stubGenerator_sparc.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "assembler_sparc.inline.hpp"
28#include "interpreter/interpreter.hpp"
29#include "nativeInst_sparc.hpp"
30#include "oops/instanceOop.hpp"
31#include "oops/method.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/methodHandles.hpp"
35#include "runtime/frame.inline.hpp"
36#include "runtime/handles.inline.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubCodeGenerator.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "utilities/top.hpp"
41#ifdef TARGET_OS_FAMILY_linux
42# include "thread_linux.inline.hpp"
43#endif
44#ifdef TARGET_OS_FAMILY_solaris
45# include "thread_solaris.inline.hpp"
46#endif
47#ifdef COMPILER2
48#include "opto/runtime.hpp"
49#endif
50
51// Declaration and definition of StubGenerator (no .hpp file).
52// For a more detailed description of the stub routine structure
53// see the comment in stubRoutines.hpp.
54
55#define __ _masm->
56
57#ifdef PRODUCT
58#define BLOCK_COMMENT(str) /* nothing */
59#else
60#define BLOCK_COMMENT(str) __ block_comment(str)
61#endif
62
63#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
64
65// Note:  The register L7 is used as L7_thread_cache, and may not be used
66//        any other way within this module.
67
68
69static const Register& Lstub_temp = L2;
70
71// -------------------------------------------------------------------------------------------------------------------------
72// Stub Code definitions
73
74static address handle_unsafe_access() {
75  JavaThread* thread = JavaThread::current();
76  address pc  = thread->saved_exception_pc();
77  address npc = thread->saved_exception_npc();
78  // pc is the instruction which we must emulate
79  // doing a no-op is fine:  return garbage from the load
80
81  // request an async exception
82  thread->set_pending_unsafe_access_error();
83
84  // return address of next instruction to execute
85  return npc;
86}
87
88class StubGenerator: public StubCodeGenerator {
89 private:
90
91#ifdef PRODUCT
92#define inc_counter_np(a,b,c) (0)
93#else
94#define inc_counter_np(counter, t1, t2) \
95  BLOCK_COMMENT("inc_counter " #counter); \
96  __ inc_counter(&counter, t1, t2);
97#endif
98
99  //----------------------------------------------------------------------------------------------------
100  // Call stubs are used to call Java from C
101
102  address generate_call_stub(address& return_pc) {
103    StubCodeMark mark(this, "StubRoutines", "call_stub");
104    address start = __ pc();
105
106    // Incoming arguments:
107    //
108    // o0         : call wrapper address
109    // o1         : result (address)
110    // o2         : result type
111    // o3         : method
112    // o4         : (interpreter) entry point
113    // o5         : parameters (address)
114    // [sp + 0x5c]: parameter size (in words)
115    // [sp + 0x60]: thread
116    //
117    // +---------------+ <--- sp + 0
118    // |               |
119    // . reg save area .
120    // |               |
121    // +---------------+ <--- sp + 0x40
122    // |               |
123    // . extra 7 slots .
124    // |               |
125    // +---------------+ <--- sp + 0x5c
126    // |  param. size  |
127    // +---------------+ <--- sp + 0x60
128    // |    thread     |
129    // +---------------+
130    // |               |
131
132    // note: if the link argument position changes, adjust
133    //       the code in frame::entry_frame_call_wrapper()
134
135    const Argument link           = Argument(0, false); // used only for GC
136    const Argument result         = Argument(1, false);
137    const Argument result_type    = Argument(2, false);
138    const Argument method         = Argument(3, false);
139    const Argument entry_point    = Argument(4, false);
140    const Argument parameters     = Argument(5, false);
141    const Argument parameter_size = Argument(6, false);
142    const Argument thread         = Argument(7, false);
143
144    // setup thread register
145    __ ld_ptr(thread.as_address(), G2_thread);
146    __ reinit_heapbase();
147
148#ifdef ASSERT
149    // make sure we have no pending exceptions
150    { const Register t = G3_scratch;
151      Label L;
152      __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
153      __ br_null_short(t, Assembler::pt, L);
154      __ stop("StubRoutines::call_stub: entered with pending exception");
155      __ bind(L);
156    }
157#endif
158
159    // create activation frame & allocate space for parameters
160    { const Register t = G3_scratch;
161      __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
162      __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
163      __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
164      __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
165      __ neg(t);                                                // negate so it can be used with save
166      __ save(SP, t, SP);                                       // setup new frame
167    }
168
169    // +---------------+ <--- sp + 0
170    // |               |
171    // . reg save area .
172    // |               |
173    // +---------------+ <--- sp + 0x40
174    // |               |
175    // . extra 7 slots .
176    // |               |
177    // +---------------+ <--- sp + 0x5c
178    // |  empty slot   |      (only if parameter size is even)
179    // +---------------+
180    // |               |
181    // .  parameters   .
182    // |               |
183    // +---------------+ <--- fp + 0
184    // |               |
185    // . reg save area .
186    // |               |
187    // +---------------+ <--- fp + 0x40
188    // |               |
189    // . extra 7 slots .
190    // |               |
191    // +---------------+ <--- fp + 0x5c
192    // |  param. size  |
193    // +---------------+ <--- fp + 0x60
194    // |    thread     |
195    // +---------------+
196    // |               |
197
198    // pass parameters if any
199    BLOCK_COMMENT("pass parameters if any");
200    { const Register src = parameters.as_in().as_register();
201      const Register dst = Lentry_args;
202      const Register tmp = G3_scratch;
203      const Register cnt = G4_scratch;
204
205      // test if any parameters & setup of Lentry_args
206      Label exit;
207      __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
208      __ add( FP, STACK_BIAS, dst );
209      __ cmp_zero_and_br(Assembler::zero, cnt, exit);
210      __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
211
212      // copy parameters if any
213      Label loop;
214      __ BIND(loop);
215      // Store parameter value
216      __ ld_ptr(src, 0, tmp);
217      __ add(src, BytesPerWord, src);
218      __ st_ptr(tmp, dst, 0);
219      __ deccc(cnt);
220      __ br(Assembler::greater, false, Assembler::pt, loop);
221      __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
222
223      // done
224      __ BIND(exit);
225    }
226
227    // setup parameters, method & call Java function
228#ifdef ASSERT
229    // layout_activation_impl checks it's notion of saved SP against
230    // this register, so if this changes update it as well.
231    const Register saved_SP = Lscratch;
232    __ mov(SP, saved_SP);                               // keep track of SP before call
233#endif
234
235    // setup parameters
236    const Register t = G3_scratch;
237    __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
238    __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
239    __ sub(FP, t, Gargs);                              // setup parameter pointer
240#ifdef _LP64
241    __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
242#endif
243    __ mov(SP, O5_savedSP);
244
245
246    // do the call
247    //
248    // the following register must be setup:
249    //
250    // G2_thread
251    // G5_method
252    // Gargs
253    BLOCK_COMMENT("call Java function");
254    __ jmpl(entry_point.as_in().as_register(), G0, O7);
255    __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
256
257    BLOCK_COMMENT("call_stub_return_address:");
258    return_pc = __ pc();
259
260    // The callee, if it wasn't interpreted, can return with SP changed so
261    // we can no longer assert of change of SP.
262
263    // store result depending on type
264    // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
265    //  is treated as T_INT)
266    { const Register addr = result     .as_in().as_register();
267      const Register type = result_type.as_in().as_register();
268      Label is_long, is_float, is_double, is_object, exit;
269      __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
270      __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
271      __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
272      __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
273      __ delayed()->nop();
274
275      // store int result
276      __ st(O0, addr, G0);
277
278      __ BIND(exit);
279      __ ret();
280      __ delayed()->restore();
281
282      __ BIND(is_object);
283      __ ba(exit);
284      __ delayed()->st_ptr(O0, addr, G0);
285
286      __ BIND(is_float);
287      __ ba(exit);
288      __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
289
290      __ BIND(is_double);
291      __ ba(exit);
292      __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
293
294      __ BIND(is_long);
295#ifdef _LP64
296      __ ba(exit);
297      __ delayed()->st_long(O0, addr, G0);      // store entire long
298#else
299#if defined(COMPILER2)
300  // All return values are where we want them, except for Longs.  C2 returns
301  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
302  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
303  // build we simply always use G1.
304  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
305  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
306  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
307
308      __ ba(exit);
309      __ delayed()->stx(G1, addr, G0);  // store entire long
310#else
311      __ st(O1, addr, BytesPerInt);
312      __ ba(exit);
313      __ delayed()->st(O0, addr, G0);
314#endif /* COMPILER2 */
315#endif /* _LP64 */
316     }
317     return start;
318  }
319
320
321  //----------------------------------------------------------------------------------------------------
322  // Return point for a Java call if there's an exception thrown in Java code.
323  // The exception is caught and transformed into a pending exception stored in
324  // JavaThread that can be tested from within the VM.
325  //
326  // Oexception: exception oop
327
328  address generate_catch_exception() {
329    StubCodeMark mark(this, "StubRoutines", "catch_exception");
330
331    address start = __ pc();
332    // verify that thread corresponds
333    __ verify_thread();
334
335    const Register& temp_reg = Gtemp;
336    Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
337    Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
338    Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
339
340    // set pending exception
341    __ verify_oop(Oexception);
342    __ st_ptr(Oexception, pending_exception_addr);
343    __ set((intptr_t)__FILE__, temp_reg);
344    __ st_ptr(temp_reg, exception_file_offset_addr);
345    __ set((intptr_t)__LINE__, temp_reg);
346    __ st(temp_reg, exception_line_offset_addr);
347
348    // complete return to VM
349    assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
350
351    AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
352    __ jump_to(stub_ret, temp_reg);
353    __ delayed()->nop();
354
355    return start;
356  }
357
358
359  //----------------------------------------------------------------------------------------------------
360  // Continuation point for runtime calls returning with a pending exception
361  // The pending exception check happened in the runtime or native call stub
362  // The pending exception in Thread is converted into a Java-level exception
363  //
364  // Contract with Java-level exception handler: O0 = exception
365  //                                             O1 = throwing pc
366
367  address generate_forward_exception() {
368    StubCodeMark mark(this, "StubRoutines", "forward_exception");
369    address start = __ pc();
370
371    // Upon entry, O7 has the return address returning into Java
372    // (interpreted or compiled) code; i.e. the return address
373    // becomes the throwing pc.
374
375    const Register& handler_reg = Gtemp;
376
377    Address exception_addr(G2_thread, Thread::pending_exception_offset());
378
379#ifdef ASSERT
380    // make sure that this code is only executed if there is a pending exception
381    { Label L;
382      __ ld_ptr(exception_addr, Gtemp);
383      __ br_notnull_short(Gtemp, Assembler::pt, L);
384      __ stop("StubRoutines::forward exception: no pending exception (1)");
385      __ bind(L);
386    }
387#endif
388
389    // compute exception handler into handler_reg
390    __ get_thread();
391    __ ld_ptr(exception_addr, Oexception);
392    __ verify_oop(Oexception);
393    __ save_frame(0);             // compensates for compiler weakness
394    __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
395    BLOCK_COMMENT("call exception_handler_for_return_address");
396    __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
397    __ mov(O0, handler_reg);
398    __ restore();                 // compensates for compiler weakness
399
400    __ ld_ptr(exception_addr, Oexception);
401    __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
402
403#ifdef ASSERT
404    // make sure exception is set
405    { Label L;
406      __ br_notnull_short(Oexception, Assembler::pt, L);
407      __ stop("StubRoutines::forward exception: no pending exception (2)");
408      __ bind(L);
409    }
410#endif
411    // jump to exception handler
412    __ jmp(handler_reg, 0);
413    // clear pending exception
414    __ delayed()->st_ptr(G0, exception_addr);
415
416    return start;
417  }
418
419
420  //------------------------------------------------------------------------------------------------------------------------
421  // Continuation point for throwing of implicit exceptions that are not handled in
422  // the current activation. Fabricates an exception oop and initiates normal
423  // exception dispatching in this frame. Only callee-saved registers are preserved
424  // (through the normal register window / RegisterMap handling).
425  // If the compiler needs all registers to be preserved between the fault
426  // point and the exception handler then it must assume responsibility for that in
427  // AbstractCompiler::continuation_for_implicit_null_exception or
428  // continuation_for_implicit_division_by_zero_exception. All other implicit
429  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
430  // either at call sites or otherwise assume that stack unwinding will be initiated,
431  // so caller saved registers were assumed volatile in the compiler.
432
433  // Note that we generate only this stub into a RuntimeStub, because it needs to be
434  // properly traversed and ignored during GC, so we change the meaning of the "__"
435  // macro within this method.
436#undef __
437#define __ masm->
438
439  address generate_throw_exception(const char* name, address runtime_entry,
440                                   Register arg1 = noreg, Register arg2 = noreg) {
441#ifdef ASSERT
442    int insts_size = VerifyThread ? 1 * K : 600;
443#else
444    int insts_size = VerifyThread ? 1 * K : 256;
445#endif /* ASSERT */
446    int locs_size  = 32;
447
448    CodeBuffer      code(name, insts_size, locs_size);
449    MacroAssembler* masm = new MacroAssembler(&code);
450
451    __ verify_thread();
452
453    // This is an inlined and slightly modified version of call_VM
454    // which has the ability to fetch the return PC out of thread-local storage
455    __ assert_not_delayed();
456
457    // Note that we always push a frame because on the SPARC
458    // architecture, for all of our implicit exception kinds at call
459    // sites, the implicit exception is taken before the callee frame
460    // is pushed.
461    __ save_frame(0);
462
463    int frame_complete = __ offset();
464
465    // Note that we always have a runtime stub frame on the top of stack by this point
466    Register last_java_sp = SP;
467    // 64-bit last_java_sp is biased!
468    __ set_last_Java_frame(last_java_sp, G0);
469    if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
470    __ save_thread(noreg);
471    if (arg1 != noreg) {
472      assert(arg2 != O1, "clobbered");
473      __ mov(arg1, O1);
474    }
475    if (arg2 != noreg) {
476      __ mov(arg2, O2);
477    }
478    // do the call
479    BLOCK_COMMENT("call runtime_entry");
480    __ call(runtime_entry, relocInfo::runtime_call_type);
481    if (!VerifyThread)
482      __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
483    else
484      __ delayed()->nop();             // (thread already passed)
485    __ restore_thread(noreg);
486    __ reset_last_Java_frame();
487
488    // check for pending exceptions. use Gtemp as scratch register.
489#ifdef ASSERT
490    Label L;
491
492    Address exception_addr(G2_thread, Thread::pending_exception_offset());
493    Register scratch_reg = Gtemp;
494    __ ld_ptr(exception_addr, scratch_reg);
495    __ br_notnull_short(scratch_reg, Assembler::pt, L);
496    __ should_not_reach_here();
497    __ bind(L);
498#endif // ASSERT
499    BLOCK_COMMENT("call forward_exception_entry");
500    __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
501    // we use O7 linkage so that forward_exception_entry has the issuing PC
502    __ delayed()->restore();
503
504    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
505    return stub->entry_point();
506  }
507
508#undef __
509#define __ _masm->
510
511
512  // Generate a routine that sets all the registers so we
513  // can tell if the stop routine prints them correctly.
514  address generate_test_stop() {
515    StubCodeMark mark(this, "StubRoutines", "test_stop");
516    address start = __ pc();
517
518    int i;
519
520    __ save_frame(0);
521
522    static jfloat zero = 0.0, one = 1.0;
523
524    // put addr in L0, then load through L0 to F0
525    __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
526    __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
527
528    // use add to put 2..18 in F2..F18
529    for ( i = 2;  i <= 18;  ++i ) {
530      __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
531    }
532
533    // Now put double 2 in F16, double 18 in F18
534    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
535    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
536
537    // use add to put 20..32 in F20..F32
538    for (i = 20; i < 32; i += 2) {
539      __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
540    }
541
542    // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
543    for ( i = 0; i < 8; ++i ) {
544      if (i < 6) {
545        __ set(     i, as_iRegister(i));
546        __ set(16 + i, as_oRegister(i));
547        __ set(24 + i, as_gRegister(i));
548      }
549      __ set( 8 + i, as_lRegister(i));
550    }
551
552    __ stop("testing stop");
553
554
555    __ ret();
556    __ delayed()->restore();
557
558    return start;
559  }
560
561
562  address generate_stop_subroutine() {
563    StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
564    address start = __ pc();
565
566    __ stop_subroutine();
567
568    return start;
569  }
570
571  address generate_flush_callers_register_windows() {
572    StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
573    address start = __ pc();
574
575    __ flush_windows();
576    __ retl(false);
577    __ delayed()->add( FP, STACK_BIAS, O0 );
578    // The returned value must be a stack pointer whose register save area
579    // is flushed, and will stay flushed while the caller executes.
580
581    return start;
582  }
583
584  // Helper functions for v8 atomic operations.
585  //
586  void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
587    if (mark_oop_reg == noreg) {
588      address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
589      __ set((intptr_t)lock_ptr, lock_ptr_reg);
590    } else {
591      assert(scratch_reg != noreg, "just checking");
592      address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
593      __ set((intptr_t)lock_ptr, lock_ptr_reg);
594      __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
595      __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
596    }
597  }
598
599  void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
600
601    get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
602    __ set(StubRoutines::Sparc::locked, lock_reg);
603    // Initialize yield counter
604    __ mov(G0,yield_reg);
605
606    __ BIND(retry);
607    __ cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dontyield);
608
609    // This code can only be called from inside the VM, this
610    // stub is only invoked from Atomic::add().  We do not
611    // want to use call_VM, because _last_java_sp and such
612    // must already be set.
613    //
614    // Save the regs and make space for a C call
615    __ save(SP, -96, SP);
616    __ save_all_globals_into_locals();
617    BLOCK_COMMENT("call os::naked_sleep");
618    __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
619    __ delayed()->nop();
620    __ restore_globals_from_locals();
621    __ restore();
622    // reset the counter
623    __ mov(G0,yield_reg);
624
625    __ BIND(dontyield);
626
627    // try to get lock
628    __ swap(lock_ptr_reg, 0, lock_reg);
629
630    // did we get the lock?
631    __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
632    __ br(Assembler::notEqual, true, Assembler::pn, retry);
633    __ delayed()->add(yield_reg,1,yield_reg);
634
635    // yes, got lock. do the operation here.
636  }
637
638  void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
639    __ st(lock_reg, lock_ptr_reg, 0); // unlock
640  }
641
642  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
643  //
644  // Arguments :
645  //
646  //      exchange_value: O0
647  //      dest:           O1
648  //
649  // Results:
650  //
651  //     O0: the value previously stored in dest
652  //
653  address generate_atomic_xchg() {
654    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
655    address start = __ pc();
656
657    if (UseCASForSwap) {
658      // Use CAS instead of swap, just in case the MP hardware
659      // prefers to work with just one kind of synch. instruction.
660      Label retry;
661      __ BIND(retry);
662      __ mov(O0, O3);       // scratch copy of exchange value
663      __ ld(O1, 0, O2);     // observe the previous value
664      // try to replace O2 with O3
665      __ cas_under_lock(O1, O2, O3,
666      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
667      __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
668
669      __ retl(false);
670      __ delayed()->mov(O2, O0);  // report previous value to caller
671
672    } else {
673      if (VM_Version::v9_instructions_work()) {
674        __ retl(false);
675        __ delayed()->swap(O1, 0, O0);
676      } else {
677        const Register& lock_reg = O2;
678        const Register& lock_ptr_reg = O3;
679        const Register& yield_reg = O4;
680
681        Label retry;
682        Label dontyield;
683
684        generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
685        // got the lock, do the swap
686        __ swap(O1, 0, O0);
687
688        generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
689        __ retl(false);
690        __ delayed()->nop();
691      }
692    }
693
694    return start;
695  }
696
697
698  // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
699  //
700  // Arguments :
701  //
702  //      exchange_value: O0
703  //      dest:           O1
704  //      compare_value:  O2
705  //
706  // Results:
707  //
708  //     O0: the value previously stored in dest
709  //
710  // Overwrites (v8): O3,O4,O5
711  //
712  address generate_atomic_cmpxchg() {
713    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
714    address start = __ pc();
715
716    // cmpxchg(dest, compare_value, exchange_value)
717    __ cas_under_lock(O1, O2, O0,
718      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
719    __ retl(false);
720    __ delayed()->nop();
721
722    return start;
723  }
724
725  // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
726  //
727  // Arguments :
728  //
729  //      exchange_value: O1:O0
730  //      dest:           O2
731  //      compare_value:  O4:O3
732  //
733  // Results:
734  //
735  //     O1:O0: the value previously stored in dest
736  //
737  // This only works on V9, on V8 we don't generate any
738  // code and just return NULL.
739  //
740  // Overwrites: G1,G2,G3
741  //
742  address generate_atomic_cmpxchg_long() {
743    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
744    address start = __ pc();
745
746    if (!VM_Version::supports_cx8())
747        return NULL;;
748    __ sllx(O0, 32, O0);
749    __ srl(O1, 0, O1);
750    __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
751    __ sllx(O3, 32, O3);
752    __ srl(O4, 0, O4);
753    __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
754    __ casx(O2, O3, O0);
755    __ srl(O0, 0, O1);    // unpacked return value in O1:O0
756    __ retl(false);
757    __ delayed()->srlx(O0, 32, O0);
758
759    return start;
760  }
761
762
763  // Support for jint Atomic::add(jint add_value, volatile jint* dest).
764  //
765  // Arguments :
766  //
767  //      add_value: O0   (e.g., +1 or -1)
768  //      dest:      O1
769  //
770  // Results:
771  //
772  //     O0: the new value stored in dest
773  //
774  // Overwrites (v9): O3
775  // Overwrites (v8): O3,O4,O5
776  //
777  address generate_atomic_add() {
778    StubCodeMark mark(this, "StubRoutines", "atomic_add");
779    address start = __ pc();
780    __ BIND(_atomic_add_stub);
781
782    if (VM_Version::v9_instructions_work()) {
783      Label(retry);
784      __ BIND(retry);
785
786      __ lduw(O1, 0, O2);
787      __ add(O0, O2, O3);
788      __ cas(O1, O2, O3);
789      __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
790      __ retl(false);
791      __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
792    } else {
793      const Register& lock_reg = O2;
794      const Register& lock_ptr_reg = O3;
795      const Register& value_reg = O4;
796      const Register& yield_reg = O5;
797
798      Label(retry);
799      Label(dontyield);
800
801      generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
802      // got lock, do the increment
803      __ ld(O1, 0, value_reg);
804      __ add(O0, value_reg, value_reg);
805      __ st(value_reg, O1, 0);
806
807      // %%% only for RMO and PSO
808      __ membar(Assembler::StoreStore);
809
810      generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
811
812      __ retl(false);
813      __ delayed()->mov(value_reg, O0);
814    }
815
816    return start;
817  }
818  Label _atomic_add_stub;  // called from other stubs
819
820
821  //------------------------------------------------------------------------------------------------------------------------
822  // The following routine generates a subroutine to throw an asynchronous
823  // UnknownError when an unsafe access gets a fault that could not be
824  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
825  //
826  // Arguments :
827  //
828  //      trapping PC:    O7
829  //
830  // Results:
831  //     posts an asynchronous exception, skips the trapping instruction
832  //
833
834  address generate_handler_for_unsafe_access() {
835    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
836    address start = __ pc();
837
838    const int preserve_register_words = (64 * 2);
839    Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
840
841    Register Lthread = L7_thread_cache;
842    int i;
843
844    __ save_frame(0);
845    __ mov(G1, L1);
846    __ mov(G2, L2);
847    __ mov(G3, L3);
848    __ mov(G4, L4);
849    __ mov(G5, L5);
850    for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
851      __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
852    }
853
854    address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
855    BLOCK_COMMENT("call handle_unsafe_access");
856    __ call(entry_point, relocInfo::runtime_call_type);
857    __ delayed()->nop();
858
859    __ mov(L1, G1);
860    __ mov(L2, G2);
861    __ mov(L3, G3);
862    __ mov(L4, G4);
863    __ mov(L5, G5);
864    for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
865      __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
866    }
867
868    __ verify_thread();
869
870    __ jmp(O0, 0);
871    __ delayed()->restore();
872
873    return start;
874  }
875
876
877  // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
878  // Arguments :
879  //
880  //      ret  : O0, returned
881  //      icc/xcc: set as O0 (depending on wordSize)
882  //      sub  : O1, argument, not changed
883  //      super: O2, argument, not changed
884  //      raddr: O7, blown by call
885  address generate_partial_subtype_check() {
886    __ align(CodeEntryAlignment);
887    StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
888    address start = __ pc();
889    Label miss;
890
891#if defined(COMPILER2) && !defined(_LP64)
892    // Do not use a 'save' because it blows the 64-bit O registers.
893    __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
894    __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
895    __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
896    __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
897    __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
898    Register Rret   = O0;
899    Register Rsub   = O1;
900    Register Rsuper = O2;
901#else
902    __ save_frame(0);
903    Register Rret   = I0;
904    Register Rsub   = I1;
905    Register Rsuper = I2;
906#endif
907
908    Register L0_ary_len = L0;
909    Register L1_ary_ptr = L1;
910    Register L2_super   = L2;
911    Register L3_index   = L3;
912
913    __ check_klass_subtype_slow_path(Rsub, Rsuper,
914                                     L0, L1, L2, L3,
915                                     NULL, &miss);
916
917    // Match falls through here.
918    __ addcc(G0,0,Rret);        // set Z flags, Z result
919
920#if defined(COMPILER2) && !defined(_LP64)
921    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
922    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
923    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
924    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
925    __ retl();                  // Result in Rret is zero; flags set to Z
926    __ delayed()->add(SP,4*wordSize,SP);
927#else
928    __ ret();                   // Result in Rret is zero; flags set to Z
929    __ delayed()->restore();
930#endif
931
932    __ BIND(miss);
933    __ addcc(G0,1,Rret);        // set NZ flags, NZ result
934
935#if defined(COMPILER2) && !defined(_LP64)
936    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
937    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
938    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
939    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
940    __ retl();                  // Result in Rret is != 0; flags set to NZ
941    __ delayed()->add(SP,4*wordSize,SP);
942#else
943    __ ret();                   // Result in Rret is != 0; flags set to NZ
944    __ delayed()->restore();
945#endif
946
947    return start;
948  }
949
950
951  // Called from MacroAssembler::verify_oop
952  //
953  address generate_verify_oop_subroutine() {
954    StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
955
956    address start = __ pc();
957
958    __ verify_oop_subroutine();
959
960    return start;
961  }
962
963
964  //
965  // Verify that a register contains clean 32-bits positive value
966  // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
967  //
968  //  Input:
969  //    Rint  -  32-bits value
970  //    Rtmp  -  scratch
971  //
972  void assert_clean_int(Register Rint, Register Rtmp) {
973#if defined(ASSERT) && defined(_LP64)
974    __ signx(Rint, Rtmp);
975    __ cmp(Rint, Rtmp);
976    __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
977#endif
978  }
979
980  //
981  //  Generate overlap test for array copy stubs
982  //
983  //  Input:
984  //    O0    -  array1
985  //    O1    -  array2
986  //    O2    -  element count
987  //
988  //  Kills temps:  O3, O4
989  //
990  void array_overlap_test(address no_overlap_target, int log2_elem_size) {
991    assert(no_overlap_target != NULL, "must be generated");
992    array_overlap_test(no_overlap_target, NULL, log2_elem_size);
993  }
994  void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
995    array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
996  }
997  void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
998    const Register from       = O0;
999    const Register to         = O1;
1000    const Register count      = O2;
1001    const Register to_from    = O3; // to - from
1002    const Register byte_count = O4; // count << log2_elem_size
1003
1004      __ subcc(to, from, to_from);
1005      __ sll_ptr(count, log2_elem_size, byte_count);
1006      if (NOLp == NULL)
1007        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
1008      else
1009        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
1010      __ delayed()->cmp(to_from, byte_count);
1011      if (NOLp == NULL)
1012        __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
1013      else
1014        __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
1015      __ delayed()->nop();
1016  }
1017
1018  //
1019  //  Generate pre-write barrier for array.
1020  //
1021  //  Input:
1022  //     addr     - register containing starting address
1023  //     count    - register containing element count
1024  //     tmp      - scratch register
1025  //
1026  //  The input registers are overwritten.
1027  //
1028  void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
1029    BarrierSet* bs = Universe::heap()->barrier_set();
1030    switch (bs->kind()) {
1031      case BarrierSet::G1SATBCT:
1032      case BarrierSet::G1SATBCTLogging:
1033        // With G1, don't generate the call if we statically know that the target in uninitialized
1034        if (!dest_uninitialized) {
1035          __ save_frame(0);
1036          // Save the necessary global regs... will be used after.
1037          if (addr->is_global()) {
1038            __ mov(addr, L0);
1039          }
1040          if (count->is_global()) {
1041            __ mov(count, L1);
1042          }
1043          __ mov(addr->after_save(), O0);
1044          // Get the count into O1
1045          __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
1046          __ delayed()->mov(count->after_save(), O1);
1047          if (addr->is_global()) {
1048            __ mov(L0, addr);
1049          }
1050          if (count->is_global()) {
1051            __ mov(L1, count);
1052          }
1053          __ restore();
1054        }
1055        break;
1056      case BarrierSet::CardTableModRef:
1057      case BarrierSet::CardTableExtension:
1058      case BarrierSet::ModRef:
1059        break;
1060      default:
1061        ShouldNotReachHere();
1062    }
1063  }
1064  //
1065  //  Generate post-write barrier for array.
1066  //
1067  //  Input:
1068  //     addr     - register containing starting address
1069  //     count    - register containing element count
1070  //     tmp      - scratch register
1071  //
1072  //  The input registers are overwritten.
1073  //
1074  void gen_write_ref_array_post_barrier(Register addr, Register count,
1075                                        Register tmp) {
1076    BarrierSet* bs = Universe::heap()->barrier_set();
1077
1078    switch (bs->kind()) {
1079      case BarrierSet::G1SATBCT:
1080      case BarrierSet::G1SATBCTLogging:
1081        {
1082          // Get some new fresh output registers.
1083          __ save_frame(0);
1084          __ mov(addr->after_save(), O0);
1085          __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
1086          __ delayed()->mov(count->after_save(), O1);
1087          __ restore();
1088        }
1089        break;
1090      case BarrierSet::CardTableModRef:
1091      case BarrierSet::CardTableExtension:
1092        {
1093          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1094          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1095          assert_different_registers(addr, count, tmp);
1096
1097          Label L_loop;
1098
1099          __ sll_ptr(count, LogBytesPerHeapOop, count);
1100          __ sub(count, BytesPerHeapOop, count);
1101          __ add(count, addr, count);
1102          // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
1103          __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
1104          __ srl_ptr(count, CardTableModRefBS::card_shift, count);
1105          __ sub(count, addr, count);
1106          AddressLiteral rs(ct->byte_map_base);
1107          __ set(rs, tmp);
1108        __ BIND(L_loop);
1109          __ stb(G0, tmp, addr);
1110          __ subcc(count, 1, count);
1111          __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1112          __ delayed()->add(addr, 1, addr);
1113        }
1114        break;
1115      case BarrierSet::ModRef:
1116        break;
1117      default:
1118        ShouldNotReachHere();
1119    }
1120  }
1121
1122  //
1123  // Generate main code for disjoint arraycopy
1124  //
1125  typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
1126                                              Label& L_loop, bool use_prefetch, bool use_bis);
1127
1128  void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
1129                          int iter_size, CopyLoopFunc copy_loop_func) {
1130    Label L_copy;
1131
1132    assert(log2_elem_size <= 3, "the following code should be changed");
1133    int count_dec = 16>>log2_elem_size;
1134
1135    int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
1136    assert(prefetch_dist < 4096, "invalid value");
1137    prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
1138    int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
1139
1140    if (UseBlockCopy) {
1141      Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
1142
1143      // 64 bytes tail + bytes copied in one loop iteration
1144      int tail_size = 64 + iter_size;
1145      int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
1146      // Use BIS copy only for big arrays since it requires membar.
1147      __ set(block_copy_count, O4);
1148      __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
1149      // This code is for disjoint source and destination:
1150      //   to <= from || to >= from+count
1151      // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
1152      __ sub(from, to, O4);
1153      __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
1154      __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
1155
1156      __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
1157      // BIS should not be used to copy tail (64 bytes+iter_size)
1158      // to avoid zeroing of following values.
1159      __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
1160
1161      if (prefetch_count > 0) { // rounded up to one iteration count
1162        // Do prefetching only if copy size is bigger
1163        // than prefetch distance.
1164        __ set(prefetch_count, O4);
1165        __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
1166        __ sub(count, prefetch_count, count);
1167
1168        (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
1169        __ add(count, prefetch_count, count); // restore count
1170
1171      } // prefetch_count > 0
1172
1173      (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
1174      __ add(count, (tail_size>>log2_elem_size), count); // restore count
1175
1176      __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
1177      // BIS needs membar.
1178      __ membar(Assembler::StoreLoad);
1179      // Copy tail
1180      __ ba_short(L_copy);
1181
1182      __ BIND(L_skip_block_copy);
1183    } // UseBlockCopy
1184
1185    if (prefetch_count > 0) { // rounded up to one iteration count
1186      // Do prefetching only if copy size is bigger
1187      // than prefetch distance.
1188      __ set(prefetch_count, O4);
1189      __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
1190      __ sub(count, prefetch_count, count);
1191
1192      Label L_copy_prefetch;
1193      (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
1194      __ add(count, prefetch_count, count); // restore count
1195
1196    } // prefetch_count > 0
1197
1198    (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
1199  }
1200
1201
1202
1203  //
1204  // Helper methods for copy_16_bytes_forward_with_shift()
1205  //
1206  void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
1207                                Label& L_loop, bool use_prefetch, bool use_bis) {
1208
1209    const Register left_shift  = G1; // left  shift bit counter
1210    const Register right_shift = G5; // right shift bit counter
1211
1212    __ align(OptoLoopAlignment);
1213    __ BIND(L_loop);
1214    if (use_prefetch) {
1215      if (ArraycopySrcPrefetchDistance > 0) {
1216        __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
1217      }
1218      if (ArraycopyDstPrefetchDistance > 0) {
1219        __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
1220      }
1221    }
1222    __ ldx(from, 0, O4);
1223    __ ldx(from, 8, G4);
1224    __ inc(to, 16);
1225    __ inc(from, 16);
1226    __ deccc(count, count_dec); // Can we do next iteration after this one?
1227    __ srlx(O4, right_shift, G3);
1228    __ bset(G3, O3);
1229    __ sllx(O4, left_shift,  O4);
1230    __ srlx(G4, right_shift, G3);
1231    __ bset(G3, O4);
1232    if (use_bis) {
1233      __ stxa(O3, to, -16);
1234      __ stxa(O4, to, -8);
1235    } else {
1236      __ stx(O3, to, -16);
1237      __ stx(O4, to, -8);
1238    }
1239    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1240    __ delayed()->sllx(G4, left_shift,  O3);
1241  }
1242
1243  // Copy big chunks forward with shift
1244  //
1245  // Inputs:
1246  //   from      - source arrays
1247  //   to        - destination array aligned to 8-bytes
1248  //   count     - elements count to copy >= the count equivalent to 16 bytes
1249  //   count_dec - elements count's decrement equivalent to 16 bytes
1250  //   L_copy_bytes - copy exit label
1251  //
1252  void copy_16_bytes_forward_with_shift(Register from, Register to,
1253                     Register count, int log2_elem_size, Label& L_copy_bytes) {
1254    Label L_aligned_copy, L_copy_last_bytes;
1255    assert(log2_elem_size <= 3, "the following code should be changed");
1256    int count_dec = 16>>log2_elem_size;
1257
1258    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
1259    __ andcc(from, 7, G1); // misaligned bytes
1260    __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
1261    __ delayed()->nop();
1262
1263    const Register left_shift  = G1; // left  shift bit counter
1264    const Register right_shift = G5; // right shift bit counter
1265
1266    __ sll(G1, LogBitsPerByte, left_shift);
1267    __ mov(64, right_shift);
1268    __ sub(right_shift, left_shift, right_shift);
1269
1270    //
1271    // Load 2 aligned 8-bytes chunks and use one from previous iteration
1272    // to form 2 aligned 8-bytes chunks to store.
1273    //
1274    __ dec(count, count_dec);   // Pre-decrement 'count'
1275    __ andn(from, 7, from);     // Align address
1276    __ ldx(from, 0, O3);
1277    __ inc(from, 8);
1278    __ sllx(O3, left_shift,  O3);
1279
1280    disjoint_copy_core(from, to, count, log2_elem_size, 16, copy_16_bytes_shift_loop);
1281
1282    __ inccc(count, count_dec>>1 ); // + 8 bytes
1283    __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
1284    __ delayed()->inc(count, count_dec>>1); // restore 'count'
1285
1286    // copy 8 bytes, part of them already loaded in O3
1287    __ ldx(from, 0, O4);
1288    __ inc(to, 8);
1289    __ inc(from, 8);
1290    __ srlx(O4, right_shift, G3);
1291    __ bset(O3, G3);
1292    __ stx(G3, to, -8);
1293
1294    __ BIND(L_copy_last_bytes);
1295    __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
1296    __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
1297    __ delayed()->sub(from, right_shift, from);       // restore address
1298
1299    __ BIND(L_aligned_copy);
1300  }
1301
1302  // Copy big chunks backward with shift
1303  //
1304  // Inputs:
1305  //   end_from  - source arrays end address
1306  //   end_to    - destination array end address aligned to 8-bytes
1307  //   count     - elements count to copy >= the count equivalent to 16 bytes
1308  //   count_dec - elements count's decrement equivalent to 16 bytes
1309  //   L_aligned_copy - aligned copy exit label
1310  //   L_copy_bytes   - copy exit label
1311  //
1312  void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
1313                     Register count, int count_dec,
1314                     Label& L_aligned_copy, Label& L_copy_bytes) {
1315    Label L_loop, L_copy_last_bytes;
1316
1317    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
1318      __ andcc(end_from, 7, G1); // misaligned bytes
1319      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
1320      __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
1321
1322    const Register left_shift  = G1; // left  shift bit counter
1323    const Register right_shift = G5; // right shift bit counter
1324
1325      __ sll(G1, LogBitsPerByte, left_shift);
1326      __ mov(64, right_shift);
1327      __ sub(right_shift, left_shift, right_shift);
1328
1329    //
1330    // Load 2 aligned 8-bytes chunks and use one from previous iteration
1331    // to form 2 aligned 8-bytes chunks to store.
1332    //
1333      __ andn(end_from, 7, end_from);     // Align address
1334      __ ldx(end_from, 0, O3);
1335      __ align(OptoLoopAlignment);
1336    __ BIND(L_loop);
1337      __ ldx(end_from, -8, O4);
1338      __ deccc(count, count_dec); // Can we do next iteration after this one?
1339      __ ldx(end_from, -16, G4);
1340      __ dec(end_to, 16);
1341      __ dec(end_from, 16);
1342      __ srlx(O3, right_shift, O3);
1343      __ sllx(O4, left_shift,  G3);
1344      __ bset(G3, O3);
1345      __ stx(O3, end_to, 8);
1346      __ srlx(O4, right_shift, O4);
1347      __ sllx(G4, left_shift,  G3);
1348      __ bset(G3, O4);
1349      __ stx(O4, end_to, 0);
1350      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1351      __ delayed()->mov(G4, O3);
1352
1353      __ inccc(count, count_dec>>1 ); // + 8 bytes
1354      __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
1355      __ delayed()->inc(count, count_dec>>1); // restore 'count'
1356
1357      // copy 8 bytes, part of them already loaded in O3
1358      __ ldx(end_from, -8, O4);
1359      __ dec(end_to, 8);
1360      __ dec(end_from, 8);
1361      __ srlx(O3, right_shift, O3);
1362      __ sllx(O4, left_shift,  G3);
1363      __ bset(O3, G3);
1364      __ stx(G3, end_to, 0);
1365
1366    __ BIND(L_copy_last_bytes);
1367      __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
1368      __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
1369      __ delayed()->add(end_from, left_shift, end_from); // restore address
1370  }
1371
1372  //
1373  //  Generate stub for disjoint byte copy.  If "aligned" is true, the
1374  //  "from" and "to" addresses are assumed to be heapword aligned.
1375  //
1376  // Arguments for generated stub:
1377  //      from:  O0
1378  //      to:    O1
1379  //      count: O2 treated as signed
1380  //
1381  address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
1382    __ align(CodeEntryAlignment);
1383    StubCodeMark mark(this, "StubRoutines", name);
1384    address start = __ pc();
1385
1386    Label L_skip_alignment, L_align;
1387    Label L_copy_byte, L_copy_byte_loop, L_exit;
1388
1389    const Register from      = O0;   // source array address
1390    const Register to        = O1;   // destination array address
1391    const Register count     = O2;   // elements count
1392    const Register offset    = O5;   // offset from start of arrays
1393    // O3, O4, G3, G4 are used as temp registers
1394
1395    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1396
1397    if (entry != NULL) {
1398      *entry = __ pc();
1399      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1400      BLOCK_COMMENT("Entry:");
1401    }
1402
1403    // for short arrays, just do single element copy
1404    __ cmp(count, 23); // 16 + 7
1405    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
1406    __ delayed()->mov(G0, offset);
1407
1408    if (aligned) {
1409      // 'aligned' == true when it is known statically during compilation
1410      // of this arraycopy call site that both 'from' and 'to' addresses
1411      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
1412      //
1413      // Aligned arrays have 4 bytes alignment in 32-bits VM
1414      // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
1415      //
1416#ifndef _LP64
1417      // copy a 4-bytes word if necessary to align 'to' to 8 bytes
1418      __ andcc(to, 7, G0);
1419      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
1420      __ delayed()->ld(from, 0, O3);
1421      __ inc(from, 4);
1422      __ inc(to, 4);
1423      __ dec(count, 4);
1424      __ st(O3, to, -4);
1425    __ BIND(L_skip_alignment);
1426#endif
1427    } else {
1428      // copy bytes to align 'to' on 8 byte boundary
1429      __ andcc(to, 7, G1); // misaligned bytes
1430      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1431      __ delayed()->neg(G1);
1432      __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
1433      __ sub(count, G1, count);
1434    __ BIND(L_align);
1435      __ ldub(from, 0, O3);
1436      __ deccc(G1);
1437      __ inc(from);
1438      __ stb(O3, to, 0);
1439      __ br(Assembler::notZero, false, Assembler::pt, L_align);
1440      __ delayed()->inc(to);
1441    __ BIND(L_skip_alignment);
1442    }
1443#ifdef _LP64
1444    if (!aligned)
1445#endif
1446    {
1447      // Copy with shift 16 bytes per iteration if arrays do not have
1448      // the same alignment mod 8, otherwise fall through to the next
1449      // code for aligned copy.
1450      // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
1451      // Also jump over aligned copy after the copy with shift completed.
1452
1453      copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
1454    }
1455
1456    // Both array are 8 bytes aligned, copy 16 bytes at a time
1457      __ and3(count, 7, G4); // Save count
1458      __ srl(count, 3, count);
1459     generate_disjoint_long_copy_core(aligned);
1460      __ mov(G4, count);     // Restore count
1461
1462    // copy tailing bytes
1463    __ BIND(L_copy_byte);
1464      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1465      __ align(OptoLoopAlignment);
1466    __ BIND(L_copy_byte_loop);
1467      __ ldub(from, offset, O3);
1468      __ deccc(count);
1469      __ stb(O3, to, offset);
1470      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
1471      __ delayed()->inc(offset);
1472
1473    __ BIND(L_exit);
1474      // O3, O4 are used as temp registers
1475      inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
1476      __ retl();
1477      __ delayed()->mov(G0, O0); // return 0
1478    return start;
1479  }
1480
1481  //
1482  //  Generate stub for conjoint byte copy.  If "aligned" is true, the
1483  //  "from" and "to" addresses are assumed to be heapword aligned.
1484  //
1485  // Arguments for generated stub:
1486  //      from:  O0
1487  //      to:    O1
1488  //      count: O2 treated as signed
1489  //
1490  address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1491                                      address *entry, const char *name) {
1492    // Do reverse copy.
1493
1494    __ align(CodeEntryAlignment);
1495    StubCodeMark mark(this, "StubRoutines", name);
1496    address start = __ pc();
1497
1498    Label L_skip_alignment, L_align, L_aligned_copy;
1499    Label L_copy_byte, L_copy_byte_loop, L_exit;
1500
1501    const Register from      = O0;   // source array address
1502    const Register to        = O1;   // destination array address
1503    const Register count     = O2;   // elements count
1504    const Register end_from  = from; // source array end address
1505    const Register end_to    = to;   // destination array end address
1506
1507    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1508
1509    if (entry != NULL) {
1510      *entry = __ pc();
1511      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1512      BLOCK_COMMENT("Entry:");
1513    }
1514
1515    array_overlap_test(nooverlap_target, 0);
1516
1517    __ add(to, count, end_to);       // offset after last copied element
1518
1519    // for short arrays, just do single element copy
1520    __ cmp(count, 23); // 16 + 7
1521    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
1522    __ delayed()->add(from, count, end_from);
1523
1524    {
1525      // Align end of arrays since they could be not aligned even
1526      // when arrays itself are aligned.
1527
1528      // copy bytes to align 'end_to' on 8 byte boundary
1529      __ andcc(end_to, 7, G1); // misaligned bytes
1530      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1531      __ delayed()->nop();
1532      __ sub(count, G1, count);
1533    __ BIND(L_align);
1534      __ dec(end_from);
1535      __ dec(end_to);
1536      __ ldub(end_from, 0, O3);
1537      __ deccc(G1);
1538      __ brx(Assembler::notZero, false, Assembler::pt, L_align);
1539      __ delayed()->stb(O3, end_to, 0);
1540    __ BIND(L_skip_alignment);
1541    }
1542#ifdef _LP64
1543    if (aligned) {
1544      // Both arrays are aligned to 8-bytes in 64-bits VM.
1545      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
1546      // in unaligned case.
1547      __ dec(count, 16);
1548    } else
1549#endif
1550    {
1551      // Copy with shift 16 bytes per iteration if arrays do not have
1552      // the same alignment mod 8, otherwise jump to the next
1553      // code for aligned copy (and substracting 16 from 'count' before jump).
1554      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
1555      // Also jump over aligned copy after the copy with shift completed.
1556
1557      copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
1558                                        L_aligned_copy, L_copy_byte);
1559    }
1560    // copy 4 elements (16 bytes) at a time
1561      __ align(OptoLoopAlignment);
1562    __ BIND(L_aligned_copy);
1563      __ dec(end_from, 16);
1564      __ ldx(end_from, 8, O3);
1565      __ ldx(end_from, 0, O4);
1566      __ dec(end_to, 16);
1567      __ deccc(count, 16);
1568      __ stx(O3, end_to, 8);
1569      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
1570      __ delayed()->stx(O4, end_to, 0);
1571      __ inc(count, 16);
1572
1573    // copy 1 element (2 bytes) at a time
1574    __ BIND(L_copy_byte);
1575      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1576      __ align(OptoLoopAlignment);
1577    __ BIND(L_copy_byte_loop);
1578      __ dec(end_from);
1579      __ dec(end_to);
1580      __ ldub(end_from, 0, O4);
1581      __ deccc(count);
1582      __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
1583      __ delayed()->stb(O4, end_to, 0);
1584
1585    __ BIND(L_exit);
1586    // O3, O4 are used as temp registers
1587    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
1588    __ retl();
1589    __ delayed()->mov(G0, O0); // return 0
1590    return start;
1591  }
1592
1593  //
1594  //  Generate stub for disjoint short copy.  If "aligned" is true, the
1595  //  "from" and "to" addresses are assumed to be heapword aligned.
1596  //
1597  // Arguments for generated stub:
1598  //      from:  O0
1599  //      to:    O1
1600  //      count: O2 treated as signed
1601  //
1602  address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
1603    __ align(CodeEntryAlignment);
1604    StubCodeMark mark(this, "StubRoutines", name);
1605    address start = __ pc();
1606
1607    Label L_skip_alignment, L_skip_alignment2;
1608    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
1609
1610    const Register from      = O0;   // source array address
1611    const Register to        = O1;   // destination array address
1612    const Register count     = O2;   // elements count
1613    const Register offset    = O5;   // offset from start of arrays
1614    // O3, O4, G3, G4 are used as temp registers
1615
1616    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1617
1618    if (entry != NULL) {
1619      *entry = __ pc();
1620      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1621      BLOCK_COMMENT("Entry:");
1622    }
1623
1624    // for short arrays, just do single element copy
1625    __ cmp(count, 11); // 8 + 3  (22 bytes)
1626    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
1627    __ delayed()->mov(G0, offset);
1628
1629    if (aligned) {
1630      // 'aligned' == true when it is known statically during compilation
1631      // of this arraycopy call site that both 'from' and 'to' addresses
1632      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
1633      //
1634      // Aligned arrays have 4 bytes alignment in 32-bits VM
1635      // and 8 bytes - in 64-bits VM.
1636      //
1637#ifndef _LP64
1638      // copy a 2-elements word if necessary to align 'to' to 8 bytes
1639      __ andcc(to, 7, G0);
1640      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1641      __ delayed()->ld(from, 0, O3);
1642      __ inc(from, 4);
1643      __ inc(to, 4);
1644      __ dec(count, 2);
1645      __ st(O3, to, -4);
1646    __ BIND(L_skip_alignment);
1647#endif
1648    } else {
1649      // copy 1 element if necessary to align 'to' on an 4 bytes
1650      __ andcc(to, 3, G0);
1651      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1652      __ delayed()->lduh(from, 0, O3);
1653      __ inc(from, 2);
1654      __ inc(to, 2);
1655      __ dec(count);
1656      __ sth(O3, to, -2);
1657    __ BIND(L_skip_alignment);
1658
1659      // copy 2 elements to align 'to' on an 8 byte boundary
1660      __ andcc(to, 7, G0);
1661      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
1662      __ delayed()->lduh(from, 0, O3);
1663      __ dec(count, 2);
1664      __ lduh(from, 2, O4);
1665      __ inc(from, 4);
1666      __ inc(to, 4);
1667      __ sth(O3, to, -4);
1668      __ sth(O4, to, -2);
1669    __ BIND(L_skip_alignment2);
1670    }
1671#ifdef _LP64
1672    if (!aligned)
1673#endif
1674    {
1675      // Copy with shift 16 bytes per iteration if arrays do not have
1676      // the same alignment mod 8, otherwise fall through to the next
1677      // code for aligned copy.
1678      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
1679      // Also jump over aligned copy after the copy with shift completed.
1680
1681      copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
1682    }
1683
1684    // Both array are 8 bytes aligned, copy 16 bytes at a time
1685      __ and3(count, 3, G4); // Save
1686      __ srl(count, 2, count);
1687     generate_disjoint_long_copy_core(aligned);
1688      __ mov(G4, count); // restore
1689
1690    // copy 1 element at a time
1691    __ BIND(L_copy_2_bytes);
1692      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1693      __ align(OptoLoopAlignment);
1694    __ BIND(L_copy_2_bytes_loop);
1695      __ lduh(from, offset, O3);
1696      __ deccc(count);
1697      __ sth(O3, to, offset);
1698      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
1699      __ delayed()->inc(offset, 2);
1700
1701    __ BIND(L_exit);
1702      // O3, O4 are used as temp registers
1703      inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
1704      __ retl();
1705      __ delayed()->mov(G0, O0); // return 0
1706    return start;
1707  }
1708
1709  //
1710  //  Generate stub for disjoint short fill.  If "aligned" is true, the
1711  //  "to" address is assumed to be heapword aligned.
1712  //
1713  // Arguments for generated stub:
1714  //      to:    O0
1715  //      value: O1
1716  //      count: O2 treated as signed
1717  //
1718  address generate_fill(BasicType t, bool aligned, const char* name) {
1719    __ align(CodeEntryAlignment);
1720    StubCodeMark mark(this, "StubRoutines", name);
1721    address start = __ pc();
1722
1723    const Register to        = O0;   // source array address
1724    const Register value     = O1;   // fill value
1725    const Register count     = O2;   // elements count
1726    // O3 is used as a temp register
1727
1728    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1729
1730    Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
1731    Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
1732
1733    int shift = -1;
1734    switch (t) {
1735       case T_BYTE:
1736        shift = 2;
1737        break;
1738       case T_SHORT:
1739        shift = 1;
1740        break;
1741      case T_INT:
1742         shift = 0;
1743        break;
1744      default: ShouldNotReachHere();
1745    }
1746
1747    BLOCK_COMMENT("Entry:");
1748
1749    if (t == T_BYTE) {
1750      // Zero extend value
1751      __ and3(value, 0xff, value);
1752      __ sllx(value, 8, O3);
1753      __ or3(value, O3, value);
1754    }
1755    if (t == T_SHORT) {
1756      // Zero extend value
1757      __ sllx(value, 48, value);
1758      __ srlx(value, 48, value);
1759    }
1760    if (t == T_BYTE || t == T_SHORT) {
1761      __ sllx(value, 16, O3);
1762      __ or3(value, O3, value);
1763    }
1764
1765    __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
1766    __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
1767    __ delayed()->andcc(count, 1, G0);
1768
1769    if (!aligned && (t == T_BYTE || t == T_SHORT)) {
1770      // align source address at 4 bytes address boundary
1771      if (t == T_BYTE) {
1772        // One byte misalignment happens only for byte arrays
1773        __ andcc(to, 1, G0);
1774        __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
1775        __ delayed()->nop();
1776        __ stb(value, to, 0);
1777        __ inc(to, 1);
1778        __ dec(count, 1);
1779        __ BIND(L_skip_align1);
1780      }
1781      // Two bytes misalignment happens only for byte and short (char) arrays
1782      __ andcc(to, 2, G0);
1783      __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
1784      __ delayed()->nop();
1785      __ sth(value, to, 0);
1786      __ inc(to, 2);
1787      __ dec(count, 1 << (shift - 1));
1788      __ BIND(L_skip_align2);
1789    }
1790#ifdef _LP64
1791    if (!aligned) {
1792#endif
1793    // align to 8 bytes, we know we are 4 byte aligned to start
1794    __ andcc(to, 7, G0);
1795    __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
1796    __ delayed()->nop();
1797    __ stw(value, to, 0);
1798    __ inc(to, 4);
1799    __ dec(count, 1 << shift);
1800    __ BIND(L_fill_32_bytes);
1801#ifdef _LP64
1802    }
1803#endif
1804
1805    if (t == T_INT) {
1806      // Zero extend value
1807      __ srl(value, 0, value);
1808    }
1809    if (t == T_BYTE || t == T_SHORT || t == T_INT) {
1810      __ sllx(value, 32, O3);
1811      __ or3(value, O3, value);
1812    }
1813
1814    Label L_check_fill_8_bytes;
1815    // Fill 32-byte chunks
1816    __ subcc(count, 8 << shift, count);
1817    __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
1818    __ delayed()->nop();
1819
1820    Label L_fill_32_bytes_loop, L_fill_4_bytes;
1821    __ align(16);
1822    __ BIND(L_fill_32_bytes_loop);
1823
1824    __ stx(value, to, 0);
1825    __ stx(value, to, 8);
1826    __ stx(value, to, 16);
1827    __ stx(value, to, 24);
1828
1829    __ subcc(count, 8 << shift, count);
1830    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
1831    __ delayed()->add(to, 32, to);
1832
1833    __ BIND(L_check_fill_8_bytes);
1834    __ addcc(count, 8 << shift, count);
1835    __ brx(Assembler::zero, false, Assembler::pn, L_exit);
1836    __ delayed()->subcc(count, 1 << (shift + 1), count);
1837    __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
1838    __ delayed()->andcc(count, 1<<shift, G0);
1839
1840    //
1841    // length is too short, just fill 8 bytes at a time
1842    //
1843    Label L_fill_8_bytes_loop;
1844    __ BIND(L_fill_8_bytes_loop);
1845    __ stx(value, to, 0);
1846    __ subcc(count, 1 << (shift + 1), count);
1847    __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
1848    __ delayed()->add(to, 8, to);
1849
1850    // fill trailing 4 bytes
1851    __ andcc(count, 1<<shift, G0);  // in delay slot of branches
1852    if (t == T_INT) {
1853      __ BIND(L_fill_elements);
1854    }
1855    __ BIND(L_fill_4_bytes);
1856    __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
1857    if (t == T_BYTE || t == T_SHORT) {
1858      __ delayed()->andcc(count, 1<<(shift-1), G0);
1859    } else {
1860      __ delayed()->nop();
1861    }
1862    __ stw(value, to, 0);
1863    if (t == T_BYTE || t == T_SHORT) {
1864      __ inc(to, 4);
1865      // fill trailing 2 bytes
1866      __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
1867      __ BIND(L_fill_2_bytes);
1868      __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
1869      __ delayed()->andcc(count, 1, count);
1870      __ sth(value, to, 0);
1871      if (t == T_BYTE) {
1872        __ inc(to, 2);
1873        // fill trailing byte
1874        __ andcc(count, 1, count);  // in delay slot of branches
1875        __ BIND(L_fill_byte);
1876        __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1877        __ delayed()->nop();
1878        __ stb(value, to, 0);
1879      } else {
1880        __ BIND(L_fill_byte);
1881      }
1882    } else {
1883      __ BIND(L_fill_2_bytes);
1884    }
1885    __ BIND(L_exit);
1886    __ retl();
1887    __ delayed()->nop();
1888
1889    // Handle copies less than 8 bytes.  Int is handled elsewhere.
1890    if (t == T_BYTE) {
1891      __ BIND(L_fill_elements);
1892      Label L_fill_2, L_fill_4;
1893      // in delay slot __ andcc(count, 1, G0);
1894      __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
1895      __ delayed()->andcc(count, 2, G0);
1896      __ stb(value, to, 0);
1897      __ inc(to, 1);
1898      __ BIND(L_fill_2);
1899      __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
1900      __ delayed()->andcc(count, 4, G0);
1901      __ stb(value, to, 0);
1902      __ stb(value, to, 1);
1903      __ inc(to, 2);
1904      __ BIND(L_fill_4);
1905      __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1906      __ delayed()->nop();
1907      __ stb(value, to, 0);
1908      __ stb(value, to, 1);
1909      __ stb(value, to, 2);
1910      __ retl();
1911      __ delayed()->stb(value, to, 3);
1912    }
1913
1914    if (t == T_SHORT) {
1915      Label L_fill_2;
1916      __ BIND(L_fill_elements);
1917      // in delay slot __ andcc(count, 1, G0);
1918      __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
1919      __ delayed()->andcc(count, 2, G0);
1920      __ sth(value, to, 0);
1921      __ inc(to, 2);
1922      __ BIND(L_fill_2);
1923      __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1924      __ delayed()->nop();
1925      __ sth(value, to, 0);
1926      __ retl();
1927      __ delayed()->sth(value, to, 2);
1928    }
1929    return start;
1930  }
1931
1932  //
1933  //  Generate stub for conjoint short copy.  If "aligned" is true, the
1934  //  "from" and "to" addresses are assumed to be heapword aligned.
1935  //
1936  // Arguments for generated stub:
1937  //      from:  O0
1938  //      to:    O1
1939  //      count: O2 treated as signed
1940  //
1941  address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1942                                       address *entry, const char *name) {
1943    // Do reverse copy.
1944
1945    __ align(CodeEntryAlignment);
1946    StubCodeMark mark(this, "StubRoutines", name);
1947    address start = __ pc();
1948
1949    Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
1950    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
1951
1952    const Register from      = O0;   // source array address
1953    const Register to        = O1;   // destination array address
1954    const Register count     = O2;   // elements count
1955    const Register end_from  = from; // source array end address
1956    const Register end_to    = to;   // destination array end address
1957
1958    const Register byte_count = O3;  // bytes count to copy
1959
1960    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1961
1962    if (entry != NULL) {
1963      *entry = __ pc();
1964      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1965      BLOCK_COMMENT("Entry:");
1966    }
1967
1968    array_overlap_test(nooverlap_target, 1);
1969
1970    __ sllx(count, LogBytesPerShort, byte_count);
1971    __ add(to, byte_count, end_to);  // offset after last copied element
1972
1973    // for short arrays, just do single element copy
1974    __ cmp(count, 11); // 8 + 3  (22 bytes)
1975    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
1976    __ delayed()->add(from, byte_count, end_from);
1977
1978    {
1979      // Align end of arrays since they could be not aligned even
1980      // when arrays itself are aligned.
1981
1982      // copy 1 element if necessary to align 'end_to' on an 4 bytes
1983      __ andcc(end_to, 3, G0);
1984      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1985      __ delayed()->lduh(end_from, -2, O3);
1986      __ dec(end_from, 2);
1987      __ dec(end_to, 2);
1988      __ dec(count);
1989      __ sth(O3, end_to, 0);
1990    __ BIND(L_skip_alignment);
1991
1992      // copy 2 elements to align 'end_to' on an 8 byte boundary
1993      __ andcc(end_to, 7, G0);
1994      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
1995      __ delayed()->lduh(end_from, -2, O3);
1996      __ dec(count, 2);
1997      __ lduh(end_from, -4, O4);
1998      __ dec(end_from, 4);
1999      __ dec(end_to, 4);
2000      __ sth(O3, end_to, 2);
2001      __ sth(O4, end_to, 0);
2002    __ BIND(L_skip_alignment2);
2003    }
2004#ifdef _LP64
2005    if (aligned) {
2006      // Both arrays are aligned to 8-bytes in 64-bits VM.
2007      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
2008      // in unaligned case.
2009      __ dec(count, 8);
2010    } else
2011#endif
2012    {
2013      // Copy with shift 16 bytes per iteration if arrays do not have
2014      // the same alignment mod 8, otherwise jump to the next
2015      // code for aligned copy (and substracting 8 from 'count' before jump).
2016      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
2017      // Also jump over aligned copy after the copy with shift completed.
2018
2019      copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
2020                                        L_aligned_copy, L_copy_2_bytes);
2021    }
2022    // copy 4 elements (16 bytes) at a time
2023      __ align(OptoLoopAlignment);
2024    __ BIND(L_aligned_copy);
2025      __ dec(end_from, 16);
2026      __ ldx(end_from, 8, O3);
2027      __ ldx(end_from, 0, O4);
2028      __ dec(end_to, 16);
2029      __ deccc(count, 8);
2030      __ stx(O3, end_to, 8);
2031      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
2032      __ delayed()->stx(O4, end_to, 0);
2033      __ inc(count, 8);
2034
2035    // copy 1 element (2 bytes) at a time
2036    __ BIND(L_copy_2_bytes);
2037      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
2038    __ BIND(L_copy_2_bytes_loop);
2039      __ dec(end_from, 2);
2040      __ dec(end_to, 2);
2041      __ lduh(end_from, 0, O4);
2042      __ deccc(count);
2043      __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
2044      __ delayed()->sth(O4, end_to, 0);
2045
2046    __ BIND(L_exit);
2047    // O3, O4 are used as temp registers
2048    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
2049    __ retl();
2050    __ delayed()->mov(G0, O0); // return 0
2051    return start;
2052  }
2053
2054  //
2055  // Helper methods for generate_disjoint_int_copy_core()
2056  //
2057  void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
2058                          Label& L_loop, bool use_prefetch, bool use_bis) {
2059
2060    __ align(OptoLoopAlignment);
2061    __ BIND(L_loop);
2062    if (use_prefetch) {
2063      if (ArraycopySrcPrefetchDistance > 0) {
2064        __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
2065      }
2066      if (ArraycopyDstPrefetchDistance > 0) {
2067        __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
2068      }
2069    }
2070    __ ldx(from, 4, O4);
2071    __ ldx(from, 12, G4);
2072    __ inc(to, 16);
2073    __ inc(from, 16);
2074    __ deccc(count, 4); // Can we do next iteration after this one?
2075
2076    __ srlx(O4, 32, G3);
2077    __ bset(G3, O3);
2078    __ sllx(O4, 32, O4);
2079    __ srlx(G4, 32, G3);
2080    __ bset(G3, O4);
2081    if (use_bis) {
2082      __ stxa(O3, to, -16);
2083      __ stxa(O4, to, -8);
2084    } else {
2085      __ stx(O3, to, -16);
2086      __ stx(O4, to, -8);
2087    }
2088    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
2089    __ delayed()->sllx(G4, 32,  O3);
2090
2091  }
2092
2093  //
2094  //  Generate core code for disjoint int copy (and oop copy on 32-bit).
2095  //  If "aligned" is true, the "from" and "to" addresses are assumed
2096  //  to be heapword aligned.
2097  //
2098  // Arguments:
2099  //      from:  O0
2100  //      to:    O1
2101  //      count: O2 treated as signed
2102  //
2103  void generate_disjoint_int_copy_core(bool aligned) {
2104
2105    Label L_skip_alignment, L_aligned_copy;
2106    Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
2107
2108    const Register from      = O0;   // source array address
2109    const Register to        = O1;   // destination array address
2110    const Register count     = O2;   // elements count
2111    const Register offset    = O5;   // offset from start of arrays
2112    // O3, O4, G3, G4 are used as temp registers
2113
2114    // 'aligned' == true when it is known statically during compilation
2115    // of this arraycopy call site that both 'from' and 'to' addresses
2116    // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
2117    //
2118    // Aligned arrays have 4 bytes alignment in 32-bits VM
2119    // and 8 bytes - in 64-bits VM.
2120    //
2121#ifdef _LP64
2122    if (!aligned)
2123#endif
2124    {
2125      // The next check could be put under 'ifndef' since the code in
2126      // generate_disjoint_long_copy_core() has own checks and set 'offset'.
2127
2128      // for short arrays, just do single element copy
2129      __ cmp(count, 5); // 4 + 1 (20 bytes)
2130      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
2131      __ delayed()->mov(G0, offset);
2132
2133      // copy 1 element to align 'to' on an 8 byte boundary
2134      __ andcc(to, 7, G0);
2135      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
2136      __ delayed()->ld(from, 0, O3);
2137      __ inc(from, 4);
2138      __ inc(to, 4);
2139      __ dec(count);
2140      __ st(O3, to, -4);
2141    __ BIND(L_skip_alignment);
2142
2143    // if arrays have same alignment mod 8, do 4 elements copy
2144      __ andcc(from, 7, G0);
2145      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
2146      __ delayed()->ld(from, 0, O3);
2147
2148    //
2149    // Load 2 aligned 8-bytes chunks and use one from previous iteration
2150    // to form 2 aligned 8-bytes chunks to store.
2151    //
2152    // copy_16_bytes_forward_with_shift() is not used here since this
2153    // code is more optimal.
2154
2155    // copy with shift 4 elements (16 bytes) at a time
2156      __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
2157      __ sllx(O3, 32,  O3);
2158
2159      disjoint_copy_core(from, to, count, 2, 16, copy_16_bytes_loop);
2160
2161      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
2162      __ delayed()->inc(count, 4); // restore 'count'
2163
2164    __ BIND(L_aligned_copy);
2165    } // !aligned
2166
2167    // copy 4 elements (16 bytes) at a time
2168      __ and3(count, 1, G4); // Save
2169      __ srl(count, 1, count);
2170     generate_disjoint_long_copy_core(aligned);
2171      __ mov(G4, count);     // Restore
2172
2173    // copy 1 element at a time
2174    __ BIND(L_copy_4_bytes);
2175      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
2176    __ BIND(L_copy_4_bytes_loop);
2177      __ ld(from, offset, O3);
2178      __ deccc(count);
2179      __ st(O3, to, offset);
2180      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
2181      __ delayed()->inc(offset, 4);
2182    __ BIND(L_exit);
2183  }
2184
2185  //
2186  //  Generate stub for disjoint int copy.  If "aligned" is true, the
2187  //  "from" and "to" addresses are assumed to be heapword aligned.
2188  //
2189  // Arguments for generated stub:
2190  //      from:  O0
2191  //      to:    O1
2192  //      count: O2 treated as signed
2193  //
2194  address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
2195    __ align(CodeEntryAlignment);
2196    StubCodeMark mark(this, "StubRoutines", name);
2197    address start = __ pc();
2198
2199    const Register count = O2;
2200    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2201
2202    if (entry != NULL) {
2203      *entry = __ pc();
2204      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2205      BLOCK_COMMENT("Entry:");
2206    }
2207
2208    generate_disjoint_int_copy_core(aligned);
2209
2210    // O3, O4 are used as temp registers
2211    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
2212    __ retl();
2213    __ delayed()->mov(G0, O0); // return 0
2214    return start;
2215  }
2216
2217  //
2218  //  Generate core code for conjoint int copy (and oop copy on 32-bit).
2219  //  If "aligned" is true, the "from" and "to" addresses are assumed
2220  //  to be heapword aligned.
2221  //
2222  // Arguments:
2223  //      from:  O0
2224  //      to:    O1
2225  //      count: O2 treated as signed
2226  //
2227  void generate_conjoint_int_copy_core(bool aligned) {
2228    // Do reverse copy.
2229
2230    Label L_skip_alignment, L_aligned_copy;
2231    Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
2232
2233    const Register from      = O0;   // source array address
2234    const Register to        = O1;   // destination array address
2235    const Register count     = O2;   // elements count
2236    const Register end_from  = from; // source array end address
2237    const Register end_to    = to;   // destination array end address
2238    // O3, O4, O5, G3 are used as temp registers
2239
2240    const Register byte_count = O3;  // bytes count to copy
2241
2242      __ sllx(count, LogBytesPerInt, byte_count);
2243      __ add(to, byte_count, end_to); // offset after last copied element
2244
2245      __ cmp(count, 5); // for short arrays, just do single element copy
2246      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
2247      __ delayed()->add(from, byte_count, end_from);
2248
2249    // copy 1 element to align 'to' on an 8 byte boundary
2250      __ andcc(end_to, 7, G0);
2251      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
2252      __ delayed()->nop();
2253      __ dec(count);
2254      __ dec(end_from, 4);
2255      __ dec(end_to,   4);
2256      __ ld(end_from, 0, O4);
2257      __ st(O4, end_to, 0);
2258    __ BIND(L_skip_alignment);
2259
2260    // Check if 'end_from' and 'end_to' has the same alignment.
2261      __ andcc(end_from, 7, G0);
2262      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
2263      __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
2264
2265    // copy with shift 4 elements (16 bytes) at a time
2266    //
2267    // Load 2 aligned 8-bytes chunks and use one from previous iteration
2268    // to form 2 aligned 8-bytes chunks to store.
2269    //
2270      __ ldx(end_from, -4, O3);
2271      __ align(OptoLoopAlignment);
2272    __ BIND(L_copy_16_bytes);
2273      __ ldx(end_from, -12, O4);
2274      __ deccc(count, 4);
2275      __ ldx(end_from, -20, O5);
2276      __ dec(end_to, 16);
2277      __ dec(end_from, 16);
2278      __ srlx(O3, 32, O3);
2279      __ sllx(O4, 32, G3);
2280      __ bset(G3, O3);
2281      __ stx(O3, end_to, 8);
2282      __ srlx(O4, 32, O4);
2283      __ sllx(O5, 32, G3);
2284      __ bset(O4, G3);
2285      __ stx(G3, end_to, 0);
2286      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
2287      __ delayed()->mov(O5, O3);
2288
2289      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
2290      __ delayed()->inc(count, 4);
2291
2292    // copy 4 elements (16 bytes) at a time
2293      __ align(OptoLoopAlignment);
2294    __ BIND(L_aligned_copy);
2295      __ dec(end_from, 16);
2296      __ ldx(end_from, 8, O3);
2297      __ ldx(end_from, 0, O4);
2298      __ dec(end_to, 16);
2299      __ deccc(count, 4);
2300      __ stx(O3, end_to, 8);
2301      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
2302      __ delayed()->stx(O4, end_to, 0);
2303      __ inc(count, 4);
2304
2305    // copy 1 element (4 bytes) at a time
2306    __ BIND(L_copy_4_bytes);
2307      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
2308    __ BIND(L_copy_4_bytes_loop);
2309      __ dec(end_from, 4);
2310      __ dec(end_to, 4);
2311      __ ld(end_from, 0, O4);
2312      __ deccc(count);
2313      __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
2314      __ delayed()->st(O4, end_to, 0);
2315    __ BIND(L_exit);
2316  }
2317
2318  //
2319  //  Generate stub for conjoint int copy.  If "aligned" is true, the
2320  //  "from" and "to" addresses are assumed to be heapword aligned.
2321  //
2322  // Arguments for generated stub:
2323  //      from:  O0
2324  //      to:    O1
2325  //      count: O2 treated as signed
2326  //
2327  address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
2328                                     address *entry, const char *name) {
2329    __ align(CodeEntryAlignment);
2330    StubCodeMark mark(this, "StubRoutines", name);
2331    address start = __ pc();
2332
2333    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2334
2335    if (entry != NULL) {
2336      *entry = __ pc();
2337      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2338      BLOCK_COMMENT("Entry:");
2339    }
2340
2341    array_overlap_test(nooverlap_target, 2);
2342
2343    generate_conjoint_int_copy_core(aligned);
2344
2345    // O3, O4 are used as temp registers
2346    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
2347    __ retl();
2348    __ delayed()->mov(G0, O0); // return 0
2349    return start;
2350  }
2351
2352  //
2353  // Helper methods for generate_disjoint_long_copy_core()
2354  //
2355  void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
2356                          Label& L_loop, bool use_prefetch, bool use_bis) {
2357    __ align(OptoLoopAlignment);
2358    __ BIND(L_loop);
2359    for (int off = 0; off < 64; off += 16) {
2360      if (use_prefetch && (off & 31) == 0) {
2361        if (ArraycopySrcPrefetchDistance > 0) {
2362          __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
2363        }
2364        if (ArraycopyDstPrefetchDistance > 0) {
2365          __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
2366        }
2367      }
2368      __ ldx(from,  off+0, O4);
2369      __ ldx(from,  off+8, O5);
2370      if (use_bis) {
2371        __ stxa(O4, to,  off+0);
2372        __ stxa(O5, to,  off+8);
2373      } else {
2374        __ stx(O4, to,  off+0);
2375        __ stx(O5, to,  off+8);
2376      }
2377    }
2378    __ deccc(count, 8);
2379    __ inc(from, 64);
2380    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
2381    __ delayed()->inc(to, 64);
2382  }
2383
2384  //
2385  //  Generate core code for disjoint long copy (and oop copy on 64-bit).
2386  //  "aligned" is ignored, because we must make the stronger
2387  //  assumption that both addresses are always 64-bit aligned.
2388  //
2389  // Arguments:
2390  //      from:  O0
2391  //      to:    O1
2392  //      count: O2 treated as signed
2393  //
2394  // count -= 2;
2395  // if ( count >= 0 ) { // >= 2 elements
2396  //   if ( count > 6) { // >= 8 elements
2397  //     count -= 6; // original count - 8
2398  //     do {
2399  //       copy_8_elements;
2400  //       count -= 8;
2401  //     } while ( count >= 0 );
2402  //     count += 6;
2403  //   }
2404  //   if ( count >= 0 ) { // >= 2 elements
2405  //     do {
2406  //       copy_2_elements;
2407  //     } while ( (count=count-2) >= 0 );
2408  //   }
2409  // }
2410  // count += 2;
2411  // if ( count != 0 ) { // 1 element left
2412  //   copy_1_element;
2413  // }
2414  //
2415  void generate_disjoint_long_copy_core(bool aligned) {
2416    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
2417    const Register from    = O0;  // source array address
2418    const Register to      = O1;  // destination array address
2419    const Register count   = O2;  // elements count
2420    const Register offset0 = O4;  // element offset
2421    const Register offset8 = O5;  // next element offset
2422
2423    __ deccc(count, 2);
2424    __ mov(G0, offset0);   // offset from start of arrays (0)
2425    __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
2426    __ delayed()->add(offset0, 8, offset8);
2427
2428    // Copy by 64 bytes chunks
2429
2430    const Register from64 = O3;  // source address
2431    const Register to64   = G3;  // destination address
2432    __ subcc(count, 6, O3);
2433    __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
2434    __ delayed()->mov(to,   to64);
2435    // Now we can use O4(offset0), O5(offset8) as temps
2436    __ mov(O3, count);
2437    // count >= 0 (original count - 8)
2438    __ mov(from, from64);
2439
2440    disjoint_copy_core(from64, to64, count, 3, 64, copy_64_bytes_loop);
2441
2442      // Restore O4(offset0), O5(offset8)
2443      __ sub(from64, from, offset0);
2444      __ inccc(count, 6); // restore count
2445      __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
2446      __ delayed()->add(offset0, 8, offset8);
2447
2448      // Copy by 16 bytes chunks
2449      __ align(OptoLoopAlignment);
2450    __ BIND(L_copy_16_bytes);
2451      __ ldx(from, offset0, O3);
2452      __ ldx(from, offset8, G3);
2453      __ deccc(count, 2);
2454      __ stx(O3, to, offset0);
2455      __ inc(offset0, 16);
2456      __ stx(G3, to, offset8);
2457      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
2458      __ delayed()->inc(offset8, 16);
2459
2460      // Copy last 8 bytes
2461    __ BIND(L_copy_8_bytes);
2462      __ inccc(count, 2);
2463      __ brx(Assembler::zero, true, Assembler::pn, L_exit );
2464      __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
2465      __ ldx(from, offset0, O3);
2466      __ stx(O3, to, offset0);
2467    __ BIND(L_exit);
2468  }
2469
2470  //
2471  //  Generate stub for disjoint long copy.
2472  //  "aligned" is ignored, because we must make the stronger
2473  //  assumption that both addresses are always 64-bit aligned.
2474  //
2475  // Arguments for generated stub:
2476  //      from:  O0
2477  //      to:    O1
2478  //      count: O2 treated as signed
2479  //
2480  address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
2481    __ align(CodeEntryAlignment);
2482    StubCodeMark mark(this, "StubRoutines", name);
2483    address start = __ pc();
2484
2485    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2486
2487    if (entry != NULL) {
2488      *entry = __ pc();
2489      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2490      BLOCK_COMMENT("Entry:");
2491    }
2492
2493    generate_disjoint_long_copy_core(aligned);
2494
2495    // O3, O4 are used as temp registers
2496    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
2497    __ retl();
2498    __ delayed()->mov(G0, O0); // return 0
2499    return start;
2500  }
2501
2502  //
2503  //  Generate core code for conjoint long copy (and oop copy on 64-bit).
2504  //  "aligned" is ignored, because we must make the stronger
2505  //  assumption that both addresses are always 64-bit aligned.
2506  //
2507  // Arguments:
2508  //      from:  O0
2509  //      to:    O1
2510  //      count: O2 treated as signed
2511  //
2512  void generate_conjoint_long_copy_core(bool aligned) {
2513    // Do reverse copy.
2514    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
2515    const Register from    = O0;  // source array address
2516    const Register to      = O1;  // destination array address
2517    const Register count   = O2;  // elements count
2518    const Register offset8 = O4;  // element offset
2519    const Register offset0 = O5;  // previous element offset
2520
2521      __ subcc(count, 1, count);
2522      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
2523      __ delayed()->sllx(count, LogBytesPerLong, offset8);
2524      __ sub(offset8, 8, offset0);
2525      __ align(OptoLoopAlignment);
2526    __ BIND(L_copy_16_bytes);
2527      __ ldx(from, offset8, O2);
2528      __ ldx(from, offset0, O3);
2529      __ stx(O2, to, offset8);
2530      __ deccc(offset8, 16);      // use offset8 as counter
2531      __ stx(O3, to, offset0);
2532      __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
2533      __ delayed()->dec(offset0, 16);
2534
2535    __ BIND(L_copy_8_bytes);
2536      __ brx(Assembler::negative, false, Assembler::pn, L_exit );
2537      __ delayed()->nop();
2538      __ ldx(from, 0, O3);
2539      __ stx(O3, to, 0);
2540    __ BIND(L_exit);
2541  }
2542
2543  //  Generate stub for conjoint long copy.
2544  //  "aligned" is ignored, because we must make the stronger
2545  //  assumption that both addresses are always 64-bit aligned.
2546  //
2547  // Arguments for generated stub:
2548  //      from:  O0
2549  //      to:    O1
2550  //      count: O2 treated as signed
2551  //
2552  address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
2553                                      address *entry, const char *name) {
2554    __ align(CodeEntryAlignment);
2555    StubCodeMark mark(this, "StubRoutines", name);
2556    address start = __ pc();
2557
2558    assert(aligned, "Should always be aligned");
2559
2560    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2561
2562    if (entry != NULL) {
2563      *entry = __ pc();
2564      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2565      BLOCK_COMMENT("Entry:");
2566    }
2567
2568    array_overlap_test(nooverlap_target, 3);
2569
2570    generate_conjoint_long_copy_core(aligned);
2571
2572    // O3, O4 are used as temp registers
2573    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
2574    __ retl();
2575    __ delayed()->mov(G0, O0); // return 0
2576    return start;
2577  }
2578
2579  //  Generate stub for disjoint oop copy.  If "aligned" is true, the
2580  //  "from" and "to" addresses are assumed to be heapword aligned.
2581  //
2582  // Arguments for generated stub:
2583  //      from:  O0
2584  //      to:    O1
2585  //      count: O2 treated as signed
2586  //
2587  address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
2588                                     bool dest_uninitialized = false) {
2589
2590    const Register from  = O0;  // source array address
2591    const Register to    = O1;  // destination array address
2592    const Register count = O2;  // elements count
2593
2594    __ align(CodeEntryAlignment);
2595    StubCodeMark mark(this, "StubRoutines", name);
2596    address start = __ pc();
2597
2598    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2599
2600    if (entry != NULL) {
2601      *entry = __ pc();
2602      // caller can pass a 64-bit byte count here
2603      BLOCK_COMMENT("Entry:");
2604    }
2605
2606    // save arguments for barrier generation
2607    __ mov(to, G1);
2608    __ mov(count, G5);
2609    gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
2610  #ifdef _LP64
2611    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2612    if (UseCompressedOops) {
2613      generate_disjoint_int_copy_core(aligned);
2614    } else {
2615      generate_disjoint_long_copy_core(aligned);
2616    }
2617  #else
2618    generate_disjoint_int_copy_core(aligned);
2619  #endif
2620    // O0 is used as temp register
2621    gen_write_ref_array_post_barrier(G1, G5, O0);
2622
2623    // O3, O4 are used as temp registers
2624    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
2625    __ retl();
2626    __ delayed()->mov(G0, O0); // return 0
2627    return start;
2628  }
2629
2630  //  Generate stub for conjoint oop copy.  If "aligned" is true, the
2631  //  "from" and "to" addresses are assumed to be heapword aligned.
2632  //
2633  // Arguments for generated stub:
2634  //      from:  O0
2635  //      to:    O1
2636  //      count: O2 treated as signed
2637  //
2638  address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
2639                                     address *entry, const char *name,
2640                                     bool dest_uninitialized = false) {
2641
2642    const Register from  = O0;  // source array address
2643    const Register to    = O1;  // destination array address
2644    const Register count = O2;  // elements count
2645
2646    __ align(CodeEntryAlignment);
2647    StubCodeMark mark(this, "StubRoutines", name);
2648    address start = __ pc();
2649
2650    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2651
2652    if (entry != NULL) {
2653      *entry = __ pc();
2654      // caller can pass a 64-bit byte count here
2655      BLOCK_COMMENT("Entry:");
2656    }
2657
2658    array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
2659
2660    // save arguments for barrier generation
2661    __ mov(to, G1);
2662    __ mov(count, G5);
2663    gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
2664
2665  #ifdef _LP64
2666    if (UseCompressedOops) {
2667      generate_conjoint_int_copy_core(aligned);
2668    } else {
2669      generate_conjoint_long_copy_core(aligned);
2670    }
2671  #else
2672    generate_conjoint_int_copy_core(aligned);
2673  #endif
2674
2675    // O0 is used as temp register
2676    gen_write_ref_array_post_barrier(G1, G5, O0);
2677
2678    // O3, O4 are used as temp registers
2679    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
2680    __ retl();
2681    __ delayed()->mov(G0, O0); // return 0
2682    return start;
2683  }
2684
2685
2686  // Helper for generating a dynamic type check.
2687  // Smashes only the given temp registers.
2688  void generate_type_check(Register sub_klass,
2689                           Register super_check_offset,
2690                           Register super_klass,
2691                           Register temp,
2692                           Label& L_success) {
2693    assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
2694
2695    BLOCK_COMMENT("type_check:");
2696
2697    Label L_miss, L_pop_to_miss;
2698
2699    assert_clean_int(super_check_offset, temp);
2700
2701    __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
2702                                     &L_success, &L_miss, NULL,
2703                                     super_check_offset);
2704
2705    BLOCK_COMMENT("type_check_slow_path:");
2706    __ save_frame(0);
2707    __ check_klass_subtype_slow_path(sub_klass->after_save(),
2708                                     super_klass->after_save(),
2709                                     L0, L1, L2, L4,
2710                                     NULL, &L_pop_to_miss);
2711    __ ba(L_success);
2712    __ delayed()->restore();
2713
2714    __ bind(L_pop_to_miss);
2715    __ restore();
2716
2717    // Fall through on failure!
2718    __ BIND(L_miss);
2719  }
2720
2721
2722  //  Generate stub for checked oop copy.
2723  //
2724  // Arguments for generated stub:
2725  //      from:  O0
2726  //      to:    O1
2727  //      count: O2 treated as signed
2728  //      ckoff: O3 (super_check_offset)
2729  //      ckval: O4 (super_klass)
2730  //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
2731  //
2732  address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
2733
2734    const Register O0_from   = O0;      // source array address
2735    const Register O1_to     = O1;      // destination array address
2736    const Register O2_count  = O2;      // elements count
2737    const Register O3_ckoff  = O3;      // super_check_offset
2738    const Register O4_ckval  = O4;      // super_klass
2739
2740    const Register O5_offset = O5;      // loop var, with stride wordSize
2741    const Register G1_remain = G1;      // loop var, with stride -1
2742    const Register G3_oop    = G3;      // actual oop copied
2743    const Register G4_klass  = G4;      // oop._klass
2744    const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
2745
2746    __ align(CodeEntryAlignment);
2747    StubCodeMark mark(this, "StubRoutines", name);
2748    address start = __ pc();
2749
2750#ifdef ASSERT
2751    // We sometimes save a frame (see generate_type_check below).
2752    // If this will cause trouble, let's fail now instead of later.
2753    __ save_frame(0);
2754    __ restore();
2755#endif
2756
2757    assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
2758
2759#ifdef ASSERT
2760    // caller guarantees that the arrays really are different
2761    // otherwise, we would have to make conjoint checks
2762    { Label L;
2763      __ mov(O3, G1);           // spill: overlap test smashes O3
2764      __ mov(O4, G4);           // spill: overlap test smashes O4
2765      array_overlap_test(L, LogBytesPerHeapOop);
2766      __ stop("checkcast_copy within a single array");
2767      __ bind(L);
2768      __ mov(G1, O3);
2769      __ mov(G4, O4);
2770    }
2771#endif //ASSERT
2772
2773    if (entry != NULL) {
2774      *entry = __ pc();
2775      // caller can pass a 64-bit byte count here (from generic stub)
2776      BLOCK_COMMENT("Entry:");
2777    }
2778    gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
2779
2780    Label load_element, store_element, do_card_marks, fail, done;
2781    __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
2782    __ brx(Assembler::notZero, false, Assembler::pt, load_element);
2783    __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
2784
2785    // Empty array:  Nothing to do.
2786    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
2787    __ retl();
2788    __ delayed()->set(0, O0);           // return 0 on (trivial) success
2789
2790    // ======== begin loop ========
2791    // (Loop is rotated; its entry is load_element.)
2792    // Loop variables:
2793    //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
2794    //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
2795    //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
2796    __ align(OptoLoopAlignment);
2797
2798    __ BIND(store_element);
2799    __ deccc(G1_remain);                // decrement the count
2800    __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
2801    __ inc(O5_offset, heapOopSize);     // step to next offset
2802    __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
2803    __ delayed()->set(0, O0);           // return -1 on success
2804
2805    // ======== loop entry is here ========
2806    __ BIND(load_element);
2807    __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
2808    __ br_null_short(G3_oop, Assembler::pt, store_element);
2809
2810    __ load_klass(G3_oop, G4_klass); // query the object klass
2811
2812    generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
2813                        // branch to this on success:
2814                        store_element);
2815    // ======== end loop ========
2816
2817    // It was a real error; we must depend on the caller to finish the job.
2818    // Register G1 has number of *remaining* oops, O2 number of *total* oops.
2819    // Emit GC store barriers for the oops we have copied (O2 minus G1),
2820    // and report their number to the caller.
2821    __ BIND(fail);
2822    __ subcc(O2_count, G1_remain, O2_count);
2823    __ brx(Assembler::zero, false, Assembler::pt, done);
2824    __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
2825
2826    __ BIND(do_card_marks);
2827    gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
2828
2829    __ BIND(done);
2830    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
2831    __ retl();
2832    __ delayed()->nop();             // return value in 00
2833
2834    return start;
2835  }
2836
2837
2838  //  Generate 'unsafe' array copy stub
2839  //  Though just as safe as the other stubs, it takes an unscaled
2840  //  size_t argument instead of an element count.
2841  //
2842  // Arguments for generated stub:
2843  //      from:  O0
2844  //      to:    O1
2845  //      count: O2 byte count, treated as ssize_t, can be zero
2846  //
2847  // Examines the alignment of the operands and dispatches
2848  // to a long, int, short, or byte copy loop.
2849  //
2850  address generate_unsafe_copy(const char* name,
2851                               address byte_copy_entry,
2852                               address short_copy_entry,
2853                               address int_copy_entry,
2854                               address long_copy_entry) {
2855
2856    const Register O0_from   = O0;      // source array address
2857    const Register O1_to     = O1;      // destination array address
2858    const Register O2_count  = O2;      // elements count
2859
2860    const Register G1_bits   = G1;      // test copy of low bits
2861
2862    __ align(CodeEntryAlignment);
2863    StubCodeMark mark(this, "StubRoutines", name);
2864    address start = __ pc();
2865
2866    // bump this on entry, not on exit:
2867    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
2868
2869    __ or3(O0_from, O1_to, G1_bits);
2870    __ or3(O2_count,       G1_bits, G1_bits);
2871
2872    __ btst(BytesPerLong-1, G1_bits);
2873    __ br(Assembler::zero, true, Assembler::pt,
2874          long_copy_entry, relocInfo::runtime_call_type);
2875    // scale the count on the way out:
2876    __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
2877
2878    __ btst(BytesPerInt-1, G1_bits);
2879    __ br(Assembler::zero, true, Assembler::pt,
2880          int_copy_entry, relocInfo::runtime_call_type);
2881    // scale the count on the way out:
2882    __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
2883
2884    __ btst(BytesPerShort-1, G1_bits);
2885    __ br(Assembler::zero, true, Assembler::pt,
2886          short_copy_entry, relocInfo::runtime_call_type);
2887    // scale the count on the way out:
2888    __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
2889
2890    __ br(Assembler::always, false, Assembler::pt,
2891          byte_copy_entry, relocInfo::runtime_call_type);
2892    __ delayed()->nop();
2893
2894    return start;
2895  }
2896
2897
2898  // Perform range checks on the proposed arraycopy.
2899  // Kills the two temps, but nothing else.
2900  // Also, clean the sign bits of src_pos and dst_pos.
2901  void arraycopy_range_checks(Register src,     // source array oop (O0)
2902                              Register src_pos, // source position (O1)
2903                              Register dst,     // destination array oo (O2)
2904                              Register dst_pos, // destination position (O3)
2905                              Register length,  // length of copy (O4)
2906                              Register temp1, Register temp2,
2907                              Label& L_failed) {
2908    BLOCK_COMMENT("arraycopy_range_checks:");
2909
2910    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
2911
2912    const Register array_length = temp1;  // scratch
2913    const Register end_pos      = temp2;  // scratch
2914
2915    // Note:  This next instruction may be in the delay slot of a branch:
2916    __ add(length, src_pos, end_pos);  // src_pos + length
2917    __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
2918    __ cmp(end_pos, array_length);
2919    __ br(Assembler::greater, false, Assembler::pn, L_failed);
2920
2921    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
2922    __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
2923    __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
2924    __ cmp(end_pos, array_length);
2925    __ br(Assembler::greater, false, Assembler::pn, L_failed);
2926
2927    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2928    // Move with sign extension can be used since they are positive.
2929    __ delayed()->signx(src_pos, src_pos);
2930    __ signx(dst_pos, dst_pos);
2931
2932    BLOCK_COMMENT("arraycopy_range_checks done");
2933  }
2934
2935
2936  //
2937  //  Generate generic array copy stubs
2938  //
2939  //  Input:
2940  //    O0    -  src oop
2941  //    O1    -  src_pos
2942  //    O2    -  dst oop
2943  //    O3    -  dst_pos
2944  //    O4    -  element count
2945  //
2946  //  Output:
2947  //    O0 ==  0  -  success
2948  //    O0 == -1  -  need to call System.arraycopy
2949  //
2950  address generate_generic_copy(const char *name,
2951                                address entry_jbyte_arraycopy,
2952                                address entry_jshort_arraycopy,
2953                                address entry_jint_arraycopy,
2954                                address entry_oop_arraycopy,
2955                                address entry_jlong_arraycopy,
2956                                address entry_checkcast_arraycopy) {
2957    Label L_failed, L_objArray;
2958
2959    // Input registers
2960    const Register src      = O0;  // source array oop
2961    const Register src_pos  = O1;  // source position
2962    const Register dst      = O2;  // destination array oop
2963    const Register dst_pos  = O3;  // destination position
2964    const Register length   = O4;  // elements count
2965
2966    // registers used as temp
2967    const Register G3_src_klass = G3; // source array klass
2968    const Register G4_dst_klass = G4; // destination array klass
2969    const Register G5_lh        = G5; // layout handler
2970    const Register O5_temp      = O5;
2971
2972    __ align(CodeEntryAlignment);
2973    StubCodeMark mark(this, "StubRoutines", name);
2974    address start = __ pc();
2975
2976    // bump this on entry, not on exit:
2977    inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
2978
2979    // In principle, the int arguments could be dirty.
2980    //assert_clean_int(src_pos, G1);
2981    //assert_clean_int(dst_pos, G1);
2982    //assert_clean_int(length, G1);
2983
2984    //-----------------------------------------------------------------------
2985    // Assembler stubs will be used for this call to arraycopy
2986    // if the following conditions are met:
2987    //
2988    // (1) src and dst must not be null.
2989    // (2) src_pos must not be negative.
2990    // (3) dst_pos must not be negative.
2991    // (4) length  must not be negative.
2992    // (5) src klass and dst klass should be the same and not NULL.
2993    // (6) src and dst should be arrays.
2994    // (7) src_pos + length must not exceed length of src.
2995    // (8) dst_pos + length must not exceed length of dst.
2996    BLOCK_COMMENT("arraycopy initial argument checks");
2997
2998    //  if (src == NULL) return -1;
2999    __ br_null(src, false, Assembler::pn, L_failed);
3000
3001    //  if (src_pos < 0) return -1;
3002    __ delayed()->tst(src_pos);
3003    __ br(Assembler::negative, false, Assembler::pn, L_failed);
3004    __ delayed()->nop();
3005
3006    //  if (dst == NULL) return -1;
3007    __ br_null(dst, false, Assembler::pn, L_failed);
3008
3009    //  if (dst_pos < 0) return -1;
3010    __ delayed()->tst(dst_pos);
3011    __ br(Assembler::negative, false, Assembler::pn, L_failed);
3012
3013    //  if (length < 0) return -1;
3014    __ delayed()->tst(length);
3015    __ br(Assembler::negative, false, Assembler::pn, L_failed);
3016
3017    BLOCK_COMMENT("arraycopy argument klass checks");
3018    //  get src->klass()
3019    if (UseCompressedKlassPointers) {
3020      __ delayed()->nop(); // ??? not good
3021      __ load_klass(src, G3_src_klass);
3022    } else {
3023      __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
3024    }
3025
3026#ifdef ASSERT
3027    //  assert(src->klass() != NULL);
3028    BLOCK_COMMENT("assert klasses not null");
3029    { Label L_a, L_b;
3030      __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
3031      __ bind(L_a);
3032      __ stop("broken null klass");
3033      __ bind(L_b);
3034      __ load_klass(dst, G4_dst_klass);
3035      __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
3036      __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
3037      BLOCK_COMMENT("assert done");
3038    }
3039#endif
3040
3041    // Load layout helper
3042    //
3043    //  |array_tag|     | header_size | element_type |     |log2_element_size|
3044    // 32        30    24            16              8     2                 0
3045    //
3046    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
3047    //
3048
3049    int lh_offset = in_bytes(Klass::layout_helper_offset());
3050
3051    // Load 32-bits signed value. Use br() instruction with it to check icc.
3052    __ lduw(G3_src_klass, lh_offset, G5_lh);
3053
3054    if (UseCompressedKlassPointers) {
3055      __ load_klass(dst, G4_dst_klass);
3056    }
3057    // Handle objArrays completely differently...
3058    juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3059    __ set(objArray_lh, O5_temp);
3060    __ cmp(G5_lh,       O5_temp);
3061    __ br(Assembler::equal, false, Assembler::pt, L_objArray);
3062    if (UseCompressedKlassPointers) {
3063      __ delayed()->nop();
3064    } else {
3065      __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
3066    }
3067
3068    //  if (src->klass() != dst->klass()) return -1;
3069    __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
3070
3071    //  if (!src->is_Array()) return -1;
3072    __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
3073    __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
3074
3075    // At this point, it is known to be a typeArray (array_tag 0x3).
3076#ifdef ASSERT
3077    __ delayed()->nop();
3078    { Label L;
3079      jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
3080      __ set(lh_prim_tag_in_place, O5_temp);
3081      __ cmp(G5_lh,                O5_temp);
3082      __ br(Assembler::greaterEqual, false, Assembler::pt, L);
3083      __ delayed()->nop();
3084      __ stop("must be a primitive array");
3085      __ bind(L);
3086    }
3087#else
3088    __ delayed();                               // match next insn to prev branch
3089#endif
3090
3091    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3092                           O5_temp, G4_dst_klass, L_failed);
3093
3094    // typeArrayKlass
3095    //
3096    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
3097    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
3098    //
3099
3100    const Register G4_offset = G4_dst_klass;    // array offset
3101    const Register G3_elsize = G3_src_klass;    // log2 element size
3102
3103    __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
3104    __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
3105    __ add(src, G4_offset, src);       // src array offset
3106    __ add(dst, G4_offset, dst);       // dst array offset
3107    __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
3108
3109    // next registers should be set before the jump to corresponding stub
3110    const Register from     = O0;  // source array address
3111    const Register to       = O1;  // destination array address
3112    const Register count    = O2;  // elements count
3113
3114    // 'from', 'to', 'count' registers should be set in this order
3115    // since they are the same as 'src', 'src_pos', 'dst'.
3116
3117    BLOCK_COMMENT("scale indexes to element size");
3118    __ sll_ptr(src_pos, G3_elsize, src_pos);
3119    __ sll_ptr(dst_pos, G3_elsize, dst_pos);
3120    __ add(src, src_pos, from);       // src_addr
3121    __ add(dst, dst_pos, to);         // dst_addr
3122
3123    BLOCK_COMMENT("choose copy loop based on element size");
3124    __ cmp(G3_elsize, 0);
3125    __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
3126    __ delayed()->signx(length, count); // length
3127
3128    __ cmp(G3_elsize, LogBytesPerShort);
3129    __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
3130    __ delayed()->signx(length, count); // length
3131
3132    __ cmp(G3_elsize, LogBytesPerInt);
3133    __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
3134    __ delayed()->signx(length, count); // length
3135#ifdef ASSERT
3136    { Label L;
3137      __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
3138      __ stop("must be long copy, but elsize is wrong");
3139      __ bind(L);
3140    }
3141#endif
3142    __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
3143    __ delayed()->signx(length, count); // length
3144
3145    // objArrayKlass
3146  __ BIND(L_objArray);
3147    // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
3148
3149    Label L_plain_copy, L_checkcast_copy;
3150    //  test array classes for subtyping
3151    __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
3152    __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
3153    __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
3154
3155    // Identically typed arrays can be copied without element-wise checks.
3156    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3157                           O5_temp, G5_lh, L_failed);
3158
3159    __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
3160    __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3161    __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
3162    __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
3163    __ add(src, src_pos, from);       // src_addr
3164    __ add(dst, dst_pos, to);         // dst_addr
3165  __ BIND(L_plain_copy);
3166    __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
3167    __ delayed()->signx(length, count); // length
3168
3169  __ BIND(L_checkcast_copy);
3170    // live at this point:  G3_src_klass, G4_dst_klass
3171    {
3172      // Before looking at dst.length, make sure dst is also an objArray.
3173      // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
3174      __ cmp(G5_lh,                    O5_temp);
3175      __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
3176
3177      // It is safe to examine both src.length and dst.length.
3178      __ delayed();                             // match next insn to prev branch
3179      arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3180                             O5_temp, G5_lh, L_failed);
3181
3182      // Marshal the base address arguments now, freeing registers.
3183      __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
3184      __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3185      __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
3186      __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
3187      __ add(src, src_pos, from);               // src_addr
3188      __ add(dst, dst_pos, to);                 // dst_addr
3189      __ signx(length, count);                  // length (reloaded)
3190
3191      Register sco_temp = O3;                   // this register is free now
3192      assert_different_registers(from, to, count, sco_temp,
3193                                 G4_dst_klass, G3_src_klass);
3194
3195      // Generate the type check.
3196      int sco_offset = in_bytes(Klass::super_check_offset_offset());
3197      __ lduw(G4_dst_klass, sco_offset, sco_temp);
3198      generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
3199                          O5_temp, L_plain_copy);
3200
3201      // Fetch destination element klass from the objArrayKlass header.
3202      int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
3203
3204      // the checkcast_copy loop needs two extra arguments:
3205      __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
3206      // lduw(O4, sco_offset, O3);              // sco of elem klass
3207
3208      __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
3209      __ delayed()->lduw(O4, sco_offset, O3);
3210    }
3211
3212  __ BIND(L_failed);
3213    __ retl();
3214    __ delayed()->sub(G0, 1, O0); // return -1
3215    return start;
3216  }
3217
3218  //
3219  //  Generate stub for heap zeroing.
3220  //  "to" address is aligned to jlong (8 bytes).
3221  //
3222  // Arguments for generated stub:
3223  //      to:    O0
3224  //      count: O1 treated as signed (count of HeapWord)
3225  //             count could be 0
3226  //
3227  address generate_zero_aligned_words(const char* name) {
3228    __ align(CodeEntryAlignment);
3229    StubCodeMark mark(this, "StubRoutines", name);
3230    address start = __ pc();
3231
3232    const Register to    = O0;   // source array address
3233    const Register count = O1;   // HeapWords count
3234    const Register temp  = O2;   // scratch
3235
3236    Label Ldone;
3237    __ sllx(count, LogHeapWordSize, count); // to bytes count
3238    // Use BIS for zeroing
3239    __ bis_zeroing(to, count, temp, Ldone);
3240    __ bind(Ldone);
3241    __ retl();
3242    __ delayed()->nop();
3243    return start;
3244}
3245
3246  void generate_arraycopy_stubs() {
3247    address entry;
3248    address entry_jbyte_arraycopy;
3249    address entry_jshort_arraycopy;
3250    address entry_jint_arraycopy;
3251    address entry_oop_arraycopy;
3252    address entry_jlong_arraycopy;
3253    address entry_checkcast_arraycopy;
3254
3255    //*** jbyte
3256    // Always need aligned and unaligned versions
3257    StubRoutines::_jbyte_disjoint_arraycopy         = generate_disjoint_byte_copy(false, &entry,
3258                                                                                  "jbyte_disjoint_arraycopy");
3259    StubRoutines::_jbyte_arraycopy                  = generate_conjoint_byte_copy(false, entry,
3260                                                                                  &entry_jbyte_arraycopy,
3261                                                                                  "jbyte_arraycopy");
3262    StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
3263                                                                                  "arrayof_jbyte_disjoint_arraycopy");
3264    StubRoutines::_arrayof_jbyte_arraycopy          = generate_conjoint_byte_copy(true, entry, NULL,
3265                                                                                  "arrayof_jbyte_arraycopy");
3266
3267    //*** jshort
3268    // Always need aligned and unaligned versions
3269    StubRoutines::_jshort_disjoint_arraycopy         = generate_disjoint_short_copy(false, &entry,
3270                                                                                    "jshort_disjoint_arraycopy");
3271    StubRoutines::_jshort_arraycopy                  = generate_conjoint_short_copy(false, entry,
3272                                                                                    &entry_jshort_arraycopy,
3273                                                                                    "jshort_arraycopy");
3274    StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
3275                                                                                    "arrayof_jshort_disjoint_arraycopy");
3276    StubRoutines::_arrayof_jshort_arraycopy          = generate_conjoint_short_copy(true, entry, NULL,
3277                                                                                    "arrayof_jshort_arraycopy");
3278
3279    //*** jint
3280    // Aligned versions
3281    StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
3282                                                                                "arrayof_jint_disjoint_arraycopy");
3283    StubRoutines::_arrayof_jint_arraycopy          = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
3284                                                                                "arrayof_jint_arraycopy");
3285#ifdef _LP64
3286    // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
3287    // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
3288    StubRoutines::_jint_disjoint_arraycopy         = generate_disjoint_int_copy(false, &entry,
3289                                                                                "jint_disjoint_arraycopy");
3290    StubRoutines::_jint_arraycopy                  = generate_conjoint_int_copy(false, entry,
3291                                                                                &entry_jint_arraycopy,
3292                                                                                "jint_arraycopy");
3293#else
3294    // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
3295    // (in fact in 32bit we always have a pre-loop part even in the aligned version,
3296    //  because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
3297    StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
3298    StubRoutines::_jint_arraycopy          = StubRoutines::_arrayof_jint_arraycopy;
3299#endif
3300
3301
3302    //*** jlong
3303    // It is always aligned
3304    StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
3305                                                                                  "arrayof_jlong_disjoint_arraycopy");
3306    StubRoutines::_arrayof_jlong_arraycopy          = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
3307                                                                                  "arrayof_jlong_arraycopy");
3308    StubRoutines::_jlong_disjoint_arraycopy         = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
3309    StubRoutines::_jlong_arraycopy                  = StubRoutines::_arrayof_jlong_arraycopy;
3310
3311
3312    //*** oops
3313    // Aligned versions
3314    StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, &entry,
3315                                                                                      "arrayof_oop_disjoint_arraycopy");
3316    StubRoutines::_arrayof_oop_arraycopy                 = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
3317                                                                                      "arrayof_oop_arraycopy");
3318    // Aligned versions without pre-barriers
3319    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
3320                                                                                      "arrayof_oop_disjoint_arraycopy_uninit",
3321                                                                                      /*dest_uninitialized*/true);
3322    StubRoutines::_arrayof_oop_arraycopy_uninit          = generate_conjoint_oop_copy(true, entry, NULL,
3323                                                                                      "arrayof_oop_arraycopy_uninit",
3324                                                                                      /*dest_uninitialized*/true);
3325#ifdef _LP64
3326    if (UseCompressedOops) {
3327      // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
3328      StubRoutines::_oop_disjoint_arraycopy            = generate_disjoint_oop_copy(false, &entry,
3329                                                                                    "oop_disjoint_arraycopy");
3330      StubRoutines::_oop_arraycopy                     = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
3331                                                                                    "oop_arraycopy");
3332      // Unaligned versions without pre-barriers
3333      StubRoutines::_oop_disjoint_arraycopy_uninit     = generate_disjoint_oop_copy(false, &entry,
3334                                                                                    "oop_disjoint_arraycopy_uninit",
3335                                                                                    /*dest_uninitialized*/true);
3336      StubRoutines::_oop_arraycopy_uninit              = generate_conjoint_oop_copy(false, entry, NULL,
3337                                                                                    "oop_arraycopy_uninit",
3338                                                                                    /*dest_uninitialized*/true);
3339    } else
3340#endif
3341    {
3342      // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
3343      StubRoutines::_oop_disjoint_arraycopy            = StubRoutines::_arrayof_oop_disjoint_arraycopy;
3344      StubRoutines::_oop_arraycopy                     = StubRoutines::_arrayof_oop_arraycopy;
3345      StubRoutines::_oop_disjoint_arraycopy_uninit     = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
3346      StubRoutines::_oop_arraycopy_uninit              = StubRoutines::_arrayof_oop_arraycopy_uninit;
3347    }
3348
3349    StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
3350    StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
3351                                                                        /*dest_uninitialized*/true);
3352
3353    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
3354                                                              entry_jbyte_arraycopy,
3355                                                              entry_jshort_arraycopy,
3356                                                              entry_jint_arraycopy,
3357                                                              entry_jlong_arraycopy);
3358    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
3359                                                               entry_jbyte_arraycopy,
3360                                                               entry_jshort_arraycopy,
3361                                                               entry_jint_arraycopy,
3362                                                               entry_oop_arraycopy,
3363                                                               entry_jlong_arraycopy,
3364                                                               entry_checkcast_arraycopy);
3365
3366    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
3367    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
3368    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
3369    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
3370    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
3371    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
3372
3373    if (UseBlockZeroing) {
3374      StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
3375    }
3376  }
3377
3378  void generate_initial() {
3379    // Generates all stubs and initializes the entry points
3380
3381    //------------------------------------------------------------------------------------------------------------------------
3382    // entry points that exist in all platforms
3383    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
3384    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
3385    StubRoutines::_forward_exception_entry                 = generate_forward_exception();
3386
3387    StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
3388    StubRoutines::_catch_exception_entry                   = generate_catch_exception();
3389
3390    //------------------------------------------------------------------------------------------------------------------------
3391    // entry points that are platform specific
3392    StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
3393
3394    StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
3395    StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
3396
3397#if !defined(COMPILER2) && !defined(_LP64)
3398    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3399    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3400    StubRoutines::_atomic_add_entry          = generate_atomic_add();
3401    StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
3402    StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
3403    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3404    StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
3405#endif  // COMPILER2 !=> _LP64
3406
3407    // Build this early so it's available for the interpreter.
3408    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
3409  }
3410
3411
3412  void generate_all() {
3413    // Generates all stubs and initializes the entry points
3414
3415    // Generate partial_subtype_check first here since its code depends on
3416    // UseZeroBaseCompressedOops which is defined after heap initialization.
3417    StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
3418    // These entry points require SharedInfo::stack0 to be set up in non-core builds
3419    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
3420    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
3421    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
3422
3423    StubRoutines::_handler_for_unsafe_access_entry =
3424      generate_handler_for_unsafe_access();
3425
3426    // support for verify_oop (must happen after universe_init)
3427    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
3428
3429    // arraycopy stubs used by compilers
3430    generate_arraycopy_stubs();
3431
3432    // Don't initialize the platform math functions since sparc
3433    // doesn't have intrinsics for these operations.
3434  }
3435
3436
3437 public:
3438  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3439    // replace the standard masm with a special one:
3440    _masm = new MacroAssembler(code);
3441
3442    _stub_count = !all ? 0x100 : 0x200;
3443    if (all) {
3444      generate_all();
3445    } else {
3446      generate_initial();
3447    }
3448
3449    // make sure this stub is available for all local calls
3450    if (_atomic_add_stub.is_unbound()) {
3451      // generate a second time, if necessary
3452      (void) generate_atomic_add();
3453    }
3454  }
3455
3456
3457 private:
3458  int _stub_count;
3459  void stub_prolog(StubCodeDesc* cdesc) {
3460    # ifdef ASSERT
3461      // put extra information in the stub code, to make it more readable
3462#ifdef _LP64
3463// Write the high part of the address
3464// [RGV] Check if there is a dependency on the size of this prolog
3465      __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
3466#endif
3467      __ emit_data((intptr_t)cdesc,    relocInfo::none);
3468      __ emit_data(++_stub_count, relocInfo::none);
3469    # endif
3470    align(true);
3471  }
3472
3473  void align(bool at_header = false) {
3474    // %%%%% move this constant somewhere else
3475    // UltraSPARC cache line size is 8 instructions:
3476    const unsigned int icache_line_size = 32;
3477    const unsigned int icache_half_line_size = 16;
3478
3479    if (at_header) {
3480      while ((intptr_t)(__ pc()) % icache_line_size != 0) {
3481        __ emit_data(0, relocInfo::none);
3482      }
3483    } else {
3484      while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
3485        __ nop();
3486      }
3487    }
3488  }
3489
3490}; // end class declaration
3491
3492void StubGenerator_generate(CodeBuffer* code, bool all) {
3493  StubGenerator g(code, all);
3494}
3495