE2
1785  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1786  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1787
1788  // Inlined sin/cos generator for Java; must not use CPU instruction
1789  // directly on Intel as it does not have high enough precision
1790  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1791  // number of FPU stack slots in use; all but the topmost will
1792  // require saving if a slow case is necessary. Assumes argument is
1793  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1794  // this code.
1795  void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1796
1797  // branch to L if FPU flag C2 is set/not set
1798  // tmp is a temporary register, if none is available use noreg
1799  void jC2 (Register tmp, Label& L);
1800  void jnC2(Register tmp, Label& L);
1801
1802  // Pop ST (ffree & fincstp combined)
1803  void fpop();
1804
1805  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1806  void push_fTOS();
1807
1808  // pops double TOS element from CPU stack and pushes on FPU stack
1809  void pop_fTOS();
1810
1811  void empty_FPU_stack();
1812
1813  void push_IU_state();
1814  void pop_IU_state();
1815
1816  void push_FPU_state();
1817  void pop_FPU_state();
1818
1819  void push_CPU_state();
1820  void pop_CPU_state();
1821
1822  // Round up to a power of two
1823  void round_to(Register reg, int modulus);
1824
1825  // Callee saved registers handling
1826  void push_callee_saved_registers();
1827  void pop_callee_saved_registers();
1828
1829  // allocation
1830  void eden_allocate(
1831    Register obj,                      // result: pointer to object after successful allocation
1832    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1833    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1834    Register t1,                       // temp register
1835    Label&   slow_case                 // continuation point if fast allocation fails
1836  );
1837  void tlab_allocate(
1838    Register obj,                      // result: pointer to object after successful allocation
1839    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1840    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1841    Register t1,                       // temp register
1842    Register t2,                       // temp register
1843    Label&   slow_case                 // continuation point if fast allocation fails
1844  );
1845  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
1846
1847  // interface method calling
1848  void lookup_interface_method(Register recv_klass,
1849                               Register intf_klass,
1850                               RegisterOrConstant itable_index,
1851                               Register method_result,
1852                               Register scan_temp,
1853                               Label& no_such_interface);
1854
1855  // Test sub_klass against super_klass, with fast and slow paths.
1856
1857  // The fast path produces a tri-state answer: yes / no / maybe-slow.
1858  // One of the three labels can be NULL, meaning take the fall-through.
1859  // If super_check_offset is -1, the value is loaded up from super_klass.
1860  // No registers are killed, except temp_reg.
1861  void check_klass_subtype_fast_path(Register sub_klass,
1862                                     Register super_klass,
1863                                     Register temp_reg,
1864                                     Label* L_success,
1865                                     Label* L_failure,
1866                                     Label* L_slow_path,
1867                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1868
1869  // The rest of the type check; must be wired to a corresponding fast path.
1870  // It does not repeat the fast path logic, so don't use it standalone.
1871  // The temp_reg and temp2_reg can be noreg, if no temps are available.
1872  // Updates the sub's secondary super cache as necessary.
1873  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1874  void check_klass_subtype_slow_path(Register sub_klass,
1875                                     Register super_klass,
1876                                     Register temp_reg,
1877                                     Register temp2_reg,
1878                                     Label* L_success,
1879                                     Label* L_failure,
1880                                     bool set_cond_codes = false);
1881
1882  // Simplified, combined version, good for typical uses.
1883  // Falls through on failure.
1884  void check_klass_subtype(Register sub_klass,
1885                           Register super_klass,
1886                           Register temp_reg,
1887                           Label& L_success);
1888
1889  // method handles (JSR 292)
1890  void check_method_handle_type(Register mtype_reg, Register mh_reg,
1891                                Register temp_reg,
1892                                Label& wrong_method_type);
1893  void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
1894                                  Register temp_reg);
1895  void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
1896  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1897
1898
1899  //----
1900  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1901
1902  // Debugging
1903
1904  // only if +VerifyOops
1905  void verify_oop(Register reg, const char* s = "broken oop");
1906  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1907
1908  // only if +VerifyFPU
1909  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1910
1911  // prints msg, dumps registers and stops execution
1912  void stop(const char* msg);
1913
1914  // prints msg and continues
1915  void warn(const char* msg);
1916
1917  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1918  static void debug64(char* msg, int64_t pc, int64_t regs[]);
1919
1920  void os_breakpoint();
1921
1922  void untested()                                { stop("untested"); }
1923
1924  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
1925
1926  void should_not_reach_here()                   { stop("should not reach here"); }
1927
1928  void print_CPU_state();
1929
1930  // Stack overflow checking
1931  void bang_stack_with_offset(int offset) {
1932    // stack grows down, caller passes positive offset
1933    assert(offset > 0, "must bang with negative offset");
1934    movl(Address(rsp, (-offset)), rax);
1935  }
1936
1937  // Writes to stack successive pages until offset reached to check for
1938  // stack overflow + shadow pages.  Also, clobbers tmp
1939  void bang_stack_size(Register size, Register tmp);
1940
1941  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1942                                                Register tmp,
1943                                                int offset);
1944
1945  // Support for serializing memory accesses between threads
1946  void serialize_memory(Register thread, Register tmp);
1947
1948  void verify_tlab();
1949
1950  // Biased locking support
1951  // lock_reg and obj_reg must be loaded up with the appropriate values.
1952  // swap_reg must be rax, and is killed.
1953  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1954  // be killed; if not supplied, push/pop will be used internally to
1955  // allocate a temporary (inefficient, avoid if possible).
1956  // Optional slow case is for implementations (interpreter and C1) which branch to
1957  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1958  // Returns offset of first potentially-faulting instruction for null
1959  // check info (currently consumed only by C1). If
1960  // swap_reg_contains_mark is true then returns -1 as it is assumed
1961  // the calling code has already passed any potential faults.
1962  int biased_locking_enter(Register lock_reg, Register obj_reg,
1963                           Register swap_reg, Register tmp_reg,
1964                           bool swap_reg_contains_mark,
1965                           Label& done, Label* slow_case = NULL,
1966                           BiasedLockingCounters* counters = NULL);
1967  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
1968
1969
1970  Condition negate_condition(Condition cond);
1971
1972  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
1973  // operands. In general the names are modified to avoid hiding the instruction in Assembler
1974  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
1975  // here in MacroAssembler. The major exception to this rule is call
1976
1977  // Arithmetics
1978
1979
1980  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
1981  void addptr(Address dst, Register src);
1982
1983  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
1984  void addptr(Register dst, int32_t src);
1985  void addptr(Register dst, Register src);
1986
1987  void andptr(Register dst, int32_t src);
1988  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
1989
1990  void cmp8(AddressLiteral src1, int imm);
1991
1992  // renamed to drag out the casting of address to int32_t/intptr_t
1993  void cmp32(Register src1, int32_t imm);
1994
1995  void cmp32(AddressLiteral src1, int32_t imm);
1996  // compare reg - mem, or reg - &mem
1997  void cmp32(Register src1, AddressLiteral src2);
1998
1999  void cmp32(Register src1, Address src2);
2000
2001#ifndef _LP64
2002  void cmpoop(Address dst, jobject obj);
2003  void cmpoop(Register dst, jobject obj);
2004#endif // _LP64
2005
2006  // NOTE src2 must be the lval. This is NOT an mem-mem compare
2007  void cmpptr(Address src1, AddressLiteral src2);
2008
2009  void cmpptr(Register src1, AddressLiteral src2);
2010
2011  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2012  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2013  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2014
2015  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2016  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2017
2018  // cmp64 to avoild hiding cmpq
2019  void cmp64(Register src1, AddressLiteral src);
2020
2021  void cmpxchgptr(Register reg, Address adr);
2022
2023  void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2024
2025
2026  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2027
2028
2029  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2030
2031  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2032
2033  void shlptr(Register dst, int32_t shift);
2034  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2035
2036  void shrptr(Register dst, int32_t shift);
2037  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2038
2039  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2040  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2041
2042  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2043
2044  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2045  void subptr(Register dst, int32_t src);
2046  void subptr(Register dst, Register src);
2047
2048
2049  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2050  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2051
2052  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2053  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2054
2055  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2056
2057
2058
2059  // Helper functions for statistics gathering.
2060  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2061  void cond_inc32(Condition cond, AddressLiteral counter_addr);
2062  // Unconditional atomic increment.
2063  void atomic_incl(AddressLiteral counter_addr);
2064
2065  void lea(Register dst, AddressLiteral adr);
2066  void lea(Address dst, AddressLiteral adr);
2067  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2068
2069  void leal32(Register dst, Address src) { leal(dst, src); }
2070
2071  void test32(Register src1, AddressLiteral src2);
2072
2073  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2074  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2075  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2076
2077  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2078  void testptr(Register src1, Register src2);
2079
2080  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2081  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2082
2083  // Calls
2084
2085  void call(Label& L, relocInfo::relocType rtype);
2086  void call(Register entry);
2087
2088  // NOTE: this call tranfers to the effective address of entry NOT
2089  // the address contained by entry. This is because this is more natural
2090  // for jumps/calls.
2091  void call(AddressLiteral entry);
2092
2093  // Jumps
2094
2095  // NOTE: these jumps tranfer to the effective address of dst NOT
2096  // the address contained by dst. This is because this is more natural
2097  // for jumps/calls.
2098  void jump(AddressLiteral dst);
2099  void jump_cc(Condition cc, AddressLiteral dst);
2100
2101  // 32bit can do a case table jump in one instruction but we no longer allow the base
2102  // to be installed in the Address class. This jump will tranfers to the address
2103  // contained in the location described by entry (not the address of entry)
2104  void jump(ArrayAddress entry);
2105
2106  // Floating
2107
2108  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2109  void andpd(XMMRegister dst, AddressLiteral src);
2110
2111  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2112  void comiss(XMMRegister dst, AddressLiteral src);
2113
2114  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2115  void comisd(XMMRegister dst, AddressLiteral src);
2116
2117  void fldcw(Address src) { Assembler::fldcw(src); }
2118  void fldcw(AddressLiteral src);
2119
2120  void fld_s(int index)   { Assembler::fld_s(index); }
2121  void fld_s(Address src) { Assembler::fld_s(src); }
2122  void fld_s(AddressLiteral src);
2123
2124  void fld_d(Address src) { Assembler::fld_d(src); }
2125  void fld_d(AddressLiteral src);
2126
2127  void fld_x(Address src) { Assembler::fld_x(src); }
2128  void fld_x(AddressLiteral src);
2129
2130  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2131  void ldmxcsr(AddressLiteral src);
2132
2133private:
2134  // these are private because users should be doing movflt/movdbl
2135
2136  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2137  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2138  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2139  void movss(XMMRegister dst, AddressLiteral src);
2140
2141  void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2142  void movlpd(XMMRegister dst, AddressLiteral src);
2143
2144public:
2145
2146  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2147  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2148  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2149  void movsd(XMMRegister dst, AddressLiteral src);
2150
2151  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2152  void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2153  void ucomiss(XMMRegister dst, AddressLiteral src);
2154
2155  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2156  void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2157  void ucomisd(XMMRegister dst, AddressLiteral src);
2158
2159  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2160  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2161  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2162  void xorpd(XMMRegister dst, AddressLiteral src);
2163
2164  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2165  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2166  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2167  void xorps(XMMRegister dst, AddressLiteral src);
2168
2169  // Data
2170
2171  void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2172
2173  void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2174  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2175
2176  void movoop(Register dst, jobject obj);
2177  void movoop(Address dst, jobject obj);
2178
2179  void movptr(ArrayAddress dst, Register src);
2180  // can this do an lea?
2181  void movptr(Register dst, ArrayAddress src);
2182
2183  void movptr(Register dst, Address src);
2184
2185  void movptr(Register dst, AddressLiteral src);
2186
2187  void movptr(Register dst, intptr_t src);
2188  void movptr(Register dst, Register src);
2189  void movptr(Address dst, intptr_t src);
2190
2191  void movptr(Address dst, Register src);
2192
2193#ifdef _LP64
2194  // Generally the next two are only used for moving NULL
2195  // Although there are situations in initializing the mark word where
2196  // they could be used. They are dangerous.
2197
2198  // They only exist on LP64 so that int32_t and intptr_t are not the same
2199  // and we have ambiguous declarations.
2200
2201  void movptr(Address dst, int32_t imm32);
2202  void movptr(Register dst, int32_t imm32);
2203#endif // _LP64
2204
2205  // to avoid hiding movl
2206  void mov32(AddressLiteral dst, Register src);
2207  void mov32(Register dst, AddressLiteral src);
2208
2209  // to avoid hiding movb
2210  void movbyte(ArrayAddress dst, int src);
2211
2212  // Can push value or effective address
2213  void pushptr(AddressLiteral src);
2214
2215  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2216  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2217
2218  void pushoop(jobject obj);
2219
2220  // sign extend as need a l to ptr sized element
2221  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2222  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2223
2224  // IndexOf strings.
2225  void string_indexof(Register str1, Register str2,
2226                      Register cnt1, Register cnt2, Register result,
2227                      XMMRegister vec, Register tmp);
2228
2229  // Compare strings.
2230  void string_compare(Register str1, Register str2,
2231                      Register cnt1, Register cnt2, Register result,
2232                      XMMRegister vec1, XMMRegister vec2);
2233
2234  // Compare char[] arrays.
2235  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2236                          Register limit, Register result, Register chr,
2237                          XMMRegister vec1, XMMRegister vec2);
2238
2239#undef VIRTUAL
2240
2241};
2242
2243/**
2244 * class SkipIfEqual:
2245 *
2246 * Instantiating this class will result in assembly code being output that will
2247 * jump around any code emitted between the creation of the instance and it's
2248 * automatic destruction at the end of a scope block, depending on the value of
2249 * the flag passed to the constructor, which will be checked at run-time.
2250 */
2251class SkipIfEqual {
2252 private:
2253  MacroAssembler* _masm;
2254  Label _label;
2255
2256 public:
2257   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2258   ~SkipIfEqual();
2259};
2260
2261#ifdef ASSERT
2262inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2263#endif
2264