templateTable_sparc.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_templateTable_sparc.cpp.incl"
27
28#ifndef CC_INTERP
29#define __ _masm->
30
31// Misc helpers
32
33// Do an oop store like *(base + index + offset) = val
34// index can be noreg,
35static void do_oop_store(InterpreterMacroAssembler* _masm,
36                         Register base,
37                         Register index,
38                         int offset,
39                         Register val,
40                         Register tmp,
41                         BarrierSet::Name barrier,
42                         bool precise) {
43  assert(tmp != val && tmp != base && tmp != index, "register collision");
44  assert(index == noreg || offset == 0, "only one offset");
45  switch (barrier) {
46#ifndef SERIALGC
47    case BarrierSet::G1SATBCT:
48    case BarrierSet::G1SATBCTLogging:
49      {
50        __ g1_write_barrier_pre( base, index, offset, tmp, /*preserve_o_regs*/true);
51        if (index == noreg ) {
52          assert(Assembler::is_simm13(offset), "fix this code");
53          __ store_heap_oop(val, base, offset);
54        } else {
55          __ store_heap_oop(val, base, index);
56        }
57
58        // No need for post barrier if storing NULL
59        if (val != G0) {
60          if (precise) {
61            if (index == noreg) {
62              __ add(base, offset, base);
63            } else {
64              __ add(base, index, base);
65            }
66          }
67          __ g1_write_barrier_post(base, val, tmp);
68        }
69      }
70      break;
71#endif // SERIALGC
72    case BarrierSet::CardTableModRef:
73    case BarrierSet::CardTableExtension:
74      {
75        if (index == noreg ) {
76          assert(Assembler::is_simm13(offset), "fix this code");
77          __ store_heap_oop(val, base, offset);
78        } else {
79          __ store_heap_oop(val, base, index);
80        }
81        // No need for post barrier if storing NULL
82        if (val != G0) {
83          if (precise) {
84            if (index == noreg) {
85              __ add(base, offset, base);
86            } else {
87              __ add(base, index, base);
88            }
89          }
90          __ card_write_barrier_post(base, val, tmp);
91        }
92      }
93      break;
94    case BarrierSet::ModRef:
95    case BarrierSet::Other:
96      ShouldNotReachHere();
97      break;
98    default      :
99      ShouldNotReachHere();
100
101  }
102}
103
104
105//----------------------------------------------------------------------------------------------------
106// Platform-dependent initialization
107
108void TemplateTable::pd_initialize() {
109  // (none)
110}
111
112
113//----------------------------------------------------------------------------------------------------
114// Condition conversion
115Assembler::Condition ccNot(TemplateTable::Condition cc) {
116  switch (cc) {
117    case TemplateTable::equal        : return Assembler::notEqual;
118    case TemplateTable::not_equal    : return Assembler::equal;
119    case TemplateTable::less         : return Assembler::greaterEqual;
120    case TemplateTable::less_equal   : return Assembler::greater;
121    case TemplateTable::greater      : return Assembler::lessEqual;
122    case TemplateTable::greater_equal: return Assembler::less;
123  }
124  ShouldNotReachHere();
125  return Assembler::zero;
126}
127
128//----------------------------------------------------------------------------------------------------
129// Miscelaneous helper routines
130
131
132Address TemplateTable::at_bcp(int offset) {
133  assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
134  return Address(Lbcp, offset);
135}
136
137
138void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register Rbyte_code,
139                                   Register Rscratch,
140                                   bool load_bc_into_scratch /*=true*/) {
141  // With sharing on, may need to test methodOop flag.
142  if (!RewriteBytecodes) return;
143  if (load_bc_into_scratch) __ set(bc, Rbyte_code);
144  Label patch_done;
145  if (JvmtiExport::can_post_breakpoint()) {
146    Label fast_patch;
147    __ ldub(at_bcp(0), Rscratch);
148    __ cmp(Rscratch, Bytecodes::_breakpoint);
149    __ br(Assembler::notEqual, false, Assembler::pt, fast_patch);
150    __ delayed()->nop();  // don't bother to hoist the stb here
151    // perform the quickening, slowly, in the bowels of the breakpoint table
152    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, Rbyte_code);
153    __ ba(false, patch_done);
154    __ delayed()->nop();
155    __ bind(fast_patch);
156  }
157#ifdef ASSERT
158  Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
159  Label okay;
160  __ ldub(at_bcp(0), Rscratch);
161  __ cmp(Rscratch, orig_bytecode);
162  __ br(Assembler::equal, false, Assembler::pt, okay);
163  __ delayed() ->cmp(Rscratch, Rbyte_code);
164  __ br(Assembler::equal, false, Assembler::pt, okay);
165  __ delayed()->nop();
166  __ stop("Rewriting wrong bytecode location");
167  __ bind(okay);
168#endif
169  __ stb(Rbyte_code, at_bcp(0));
170  __ bind(patch_done);
171}
172
173//----------------------------------------------------------------------------------------------------
174// Individual instructions
175
176void TemplateTable::nop() {
177  transition(vtos, vtos);
178  // nothing to do
179}
180
181void TemplateTable::shouldnotreachhere() {
182  transition(vtos, vtos);
183  __ stop("shouldnotreachhere bytecode");
184}
185
186void TemplateTable::aconst_null() {
187  transition(vtos, atos);
188  __ clr(Otos_i);
189}
190
191
192void TemplateTable::iconst(int value) {
193  transition(vtos, itos);
194  __ set(value, Otos_i);
195}
196
197
198void TemplateTable::lconst(int value) {
199  transition(vtos, ltos);
200  assert(value >= 0, "check this code");
201#ifdef _LP64
202  __ set(value, Otos_l);
203#else
204  __ set(value, Otos_l2);
205  __ clr( Otos_l1);
206#endif
207}
208
209
210void TemplateTable::fconst(int value) {
211  transition(vtos, ftos);
212  static float zero = 0.0, one = 1.0, two = 2.0;
213  float* p;
214  switch( value ) {
215   default: ShouldNotReachHere();
216   case 0:  p = &zero;  break;
217   case 1:  p = &one;   break;
218   case 2:  p = &two;   break;
219  }
220  AddressLiteral a(p);
221  __ sethi(a, G3_scratch);
222  __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
223}
224
225
226void TemplateTable::dconst(int value) {
227  transition(vtos, dtos);
228  static double zero = 0.0, one = 1.0;
229  double* p;
230  switch( value ) {
231   default: ShouldNotReachHere();
232   case 0:  p = &zero;  break;
233   case 1:  p = &one;   break;
234  }
235  AddressLiteral a(p);
236  __ sethi(a, G3_scratch);
237  __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
238}
239
240
241// %%%%% Should factore most snippet templates across platforms
242
243void TemplateTable::bipush() {
244  transition(vtos, itos);
245  __ ldsb( at_bcp(1), Otos_i );
246}
247
248void TemplateTable::sipush() {
249  transition(vtos, itos);
250  __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
251}
252
253void TemplateTable::ldc(bool wide) {
254  transition(vtos, vtos);
255  Label call_ldc, notInt, notString, notClass, exit;
256
257  if (wide) {
258    __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
259  } else {
260    __ ldub(Lbcp, 1, O1);
261  }
262  __ get_cpool_and_tags(O0, O2);
263
264  const int base_offset = constantPoolOopDesc::header_size() * wordSize;
265  const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
266
267  // get type from tags
268  __ add(O2, tags_offset, O2);
269  __ ldub(O2, O1, O2);
270  __ cmp(O2, JVM_CONSTANT_UnresolvedString);    // unresolved string? If so, must resolve
271  __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
272  __ delayed()->nop();
273
274  __ cmp(O2, JVM_CONSTANT_UnresolvedClass);     // unresolved class? If so, must resolve
275  __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
276  __ delayed()->nop();
277
278  __ cmp(O2, JVM_CONSTANT_UnresolvedClassInError);     // unresolved class in error state
279  __ brx(Assembler::equal, true, Assembler::pn, call_ldc);
280  __ delayed()->nop();
281
282  __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
283  __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
284  __ delayed()->add(O0, base_offset, O0);
285
286  __ bind(call_ldc);
287  __ set(wide, O1);
288  call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
289  __ push(atos);
290  __ ba(false, exit);
291  __ delayed()->nop();
292
293  __ bind(notClass);
294 // __ add(O0, base_offset, O0);
295  __ sll(O1, LogBytesPerWord, O1);
296  __ cmp(O2, JVM_CONSTANT_Integer);
297  __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
298  __ delayed()->cmp(O2, JVM_CONSTANT_String);
299  __ ld(O0, O1, Otos_i);
300  __ push(itos);
301  __ ba(false, exit);
302  __ delayed()->nop();
303
304  __ bind(notInt);
305 // __ cmp(O2, JVM_CONSTANT_String);
306  __ brx(Assembler::notEqual, true, Assembler::pt, notString);
307  __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
308  __ ld_ptr(O0, O1, Otos_i);
309  __ verify_oop(Otos_i);
310  __ push(atos);
311  __ ba(false, exit);
312  __ delayed()->nop();
313
314  __ bind(notString);
315 // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
316  __ push(ftos);
317
318  __ bind(exit);
319}
320
321void TemplateTable::ldc2_w() {
322  transition(vtos, vtos);
323  Label retry, resolved, Long, exit;
324
325  __ bind(retry);
326  __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
327  __ get_cpool_and_tags(O0, O2);
328
329  const int base_offset = constantPoolOopDesc::header_size() * wordSize;
330  const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
331  // get type from tags
332  __ add(O2, tags_offset, O2);
333  __ ldub(O2, O1, O2);
334
335  __ sll(O1, LogBytesPerWord, O1);
336  __ add(O0, O1, G3_scratch);
337
338  __ cmp(O2, JVM_CONSTANT_Double);
339  __ brx(Assembler::notEqual, false, Assembler::pt, Long);
340  __ delayed()->nop();
341  // A double can be placed at word-aligned locations in the constant pool.
342  // Check out Conversions.java for an example.
343  // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
344  // to double-align double on the constant pool.  SG, 11/7/97
345#ifdef _LP64
346  __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
347#else
348  FloatRegister f = Ftos_d;
349  __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
350  __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
351         f->successor());
352#endif
353  __ push(dtos);
354  __ ba(false, exit);
355  __ delayed()->nop();
356
357  __ bind(Long);
358#ifdef _LP64
359  __ ldx(G3_scratch, base_offset, Otos_l);
360#else
361  __ ld(G3_scratch, base_offset, Otos_l);
362  __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
363#endif
364  __ push(ltos);
365
366  __ bind(exit);
367}
368
369
370void TemplateTable::locals_index(Register reg, int offset) {
371  __ ldub( at_bcp(offset), reg );
372}
373
374
375void TemplateTable::locals_index_wide(Register reg) {
376  // offset is 2, not 1, because Lbcp points to wide prefix code
377  __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
378}
379
380void TemplateTable::iload() {
381  transition(vtos, itos);
382  // Rewrite iload,iload  pair into fast_iload2
383  //         iload,caload pair into fast_icaload
384  if (RewriteFrequentPairs) {
385    Label rewrite, done;
386
387    // get next byte
388    __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
389
390    // if _iload, wait to rewrite to iload2.  We only want to rewrite the
391    // last two iloads in a pair.  Comparing against fast_iload means that
392    // the next bytecode is neither an iload or a caload, and therefore
393    // an iload pair.
394    __ cmp(G3_scratch, (int)Bytecodes::_iload);
395    __ br(Assembler::equal, false, Assembler::pn, done);
396    __ delayed()->nop();
397
398    __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
399    __ br(Assembler::equal, false, Assembler::pn, rewrite);
400    __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
401
402    __ cmp(G3_scratch, (int)Bytecodes::_caload);
403    __ br(Assembler::equal, false, Assembler::pn, rewrite);
404    __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
405
406    __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
407    // rewrite
408    // G4_scratch: fast bytecode
409    __ bind(rewrite);
410    patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
411    __ bind(done);
412  }
413
414  // Get the local value into tos
415  locals_index(G3_scratch);
416  __ access_local_int( G3_scratch, Otos_i );
417}
418
419void TemplateTable::fast_iload2() {
420  transition(vtos, itos);
421  locals_index(G3_scratch);
422  __ access_local_int( G3_scratch, Otos_i );
423  __ push_i();
424  locals_index(G3_scratch, 3);  // get next bytecode's local index.
425  __ access_local_int( G3_scratch, Otos_i );
426}
427
428void TemplateTable::fast_iload() {
429  transition(vtos, itos);
430  locals_index(G3_scratch);
431  __ access_local_int( G3_scratch, Otos_i );
432}
433
434void TemplateTable::lload() {
435  transition(vtos, ltos);
436  locals_index(G3_scratch);
437  __ access_local_long( G3_scratch, Otos_l );
438}
439
440
441void TemplateTable::fload() {
442  transition(vtos, ftos);
443  locals_index(G3_scratch);
444  __ access_local_float( G3_scratch, Ftos_f );
445}
446
447
448void TemplateTable::dload() {
449  transition(vtos, dtos);
450  locals_index(G3_scratch);
451  __ access_local_double( G3_scratch, Ftos_d );
452}
453
454
455void TemplateTable::aload() {
456  transition(vtos, atos);
457  locals_index(G3_scratch);
458  __ access_local_ptr( G3_scratch, Otos_i);
459}
460
461
462void TemplateTable::wide_iload() {
463  transition(vtos, itos);
464  locals_index_wide(G3_scratch);
465  __ access_local_int( G3_scratch, Otos_i );
466}
467
468
469void TemplateTable::wide_lload() {
470  transition(vtos, ltos);
471  locals_index_wide(G3_scratch);
472  __ access_local_long( G3_scratch, Otos_l );
473}
474
475
476void TemplateTable::wide_fload() {
477  transition(vtos, ftos);
478  locals_index_wide(G3_scratch);
479  __ access_local_float( G3_scratch, Ftos_f );
480}
481
482
483void TemplateTable::wide_dload() {
484  transition(vtos, dtos);
485  locals_index_wide(G3_scratch);
486  __ access_local_double( G3_scratch, Ftos_d );
487}
488
489
490void TemplateTable::wide_aload() {
491  transition(vtos, atos);
492  locals_index_wide(G3_scratch);
493  __ access_local_ptr( G3_scratch, Otos_i );
494  __ verify_oop(Otos_i);
495}
496
497
498void TemplateTable::iaload() {
499  transition(itos, itos);
500  // Otos_i: index
501  // tos: array
502  __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
503  __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
504}
505
506
507void TemplateTable::laload() {
508  transition(itos, ltos);
509  // Otos_i: index
510  // O2: array
511  __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
512  __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
513}
514
515
516void TemplateTable::faload() {
517  transition(itos, ftos);
518  // Otos_i: index
519  // O2: array
520  __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
521  __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
522}
523
524
525void TemplateTable::daload() {
526  transition(itos, dtos);
527  // Otos_i: index
528  // O2: array
529  __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
530  __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
531}
532
533
534void TemplateTable::aaload() {
535  transition(itos, atos);
536  // Otos_i: index
537  // tos: array
538  __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
539  __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
540  __ verify_oop(Otos_i);
541}
542
543
544void TemplateTable::baload() {
545  transition(itos, itos);
546  // Otos_i: index
547  // tos: array
548  __ index_check(O2, Otos_i, 0, G3_scratch, O3);
549  __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
550}
551
552
553void TemplateTable::caload() {
554  transition(itos, itos);
555  // Otos_i: index
556  // tos: array
557  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
558  __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
559}
560
561void TemplateTable::fast_icaload() {
562  transition(vtos, itos);
563  // Otos_i: index
564  // tos: array
565  locals_index(G3_scratch);
566  __ access_local_int( G3_scratch, Otos_i );
567  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
568  __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
569}
570
571
572void TemplateTable::saload() {
573  transition(itos, itos);
574  // Otos_i: index
575  // tos: array
576  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
577  __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
578}
579
580
581void TemplateTable::iload(int n) {
582  transition(vtos, itos);
583  __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
584}
585
586
587void TemplateTable::lload(int n) {
588  transition(vtos, ltos);
589  assert(n+1 < Argument::n_register_parameters, "would need more code");
590  __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
591}
592
593
594void TemplateTable::fload(int n) {
595  transition(vtos, ftos);
596  assert(n < Argument::n_register_parameters, "would need more code");
597  __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
598}
599
600
601void TemplateTable::dload(int n) {
602  transition(vtos, dtos);
603  FloatRegister dst = Ftos_d;
604  __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
605}
606
607
608void TemplateTable::aload(int n) {
609  transition(vtos, atos);
610  __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
611}
612
613
614void TemplateTable::aload_0() {
615  transition(vtos, atos);
616
617  // According to bytecode histograms, the pairs:
618  //
619  // _aload_0, _fast_igetfield (itos)
620  // _aload_0, _fast_agetfield (atos)
621  // _aload_0, _fast_fgetfield (ftos)
622  //
623  // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
624  // bytecode checks the next bytecode and then rewrites the current
625  // bytecode into a pair bytecode; otherwise it rewrites the current
626  // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
627  //
628  if (RewriteFrequentPairs) {
629    Label rewrite, done;
630
631    // get next byte
632    __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
633
634    // do actual aload_0
635    aload(0);
636
637    // if _getfield then wait with rewrite
638    __ cmp(G3_scratch, (int)Bytecodes::_getfield);
639    __ br(Assembler::equal, false, Assembler::pn, done);
640    __ delayed()->nop();
641
642    // if _igetfield then rewrite to _fast_iaccess_0
643    assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
644    __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
645    __ br(Assembler::equal, false, Assembler::pn, rewrite);
646    __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
647
648    // if _agetfield then rewrite to _fast_aaccess_0
649    assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
650    __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
651    __ br(Assembler::equal, false, Assembler::pn, rewrite);
652    __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
653
654    // if _fgetfield then rewrite to _fast_faccess_0
655    assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
656    __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
657    __ br(Assembler::equal, false, Assembler::pn, rewrite);
658    __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
659
660    // else rewrite to _fast_aload0
661    assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
662    __ set(Bytecodes::_fast_aload_0, G4_scratch);
663
664    // rewrite
665    // G4_scratch: fast bytecode
666    __ bind(rewrite);
667    patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
668    __ bind(done);
669  } else {
670    aload(0);
671  }
672}
673
674
675void TemplateTable::istore() {
676  transition(itos, vtos);
677  locals_index(G3_scratch);
678  __ store_local_int( G3_scratch, Otos_i );
679}
680
681
682void TemplateTable::lstore() {
683  transition(ltos, vtos);
684  locals_index(G3_scratch);
685  __ store_local_long( G3_scratch, Otos_l );
686}
687
688
689void TemplateTable::fstore() {
690  transition(ftos, vtos);
691  locals_index(G3_scratch);
692  __ store_local_float( G3_scratch, Ftos_f );
693}
694
695
696void TemplateTable::dstore() {
697  transition(dtos, vtos);
698  locals_index(G3_scratch);
699  __ store_local_double( G3_scratch, Ftos_d );
700}
701
702
703void TemplateTable::astore() {
704  transition(vtos, vtos);
705  __ load_ptr(0, Otos_i);
706  __ inc(Lesp, Interpreter::stackElementSize);
707  __ verify_oop_or_return_address(Otos_i, G3_scratch);
708  locals_index(G3_scratch);
709  __ store_local_ptr(G3_scratch, Otos_i);
710}
711
712
713void TemplateTable::wide_istore() {
714  transition(vtos, vtos);
715  __ pop_i();
716  locals_index_wide(G3_scratch);
717  __ store_local_int( G3_scratch, Otos_i );
718}
719
720
721void TemplateTable::wide_lstore() {
722  transition(vtos, vtos);
723  __ pop_l();
724  locals_index_wide(G3_scratch);
725  __ store_local_long( G3_scratch, Otos_l );
726}
727
728
729void TemplateTable::wide_fstore() {
730  transition(vtos, vtos);
731  __ pop_f();
732  locals_index_wide(G3_scratch);
733  __ store_local_float( G3_scratch, Ftos_f );
734}
735
736
737void TemplateTable::wide_dstore() {
738  transition(vtos, vtos);
739  __ pop_d();
740  locals_index_wide(G3_scratch);
741  __ store_local_double( G3_scratch, Ftos_d );
742}
743
744
745void TemplateTable::wide_astore() {
746  transition(vtos, vtos);
747  __ load_ptr(0, Otos_i);
748  __ inc(Lesp, Interpreter::stackElementSize);
749  __ verify_oop_or_return_address(Otos_i, G3_scratch);
750  locals_index_wide(G3_scratch);
751  __ store_local_ptr(G3_scratch, Otos_i);
752}
753
754
755void TemplateTable::iastore() {
756  transition(itos, vtos);
757  __ pop_i(O2); // index
758  // Otos_i: val
759  // O3: array
760  __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
761  __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
762}
763
764
765void TemplateTable::lastore() {
766  transition(ltos, vtos);
767  __ pop_i(O2); // index
768  // Otos_l: val
769  // O3: array
770  __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
771  __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
772}
773
774
775void TemplateTable::fastore() {
776  transition(ftos, vtos);
777  __ pop_i(O2); // index
778  // Ftos_f: val
779  // O3: array
780  __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
781  __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
782}
783
784
785void TemplateTable::dastore() {
786  transition(dtos, vtos);
787  __ pop_i(O2); // index
788  // Fos_d: val
789  // O3: array
790  __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
791  __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
792}
793
794
795void TemplateTable::aastore() {
796  Label store_ok, is_null, done;
797  transition(vtos, vtos);
798  __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
799  __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
800  __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
801  // Otos_i: val
802  // O2: index
803  // O3: array
804  __ verify_oop(Otos_i);
805  __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
806
807  // do array store check - check for NULL value first
808  __ br_null( Otos_i, false, Assembler::pn, is_null );
809  __ delayed()->nop();
810
811  __ load_klass(O3, O4); // get array klass
812  __ load_klass(Otos_i, O5); // get value klass
813
814  // do fast instanceof cache test
815
816  __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);
817
818  assert(Otos_i == O0, "just checking");
819
820  // Otos_i:    value
821  // O1:        addr - offset
822  // O2:        index
823  // O3:        array
824  // O4:        array element klass
825  // O5:        value klass
826
827  // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
828
829  // Generate a fast subtype check.  Branch to store_ok if no
830  // failure.  Throw if failure.
831  __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
832
833  // Not a subtype; so must throw exception
834  __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
835
836  // Store is OK.
837  __ bind(store_ok);
838  do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
839
840  __ ba(false,done);
841  __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
842
843  __ bind(is_null);
844  do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
845
846  __ profile_null_seen(G3_scratch);
847  __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
848  __ bind(done);
849}
850
851
852void TemplateTable::bastore() {
853  transition(itos, vtos);
854  __ pop_i(O2); // index
855  // Otos_i: val
856  // O3: array
857  __ index_check(O3, O2, 0, G3_scratch, O2);
858  __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
859}
860
861
862void TemplateTable::castore() {
863  transition(itos, vtos);
864  __ pop_i(O2); // index
865  // Otos_i: val
866  // O3: array
867  __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
868  __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
869}
870
871
872void TemplateTable::sastore() {
873  // %%%%% Factor across platform
874  castore();
875}
876
877
878void TemplateTable::istore(int n) {
879  transition(itos, vtos);
880  __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
881}
882
883
884void TemplateTable::lstore(int n) {
885  transition(ltos, vtos);
886  assert(n+1 < Argument::n_register_parameters, "only handle register cases");
887  __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
888
889}
890
891
892void TemplateTable::fstore(int n) {
893  transition(ftos, vtos);
894  assert(n < Argument::n_register_parameters, "only handle register cases");
895  __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
896}
897
898
899void TemplateTable::dstore(int n) {
900  transition(dtos, vtos);
901  FloatRegister src = Ftos_d;
902  __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
903}
904
905
906void TemplateTable::astore(int n) {
907  transition(vtos, vtos);
908  __ load_ptr(0, Otos_i);
909  __ inc(Lesp, Interpreter::stackElementSize);
910  __ verify_oop_or_return_address(Otos_i, G3_scratch);
911  __ store_local_ptr(n, Otos_i);
912}
913
914
915void TemplateTable::pop() {
916  transition(vtos, vtos);
917  __ inc(Lesp, Interpreter::stackElementSize);
918}
919
920
921void TemplateTable::pop2() {
922  transition(vtos, vtos);
923  __ inc(Lesp, 2 * Interpreter::stackElementSize);
924}
925
926
927void TemplateTable::dup() {
928  transition(vtos, vtos);
929  // stack: ..., a
930  // load a and tag
931  __ load_ptr(0, Otos_i);
932  __ push_ptr(Otos_i);
933  // stack: ..., a, a
934}
935
936
937void TemplateTable::dup_x1() {
938  transition(vtos, vtos);
939  // stack: ..., a, b
940  __ load_ptr( 1, G3_scratch);  // get a
941  __ load_ptr( 0, Otos_l1);     // get b
942  __ store_ptr(1, Otos_l1);     // put b
943  __ store_ptr(0, G3_scratch);  // put a - like swap
944  __ push_ptr(Otos_l1);         // push b
945  // stack: ..., b, a, b
946}
947
948
949void TemplateTable::dup_x2() {
950  transition(vtos, vtos);
951  // stack: ..., a, b, c
952  // get c and push on stack, reuse registers
953  __ load_ptr( 0, G3_scratch);  // get c
954  __ push_ptr(G3_scratch);      // push c with tag
955  // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
956  // (stack offsets n+1 now)
957  __ load_ptr( 3, Otos_l1);     // get a
958  __ store_ptr(3, G3_scratch);  // put c at 3
959  // stack: ..., c, b, c, c  (a in reg)
960  __ load_ptr( 2, G3_scratch);  // get b
961  __ store_ptr(2, Otos_l1);     // put a at 2
962  // stack: ..., c, a, c, c  (b in reg)
963  __ store_ptr(1, G3_scratch);  // put b at 1
964  // stack: ..., c, a, b, c
965}
966
967
968void TemplateTable::dup2() {
969  transition(vtos, vtos);
970  __ load_ptr(1, G3_scratch);  // get a
971  __ load_ptr(0, Otos_l1);     // get b
972  __ push_ptr(G3_scratch);     // push a
973  __ push_ptr(Otos_l1);        // push b
974  // stack: ..., a, b, a, b
975}
976
977
978void TemplateTable::dup2_x1() {
979  transition(vtos, vtos);
980  // stack: ..., a, b, c
981  __ load_ptr( 1, Lscratch);    // get b
982  __ load_ptr( 2, Otos_l1);     // get a
983  __ store_ptr(2, Lscratch);    // put b at a
984  // stack: ..., b, b, c
985  __ load_ptr( 0, G3_scratch);  // get c
986  __ store_ptr(1, G3_scratch);  // put c at b
987  // stack: ..., b, c, c
988  __ store_ptr(0, Otos_l1);     // put a at c
989  // stack: ..., b, c, a
990  __ push_ptr(Lscratch);        // push b
991  __ push_ptr(G3_scratch);      // push c
992  // stack: ..., b, c, a, b, c
993}
994
995
996// The spec says that these types can be a mixture of category 1 (1 word)
997// types and/or category 2 types (long and doubles)
998void TemplateTable::dup2_x2() {
999  transition(vtos, vtos);
1000  // stack: ..., a, b, c, d
1001  __ load_ptr( 1, Lscratch);    // get c
1002  __ load_ptr( 3, Otos_l1);     // get a
1003  __ store_ptr(3, Lscratch);    // put c at 3
1004  __ store_ptr(1, Otos_l1);     // put a at 1
1005  // stack: ..., c, b, a, d
1006  __ load_ptr( 2, G3_scratch);  // get b
1007  __ load_ptr( 0, Otos_l1);     // get d
1008  __ store_ptr(0, G3_scratch);  // put b at 0
1009  __ store_ptr(2, Otos_l1);     // put d at 2
1010  // stack: ..., c, d, a, b
1011  __ push_ptr(Lscratch);        // push c
1012  __ push_ptr(Otos_l1);         // push d
1013  // stack: ..., c, d, a, b, c, d
1014}
1015
1016
1017void TemplateTable::swap() {
1018  transition(vtos, vtos);
1019  // stack: ..., a, b
1020  __ load_ptr( 1, G3_scratch);  // get a
1021  __ load_ptr( 0, Otos_l1);     // get b
1022  __ store_ptr(0, G3_scratch);  // put b
1023  __ store_ptr(1, Otos_l1);     // put a
1024  // stack: ..., b, a
1025}
1026
1027
1028void TemplateTable::iop2(Operation op) {
1029  transition(itos, itos);
1030  __ pop_i(O1);
1031  switch (op) {
1032   case  add:  __  add(O1, Otos_i, Otos_i);  break;
1033   case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1034     // %%%%% Mul may not exist: better to call .mul?
1035   case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1036   case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1037   case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1038   case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1039   case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1040   case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1041   case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1042   default: ShouldNotReachHere();
1043  }
1044}
1045
1046
1047void TemplateTable::lop2(Operation op) {
1048  transition(ltos, ltos);
1049  __ pop_l(O2);
1050  switch (op) {
1051#ifdef _LP64
1052   case  add:  __  add(O2, Otos_l, Otos_l);  break;
1053   case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1054   case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1055   case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1056   case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1057#else
1058   case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1059   case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1060   case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1061   case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1062   case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1063#endif
1064   default: ShouldNotReachHere();
1065  }
1066}
1067
1068
1069void TemplateTable::idiv() {
1070  // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1071  // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1072
1073  transition(itos, itos);
1074  __ pop_i(O1); // get 1st op
1075
1076  // Y contains upper 32 bits of result, set it to 0 or all ones
1077  __ wry(G0);
1078  __ mov(~0, G3_scratch);
1079
1080  __ tst(O1);
1081     Label neg;
1082  __ br(Assembler::negative, true, Assembler::pn, neg);
1083  __ delayed()->wry(G3_scratch);
1084  __ bind(neg);
1085
1086     Label ok;
1087  __ tst(Otos_i);
1088  __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1089
1090  const int min_int = 0x80000000;
1091  Label regular;
1092  __ cmp(Otos_i, -1);
1093  __ br(Assembler::notEqual, false, Assembler::pt, regular);
1094#ifdef _LP64
1095  // Don't put set in delay slot
1096  // Set will turn into multiple instructions in 64 bit mode
1097  __ delayed()->nop();
1098  __ set(min_int, G4_scratch);
1099#else
1100  __ delayed()->set(min_int, G4_scratch);
1101#endif
1102  Label done;
1103  __ cmp(O1, G4_scratch);
1104  __ br(Assembler::equal, true, Assembler::pt, done);
1105  __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1106
1107  __ bind(regular);
1108  __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1109  __ bind(done);
1110}
1111
1112
1113void TemplateTable::irem() {
1114  transition(itos, itos);
1115  __ mov(Otos_i, O2); // save divisor
1116  idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1117  __ smul(Otos_i, O2, Otos_i);
1118  __ sub(O1, Otos_i, Otos_i);
1119}
1120
1121
1122void TemplateTable::lmul() {
1123  transition(ltos, ltos);
1124  __ pop_l(O2);
1125#ifdef _LP64
1126  __ mulx(Otos_l, O2, Otos_l);
1127#else
1128  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1129#endif
1130
1131}
1132
1133
1134void TemplateTable::ldiv() {
1135  transition(ltos, ltos);
1136
1137  // check for zero
1138  __ pop_l(O2);
1139#ifdef _LP64
1140  __ tst(Otos_l);
1141  __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1142  __ sdivx(O2, Otos_l, Otos_l);
1143#else
1144  __ orcc(Otos_l1, Otos_l2, G0);
1145  __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1146  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1147#endif
1148}
1149
1150
1151void TemplateTable::lrem() {
1152  transition(ltos, ltos);
1153
1154  // check for zero
1155  __ pop_l(O2);
1156#ifdef _LP64
1157  __ tst(Otos_l);
1158  __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1159  __ sdivx(O2, Otos_l, Otos_l2);
1160  __ mulx (Otos_l2, Otos_l, Otos_l2);
1161  __ sub  (O2, Otos_l2, Otos_l);
1162#else
1163  __ orcc(Otos_l1, Otos_l2, G0);
1164  __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1165  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1166#endif
1167}
1168
1169
1170void TemplateTable::lshl() {
1171  transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1172
1173  __ pop_l(O2);                          // shift value in O2, O3
1174#ifdef _LP64
1175  __ sllx(O2, Otos_i, Otos_l);
1176#else
1177  __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1178#endif
1179}
1180
1181
1182void TemplateTable::lshr() {
1183  transition(itos, ltos); // %%%% see lshl comment
1184
1185  __ pop_l(O2);                          // shift value in O2, O3
1186#ifdef _LP64
1187  __ srax(O2, Otos_i, Otos_l);
1188#else
1189  __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1190#endif
1191}
1192
1193
1194
1195void TemplateTable::lushr() {
1196  transition(itos, ltos); // %%%% see lshl comment
1197
1198  __ pop_l(O2);                          // shift value in O2, O3
1199#ifdef _LP64
1200  __ srlx(O2, Otos_i, Otos_l);
1201#else
1202  __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1203#endif
1204}
1205
1206
1207void TemplateTable::fop2(Operation op) {
1208  transition(ftos, ftos);
1209  switch (op) {
1210   case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1211   case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1212   case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1213   case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1214   case  rem:
1215     assert(Ftos_f == F0, "just checking");
1216#ifdef _LP64
1217     // LP64 calling conventions use F1, F3 for passing 2 floats
1218     __ pop_f(F1);
1219     __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1220#else
1221     __ pop_i(O0);
1222     __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1223     __ ld( __ d_tmp, O1 );
1224#endif
1225     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1226     assert( Ftos_f == F0, "fix this code" );
1227     break;
1228
1229   default: ShouldNotReachHere();
1230  }
1231}
1232
1233
1234void TemplateTable::dop2(Operation op) {
1235  transition(dtos, dtos);
1236  switch (op) {
1237   case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1238   case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1239   case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1240   case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1241   case  rem:
1242#ifdef _LP64
1243     // Pass arguments in D0, D2
1244     __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1245     __ pop_d( F0 );
1246#else
1247     // Pass arguments in O0O1, O2O3
1248     __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1249     __ ldd( __ d_tmp, O2 );
1250     __ pop_d(Ftos_f);
1251     __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1252     __ ldd( __ d_tmp, O0 );
1253#endif
1254     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1255     assert( Ftos_d == F0, "fix this code" );
1256     break;
1257
1258   default: ShouldNotReachHere();
1259  }
1260}
1261
1262
1263void TemplateTable::ineg() {
1264  transition(itos, itos);
1265  __ neg(Otos_i);
1266}
1267
1268
1269void TemplateTable::lneg() {
1270  transition(ltos, ltos);
1271#ifdef _LP64
1272  __ sub(G0, Otos_l, Otos_l);
1273#else
1274  __ lneg(Otos_l1, Otos_l2);
1275#endif
1276}
1277
1278
1279void TemplateTable::fneg() {
1280  transition(ftos, ftos);
1281  __ fneg(FloatRegisterImpl::S, Ftos_f);
1282}
1283
1284
1285void TemplateTable::dneg() {
1286  transition(dtos, dtos);
1287  // v8 has fnegd if source and dest are the same
1288  __ fneg(FloatRegisterImpl::D, Ftos_f);
1289}
1290
1291
1292void TemplateTable::iinc() {
1293  transition(vtos, vtos);
1294  locals_index(G3_scratch);
1295  __ ldsb(Lbcp, 2, O2);  // load constant
1296  __ access_local_int(G3_scratch, Otos_i);
1297  __ add(Otos_i, O2, Otos_i);
1298  __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1299}
1300
1301
1302void TemplateTable::wide_iinc() {
1303  transition(vtos, vtos);
1304  locals_index_wide(G3_scratch);
1305  __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1306  __ access_local_int(G3_scratch, Otos_i);
1307  __ add(Otos_i, O3, Otos_i);
1308  __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1309}
1310
1311
1312void TemplateTable::convert() {
1313// %%%%% Factor this first part accross platforms
1314  #ifdef ASSERT
1315    TosState tos_in  = ilgl;
1316    TosState tos_out = ilgl;
1317    switch (bytecode()) {
1318      case Bytecodes::_i2l: // fall through
1319      case Bytecodes::_i2f: // fall through
1320      case Bytecodes::_i2d: // fall through
1321      case Bytecodes::_i2b: // fall through
1322      case Bytecodes::_i2c: // fall through
1323      case Bytecodes::_i2s: tos_in = itos; break;
1324      case Bytecodes::_l2i: // fall through
1325      case Bytecodes::_l2f: // fall through
1326      case Bytecodes::_l2d: tos_in = ltos; break;
1327      case Bytecodes::_f2i: // fall through
1328      case Bytecodes::_f2l: // fall through
1329      case Bytecodes::_f2d: tos_in = ftos; break;
1330      case Bytecodes::_d2i: // fall through
1331      case Bytecodes::_d2l: // fall through
1332      case Bytecodes::_d2f: tos_in = dtos; break;
1333      default             : ShouldNotReachHere();
1334    }
1335    switch (bytecode()) {
1336      case Bytecodes::_l2i: // fall through
1337      case Bytecodes::_f2i: // fall through
1338      case Bytecodes::_d2i: // fall through
1339      case Bytecodes::_i2b: // fall through
1340      case Bytecodes::_i2c: // fall through
1341      case Bytecodes::_i2s: tos_out = itos; break;
1342      case Bytecodes::_i2l: // fall through
1343      case Bytecodes::_f2l: // fall through
1344      case Bytecodes::_d2l: tos_out = ltos; break;
1345      case Bytecodes::_i2f: // fall through
1346      case Bytecodes::_l2f: // fall through
1347      case Bytecodes::_d2f: tos_out = ftos; break;
1348      case Bytecodes::_i2d: // fall through
1349      case Bytecodes::_l2d: // fall through
1350      case Bytecodes::_f2d: tos_out = dtos; break;
1351      default             : ShouldNotReachHere();
1352    }
1353    transition(tos_in, tos_out);
1354  #endif
1355
1356
1357  // Conversion
1358  Label done;
1359  switch (bytecode()) {
1360   case Bytecodes::_i2l:
1361#ifdef _LP64
1362    // Sign extend the 32 bits
1363    __ sra ( Otos_i, 0, Otos_l );
1364#else
1365    __ addcc(Otos_i, 0, Otos_l2);
1366    __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1367    __ delayed()->clr(Otos_l1);
1368    __ set(~0, Otos_l1);
1369#endif
1370    break;
1371
1372   case Bytecodes::_i2f:
1373    __ st(Otos_i, __ d_tmp );
1374    __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1375    __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1376    break;
1377
1378   case Bytecodes::_i2d:
1379    __ st(Otos_i, __ d_tmp);
1380    __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1381    __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1382    break;
1383
1384   case Bytecodes::_i2b:
1385    __ sll(Otos_i, 24, Otos_i);
1386    __ sra(Otos_i, 24, Otos_i);
1387    break;
1388
1389   case Bytecodes::_i2c:
1390    __ sll(Otos_i, 16, Otos_i);
1391    __ srl(Otos_i, 16, Otos_i);
1392    break;
1393
1394   case Bytecodes::_i2s:
1395    __ sll(Otos_i, 16, Otos_i);
1396    __ sra(Otos_i, 16, Otos_i);
1397    break;
1398
1399   case Bytecodes::_l2i:
1400#ifndef _LP64
1401    __ mov(Otos_l2, Otos_i);
1402#else
1403    // Sign-extend into the high 32 bits
1404    __ sra(Otos_l, 0, Otos_i);
1405#endif
1406    break;
1407
1408   case Bytecodes::_l2f:
1409   case Bytecodes::_l2d:
1410    __ st_long(Otos_l, __ d_tmp);
1411    __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1412
1413    if (VM_Version::v9_instructions_work()) {
1414      if (bytecode() == Bytecodes::_l2f) {
1415        __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1416      } else {
1417        __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1418      }
1419    } else {
1420      __ call_VM_leaf(
1421        Lscratch,
1422        bytecode() == Bytecodes::_l2f
1423          ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
1424          : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
1425      );
1426    }
1427    break;
1428
1429  case Bytecodes::_f2i:  {
1430      Label isNaN;
1431      // result must be 0 if value is NaN; test by comparing value to itself
1432      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1433      // According to the v8 manual, you have to have a non-fp instruction
1434      // between fcmp and fb.
1435      if (!VM_Version::v9_instructions_work()) {
1436        __ nop();
1437      }
1438      __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1439      __ delayed()->clr(Otos_i);                                     // NaN
1440      __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1441      __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1442      __ ld(__ d_tmp, Otos_i);
1443      __ bind(isNaN);
1444    }
1445    break;
1446
1447   case Bytecodes::_f2l:
1448    // must uncache tos
1449    __ push_f();
1450#ifdef _LP64
1451    __ pop_f(F1);
1452#else
1453    __ pop_i(O0);
1454#endif
1455    __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1456    break;
1457
1458   case Bytecodes::_f2d:
1459    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1460    break;
1461
1462   case Bytecodes::_d2i:
1463   case Bytecodes::_d2l:
1464    // must uncache tos
1465    __ push_d();
1466#ifdef _LP64
1467    // LP64 calling conventions pass first double arg in D0
1468    __ pop_d( Ftos_d );
1469#else
1470    __ pop_i( O0 );
1471    __ pop_i( O1 );
1472#endif
1473    __ call_VM_leaf(Lscratch,
1474        bytecode() == Bytecodes::_d2i
1475          ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1476          : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1477    break;
1478
1479    case Bytecodes::_d2f:
1480    if (VM_Version::v9_instructions_work()) {
1481      __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1482    }
1483    else {
1484      // must uncache tos
1485      __ push_d();
1486      __ pop_i(O0);
1487      __ pop_i(O1);
1488      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
1489    }
1490    break;
1491
1492    default: ShouldNotReachHere();
1493  }
1494  __ bind(done);
1495}
1496
1497
1498void TemplateTable::lcmp() {
1499  transition(ltos, itos);
1500
1501#ifdef _LP64
1502  __ pop_l(O1); // pop off value 1, value 2 is in O0
1503  __ lcmp( O1, Otos_l, Otos_i );
1504#else
1505  __ pop_l(O2); // cmp O2,3 to O0,1
1506  __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1507#endif
1508}
1509
1510
1511void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1512
1513  if (is_float) __ pop_f(F2);
1514  else          __ pop_d(F2);
1515
1516  assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1517
1518  __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1519}
1520
1521void TemplateTable::branch(bool is_jsr, bool is_wide) {
1522  // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1523  __ verify_oop(Lmethod);
1524  __ verify_thread();
1525
1526  const Register O2_bumped_count = O2;
1527  __ profile_taken_branch(G3_scratch, O2_bumped_count);
1528
1529  // get (wide) offset to O1_disp
1530  const Register O1_disp = O1;
1531  if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1532  else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1533
1534  // Handle all the JSR stuff here, then exit.
1535  // It's much shorter and cleaner than intermingling with the
1536  // non-JSR normal-branch stuff occurring below.
1537  if( is_jsr ) {
1538    // compute return address as bci in Otos_i
1539    __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1540    __ sub(Lbcp, G3_scratch, G3_scratch);
1541    __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1542
1543    // Bump Lbcp to target of JSR
1544    __ add(Lbcp, O1_disp, Lbcp);
1545    // Push returnAddress for "ret" on stack
1546    __ push_ptr(Otos_i);
1547    // And away we go!
1548    __ dispatch_next(vtos);
1549    return;
1550  }
1551
1552  // Normal (non-jsr) branch handling
1553
1554  // Save the current Lbcp
1555  const Register O0_cur_bcp = O0;
1556  __ mov( Lbcp, O0_cur_bcp );
1557
1558  bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1559  if ( increment_invocation_counter_for_backward_branches ) {
1560    Label Lforward;
1561    // check branch direction
1562    __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1563    // Bump bytecode pointer by displacement (take the branch)
1564    __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1565
1566    // Update Backedge branch separately from invocations
1567    const Register G4_invoke_ctr = G4;
1568    __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
1569    if (ProfileInterpreter) {
1570      __ test_invocation_counter_for_mdp(G4_invoke_ctr, Lbcp, G3_scratch, Lforward);
1571      if (UseOnStackReplacement) {
1572        __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
1573      }
1574    } else {
1575      if (UseOnStackReplacement) {
1576        __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
1577      }
1578    }
1579
1580    __ bind(Lforward);
1581  } else
1582    // Bump bytecode pointer by displacement (take the branch)
1583    __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1584
1585  // continue with bytecode @ target
1586  // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1587  // %%%%% and changing dispatch_next to dispatch_only
1588  __ dispatch_next(vtos);
1589}
1590
1591
1592// Note Condition in argument is TemplateTable::Condition
1593// arg scope is within class scope
1594
1595void TemplateTable::if_0cmp(Condition cc) {
1596  // no pointers, integer only!
1597  transition(itos, vtos);
1598  // assume branch is more often taken than not (loops use backward branches)
1599  __ cmp( Otos_i, 0);
1600  __ if_cmp(ccNot(cc), false);
1601}
1602
1603
1604void TemplateTable::if_icmp(Condition cc) {
1605  transition(itos, vtos);
1606  __ pop_i(O1);
1607  __ cmp(O1, Otos_i);
1608  __ if_cmp(ccNot(cc), false);
1609}
1610
1611
1612void TemplateTable::if_nullcmp(Condition cc) {
1613  transition(atos, vtos);
1614  __ tst(Otos_i);
1615  __ if_cmp(ccNot(cc), true);
1616}
1617
1618
1619void TemplateTable::if_acmp(Condition cc) {
1620  transition(atos, vtos);
1621  __ pop_ptr(O1);
1622  __ verify_oop(O1);
1623  __ verify_oop(Otos_i);
1624  __ cmp(O1, Otos_i);
1625  __ if_cmp(ccNot(cc), true);
1626}
1627
1628
1629
1630void TemplateTable::ret() {
1631  transition(vtos, vtos);
1632  locals_index(G3_scratch);
1633  __ access_local_returnAddress(G3_scratch, Otos_i);
1634  // Otos_i contains the bci, compute the bcp from that
1635
1636#ifdef _LP64
1637#ifdef ASSERT
1638  // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1639  // the result.  The return address (really a BCI) was stored with an
1640  // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1641  // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1642  // loaded value.
1643  { Label zzz ;
1644     __ set (65536, G3_scratch) ;
1645     __ cmp (Otos_i, G3_scratch) ;
1646     __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1647     __ delayed()->nop();
1648     __ stop("BCI is in the wrong register half?");
1649     __ bind (zzz) ;
1650  }
1651#endif
1652#endif
1653
1654  __ profile_ret(vtos, Otos_i, G4_scratch);
1655
1656  __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1657  __ add(G3_scratch, Otos_i, G3_scratch);
1658  __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
1659  __ dispatch_next(vtos);
1660}
1661
1662
1663void TemplateTable::wide_ret() {
1664  transition(vtos, vtos);
1665  locals_index_wide(G3_scratch);
1666  __ access_local_returnAddress(G3_scratch, Otos_i);
1667  // Otos_i contains the bci, compute the bcp from that
1668
1669  __ profile_ret(vtos, Otos_i, G4_scratch);
1670
1671  __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
1672  __ add(G3_scratch, Otos_i, G3_scratch);
1673  __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
1674  __ dispatch_next(vtos);
1675}
1676
1677
1678void TemplateTable::tableswitch() {
1679  transition(itos, vtos);
1680  Label default_case, continue_execution;
1681
1682  // align bcp
1683  __ add(Lbcp, BytesPerInt, O1);
1684  __ and3(O1, -BytesPerInt, O1);
1685  // load lo, hi
1686  __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1687  __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1688#ifdef _LP64
1689  // Sign extend the 32 bits
1690  __ sra ( Otos_i, 0, Otos_i );
1691#endif /* _LP64 */
1692
1693  // check against lo & hi
1694  __ cmp( Otos_i, O2);
1695  __ br( Assembler::less, false, Assembler::pn, default_case);
1696  __ delayed()->cmp( Otos_i, O3 );
1697  __ br( Assembler::greater, false, Assembler::pn, default_case);
1698  // lookup dispatch offset
1699  __ delayed()->sub(Otos_i, O2, O2);
1700  __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1701  __ sll(O2, LogBytesPerInt, O2);
1702  __ add(O2, 3 * BytesPerInt, O2);
1703  __ ba(false, continue_execution);
1704  __ delayed()->ld(O1, O2, O2);
1705  // handle default
1706  __ bind(default_case);
1707  __ profile_switch_default(O3);
1708  __ ld(O1, 0, O2); // get default offset
1709  // continue execution
1710  __ bind(continue_execution);
1711  __ add(Lbcp, O2, Lbcp);
1712  __ dispatch_next(vtos);
1713}
1714
1715
1716void TemplateTable::lookupswitch() {
1717  transition(itos, itos);
1718  __ stop("lookupswitch bytecode should have been rewritten");
1719}
1720
1721void TemplateTable::fast_linearswitch() {
1722  transition(itos, vtos);
1723    Label loop_entry, loop, found, continue_execution;
1724  // align bcp
1725  __ add(Lbcp, BytesPerInt, O1);
1726  __ and3(O1, -BytesPerInt, O1);
1727 // set counter
1728  __ ld(O1, BytesPerInt, O2);
1729  __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1730  __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1731  __ ba(false, loop_entry);
1732  __ delayed()->add(O3, O2, O2); // counter now points past last pair
1733
1734  // table search
1735  __ bind(loop);
1736  __ cmp(O4, Otos_i);
1737  __ br(Assembler::equal, true, Assembler::pn, found);
1738  __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1739  __ inc(O3, 2 * BytesPerInt);
1740
1741  __ bind(loop_entry);
1742  __ cmp(O2, O3);
1743  __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1744  __ delayed()->ld(O3, 0, O4);
1745
1746  // default case
1747  __ ld(O1, 0, O4); // get default offset
1748  if (ProfileInterpreter) {
1749    __ profile_switch_default(O3);
1750    __ ba(false, continue_execution);
1751    __ delayed()->nop();
1752  }
1753
1754  // entry found -> get offset
1755  __ bind(found);
1756  if (ProfileInterpreter) {
1757    __ sub(O3, O1, O3);
1758    __ sub(O3, 2*BytesPerInt, O3);
1759    __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1760    __ profile_switch_case(O3, O1, O2, G3_scratch);
1761
1762    __ bind(continue_execution);
1763  }
1764  __ add(Lbcp, O4, Lbcp);
1765  __ dispatch_next(vtos);
1766}
1767
1768
1769void TemplateTable::fast_binaryswitch() {
1770  transition(itos, vtos);
1771  // Implementation using the following core algorithm: (copied from Intel)
1772  //
1773  // int binary_search(int key, LookupswitchPair* array, int n) {
1774  //   // Binary search according to "Methodik des Programmierens" by
1775  //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1776  //   int i = 0;
1777  //   int j = n;
1778  //   while (i+1 < j) {
1779  //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1780  //     // with      Q: for all i: 0 <= i < n: key < a[i]
1781  //     // where a stands for the array and assuming that the (inexisting)
1782  //     // element a[n] is infinitely big.
1783  //     int h = (i + j) >> 1;
1784  //     // i < h < j
1785  //     if (key < array[h].fast_match()) {
1786  //       j = h;
1787  //     } else {
1788  //       i = h;
1789  //     }
1790  //   }
1791  //   // R: a[i] <= key < a[i+1] or Q
1792  //   // (i.e., if key is within array, i is the correct index)
1793  //   return i;
1794  // }
1795
1796  // register allocation
1797  assert(Otos_i == O0, "alias checking");
1798  const Register Rkey     = Otos_i;                    // already set (tosca)
1799  const Register Rarray   = O1;
1800  const Register Ri       = O2;
1801  const Register Rj       = O3;
1802  const Register Rh       = O4;
1803  const Register Rscratch = O5;
1804
1805  const int log_entry_size = 3;
1806  const int entry_size = 1 << log_entry_size;
1807
1808  Label found;
1809  // Find Array start
1810  __ add(Lbcp, 3 * BytesPerInt, Rarray);
1811  __ and3(Rarray, -BytesPerInt, Rarray);
1812  // initialize i & j (in delay slot)
1813  __ clr( Ri );
1814
1815  // and start
1816  Label entry;
1817  __ ba(false, entry);
1818  __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1819  // (Rj is already in the native byte-ordering.)
1820
1821  // binary search loop
1822  { Label loop;
1823    __ bind( loop );
1824    // int h = (i + j) >> 1;
1825    __ sra( Rh, 1, Rh );
1826    // if (key < array[h].fast_match()) {
1827    //   j = h;
1828    // } else {
1829    //   i = h;
1830    // }
1831    __ sll( Rh, log_entry_size, Rscratch );
1832    __ ld( Rarray, Rscratch, Rscratch );
1833    // (Rscratch is already in the native byte-ordering.)
1834    __ cmp( Rkey, Rscratch );
1835    if ( VM_Version::v9_instructions_work() ) {
1836      __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1837      __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1838    }
1839    else {
1840      Label end_of_if;
1841      __ br( Assembler::less, true, Assembler::pt, end_of_if );
1842      __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
1843      __ mov( Rh, Ri );            // else i = h
1844      __ bind(end_of_if);          // }
1845    }
1846
1847    // while (i+1 < j)
1848    __ bind( entry );
1849    __ add( Ri, 1, Rscratch );
1850    __ cmp(Rscratch, Rj);
1851    __ br( Assembler::less, true, Assembler::pt, loop );
1852    __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1853  }
1854
1855  // end of binary search, result index is i (must check again!)
1856  Label default_case;
1857  Label continue_execution;
1858  if (ProfileInterpreter) {
1859    __ mov( Ri, Rh );              // Save index in i for profiling
1860  }
1861  __ sll( Ri, log_entry_size, Ri );
1862  __ ld( Rarray, Ri, Rscratch );
1863  // (Rscratch is already in the native byte-ordering.)
1864  __ cmp( Rkey, Rscratch );
1865  __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1866  __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1867
1868  // entry found -> j = offset
1869  __ inc( Ri, BytesPerInt );
1870  __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1871  __ ld( Rarray, Ri, Rj );
1872  // (Rj is already in the native byte-ordering.)
1873
1874  if (ProfileInterpreter) {
1875    __ ba(false, continue_execution);
1876    __ delayed()->nop();
1877  }
1878
1879  __ bind(default_case); // fall through (if not profiling)
1880  __ profile_switch_default(Ri);
1881
1882  __ bind(continue_execution);
1883  __ add( Lbcp, Rj, Lbcp );
1884  __ dispatch_next( vtos );
1885}
1886
1887
1888void TemplateTable::_return(TosState state) {
1889  transition(state, state);
1890  assert(_desc->calls_vm(), "inconsistent calls_vm information");
1891
1892  if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1893    assert(state == vtos, "only valid state");
1894    __ mov(G0, G3_scratch);
1895    __ access_local_ptr(G3_scratch, Otos_i);
1896    __ load_klass(Otos_i, O2);
1897    __ set(JVM_ACC_HAS_FINALIZER, G3);
1898    __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
1899    __ andcc(G3, O2, G0);
1900    Label skip_register_finalizer;
1901    __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
1902    __ delayed()->nop();
1903
1904    // Call out to do finalizer registration
1905    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
1906
1907    __ bind(skip_register_finalizer);
1908  }
1909
1910  __ remove_activation(state, /* throw_monitor_exception */ true);
1911
1912  // The caller's SP was adjusted upon method entry to accomodate
1913  // the callee's non-argument locals. Undo that adjustment.
1914  __ ret();                             // return to caller
1915  __ delayed()->restore(I5_savedSP, G0, SP);
1916}
1917
1918
1919// ----------------------------------------------------------------------------
1920// Volatile variables demand their effects be made known to all CPU's in
1921// order.  Store buffers on most chips allow reads & writes to reorder; the
1922// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1923// memory barrier (i.e., it's not sufficient that the interpreter does not
1924// reorder volatile references, the hardware also must not reorder them).
1925//
1926// According to the new Java Memory Model (JMM):
1927// (1) All volatiles are serialized wrt to each other.
1928// ALSO reads & writes act as aquire & release, so:
1929// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1930// the read float up to before the read.  It's OK for non-volatile memory refs
1931// that happen before the volatile read to float down below it.
1932// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1933// that happen BEFORE the write float down to after the write.  It's OK for
1934// non-volatile memory refs that happen after the volatile write to float up
1935// before it.
1936//
1937// We only put in barriers around volatile refs (they are expensive), not
1938// _between_ memory refs (that would require us to track the flavor of the
1939// previous memory refs).  Requirements (2) and (3) require some barriers
1940// before volatile stores and after volatile loads.  These nearly cover
1941// requirement (1) but miss the volatile-store-volatile-load case.  This final
1942// case is placed after volatile-stores although it could just as well go
1943// before volatile-loads.
1944void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
1945  // Helper function to insert a is-volatile test and memory barrier
1946  // All current sparc implementations run in TSO, needing only StoreLoad
1947  if ((order_constraint & Assembler::StoreLoad) == 0) return;
1948  __ membar( order_constraint );
1949}
1950
1951// ----------------------------------------------------------------------------
1952void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
1953  assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
1954  bool is_invokedynamic = (bytecode() == Bytecodes::_invokedynamic);
1955
1956  // Depends on cpCacheOop layout!
1957  const int shift_count = (1 + byte_no)*BitsPerByte;
1958  Label resolved;
1959
1960  __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
1961  if (is_invokedynamic) {
1962    // We are resolved if the f1 field contains a non-null CallSite object.
1963    __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
1964              ConstantPoolCacheEntry::f1_offset(), Lbyte_code);
1965    __ tst(Lbyte_code);
1966    __ br(Assembler::notEqual, false, Assembler::pt, resolved);
1967    __ delayed()->set((int)bytecode(), O1);
1968  } else {
1969    __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
1970              ConstantPoolCacheEntry::indices_offset(), Lbyte_code);
1971
1972    __ srl(  Lbyte_code, shift_count, Lbyte_code );
1973    __ and3( Lbyte_code,        0xFF, Lbyte_code );
1974    __ cmp(  Lbyte_code, (int)bytecode());
1975    __ br(   Assembler::equal, false, Assembler::pt, resolved);
1976    __ delayed()->set((int)bytecode(), O1);
1977  }
1978
1979  address entry;
1980  switch (bytecode()) {
1981    case Bytecodes::_getstatic      : // fall through
1982    case Bytecodes::_putstatic      : // fall through
1983    case Bytecodes::_getfield       : // fall through
1984    case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
1985    case Bytecodes::_invokevirtual  : // fall through
1986    case Bytecodes::_invokespecial  : // fall through
1987    case Bytecodes::_invokestatic   : // fall through
1988    case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
1989    case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
1990    default                         : ShouldNotReachHere();                                 break;
1991  }
1992  // first time invocation - must resolve first
1993  __ call_VM(noreg, entry, O1);
1994  // Update registers with resolved info
1995  __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
1996  __ bind(resolved);
1997}
1998
1999void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2000                                               Register Rmethod,
2001                                               Register Ritable_index,
2002                                               Register Rflags,
2003                                               bool is_invokevirtual,
2004                                               bool is_invokevfinal) {
2005  // Uses both G3_scratch and G4_scratch
2006  Register Rcache = G3_scratch;
2007  Register Rscratch = G4_scratch;
2008  assert_different_registers(Rcache, Rmethod, Ritable_index);
2009
2010  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2011
2012  // determine constant pool cache field offsets
2013  const int method_offset = in_bytes(
2014    cp_base_offset +
2015      (is_invokevirtual
2016       ? ConstantPoolCacheEntry::f2_offset()
2017       : ConstantPoolCacheEntry::f1_offset()
2018      )
2019    );
2020  const int flags_offset = in_bytes(cp_base_offset +
2021                                    ConstantPoolCacheEntry::flags_offset());
2022  // access constant pool cache fields
2023  const int index_offset = in_bytes(cp_base_offset +
2024                                    ConstantPoolCacheEntry::f2_offset());
2025
2026  if (is_invokevfinal) {
2027    __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
2028  } else {
2029    resolve_cache_and_index(byte_no, Rcache, Rscratch);
2030  }
2031
2032  __ ld_ptr(Rcache, method_offset, Rmethod);
2033  if (Ritable_index != noreg) {
2034    __ ld_ptr(Rcache, index_offset, Ritable_index);
2035  }
2036  __ ld_ptr(Rcache, flags_offset, Rflags);
2037}
2038
2039// The Rcache register must be set before call
2040void TemplateTable::load_field_cp_cache_entry(Register Robj,
2041                                              Register Rcache,
2042                                              Register index,
2043                                              Register Roffset,
2044                                              Register Rflags,
2045                                              bool is_static) {
2046  assert_different_registers(Rcache, Rflags, Roffset);
2047
2048  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2049
2050  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2051  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2052  if (is_static) {
2053    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2054  }
2055}
2056
2057// The registers Rcache and index expected to be set before call.
2058// Correct values of the Rcache and index registers are preserved.
2059void TemplateTable::jvmti_post_field_access(Register Rcache,
2060                                            Register index,
2061                                            bool is_static,
2062                                            bool has_tos) {
2063  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2064
2065  if (JvmtiExport::can_post_field_access()) {
2066    // Check to see if a field access watch has been set before we take
2067    // the time to call into the VM.
2068    Label Label1;
2069    assert_different_registers(Rcache, index, G1_scratch);
2070    AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2071    __ load_contents(get_field_access_count_addr, G1_scratch);
2072    __ tst(G1_scratch);
2073    __ br(Assembler::zero, false, Assembler::pt, Label1);
2074    __ delayed()->nop();
2075
2076    __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2077
2078    if (is_static) {
2079      __ clr(Otos_i);
2080    } else {
2081      if (has_tos) {
2082      // save object pointer before call_VM() clobbers it
2083        __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2084      } else {
2085        // Load top of stack (do not pop the value off the stack);
2086        __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2087      }
2088      __ verify_oop(Otos_i);
2089    }
2090    // Otos_i: object pointer or NULL if static
2091    // Rcache: cache entry pointer
2092    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2093               Otos_i, Rcache);
2094    if (!is_static && has_tos) {
2095      __ pop_ptr(Otos_i);  // restore object pointer
2096      __ verify_oop(Otos_i);
2097    }
2098    __ get_cache_and_index_at_bcp(Rcache, index, 1);
2099    __ bind(Label1);
2100  }
2101}
2102
2103void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2104  transition(vtos, vtos);
2105
2106  Register Rcache = G3_scratch;
2107  Register index  = G4_scratch;
2108  Register Rclass = Rcache;
2109  Register Roffset= G4_scratch;
2110  Register Rflags = G1_scratch;
2111  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2112
2113  resolve_cache_and_index(byte_no, Rcache, index);
2114  jvmti_post_field_access(Rcache, index, is_static, false);
2115  load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2116
2117  if (!is_static) {
2118    pop_and_check_object(Rclass);
2119  } else {
2120    __ verify_oop(Rclass);
2121  }
2122
2123  Label exit;
2124
2125  Assembler::Membar_mask_bits membar_bits =
2126    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2127
2128  if (__ membar_has_effect(membar_bits)) {
2129    // Get volatile flag
2130    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2131    __ and3(Rflags, Lscratch, Lscratch);
2132  }
2133
2134  Label checkVolatile;
2135
2136  // compute field type
2137  Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2138  __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2139  // Make sure we don't need to mask Rflags for tosBits after the above shift
2140  ConstantPoolCacheEntry::verify_tosBits();
2141
2142  // Check atos before itos for getstatic, more likely (in Queens at least)
2143  __ cmp(Rflags, atos);
2144  __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2145  __ delayed() ->cmp(Rflags, itos);
2146
2147  // atos
2148  __ load_heap_oop(Rclass, Roffset, Otos_i);
2149  __ verify_oop(Otos_i);
2150  __ push(atos);
2151  if (!is_static) {
2152    patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2153  }
2154  __ ba(false, checkVolatile);
2155  __ delayed()->tst(Lscratch);
2156
2157  __ bind(notObj);
2158
2159  // cmp(Rflags, itos);
2160  __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2161  __ delayed() ->cmp(Rflags, ltos);
2162
2163  // itos
2164  __ ld(Rclass, Roffset, Otos_i);
2165  __ push(itos);
2166  if (!is_static) {
2167    patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2168  }
2169  __ ba(false, checkVolatile);
2170  __ delayed()->tst(Lscratch);
2171
2172  __ bind(notInt);
2173
2174  // cmp(Rflags, ltos);
2175  __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2176  __ delayed() ->cmp(Rflags, btos);
2177
2178  // ltos
2179  // load must be atomic
2180  __ ld_long(Rclass, Roffset, Otos_l);
2181  __ push(ltos);
2182  if (!is_static) {
2183    patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2184  }
2185  __ ba(false, checkVolatile);
2186  __ delayed()->tst(Lscratch);
2187
2188  __ bind(notLong);
2189
2190  // cmp(Rflags, btos);
2191  __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2192  __ delayed() ->cmp(Rflags, ctos);
2193
2194  // btos
2195  __ ldsb(Rclass, Roffset, Otos_i);
2196  __ push(itos);
2197  if (!is_static) {
2198    patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2199  }
2200  __ ba(false, checkVolatile);
2201  __ delayed()->tst(Lscratch);
2202
2203  __ bind(notByte);
2204
2205  // cmp(Rflags, ctos);
2206  __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2207  __ delayed() ->cmp(Rflags, stos);
2208
2209  // ctos
2210  __ lduh(Rclass, Roffset, Otos_i);
2211  __ push(itos);
2212  if (!is_static) {
2213    patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2214  }
2215  __ ba(false, checkVolatile);
2216  __ delayed()->tst(Lscratch);
2217
2218  __ bind(notChar);
2219
2220  // cmp(Rflags, stos);
2221  __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2222  __ delayed() ->cmp(Rflags, ftos);
2223
2224  // stos
2225  __ ldsh(Rclass, Roffset, Otos_i);
2226  __ push(itos);
2227  if (!is_static) {
2228    patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2229  }
2230  __ ba(false, checkVolatile);
2231  __ delayed()->tst(Lscratch);
2232
2233  __ bind(notShort);
2234
2235
2236  // cmp(Rflags, ftos);
2237  __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2238  __ delayed() ->tst(Lscratch);
2239
2240  // ftos
2241  __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2242  __ push(ftos);
2243  if (!is_static) {
2244    patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2245  }
2246  __ ba(false, checkVolatile);
2247  __ delayed()->tst(Lscratch);
2248
2249  __ bind(notFloat);
2250
2251
2252  // dtos
2253  __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2254  __ push(dtos);
2255  if (!is_static) {
2256    patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2257  }
2258
2259  __ bind(checkVolatile);
2260  if (__ membar_has_effect(membar_bits)) {
2261    // __ tst(Lscratch); executed in delay slot
2262    __ br(Assembler::zero, false, Assembler::pt, exit);
2263    __ delayed()->nop();
2264    volatile_barrier(membar_bits);
2265  }
2266
2267  __ bind(exit);
2268}
2269
2270
2271void TemplateTable::getfield(int byte_no) {
2272  getfield_or_static(byte_no, false);
2273}
2274
2275void TemplateTable::getstatic(int byte_no) {
2276  getfield_or_static(byte_no, true);
2277}
2278
2279
2280void TemplateTable::fast_accessfield(TosState state) {
2281  transition(atos, state);
2282  Register Rcache  = G3_scratch;
2283  Register index   = G4_scratch;
2284  Register Roffset = G4_scratch;
2285  Register Rflags  = Rcache;
2286  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2287
2288  __ get_cache_and_index_at_bcp(Rcache, index, 1);
2289  jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2290
2291  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2292
2293  __ null_check(Otos_i);
2294  __ verify_oop(Otos_i);
2295
2296  Label exit;
2297
2298  Assembler::Membar_mask_bits membar_bits =
2299    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2300  if (__ membar_has_effect(membar_bits)) {
2301    // Get volatile flag
2302    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2303    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2304  }
2305
2306  switch (bytecode()) {
2307    case Bytecodes::_fast_bgetfield:
2308      __ ldsb(Otos_i, Roffset, Otos_i);
2309      break;
2310    case Bytecodes::_fast_cgetfield:
2311      __ lduh(Otos_i, Roffset, Otos_i);
2312      break;
2313    case Bytecodes::_fast_sgetfield:
2314      __ ldsh(Otos_i, Roffset, Otos_i);
2315      break;
2316    case Bytecodes::_fast_igetfield:
2317      __ ld(Otos_i, Roffset, Otos_i);
2318      break;
2319    case Bytecodes::_fast_lgetfield:
2320      __ ld_long(Otos_i, Roffset, Otos_l);
2321      break;
2322    case Bytecodes::_fast_fgetfield:
2323      __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2324      break;
2325    case Bytecodes::_fast_dgetfield:
2326      __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2327      break;
2328    case Bytecodes::_fast_agetfield:
2329      __ load_heap_oop(Otos_i, Roffset, Otos_i);
2330      break;
2331    default:
2332      ShouldNotReachHere();
2333  }
2334
2335  if (__ membar_has_effect(membar_bits)) {
2336    __ btst(Lscratch, Rflags);
2337    __ br(Assembler::zero, false, Assembler::pt, exit);
2338    __ delayed()->nop();
2339    volatile_barrier(membar_bits);
2340    __ bind(exit);
2341  }
2342
2343  if (state == atos) {
2344    __ verify_oop(Otos_i);    // does not blow flags!
2345  }
2346}
2347
2348void TemplateTable::jvmti_post_fast_field_mod() {
2349  if (JvmtiExport::can_post_field_modification()) {
2350    // Check to see if a field modification watch has been set before we take
2351    // the time to call into the VM.
2352    Label done;
2353    AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2354    __ load_contents(get_field_modification_count_addr, G4_scratch);
2355    __ tst(G4_scratch);
2356    __ br(Assembler::zero, false, Assembler::pt, done);
2357    __ delayed()->nop();
2358    __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2359    __ verify_oop(G4_scratch);
2360    __ push_ptr(G4_scratch);    // put the object pointer back on tos
2361    __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2362    // Save tos values before call_VM() clobbers them. Since we have
2363    // to do it for every data type, we use the saved values as the
2364    // jvalue object.
2365    switch (bytecode()) {  // save tos values before call_VM() clobbers them
2366    case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2367    case Bytecodes::_fast_bputfield: // fall through
2368    case Bytecodes::_fast_sputfield: // fall through
2369    case Bytecodes::_fast_cputfield: // fall through
2370    case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2371    case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2372    case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2373    // get words in right order for use as jvalue object
2374    case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2375    }
2376    // setup pointer to jvalue object
2377    __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2378    // G4_scratch:  object pointer
2379    // G1_scratch: cache entry pointer
2380    // G3_scratch: jvalue object on the stack
2381    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2382    switch (bytecode()) {             // restore tos values
2383    case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2384    case Bytecodes::_fast_bputfield: // fall through
2385    case Bytecodes::_fast_sputfield: // fall through
2386    case Bytecodes::_fast_cputfield: // fall through
2387    case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2388    case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2389    case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2390    case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2391    }
2392    __ bind(done);
2393  }
2394}
2395
2396// The registers Rcache and index expected to be set before call.
2397// The function may destroy various registers, just not the Rcache and index registers.
2398void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2399  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2400
2401  if (JvmtiExport::can_post_field_modification()) {
2402    // Check to see if a field modification watch has been set before we take
2403    // the time to call into the VM.
2404    Label Label1;
2405    assert_different_registers(Rcache, index, G1_scratch);
2406    AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2407    __ load_contents(get_field_modification_count_addr, G1_scratch);
2408    __ tst(G1_scratch);
2409    __ br(Assembler::zero, false, Assembler::pt, Label1);
2410    __ delayed()->nop();
2411
2412    // The Rcache and index registers have been already set.
2413    // This allows to eliminate this call but the Rcache and index
2414    // registers must be correspondingly used after this line.
2415    __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2416
2417    __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2418    if (is_static) {
2419      // Life is simple.  Null out the object pointer.
2420      __ clr(G4_scratch);
2421    } else {
2422      Register Rflags = G1_scratch;
2423      // Life is harder. The stack holds the value on top, followed by the
2424      // object.  We don't know the size of the value, though; it could be
2425      // one or two words depending on its type. As a result, we must find
2426      // the type to determine where the object is.
2427
2428      Label two_word, valsizeknown;
2429      __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2430      __ mov(Lesp, G4_scratch);
2431      __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2432      // Make sure we don't need to mask Rflags for tosBits after the above shift
2433      ConstantPoolCacheEntry::verify_tosBits();
2434      __ cmp(Rflags, ltos);
2435      __ br(Assembler::equal, false, Assembler::pt, two_word);
2436      __ delayed()->cmp(Rflags, dtos);
2437      __ br(Assembler::equal, false, Assembler::pt, two_word);
2438      __ delayed()->nop();
2439      __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2440      __ br(Assembler::always, false, Assembler::pt, valsizeknown);
2441      __ delayed()->nop();
2442      __ bind(two_word);
2443
2444      __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2445
2446      __ bind(valsizeknown);
2447      // setup object pointer
2448      __ ld_ptr(G4_scratch, 0, G4_scratch);
2449      __ verify_oop(G4_scratch);
2450    }
2451    // setup pointer to jvalue object
2452    __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2453    // G4_scratch:  object pointer or NULL if static
2454    // G3_scratch: cache entry pointer
2455    // G1_scratch: jvalue object on the stack
2456    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2457               G4_scratch, G3_scratch, G1_scratch);
2458    __ get_cache_and_index_at_bcp(Rcache, index, 1);
2459    __ bind(Label1);
2460  }
2461}
2462
2463void TemplateTable::pop_and_check_object(Register r) {
2464  __ pop_ptr(r);
2465  __ null_check(r);  // for field access must check obj.
2466  __ verify_oop(r);
2467}
2468
2469void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2470  transition(vtos, vtos);
2471  Register Rcache = G3_scratch;
2472  Register index  = G4_scratch;
2473  Register Rclass = Rcache;
2474  Register Roffset= G4_scratch;
2475  Register Rflags = G1_scratch;
2476  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2477
2478  resolve_cache_and_index(byte_no, Rcache, index);
2479  jvmti_post_field_mod(Rcache, index, is_static);
2480  load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2481
2482  Assembler::Membar_mask_bits read_bits =
2483    Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2484  Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2485
2486  Label notVolatile, checkVolatile, exit;
2487  if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2488    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2489    __ and3(Rflags, Lscratch, Lscratch);
2490
2491    if (__ membar_has_effect(read_bits)) {
2492      __ tst(Lscratch);
2493      __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2494      __ delayed()->nop();
2495      volatile_barrier(read_bits);
2496      __ bind(notVolatile);
2497    }
2498  }
2499
2500  __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
2501  // Make sure we don't need to mask Rflags for tosBits after the above shift
2502  ConstantPoolCacheEntry::verify_tosBits();
2503
2504  // compute field type
2505  Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2506
2507  if (is_static) {
2508    // putstatic with object type most likely, check that first
2509    __ cmp(Rflags, atos );
2510    __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2511    __ delayed() ->cmp(Rflags, itos );
2512
2513    // atos
2514    __ pop_ptr();
2515    __ verify_oop(Otos_i);
2516
2517    do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2518
2519    __ ba(false, checkVolatile);
2520    __ delayed()->tst(Lscratch);
2521
2522    __ bind(notObj);
2523
2524    // cmp(Rflags, itos );
2525    __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2526    __ delayed() ->cmp(Rflags, btos );
2527
2528    // itos
2529    __ pop_i();
2530    __ st(Otos_i, Rclass, Roffset);
2531    __ ba(false, checkVolatile);
2532    __ delayed()->tst(Lscratch);
2533
2534    __ bind(notInt);
2535
2536  } else {
2537    // putfield with int type most likely, check that first
2538    __ cmp(Rflags, itos );
2539    __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2540    __ delayed() ->cmp(Rflags, atos );
2541
2542    // itos
2543    __ pop_i();
2544    pop_and_check_object(Rclass);
2545    __ st(Otos_i, Rclass, Roffset);
2546    patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch);
2547    __ ba(false, checkVolatile);
2548    __ delayed()->tst(Lscratch);
2549
2550    __ bind(notInt);
2551    // cmp(Rflags, atos );
2552    __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2553    __ delayed() ->cmp(Rflags, btos );
2554
2555    // atos
2556    __ pop_ptr();
2557    pop_and_check_object(Rclass);
2558    __ verify_oop(Otos_i);
2559
2560    do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2561
2562    patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch);
2563    __ ba(false, checkVolatile);
2564    __ delayed()->tst(Lscratch);
2565
2566    __ bind(notObj);
2567  }
2568
2569  // cmp(Rflags, btos );
2570  __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2571  __ delayed() ->cmp(Rflags, ltos );
2572
2573  // btos
2574  __ pop_i();
2575  if (!is_static) pop_and_check_object(Rclass);
2576  __ stb(Otos_i, Rclass, Roffset);
2577  if (!is_static) {
2578    patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch);
2579  }
2580  __ ba(false, checkVolatile);
2581  __ delayed()->tst(Lscratch);
2582
2583  __ bind(notByte);
2584
2585  // cmp(Rflags, ltos );
2586  __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2587  __ delayed() ->cmp(Rflags, ctos );
2588
2589  // ltos
2590  __ pop_l();
2591  if (!is_static) pop_and_check_object(Rclass);
2592  __ st_long(Otos_l, Rclass, Roffset);
2593  if (!is_static) {
2594    patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch);
2595  }
2596  __ ba(false, checkVolatile);
2597  __ delayed()->tst(Lscratch);
2598
2599  __ bind(notLong);
2600
2601  // cmp(Rflags, ctos );
2602  __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2603  __ delayed() ->cmp(Rflags, stos );
2604
2605  // ctos (char)
2606  __ pop_i();
2607  if (!is_static) pop_and_check_object(Rclass);
2608  __ sth(Otos_i, Rclass, Roffset);
2609  if (!is_static) {
2610    patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch);
2611  }
2612  __ ba(false, checkVolatile);
2613  __ delayed()->tst(Lscratch);
2614
2615  __ bind(notChar);
2616  // cmp(Rflags, stos );
2617  __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2618  __ delayed() ->cmp(Rflags, ftos );
2619
2620  // stos (char)
2621  __ pop_i();
2622  if (!is_static) pop_and_check_object(Rclass);
2623  __ sth(Otos_i, Rclass, Roffset);
2624  if (!is_static) {
2625    patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch);
2626  }
2627  __ ba(false, checkVolatile);
2628  __ delayed()->tst(Lscratch);
2629
2630  __ bind(notShort);
2631  // cmp(Rflags, ftos );
2632  __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2633  __ delayed()->nop();
2634
2635  // ftos
2636  __ pop_f();
2637  if (!is_static) pop_and_check_object(Rclass);
2638  __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2639  if (!is_static) {
2640    patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch);
2641  }
2642  __ ba(false, checkVolatile);
2643  __ delayed()->tst(Lscratch);
2644
2645  __ bind(notFloat);
2646
2647  // dtos
2648  __ pop_d();
2649  if (!is_static) pop_and_check_object(Rclass);
2650  __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2651  if (!is_static) {
2652    patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch);
2653  }
2654
2655  __ bind(checkVolatile);
2656  __ tst(Lscratch);
2657
2658  if (__ membar_has_effect(write_bits)) {
2659    // __ tst(Lscratch); in delay slot
2660    __ br(Assembler::zero, false, Assembler::pt, exit);
2661    __ delayed()->nop();
2662    volatile_barrier(Assembler::StoreLoad);
2663    __ bind(exit);
2664  }
2665}
2666
2667void TemplateTable::fast_storefield(TosState state) {
2668  transition(state, vtos);
2669  Register Rcache = G3_scratch;
2670  Register Rclass = Rcache;
2671  Register Roffset= G4_scratch;
2672  Register Rflags = G1_scratch;
2673  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2674
2675  jvmti_post_fast_field_mod();
2676
2677  __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2678
2679  Assembler::Membar_mask_bits read_bits =
2680    Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2681  Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2682
2683  Label notVolatile, checkVolatile, exit;
2684  if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2685    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2686    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2687    __ and3(Rflags, Lscratch, Lscratch);
2688    if (__ membar_has_effect(read_bits)) {
2689      __ tst(Lscratch);
2690      __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2691      __ delayed()->nop();
2692      volatile_barrier(read_bits);
2693      __ bind(notVolatile);
2694    }
2695  }
2696
2697  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2698  pop_and_check_object(Rclass);
2699
2700  switch (bytecode()) {
2701    case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2702    case Bytecodes::_fast_cputfield: /* fall through */
2703    case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2704    case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2705    case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2706    case Bytecodes::_fast_fputfield:
2707      __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2708      break;
2709    case Bytecodes::_fast_dputfield:
2710      __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2711      break;
2712    case Bytecodes::_fast_aputfield:
2713      do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2714      break;
2715    default:
2716      ShouldNotReachHere();
2717  }
2718
2719  if (__ membar_has_effect(write_bits)) {
2720    __ tst(Lscratch);
2721    __ br(Assembler::zero, false, Assembler::pt, exit);
2722    __ delayed()->nop();
2723    volatile_barrier(Assembler::StoreLoad);
2724    __ bind(exit);
2725  }
2726}
2727
2728
2729void TemplateTable::putfield(int byte_no) {
2730  putfield_or_static(byte_no, false);
2731}
2732
2733void TemplateTable::putstatic(int byte_no) {
2734  putfield_or_static(byte_no, true);
2735}
2736
2737
2738void TemplateTable::fast_xaccess(TosState state) {
2739  transition(vtos, state);
2740  Register Rcache = G3_scratch;
2741  Register Roffset = G4_scratch;
2742  Register Rflags  = G4_scratch;
2743  Register Rreceiver = Lscratch;
2744
2745  __ ld_ptr(Llocals, 0, Rreceiver);
2746
2747  // access constant pool cache  (is resolved)
2748  __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2749  __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2750  __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2751
2752  __ verify_oop(Rreceiver);
2753  __ null_check(Rreceiver);
2754  if (state == atos) {
2755    __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2756  } else if (state == itos) {
2757    __ ld (Rreceiver, Roffset, Otos_i) ;
2758  } else if (state == ftos) {
2759    __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2760  } else {
2761    ShouldNotReachHere();
2762  }
2763
2764  Assembler::Membar_mask_bits membar_bits =
2765    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2766  if (__ membar_has_effect(membar_bits)) {
2767
2768    // Get is_volatile value in Rflags and check if membar is needed
2769    __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2770
2771    // Test volatile
2772    Label notVolatile;
2773    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
2774    __ btst(Rflags, Lscratch);
2775    __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2776    __ delayed()->nop();
2777    volatile_barrier(membar_bits);
2778    __ bind(notVolatile);
2779  }
2780
2781  __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2782  __ sub(Lbcp, 1, Lbcp);
2783}
2784
2785//----------------------------------------------------------------------------------------------------
2786// Calls
2787
2788void TemplateTable::count_calls(Register method, Register temp) {
2789  // implemented elsewhere
2790  ShouldNotReachHere();
2791}
2792
2793void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2794  Register Rtemp = G4_scratch;
2795  Register Rcall = Rindex;
2796  assert_different_registers(Rcall, G5_method, Gargs, Rret);
2797
2798  // get target methodOop & entry point
2799  const int base = instanceKlass::vtable_start_offset() * wordSize;
2800  if (vtableEntry::size() % 3 == 0) {
2801    // scale the vtable index by 12:
2802    int one_third = vtableEntry::size() / 3;
2803    __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
2804    __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
2805    __ add(Rindex, Rtemp, Rindex);
2806  } else {
2807    // scale the vtable index by 8:
2808    __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
2809  }
2810
2811  __ add(Rrecv, Rindex, Rrecv);
2812  __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
2813
2814  __ call_from_interpreter(Rcall, Gargs, Rret);
2815}
2816
2817void TemplateTable::invokevirtual(int byte_no) {
2818  transition(vtos, vtos);
2819
2820  Register Rscratch = G3_scratch;
2821  Register Rtemp = G4_scratch;
2822  Register Rret = Lscratch;
2823  Register Rrecv = G5_method;
2824  Label notFinal;
2825
2826  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true);
2827  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2828
2829  // Check for vfinal
2830  __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
2831  __ btst(Rret, G4_scratch);
2832  __ br(Assembler::zero, false, Assembler::pt, notFinal);
2833  __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2834
2835  patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2836
2837  invokevfinal_helper(Rscratch, Rret);
2838
2839  __ bind(notFinal);
2840
2841  __ mov(G5_method, Rscratch);  // better scratch register
2842  __ load_receiver(G4_scratch, O0);  // gets receiverOop
2843  // receiver is in O0
2844  __ verify_oop(O0);
2845
2846  // get return address
2847  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
2848  __ set(table, Rtemp);
2849  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
2850  // Make sure we don't need to mask Rret for tosBits after the above shift
2851  ConstantPoolCacheEntry::verify_tosBits();
2852  __ sll(Rret,  LogBytesPerWord, Rret);
2853  __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2854
2855  // get receiver klass
2856  __ null_check(O0, oopDesc::klass_offset_in_bytes());
2857  __ load_klass(O0, Rrecv);
2858  __ verify_oop(Rrecv);
2859
2860  __ profile_virtual_call(Rrecv, O4);
2861
2862  generate_vtable_call(Rrecv, Rscratch, Rret);
2863}
2864
2865void TemplateTable::fast_invokevfinal(int byte_no) {
2866  transition(vtos, vtos);
2867
2868  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
2869                             /*is_invokevfinal*/true);
2870  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2871  invokevfinal_helper(G3_scratch, Lscratch);
2872}
2873
2874void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
2875  Register Rtemp = G4_scratch;
2876
2877  __ verify_oop(G5_method);
2878
2879  // Load receiver from stack slot
2880  __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
2881  __ load_receiver(G4_scratch, O0);
2882
2883  // receiver NULL check
2884  __ null_check(O0);
2885
2886  __ profile_final_call(O4);
2887
2888  // get return address
2889  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
2890  __ set(table, Rtemp);
2891  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
2892  // Make sure we don't need to mask Rret for tosBits after the above shift
2893  ConstantPoolCacheEntry::verify_tosBits();
2894  __ sll(Rret,  LogBytesPerWord, Rret);
2895  __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2896
2897
2898  // do the call
2899  __ call_from_interpreter(Rscratch, Gargs, Rret);
2900}
2901
2902void TemplateTable::invokespecial(int byte_no) {
2903  transition(vtos, vtos);
2904
2905  Register Rscratch = G3_scratch;
2906  Register Rtemp = G4_scratch;
2907  Register Rret = Lscratch;
2908
2909  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, false);
2910  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2911
2912  __ verify_oop(G5_method);
2913
2914  __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
2915  __ load_receiver(G4_scratch, O0);
2916
2917  // receiver NULL check
2918  __ null_check(O0);
2919
2920  __ profile_call(O4);
2921
2922  // get return address
2923  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
2924  __ set(table, Rtemp);
2925  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
2926  // Make sure we don't need to mask Rret for tosBits after the above shift
2927  ConstantPoolCacheEntry::verify_tosBits();
2928  __ sll(Rret,  LogBytesPerWord, Rret);
2929  __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2930
2931  // do the call
2932  __ call_from_interpreter(Rscratch, Gargs, Rret);
2933}
2934
2935void TemplateTable::invokestatic(int byte_no) {
2936  transition(vtos, vtos);
2937
2938  Register Rscratch = G3_scratch;
2939  Register Rtemp = G4_scratch;
2940  Register Rret = Lscratch;
2941
2942  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, false);
2943  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2944
2945  __ verify_oop(G5_method);
2946
2947  __ profile_call(O4);
2948
2949  // get return address
2950  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
2951  __ set(table, Rtemp);
2952  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
2953  // Make sure we don't need to mask Rret for tosBits after the above shift
2954  ConstantPoolCacheEntry::verify_tosBits();
2955  __ sll(Rret,  LogBytesPerWord, Rret);
2956  __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2957
2958  // do the call
2959  __ call_from_interpreter(Rscratch, Gargs, Rret);
2960}
2961
2962
2963void TemplateTable::invokeinterface_object_method(Register RklassOop,
2964                                                  Register Rcall,
2965                                                  Register Rret,
2966                                                  Register Rflags) {
2967  Register Rscratch = G4_scratch;
2968  Register Rindex = Lscratch;
2969
2970  assert_different_registers(Rscratch, Rindex, Rret);
2971
2972  Label notFinal;
2973
2974  // Check for vfinal
2975  __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
2976  __ btst(Rflags, Rscratch);
2977  __ br(Assembler::zero, false, Assembler::pt, notFinal);
2978  __ delayed()->nop();
2979
2980  __ profile_final_call(O4);
2981
2982  // do the call - the index (f2) contains the methodOop
2983  assert_different_registers(G5_method, Gargs, Rcall);
2984  __ mov(Rindex, G5_method);
2985  __ call_from_interpreter(Rcall, Gargs, Rret);
2986  __ bind(notFinal);
2987
2988  __ profile_virtual_call(RklassOop, O4);
2989  generate_vtable_call(RklassOop, Rindex, Rret);
2990}
2991
2992
2993void TemplateTable::invokeinterface(int byte_no) {
2994  transition(vtos, vtos);
2995
2996  Register Rscratch = G4_scratch;
2997  Register Rret = G3_scratch;
2998  Register Rindex = Lscratch;
2999  Register Rinterface = G1_scratch;
3000  Register RklassOop = G5_method;
3001  Register Rflags = O1;
3002  assert_different_registers(Rscratch, G5_method);
3003
3004  load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, false);
3005  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3006
3007  // get receiver
3008  __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
3009  __ load_receiver(Rscratch, O0);
3010  __ verify_oop(O0);
3011
3012  __ mov(Rflags, Rret);
3013
3014  // get return address
3015  AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
3016  __ set(table, Rscratch);
3017  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
3018  // Make sure we don't need to mask Rret for tosBits after the above shift
3019  ConstantPoolCacheEntry::verify_tosBits();
3020  __ sll(Rret,  LogBytesPerWord, Rret);
3021  __ ld_ptr(Rscratch, Rret, Rret);      // get return address
3022
3023  // get receiver klass
3024  __ null_check(O0, oopDesc::klass_offset_in_bytes());
3025  __ load_klass(O0, RklassOop);
3026  __ verify_oop(RklassOop);
3027
3028  // Special case of invokeinterface called for virtual method of
3029  // java.lang.Object.  See cpCacheOop.cpp for details.
3030  // This code isn't produced by javac, but could be produced by
3031  // another compliant java compiler.
3032  Label notMethod;
3033  __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
3034  __ btst(Rflags, Rscratch);
3035  __ br(Assembler::zero, false, Assembler::pt, notMethod);
3036  __ delayed()->nop();
3037
3038  invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);
3039
3040  __ bind(notMethod);
3041
3042  __ profile_virtual_call(RklassOop, O4);
3043
3044  //
3045  // find entry point to call
3046  //
3047
3048  // compute start of first itableOffsetEntry (which is at end of vtable)
3049  const int base = instanceKlass::vtable_start_offset() * wordSize;
3050  Label search;
3051  Register Rtemp = Rflags;
3052
3053  __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
3054  if (align_object_offset(1) > 1) {
3055    __ round_to(Rtemp, align_object_offset(1));
3056  }
3057  __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3058  if (Assembler::is_simm13(base)) {
3059    __ add(Rtemp, base, Rtemp);
3060  } else {
3061    __ set(base, Rscratch);
3062    __ add(Rscratch, Rtemp, Rtemp);
3063  }
3064  __ add(RklassOop, Rtemp, Rscratch);
3065
3066  __ bind(search);
3067
3068  __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3069  {
3070    Label ok;
3071
3072    // Check that entry is non-null.  Null entries are probably a bytecode
3073    // problem.  If the interface isn't implemented by the receiver class,
3074    // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3075    // this too but that's only if the entry isn't already resolved, so we
3076    // need to check again.
3077    __ br_notnull( Rtemp, false, Assembler::pt, ok);
3078    __ delayed()->nop();
3079    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3080    __ should_not_reach_here();
3081    __ bind(ok);
3082    __ verify_oop(Rtemp);
3083  }
3084
3085  __ verify_oop(Rinterface);
3086
3087  __ cmp(Rinterface, Rtemp);
3088  __ brx(Assembler::notEqual, true, Assembler::pn, search);
3089  __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3090
3091  // entry found and Rscratch points to it
3092  __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3093
3094  assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3095  __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3096  __ add(Rscratch, Rindex, Rscratch);
3097  __ ld_ptr(RklassOop, Rscratch, G5_method);
3098
3099  // Check for abstract method error.
3100  {
3101    Label ok;
3102    __ tst(G5_method);
3103    __ brx(Assembler::notZero, false, Assembler::pt, ok);
3104    __ delayed()->nop();
3105    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3106    __ should_not_reach_here();
3107    __ bind(ok);
3108  }
3109
3110  Register Rcall = Rinterface;
3111  assert_different_registers(Rcall, G5_method, Gargs, Rret);
3112
3113  __ verify_oop(G5_method);
3114  __ call_from_interpreter(Rcall, Gargs, Rret);
3115
3116}
3117
3118
3119void TemplateTable::invokedynamic(int byte_no) {
3120  transition(vtos, vtos);
3121
3122  if (!EnableInvokeDynamic) {
3123    // We should not encounter this bytecode if !EnableInvokeDynamic.
3124    // The verifier will stop it.  However, if we get past the verifier,
3125    // this will stop the thread in a reasonable way, without crashing the JVM.
3126    __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3127                     InterpreterRuntime::throw_IncompatibleClassChangeError));
3128    // the call_VM checks for exception, so we should never return here.
3129    __ should_not_reach_here();
3130    return;
3131  }
3132
3133  // G5: CallSite object (f1)
3134  // XX: unused (f2)
3135  // G3: receiver address
3136  // XX: flags (unused)
3137
3138  Register G5_callsite = G5_method;
3139  Register Rscratch    = G3_scratch;
3140  Register Rtemp       = G1_scratch;
3141  Register Rret        = Lscratch;
3142
3143  load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret, false);
3144  __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
3145
3146  __ verify_oop(G5_callsite);
3147
3148  // profile this call
3149  __ profile_call(O4);
3150
3151  // get return address
3152  AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
3153  __ set(table, Rtemp);
3154  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);  // get return type
3155  // Make sure we don't need to mask Rret for tosBits after the above shift
3156  ConstantPoolCacheEntry::verify_tosBits();
3157  __ sll(Rret, LogBytesPerWord, Rret);
3158  __ ld_ptr(Rtemp, Rret, Rret);  // get return address
3159
3160  __ ld_ptr(G5_callsite, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
3161  __ null_check(G3_method_handle);
3162
3163  // Adjust Rret first so Llast_SP can be same as Rret
3164  __ add(Rret, -frame::pc_return_offset, O7);
3165  __ add(Lesp, BytesPerWord, Gargs);  // setup parameter pointer
3166  __ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
3167  // Record SP so we can remove any stack space allocated by adapter transition
3168  __ delayed()->mov(SP, Llast_SP);
3169}
3170
3171
3172//----------------------------------------------------------------------------------------------------
3173// Allocation
3174
3175void TemplateTable::_new() {
3176  transition(vtos, atos);
3177
3178  Label slow_case;
3179  Label done;
3180  Label initialize_header;
3181  Label initialize_object;  // including clearing the fields
3182
3183  Register RallocatedObject = Otos_i;
3184  Register RinstanceKlass = O1;
3185  Register Roffset = O3;
3186  Register Rscratch = O4;
3187
3188  __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3189  __ get_cpool_and_tags(Rscratch, G3_scratch);
3190  // make sure the class we're about to instantiate has been resolved
3191  __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3192  __ ldub(G3_scratch, Roffset, G3_scratch);
3193  __ cmp(G3_scratch, JVM_CONSTANT_Class);
3194  __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3195  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3196
3197  //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3198  __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3199  __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3200
3201  // make sure klass is fully initialized:
3202  __ ld(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
3203  __ cmp(G3_scratch, instanceKlass::fully_initialized);
3204  __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3205  __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
3206
3207  // get instance_size in instanceKlass (already aligned)
3208  //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
3209
3210  // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3211  __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3212  __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3213  __ delayed()->nop();
3214
3215  // allocate the instance
3216  // 1) Try to allocate in the TLAB
3217  // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3218  // 3) if the above fails (or is not applicable), go to a slow case
3219  // (creates a new TLAB, etc.)
3220
3221  const bool allow_shared_alloc =
3222    Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3223
3224  if(UseTLAB) {
3225    Register RoldTopValue = RallocatedObject;
3226    Register RtopAddr = G3_scratch, RtlabWasteLimitValue = G3_scratch;
3227    Register RnewTopValue = G1_scratch;
3228    Register RendValue = Rscratch;
3229    Register RfreeValue = RnewTopValue;
3230
3231    // check if we can allocate in the TLAB
3232    __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3233    __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3234    __ add(RoldTopValue, Roffset, RnewTopValue);
3235
3236    // if there is enough space, we do not CAS and do not clear
3237    __ cmp(RnewTopValue, RendValue);
3238    if(ZeroTLAB) {
3239      // the fields have already been cleared
3240      __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3241    } else {
3242      // initialize both the header and fields
3243      __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3244    }
3245    __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3246
3247    if (allow_shared_alloc) {
3248    // Check if tlab should be discarded (refill_waste_limit >= free)
3249    __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3250    __ sub(RendValue, RoldTopValue, RfreeValue);
3251#ifdef _LP64
3252    __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3253#else
3254    __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3255#endif
3256    __ cmp(RtlabWasteLimitValue, RfreeValue);
3257    __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, slow_case); // tlab waste is small
3258    __ delayed()->nop();
3259
3260    // increment waste limit to prevent getting stuck on this slow path
3261    __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3262    __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3263    } else {
3264      // No allocation in the shared eden.
3265      __ br(Assembler::always, false, Assembler::pt, slow_case);
3266      __ delayed()->nop();
3267    }
3268  }
3269
3270  // Allocation in the shared Eden
3271  if (allow_shared_alloc) {
3272    Register RoldTopValue = G1_scratch;
3273    Register RtopAddr = G3_scratch;
3274    Register RnewTopValue = RallocatedObject;
3275    Register RendValue = Rscratch;
3276
3277    __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3278
3279    Label retry;
3280    __ bind(retry);
3281    __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3282    __ ld_ptr(RendValue, 0, RendValue);
3283    __ ld_ptr(RtopAddr, 0, RoldTopValue);
3284    __ add(RoldTopValue, Roffset, RnewTopValue);
3285
3286    // RnewTopValue contains the top address after the new object
3287    // has been allocated.
3288    __ cmp(RnewTopValue, RendValue);
3289    __ brx(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
3290    __ delayed()->nop();
3291
3292    __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
3293      VM_Version::v9_instructions_work() ? NULL :
3294      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3295
3296    // if someone beat us on the allocation, try again, otherwise continue
3297    __ cmp(RoldTopValue, RnewTopValue);
3298    __ brx(Assembler::notEqual, false, Assembler::pn, retry);
3299    __ delayed()->nop();
3300  }
3301
3302  if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3303    // clear object fields
3304    __ bind(initialize_object);
3305    __ deccc(Roffset, sizeof(oopDesc));
3306    __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3307    __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3308
3309    // initialize remaining object fields
3310    { Label loop;
3311      __ subcc(Roffset, wordSize, Roffset);
3312      __ bind(loop);
3313      //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3314      __ st_ptr(G0, G3_scratch, Roffset);
3315      __ br(Assembler::notEqual, false, Assembler::pt, loop);
3316      __ delayed()->subcc(Roffset, wordSize, Roffset);
3317    }
3318    __ br(Assembler::always, false, Assembler::pt, initialize_header);
3319    __ delayed()->nop();
3320  }
3321
3322  // slow case
3323  __ bind(slow_case);
3324  __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3325  __ get_constant_pool(O1);
3326
3327  call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3328
3329  __ ba(false, done);
3330  __ delayed()->nop();
3331
3332  // Initialize the header: mark, klass
3333  __ bind(initialize_header);
3334
3335  if (UseBiasedLocking) {
3336    __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
3337  } else {
3338    __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3339  }
3340  __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3341  __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3342  __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3343
3344  {
3345    SkipIfEqual skip_if(
3346      _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3347    // Trigger dtrace event
3348    __ push(atos);
3349    __ call_VM_leaf(noreg,
3350       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3351    __ pop(atos);
3352  }
3353
3354  // continue
3355  __ bind(done);
3356}
3357
3358
3359
3360void TemplateTable::newarray() {
3361  transition(itos, atos);
3362  __ ldub(Lbcp, 1, O1);
3363     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3364}
3365
3366
3367void TemplateTable::anewarray() {
3368  transition(itos, atos);
3369  __ get_constant_pool(O1);
3370  __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3371     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3372}
3373
3374
3375void TemplateTable::arraylength() {
3376  transition(atos, itos);
3377  Label ok;
3378  __ verify_oop(Otos_i);
3379  __ tst(Otos_i);
3380  __ throw_if_not_1_x( Assembler::notZero, ok );
3381  __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3382  __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3383}
3384
3385
3386void TemplateTable::checkcast() {
3387  transition(atos, atos);
3388  Label done, is_null, quicked, cast_ok, resolved;
3389  Register Roffset = G1_scratch;
3390  Register RobjKlass = O5;
3391  Register RspecifiedKlass = O4;
3392
3393  // Check for casting a NULL
3394  __ br_null(Otos_i, false, Assembler::pn, is_null);
3395  __ delayed()->nop();
3396
3397  // Get value klass in RobjKlass
3398  __ load_klass(Otos_i, RobjKlass); // get value klass
3399
3400  // Get constant pool tag
3401  __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3402
3403  // See if the checkcast has been quickened
3404  __ get_cpool_and_tags(Lscratch, G3_scratch);
3405  __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3406  __ ldub(G3_scratch, Roffset, G3_scratch);
3407  __ cmp(G3_scratch, JVM_CONSTANT_Class);
3408  __ br(Assembler::equal, true, Assembler::pt, quicked);
3409  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3410
3411  __ push_ptr(); // save receiver for result, and for GC
3412  call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3413  __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3414
3415  __ br(Assembler::always, false, Assembler::pt, resolved);
3416  __ delayed()->nop();
3417
3418  // Extract target class from constant pool
3419  __ bind(quicked);
3420  __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3421  __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3422  __ bind(resolved);
3423  __ load_klass(Otos_i, RobjKlass); // get value klass
3424
3425  // Generate a fast subtype check.  Branch to cast_ok if no
3426  // failure.  Throw exception if failure.
3427  __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3428
3429  // Not a subtype; so must throw exception
3430  __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3431
3432  __ bind(cast_ok);
3433
3434  if (ProfileInterpreter) {
3435    __ ba(false, done);
3436    __ delayed()->nop();
3437  }
3438  __ bind(is_null);
3439  __ profile_null_seen(G3_scratch);
3440  __ bind(done);
3441}
3442
3443
3444void TemplateTable::instanceof() {
3445  Label done, is_null, quicked, resolved;
3446  transition(atos, itos);
3447  Register Roffset = G1_scratch;
3448  Register RobjKlass = O5;
3449  Register RspecifiedKlass = O4;
3450
3451  // Check for casting a NULL
3452  __ br_null(Otos_i, false, Assembler::pt, is_null);
3453  __ delayed()->nop();
3454
3455  // Get value klass in RobjKlass
3456  __ load_klass(Otos_i, RobjKlass); // get value klass
3457
3458  // Get constant pool tag
3459  __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3460
3461  // See if the checkcast has been quickened
3462  __ get_cpool_and_tags(Lscratch, G3_scratch);
3463  __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
3464  __ ldub(G3_scratch, Roffset, G3_scratch);
3465  __ cmp(G3_scratch, JVM_CONSTANT_Class);
3466  __ br(Assembler::equal, true, Assembler::pt, quicked);
3467  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3468
3469  __ push_ptr(); // save receiver for result, and for GC
3470  call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3471  __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3472
3473  __ br(Assembler::always, false, Assembler::pt, resolved);
3474  __ delayed()->nop();
3475
3476
3477  // Extract target class from constant pool
3478  __ bind(quicked);
3479  __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
3480  __ get_constant_pool(Lscratch);
3481  __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3482  __ bind(resolved);
3483  __ load_klass(Otos_i, RobjKlass); // get value klass
3484
3485  // Generate a fast subtype check.  Branch to cast_ok if no
3486  // failure.  Return 0 if failure.
3487  __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3488  __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3489  // Not a subtype; return 0;
3490  __ clr( Otos_i );
3491
3492  if (ProfileInterpreter) {
3493    __ ba(false, done);
3494    __ delayed()->nop();
3495  }
3496  __ bind(is_null);
3497  __ profile_null_seen(G3_scratch);
3498  __ bind(done);
3499}
3500
3501void TemplateTable::_breakpoint() {
3502
3503   // Note: We get here even if we are single stepping..
3504   // jbug inists on setting breakpoints at every bytecode
3505   // even if we are in single step mode.
3506
3507   transition(vtos, vtos);
3508   // get the unpatched byte code
3509   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3510   __ mov(O0, Lbyte_code);
3511
3512   // post the breakpoint event
3513   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3514
3515   // complete the execution of original bytecode
3516   __ dispatch_normal(vtos);
3517}
3518
3519
3520//----------------------------------------------------------------------------------------------------
3521// Exceptions
3522
3523void TemplateTable::athrow() {
3524  transition(atos, vtos);
3525
3526  // This works because exception is cached in Otos_i which is same as O0,
3527  // which is same as what throw_exception_entry_expects
3528  assert(Otos_i == Oexception, "see explanation above");
3529
3530  __ verify_oop(Otos_i);
3531  __ null_check(Otos_i);
3532  __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3533}
3534
3535
3536//----------------------------------------------------------------------------------------------------
3537// Synchronization
3538
3539
3540// See frame_sparc.hpp for monitor block layout.
3541// Monitor elements are dynamically allocated by growing stack as needed.
3542
3543void TemplateTable::monitorenter() {
3544  transition(atos, vtos);
3545  __ verify_oop(Otos_i);
3546  // Try to acquire a lock on the object
3547  // Repeat until succeeded (i.e., until
3548  // monitorenter returns true).
3549
3550  {   Label ok;
3551    __ tst(Otos_i);
3552    __ throw_if_not_1_x( Assembler::notZero,  ok);
3553    __ delayed()->mov(Otos_i, Lscratch); // save obj
3554    __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3555  }
3556
3557  assert(O0 == Otos_i, "Be sure where the object to lock is");
3558
3559  // find a free slot in the monitor block
3560
3561
3562  // initialize entry pointer
3563  __ clr(O1); // points to free slot or NULL
3564
3565  {
3566    Label entry, loop, exit;
3567    __ add( __ top_most_monitor(), O2 ); // last one to check
3568    __ ba( false, entry );
3569    __ delayed()->mov( Lmonitors, O3 ); // first one to check
3570
3571
3572    __ bind( loop );
3573
3574    __ verify_oop(O4);          // verify each monitor's oop
3575    __ tst(O4); // is this entry unused?
3576    if (VM_Version::v9_instructions_work())
3577      __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3578    else {
3579      Label L;
3580      __ br( Assembler::zero, true, Assembler::pn, L );
3581      __ delayed()->mov(O3, O1); // rememeber this one if match
3582      __ bind(L);
3583    }
3584
3585    __ cmp(O4, O0); // check if current entry is for same object
3586    __ brx( Assembler::equal, false, Assembler::pn, exit );
3587    __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3588
3589    __ bind( entry );
3590
3591    __ cmp( O3, O2 );
3592    __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3593    __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3594
3595    __ bind( exit );
3596  }
3597
3598  { Label allocated;
3599
3600    // found free slot?
3601    __ br_notnull(O1, false, Assembler::pn, allocated);
3602    __ delayed()->nop();
3603
3604    __ add_monitor_to_stack( false, O2, O3 );
3605    __ mov(Lmonitors, O1);
3606
3607    __ bind(allocated);
3608  }
3609
3610  // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3611  // The object has already been poped from the stack, so the expression stack looks correct.
3612  __ inc(Lbcp);
3613
3614  __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3615  __ lock_object(O1, O0);
3616
3617  // check if there's enough space on the stack for the monitors after locking
3618  __ generate_stack_overflow_check(0);
3619
3620  // The bcp has already been incremented. Just need to dispatch to next instruction.
3621  __ dispatch_next(vtos);
3622}
3623
3624
3625void TemplateTable::monitorexit() {
3626  transition(atos, vtos);
3627  __ verify_oop(Otos_i);
3628  __ tst(Otos_i);
3629  __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3630
3631  assert(O0 == Otos_i, "just checking");
3632
3633  { Label entry, loop, found;
3634    __ add( __ top_most_monitor(), O2 ); // last one to check
3635    __ ba(false, entry );
3636    // use Lscratch to hold monitor elem to check, start with most recent monitor,
3637    // By using a local it survives the call to the C routine.
3638    __ delayed()->mov( Lmonitors, Lscratch );
3639
3640    __ bind( loop );
3641
3642    __ verify_oop(O4);          // verify each monitor's oop
3643    __ cmp(O4, O0); // check if current entry is for desired object
3644    __ brx( Assembler::equal, true, Assembler::pt, found );
3645    __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3646
3647    __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3648
3649    __ bind( entry );
3650
3651    __ cmp( Lscratch, O2 );
3652    __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3653    __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3654
3655    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3656    __ should_not_reach_here();
3657
3658    __ bind(found);
3659  }
3660  __ unlock_object(O1);
3661}
3662
3663
3664//----------------------------------------------------------------------------------------------------
3665// Wide instructions
3666
3667void TemplateTable::wide() {
3668  transition(vtos, vtos);
3669  __ ldub(Lbcp, 1, G3_scratch);// get next bc
3670  __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3671  AddressLiteral ep(Interpreter::_wentry_point);
3672  __ set(ep, G4_scratch);
3673  __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3674  __ jmp(G3_scratch, G0);
3675  __ delayed()->nop();
3676  // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3677}
3678
3679
3680//----------------------------------------------------------------------------------------------------
3681// Multi arrays
3682
3683void TemplateTable::multianewarray() {
3684  transition(vtos, atos);
3685     // put ndims * wordSize into Lscratch
3686  __ ldub( Lbcp,     3,               Lscratch);
3687  __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3688     // Lesp points past last_dim, so set to O1 to first_dim address
3689  __ add(  Lesp,     Lscratch,        O1);
3690     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3691  __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3692}
3693#endif /* !CC_INTERP */
3694