sharedRuntime_sparc.cpp revision 9248:6ab7e19c9220
1/*
2 * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.inline.hpp"
27#include "code/debugInfoRec.hpp"
28#include "code/icBuffer.hpp"
29#include "code/vtableStubs.hpp"
30#include "interpreter/interpreter.hpp"
31#include "oops/compiledICHolder.hpp"
32#include "prims/jvmtiRedefineClassesTrace.hpp"
33#include "runtime/sharedRuntime.hpp"
34#include "runtime/vframeArray.hpp"
35#include "vmreg_sparc.inline.hpp"
36#ifdef COMPILER1
37#include "c1/c1_Runtime1.hpp"
38#endif
39#ifdef COMPILER2
40#include "opto/runtime.hpp"
41#endif
42#ifdef SHARK
43#include "compiler/compileBroker.hpp"
44#include "shark/sharkCompiler.hpp"
45#endif
46#if INCLUDE_JVMCI
47#include "jvmci/jvmciJavaClasses.hpp"
48#endif
49
50#define __ masm->
51
52
53class RegisterSaver {
54
55  // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
56  // The Oregs are problematic. In the 32bit build the compiler can
57  // have O registers live with 64 bit quantities. A window save will
58  // cut the heads off of the registers. We have to do a very extensive
59  // stack dance to save and restore these properly.
60
61  // Note that the Oregs problem only exists if we block at either a polling
62  // page exception a compiled code safepoint that was not originally a call
63  // or deoptimize following one of these kinds of safepoints.
64
65  // Lots of registers to save.  For all builds, a window save will preserve
66  // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
67  // builds a window-save will preserve the %o registers.  In the LION build
68  // we need to save the 64-bit %o registers which requires we save them
69  // before the window-save (as then they become %i registers and get their
70  // heads chopped off on interrupt).  We have to save some %g registers here
71  // as well.
72  enum {
73    // This frame's save area.  Includes extra space for the native call:
74    // vararg's layout space and the like.  Briefly holds the caller's
75    // register save area.
76    call_args_area = frame::register_save_words_sp_offset +
77                     frame::memory_parameter_word_sp_offset*wordSize,
78    // Make sure save locations are always 8 byte aligned.
79    // can't use round_to because it doesn't produce compile time constant
80    start_of_extra_save_area = ((call_args_area + 7) & ~7),
81    g1_offset = start_of_extra_save_area, // g-regs needing saving
82    g3_offset = g1_offset+8,
83    g4_offset = g3_offset+8,
84    g5_offset = g4_offset+8,
85    o0_offset = g5_offset+8,
86    o1_offset = o0_offset+8,
87    o2_offset = o1_offset+8,
88    o3_offset = o2_offset+8,
89    o4_offset = o3_offset+8,
90    o5_offset = o4_offset+8,
91    start_of_flags_save_area = o5_offset+8,
92    ccr_offset = start_of_flags_save_area,
93    fsr_offset = ccr_offset + 8,
94    d00_offset = fsr_offset+8,  // Start of float save area
95    register_save_size = d00_offset+8*32
96  };
97
98
99  public:
100
101  static int Oexception_offset() { return o0_offset; };
102  static int G3_offset() { return g3_offset; };
103  static int G5_offset() { return g5_offset; };
104  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
105  static void restore_live_registers(MacroAssembler* masm);
106
107  // During deoptimization only the result register need to be restored
108  // all the other values have already been extracted.
109
110  static void restore_result_registers(MacroAssembler* masm);
111};
112
113OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
114  // Record volatile registers as callee-save values in an OopMap so their save locations will be
115  // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
116  // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
117  // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
118  // (as the stub's I's) when the runtime routine called by the stub creates its frame.
119  int i;
120  // Always make the frame size 16 byte aligned.
121  int frame_size = round_to(additional_frame_words + register_save_size, 16);
122  // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
123  int frame_size_in_slots = frame_size / sizeof(jint);
124  // CodeBlob frame size is in words.
125  *total_frame_words = frame_size / wordSize;
126  // OopMap* map = new OopMap(*total_frame_words, 0);
127  OopMap* map = new OopMap(frame_size_in_slots, 0);
128
129#if !defined(_LP64)
130
131  // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
132  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
133  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
134  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
135  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
136  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
137  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
138#endif /* _LP64 */
139
140  __ save(SP, -frame_size, SP);
141
142#ifndef _LP64
143  // Reload the 64 bit Oregs. Although they are now Iregs we load them
144  // to Oregs here to avoid interrupts cutting off their heads
145
146  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
147  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
148  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
149  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
150  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
151  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
152
153  __ stx(O0, SP, o0_offset+STACK_BIAS);
154  map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
155
156  __ stx(O1, SP, o1_offset+STACK_BIAS);
157
158  map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
159
160  __ stx(O2, SP, o2_offset+STACK_BIAS);
161  map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
162
163  __ stx(O3, SP, o3_offset+STACK_BIAS);
164  map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
165
166  __ stx(O4, SP, o4_offset+STACK_BIAS);
167  map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
168
169  __ stx(O5, SP, o5_offset+STACK_BIAS);
170  map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
171#endif /* _LP64 */
172
173
174#ifdef _LP64
175  int debug_offset = 0;
176#else
177  int debug_offset = 4;
178#endif
179  // Save the G's
180  __ stx(G1, SP, g1_offset+STACK_BIAS);
181  map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
182
183  __ stx(G3, SP, g3_offset+STACK_BIAS);
184  map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
185
186  __ stx(G4, SP, g4_offset+STACK_BIAS);
187  map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
188
189  __ stx(G5, SP, g5_offset+STACK_BIAS);
190  map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
191
192  // This is really a waste but we'll keep things as they were for now
193  if (true) {
194#ifndef _LP64
195    map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
196    map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
197    map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
198    map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
199    map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
200    map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
201    map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
202    map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
203    map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
204    map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
205#endif /* _LP64 */
206  }
207
208
209  // Save the flags
210  __ rdccr( G5 );
211  __ stx(G5, SP, ccr_offset+STACK_BIAS);
212  __ stxfsr(SP, fsr_offset+STACK_BIAS);
213
214  // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
215  int offset = d00_offset;
216  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
217    FloatRegister f = as_FloatRegister(i);
218    __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
219    // Record as callee saved both halves of double registers (2 float registers).
220    map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
221    map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
222    offset += sizeof(double);
223  }
224
225  // And we're done.
226
227  return map;
228}
229
230
231// Pop the current frame and restore all the registers that we
232// saved.
233void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
234
235  // Restore all the FP registers
236  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
237    __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
238  }
239
240  __ ldx(SP, ccr_offset+STACK_BIAS, G1);
241  __ wrccr (G1) ;
242
243  // Restore the G's
244  // Note that G2 (AKA GThread) must be saved and restored separately.
245  // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
246
247  __ ldx(SP, g1_offset+STACK_BIAS, G1);
248  __ ldx(SP, g3_offset+STACK_BIAS, G3);
249  __ ldx(SP, g4_offset+STACK_BIAS, G4);
250  __ ldx(SP, g5_offset+STACK_BIAS, G5);
251
252
253#if !defined(_LP64)
254  // Restore the 64-bit O's.
255  __ ldx(SP, o0_offset+STACK_BIAS, O0);
256  __ ldx(SP, o1_offset+STACK_BIAS, O1);
257  __ ldx(SP, o2_offset+STACK_BIAS, O2);
258  __ ldx(SP, o3_offset+STACK_BIAS, O3);
259  __ ldx(SP, o4_offset+STACK_BIAS, O4);
260  __ ldx(SP, o5_offset+STACK_BIAS, O5);
261
262  // And temporarily place them in TLS
263
264  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
265  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
266  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
267  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
268  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
269  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
270#endif /* _LP64 */
271
272  // Restore flags
273
274  __ ldxfsr(SP, fsr_offset+STACK_BIAS);
275
276  __ restore();
277
278#if !defined(_LP64)
279  // Now reload the 64bit Oregs after we've restore the window.
280  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
281  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
282  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
283  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
284  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
285  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
286#endif /* _LP64 */
287
288}
289
290// Pop the current frame and restore the registers that might be holding
291// a result.
292void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
293
294#if !defined(_LP64)
295  // 32bit build returns longs in G1
296  __ ldx(SP, g1_offset+STACK_BIAS, G1);
297
298  // Retrieve the 64-bit O's.
299  __ ldx(SP, o0_offset+STACK_BIAS, O0);
300  __ ldx(SP, o1_offset+STACK_BIAS, O1);
301  // and save to TLS
302  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
303  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
304#endif /* _LP64 */
305
306  __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
307
308  __ restore();
309
310#if !defined(_LP64)
311  // Now reload the 64bit Oregs after we've restore the window.
312  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
313  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
314#endif /* _LP64 */
315
316}
317
318// Is vector's size (in bytes) bigger than a size saved by default?
319// 8 bytes FP registers are saved by default on SPARC.
320bool SharedRuntime::is_wide_vector(int size) {
321  // Note, MaxVectorSize == 8 on SPARC.
322  assert(size <= 8, "%d bytes vectors are not supported", size);
323  return size > 8;
324}
325
326// The java_calling_convention describes stack locations as ideal slots on
327// a frame with no abi restrictions. Since we must observe abi restrictions
328// (like the placement of the register window) the slots must be biased by
329// the following value.
330static int reg2offset(VMReg r) {
331  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
332}
333
334static VMRegPair reg64_to_VMRegPair(Register r) {
335  VMRegPair ret;
336  if (wordSize == 8) {
337    ret.set2(r->as_VMReg());
338  } else {
339    ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
340  }
341  return ret;
342}
343
344// ---------------------------------------------------------------------------
345// Read the array of BasicTypes from a signature, and compute where the
346// arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
347// quantities.  Values less than VMRegImpl::stack0 are registers, those above
348// refer to 4-byte stack slots.  All stack slots are based off of the window
349// top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
350// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
351// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
352// integer registers.  Values 64-95 are the (32-bit only) float registers.
353// Each 32-bit quantity is given its own number, so the integer registers
354// (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
355// an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
356
357// Register results are passed in O0-O5, for outgoing call arguments.  To
358// convert to incoming arguments, convert all O's to I's.  The regs array
359// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
360// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
361// 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
362// passed (used as a placeholder for the other half of longs and doubles in
363// the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
364// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
365// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
366// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
367// same VMRegPair.
368
369// Note: the INPUTS in sig_bt are in units of Java argument words, which are
370// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
371// units regardless of build.
372
373
374// ---------------------------------------------------------------------------
375// The compiled Java calling convention.  The Java convention always passes
376// 64-bit values in adjacent aligned locations (either registers or stack),
377// floats in float registers and doubles in aligned float pairs.  There is
378// no backing varargs store for values in registers.
379// In the 32-bit build, longs are passed on the stack (cannot be
380// passed in I's, because longs in I's get their heads chopped off at
381// interrupt).
382int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
383                                           VMRegPair *regs,
384                                           int total_args_passed,
385                                           int is_outgoing) {
386  assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
387
388  const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
389  const int flt_reg_max = 8;
390
391  int int_reg = 0;
392  int flt_reg = 0;
393  int slot = 0;
394
395  for (int i = 0; i < total_args_passed; i++) {
396    switch (sig_bt[i]) {
397    case T_INT:
398    case T_SHORT:
399    case T_CHAR:
400    case T_BYTE:
401    case T_BOOLEAN:
402#ifndef _LP64
403    case T_OBJECT:
404    case T_ARRAY:
405    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
406#endif // _LP64
407      if (int_reg < int_reg_max) {
408        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
409        regs[i].set1(r->as_VMReg());
410      } else {
411        regs[i].set1(VMRegImpl::stack2reg(slot++));
412      }
413      break;
414
415#ifdef _LP64
416    case T_LONG:
417      assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
418      // fall-through
419    case T_OBJECT:
420    case T_ARRAY:
421    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
422      if (int_reg < int_reg_max) {
423        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
424        regs[i].set2(r->as_VMReg());
425      } else {
426        slot = round_to(slot, 2);  // align
427        regs[i].set2(VMRegImpl::stack2reg(slot));
428        slot += 2;
429      }
430      break;
431#else
432    case T_LONG:
433      assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
434      // On 32-bit SPARC put longs always on the stack to keep the pressure off
435      // integer argument registers.  They should be used for oops.
436      slot = round_to(slot, 2);  // align
437      regs[i].set2(VMRegImpl::stack2reg(slot));
438      slot += 2;
439#endif
440      break;
441
442    case T_FLOAT:
443      if (flt_reg < flt_reg_max) {
444        FloatRegister r = as_FloatRegister(flt_reg++);
445        regs[i].set1(r->as_VMReg());
446      } else {
447        regs[i].set1(VMRegImpl::stack2reg(slot++));
448      }
449      break;
450
451    case T_DOUBLE:
452      assert(sig_bt[i+1] == T_VOID, "expecting half");
453      if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
454        flt_reg = round_to(flt_reg, 2);  // align
455        FloatRegister r = as_FloatRegister(flt_reg);
456        regs[i].set2(r->as_VMReg());
457        flt_reg += 2;
458      } else {
459        slot = round_to(slot, 2);  // align
460        regs[i].set2(VMRegImpl::stack2reg(slot));
461        slot += 2;
462      }
463      break;
464
465    case T_VOID:
466      regs[i].set_bad();   // Halves of longs & doubles
467      break;
468
469    default:
470      fatal("unknown basic type %d", sig_bt[i]);
471      break;
472    }
473  }
474
475  // retun the amount of stack space these arguments will need.
476  return slot;
477}
478
479// Helper class mostly to avoid passing masm everywhere, and handle
480// store displacement overflow logic.
481class AdapterGenerator {
482  MacroAssembler *masm;
483  Register Rdisp;
484  void set_Rdisp(Register r)  { Rdisp = r; }
485
486  void patch_callers_callsite();
487
488  // base+st_off points to top of argument
489  int arg_offset(const int st_off) { return st_off; }
490  int next_arg_offset(const int st_off) {
491    return st_off - Interpreter::stackElementSize;
492  }
493
494  // Argument slot values may be loaded first into a register because
495  // they might not fit into displacement.
496  RegisterOrConstant arg_slot(const int st_off);
497  RegisterOrConstant next_arg_slot(const int st_off);
498
499  // Stores long into offset pointed to by base
500  void store_c2i_long(Register r, Register base,
501                      const int st_off, bool is_stack);
502  void store_c2i_object(Register r, Register base,
503                        const int st_off);
504  void store_c2i_int(Register r, Register base,
505                     const int st_off);
506  void store_c2i_double(VMReg r_2,
507                        VMReg r_1, Register base, const int st_off);
508  void store_c2i_float(FloatRegister f, Register base,
509                       const int st_off);
510
511 public:
512  void gen_c2i_adapter(int total_args_passed,
513                              // VMReg max_arg,
514                              int comp_args_on_stack, // VMRegStackSlots
515                              const BasicType *sig_bt,
516                              const VMRegPair *regs,
517                              Label& skip_fixup);
518  void gen_i2c_adapter(int total_args_passed,
519                       // VMReg max_arg,
520                       int comp_args_on_stack, // VMRegStackSlots
521                       const BasicType *sig_bt,
522                       const VMRegPair *regs);
523
524  AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
525};
526
527
528// Patch the callers callsite with entry to compiled code if it exists.
529void AdapterGenerator::patch_callers_callsite() {
530  Label L;
531  __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
532  __ br_null(G3_scratch, false, Assembler::pt, L);
533  __ delayed()->nop();
534  // Call into the VM to patch the caller, then jump to compiled callee
535  __ save_frame(4);     // Args in compiled layout; do not blow them
536
537  // Must save all the live Gregs the list is:
538  // G1: 1st Long arg (32bit build)
539  // G2: global allocated to TLS
540  // G3: used in inline cache check (scratch)
541  // G4: 2nd Long arg (32bit build);
542  // G5: used in inline cache check (Method*)
543
544  // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
545
546#ifdef _LP64
547  // mov(s,d)
548  __ mov(G1, L1);
549  __ mov(G4, L4);
550  __ mov(G5_method, L5);
551  __ mov(G5_method, O0);         // VM needs target method
552  __ mov(I7, O1);                // VM needs caller's callsite
553  // Must be a leaf call...
554  // can be very far once the blob has been relocated
555  AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
556  __ relocate(relocInfo::runtime_call_type);
557  __ jumpl_to(dest, O7, O7);
558  __ delayed()->mov(G2_thread, L7_thread_cache);
559  __ mov(L7_thread_cache, G2_thread);
560  __ mov(L1, G1);
561  __ mov(L4, G4);
562  __ mov(L5, G5_method);
563#else
564  __ stx(G1, FP, -8 + STACK_BIAS);
565  __ stx(G4, FP, -16 + STACK_BIAS);
566  __ mov(G5_method, L5);
567  __ mov(G5_method, O0);         // VM needs target method
568  __ mov(I7, O1);                // VM needs caller's callsite
569  // Must be a leaf call...
570  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
571  __ delayed()->mov(G2_thread, L7_thread_cache);
572  __ mov(L7_thread_cache, G2_thread);
573  __ ldx(FP, -8 + STACK_BIAS, G1);
574  __ ldx(FP, -16 + STACK_BIAS, G4);
575  __ mov(L5, G5_method);
576#endif /* _LP64 */
577
578  __ restore();      // Restore args
579  __ bind(L);
580}
581
582
583RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
584  RegisterOrConstant roc(arg_offset(st_off));
585  return __ ensure_simm13_or_reg(roc, Rdisp);
586}
587
588RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
589  RegisterOrConstant roc(next_arg_offset(st_off));
590  return __ ensure_simm13_or_reg(roc, Rdisp);
591}
592
593
594// Stores long into offset pointed to by base
595void AdapterGenerator::store_c2i_long(Register r, Register base,
596                                      const int st_off, bool is_stack) {
597#ifdef _LP64
598  // In V9, longs are given 2 64-bit slots in the interpreter, but the
599  // data is passed in only 1 slot.
600  __ stx(r, base, next_arg_slot(st_off));
601#else
602#ifdef COMPILER2
603  // Misaligned store of 64-bit data
604  __ stw(r, base, arg_slot(st_off));    // lo bits
605  __ srlx(r, 32, r);
606  __ stw(r, base, next_arg_slot(st_off));  // hi bits
607#else
608  if (is_stack) {
609    // Misaligned store of 64-bit data
610    __ stw(r, base, arg_slot(st_off));    // lo bits
611    __ srlx(r, 32, r);
612    __ stw(r, base, next_arg_slot(st_off));  // hi bits
613  } else {
614    __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
615    __ stw(r             , base, next_arg_slot(st_off)); // hi bits
616  }
617#endif // COMPILER2
618#endif // _LP64
619}
620
621void AdapterGenerator::store_c2i_object(Register r, Register base,
622                      const int st_off) {
623  __ st_ptr (r, base, arg_slot(st_off));
624}
625
626void AdapterGenerator::store_c2i_int(Register r, Register base,
627                   const int st_off) {
628  __ st (r, base, arg_slot(st_off));
629}
630
631// Stores into offset pointed to by base
632void AdapterGenerator::store_c2i_double(VMReg r_2,
633                      VMReg r_1, Register base, const int st_off) {
634#ifdef _LP64
635  // In V9, doubles are given 2 64-bit slots in the interpreter, but the
636  // data is passed in only 1 slot.
637  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
638#else
639  // Need to marshal 64-bit value from misaligned Lesp loads
640  __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
641  __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
642#endif
643}
644
645void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
646                                       const int st_off) {
647  __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
648}
649
650void AdapterGenerator::gen_c2i_adapter(
651                            int total_args_passed,
652                            // VMReg max_arg,
653                            int comp_args_on_stack, // VMRegStackSlots
654                            const BasicType *sig_bt,
655                            const VMRegPair *regs,
656                            Label& L_skip_fixup) {
657
658  // Before we get into the guts of the C2I adapter, see if we should be here
659  // at all.  We've come from compiled code and are attempting to jump to the
660  // interpreter, which means the caller made a static call to get here
661  // (vcalls always get a compiled target if there is one).  Check for a
662  // compiled target.  If there is one, we need to patch the caller's call.
663  // However we will run interpreted if we come thru here. The next pass
664  // thru the call site will run compiled. If we ran compiled here then
665  // we can (theorectically) do endless i2c->c2i->i2c transitions during
666  // deopt/uncommon trap cycles. If we always go interpreted here then
667  // we can have at most one and don't need to play any tricks to keep
668  // from endlessly growing the stack.
669  //
670  // Actually if we detected that we had an i2c->c2i transition here we
671  // ought to be able to reset the world back to the state of the interpreted
672  // call and not bother building another interpreter arg area. We don't
673  // do that at this point.
674
675  patch_callers_callsite();
676
677  __ bind(L_skip_fixup);
678
679  // Since all args are passed on the stack, total_args_passed*wordSize is the
680  // space we need.  Add in varargs area needed by the interpreter. Round up
681  // to stack alignment.
682  const int arg_size = total_args_passed * Interpreter::stackElementSize;
683  const int varargs_area =
684                 (frame::varargs_offset - frame::register_save_words)*wordSize;
685  const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
686
687  const int bias = STACK_BIAS;
688  const int interp_arg_offset = frame::varargs_offset*wordSize +
689                        (total_args_passed-1)*Interpreter::stackElementSize;
690
691  const Register base = SP;
692
693  // Make some extra space on the stack.
694  __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
695  set_Rdisp(G3_scratch);
696
697  // Write the args into the outgoing interpreter space.
698  for (int i = 0; i < total_args_passed; i++) {
699    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
700    VMReg r_1 = regs[i].first();
701    VMReg r_2 = regs[i].second();
702    if (!r_1->is_valid()) {
703      assert(!r_2->is_valid(), "");
704      continue;
705    }
706    if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
707      RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
708      ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
709      r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
710      if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
711      else                  __ ldx(base, ld_off, G1_scratch);
712    }
713
714    if (r_1->is_Register()) {
715      Register r = r_1->as_Register()->after_restore();
716      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
717        store_c2i_object(r, base, st_off);
718      } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
719        store_c2i_long(r, base, st_off, r_2->is_stack());
720      } else {
721        store_c2i_int(r, base, st_off);
722      }
723    } else {
724      assert(r_1->is_FloatRegister(), "");
725      if (sig_bt[i] == T_FLOAT) {
726        store_c2i_float(r_1->as_FloatRegister(), base, st_off);
727      } else {
728        assert(sig_bt[i] == T_DOUBLE, "wrong type");
729        store_c2i_double(r_2, r_1, base, st_off);
730      }
731    }
732  }
733
734  // Load the interpreter entry point.
735  __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
736
737  // Pass O5_savedSP as an argument to the interpreter.
738  // The interpreter will restore SP to this value before returning.
739  __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
740
741  __ mov((frame::varargs_offset)*wordSize -
742         1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
743  // Jump to the interpreter just as if interpreter was doing it.
744  __ jmpl(G3_scratch, 0, G0);
745  // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
746  // (really L0) is in use by the compiled frame as a generic temp.  However,
747  // the interpreter does not know where its args are without some kind of
748  // arg pointer being passed in.  Pass it in Gargs.
749  __ delayed()->add(SP, G1, Gargs);
750}
751
752static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
753                        address code_start, address code_end,
754                        Label& L_ok) {
755  Label L_fail;
756  __ set(ExternalAddress(code_start), temp_reg);
757  __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
758  __ cmp(pc_reg, temp_reg);
759  __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
760  __ delayed()->add(temp_reg, temp2_reg, temp_reg);
761  __ cmp(pc_reg, temp_reg);
762  __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
763  __ bind(L_fail);
764}
765
766void AdapterGenerator::gen_i2c_adapter(int total_args_passed,
767                                       // VMReg max_arg,
768                                       int comp_args_on_stack, // VMRegStackSlots
769                                       const BasicType *sig_bt,
770                                       const VMRegPair *regs) {
771  // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
772  // layout.  Lesp was saved by the calling I-frame and will be restored on
773  // return.  Meanwhile, outgoing arg space is all owned by the callee
774  // C-frame, so we can mangle it at will.  After adjusting the frame size,
775  // hoist register arguments and repack other args according to the compiled
776  // code convention.  Finally, end in a jump to the compiled code.  The entry
777  // point address is the start of the buffer.
778
779  // We will only enter here from an interpreted frame and never from after
780  // passing thru a c2i. Azul allowed this but we do not. If we lose the
781  // race and use a c2i we will remain interpreted for the race loser(s).
782  // This removes all sorts of headaches on the x86 side and also eliminates
783  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
784
785  // More detail:
786  // Adapters can be frameless because they do not require the caller
787  // to perform additional cleanup work, such as correcting the stack pointer.
788  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
789  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
790  // even if a callee has modified the stack pointer.
791  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
792  // routinely repairs its caller's stack pointer (from sender_sp, which is set
793  // up via the senderSP register).
794  // In other words, if *either* the caller or callee is interpreted, we can
795  // get the stack pointer repaired after a call.
796  // This is why c2i and i2c adapters cannot be indefinitely composed.
797  // In particular, if a c2i adapter were to somehow call an i2c adapter,
798  // both caller and callee would be compiled methods, and neither would
799  // clean up the stack pointer changes performed by the two adapters.
800  // If this happens, control eventually transfers back to the compiled
801  // caller, but with an uncorrected stack, causing delayed havoc.
802
803  if (VerifyAdapterCalls &&
804      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
805    // So, let's test for cascading c2i/i2c adapters right now.
806    //  assert(Interpreter::contains($return_addr) ||
807    //         StubRoutines::contains($return_addr),
808    //         "i2c adapter must return to an interpreter frame");
809    __ block_comment("verify_i2c { ");
810    Label L_ok;
811    if (Interpreter::code() != NULL)
812      range_check(masm, O7, O0, O1,
813                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
814                  L_ok);
815    if (StubRoutines::code1() != NULL)
816      range_check(masm, O7, O0, O1,
817                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
818                  L_ok);
819    if (StubRoutines::code2() != NULL)
820      range_check(masm, O7, O0, O1,
821                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
822                  L_ok);
823    const char* msg = "i2c adapter must return to an interpreter frame";
824    __ block_comment(msg);
825    __ stop(msg);
826    __ bind(L_ok);
827    __ block_comment("} verify_i2ce ");
828  }
829
830  // As you can see from the list of inputs & outputs there are not a lot
831  // of temp registers to work with: mostly G1, G3 & G4.
832
833  // Inputs:
834  // G2_thread      - TLS
835  // G5_method      - Method oop
836  // G4 (Gargs)     - Pointer to interpreter's args
837  // O0..O4         - free for scratch
838  // O5_savedSP     - Caller's saved SP, to be restored if needed
839  // O6             - Current SP!
840  // O7             - Valid return address
841  // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
842
843  // Outputs:
844  // G2_thread      - TLS
845  // O0-O5          - Outgoing args in compiled layout
846  // O6             - Adjusted or restored SP
847  // O7             - Valid return address
848  // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
849  // F0-F7          - more outgoing args
850
851
852  // Gargs is the incoming argument base, and also an outgoing argument.
853  __ sub(Gargs, BytesPerWord, Gargs);
854
855  // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
856  // WITH O7 HOLDING A VALID RETURN PC
857  //
858  // |              |
859  // :  java stack  :
860  // |              |
861  // +--------------+ <--- start of outgoing args
862  // |   receiver   |   |
863  // : rest of args :   |---size is java-arg-words
864  // |              |   |
865  // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
866  // |              |   |
867  // :    unused    :   |---Space for max Java stack, plus stack alignment
868  // |              |   |
869  // +--------------+ <--- SP + 16*wordsize
870  // |              |
871  // :    window    :
872  // |              |
873  // +--------------+ <--- SP
874
875  // WE REPACK THE STACK.  We use the common calling convention layout as
876  // discovered by calling SharedRuntime::calling_convention.  We assume it
877  // causes an arbitrary shuffle of memory, which may require some register
878  // temps to do the shuffle.  We hope for (and optimize for) the case where
879  // temps are not needed.  We may have to resize the stack slightly, in case
880  // we need alignment padding (32-bit interpreter can pass longs & doubles
881  // misaligned, but the compilers expect them aligned).
882  //
883  // |              |
884  // :  java stack  :
885  // |              |
886  // +--------------+ <--- start of outgoing args
887  // |  pad, align  |   |
888  // +--------------+   |
889  // | ints, longs, |   |
890  // |    floats,   |   |---Outgoing stack args.
891  // :    doubles   :   |   First few args in registers.
892  // |              |   |
893  // +--------------+ <--- SP' + 16*wordsize
894  // |              |
895  // :    window    :
896  // |              |
897  // +--------------+ <--- SP'
898
899  // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
900  // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
901  // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
902
903  // Cut-out for having no stack args.  Since up to 6 args are passed
904  // in registers, we will commonly have no stack args.
905  if (comp_args_on_stack > 0) {
906    // Convert VMReg stack slots to words.
907    int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
908    // Round up to miminum stack alignment, in wordSize
909    comp_words_on_stack = round_to(comp_words_on_stack, 2);
910    // Now compute the distance from Lesp to SP.  This calculation does not
911    // include the space for total_args_passed because Lesp has not yet popped
912    // the arguments.
913    __ sub(SP, (comp_words_on_stack)*wordSize, SP);
914  }
915
916  // Now generate the shuffle code.  Pick up all register args and move the
917  // rest through G1_scratch.
918  for (int i = 0; i < total_args_passed; i++) {
919    if (sig_bt[i] == T_VOID) {
920      // Longs and doubles are passed in native word order, but misaligned
921      // in the 32-bit build.
922      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
923      continue;
924    }
925
926    // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
927    // 32-bit build and aligned in the 64-bit build.  Look for the obvious
928    // ldx/lddf optimizations.
929
930    // Load in argument order going down.
931    const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
932    set_Rdisp(G1_scratch);
933
934    VMReg r_1 = regs[i].first();
935    VMReg r_2 = regs[i].second();
936    if (!r_1->is_valid()) {
937      assert(!r_2->is_valid(), "");
938      continue;
939    }
940    if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
941      r_1 = F8->as_VMReg();        // as part of the load/store shuffle
942      if (r_2->is_valid()) r_2 = r_1->next();
943    }
944    if (r_1->is_Register()) {  // Register argument
945      Register r = r_1->as_Register()->after_restore();
946      if (!r_2->is_valid()) {
947        __ ld(Gargs, arg_slot(ld_off), r);
948      } else {
949#ifdef _LP64
950        // In V9, longs are given 2 64-bit slots in the interpreter, but the
951        // data is passed in only 1 slot.
952        RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
953              next_arg_slot(ld_off) : arg_slot(ld_off);
954        __ ldx(Gargs, slot, r);
955#else
956        fatal("longs should be on stack");
957#endif
958      }
959    } else {
960      assert(r_1->is_FloatRegister(), "");
961      if (!r_2->is_valid()) {
962        __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
963      } else {
964#ifdef _LP64
965        // In V9, doubles are given 2 64-bit slots in the interpreter, but the
966        // data is passed in only 1 slot.  This code also handles longs that
967        // are passed on the stack, but need a stack-to-stack move through a
968        // spare float register.
969        RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
970              next_arg_slot(ld_off) : arg_slot(ld_off);
971        __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
972#else
973        // Need to marshal 64-bit value from misaligned Lesp loads
974        __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
975        __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
976#endif
977      }
978    }
979    // Was the argument really intended to be on the stack, but was loaded
980    // into F8/F9?
981    if (regs[i].first()->is_stack()) {
982      assert(r_1->as_FloatRegister() == F8, "fix this code");
983      // Convert stack slot to an SP offset
984      int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
985      // Store down the shuffled stack word.  Target address _is_ aligned.
986      RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
987      if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
988      else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
989    }
990  }
991
992  // Jump to the compiled code just as if compiled code was doing it.
993  __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
994#if INCLUDE_JVMCI
995  if (EnableJVMCI) {
996    // check if this call should be routed towards a specific entry point
997    __ ld(Address(G2_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), G1);
998    __ cmp(G0, G1);
999    Label no_alternative_target;
1000    __ br(Assembler::equal, false, Assembler::pn, no_alternative_target);
1001    __ delayed()->nop();
1002
1003    __ ld_ptr(G2_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()), G3);
1004    __ st_ptr(G0, Address(G2_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
1005
1006    __ bind(no_alternative_target);
1007  }
1008#endif // INCLUDE_JVMCI
1009
1010  // 6243940 We might end up in handle_wrong_method if
1011  // the callee is deoptimized as we race thru here. If that
1012  // happens we don't want to take a safepoint because the
1013  // caller frame will look interpreted and arguments are now
1014  // "compiled" so it is much better to make this transition
1015  // invisible to the stack walking code. Unfortunately if
1016  // we try and find the callee by normal means a safepoint
1017  // is possible. So we stash the desired callee in the thread
1018  // and the vm will find there should this case occur.
1019  Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1020  __ st_ptr(G5_method, callee_target_addr);
1021  __ jmpl(G3, 0, G0);
1022  __ delayed()->nop();
1023}
1024
1025void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
1026                                    int total_args_passed,
1027                                    int comp_args_on_stack,
1028                                    const BasicType *sig_bt,
1029                                    const VMRegPair *regs) {
1030  AdapterGenerator agen(masm);
1031  agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1032}
1033
1034// ---------------------------------------------------------------
1035AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1036                                                            int total_args_passed,
1037                                                            // VMReg max_arg,
1038                                                            int comp_args_on_stack, // VMRegStackSlots
1039                                                            const BasicType *sig_bt,
1040                                                            const VMRegPair *regs,
1041                                                            AdapterFingerPrint* fingerprint) {
1042  address i2c_entry = __ pc();
1043
1044  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
1045
1046
1047  // -------------------------------------------------------------------------
1048  // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
1049  // args start out packed in the compiled layout.  They need to be unpacked
1050  // into the interpreter layout.  This will almost always require some stack
1051  // space.  We grow the current (compiled) stack, then repack the args.  We
1052  // finally end in a jump to the generic interpreter entry point.  On exit
1053  // from the interpreter, the interpreter will restore our SP (lest the
1054  // compiled code, which relys solely on SP and not FP, get sick).
1055
1056  address c2i_unverified_entry = __ pc();
1057  Label L_skip_fixup;
1058  {
1059    Register R_temp = G1;  // another scratch register
1060
1061    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1062
1063    __ verify_oop(O0);
1064    __ load_klass(O0, G3_scratch);
1065
1066    __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
1067    __ cmp(G3_scratch, R_temp);
1068
1069    Label ok, ok2;
1070    __ brx(Assembler::equal, false, Assembler::pt, ok);
1071    __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
1072    __ jump_to(ic_miss, G3_scratch);
1073    __ delayed()->nop();
1074
1075    __ bind(ok);
1076    // Method might have been compiled since the call site was patched to
1077    // interpreted if that is the case treat it as a miss so we can get
1078    // the call site corrected.
1079    __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
1080    __ bind(ok2);
1081    __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
1082    __ delayed()->nop();
1083    __ jump_to(ic_miss, G3_scratch);
1084    __ delayed()->nop();
1085
1086  }
1087
1088  address c2i_entry = __ pc();
1089  AdapterGenerator agen(masm);
1090  agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
1091
1092  __ flush();
1093  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1094
1095}
1096
1097// Helper function for native calling conventions
1098static VMReg int_stk_helper( int i ) {
1099  // Bias any stack based VMReg we get by ignoring the window area
1100  // but not the register parameter save area.
1101  //
1102  // This is strange for the following reasons. We'd normally expect
1103  // the calling convention to return an VMReg for a stack slot
1104  // completely ignoring any abi reserved area. C2 thinks of that
1105  // abi area as only out_preserve_stack_slots. This does not include
1106  // the area allocated by the C abi to store down integer arguments
1107  // because the java calling convention does not use it. So
1108  // since c2 assumes that there are only out_preserve_stack_slots
1109  // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1110  // location the c calling convention must add in this bias amount
1111  // to make up for the fact that the out_preserve_stack_slots is
1112  // insufficient for C calls. What a mess. I sure hope those 6
1113  // stack words were worth it on every java call!
1114
1115  // Another way of cleaning this up would be for out_preserve_stack_slots
1116  // to take a parameter to say whether it was C or java calling conventions.
1117  // Then things might look a little better (but not much).
1118
1119  int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1120  if( mem_parm_offset < 0 ) {
1121    return as_oRegister(i)->as_VMReg();
1122  } else {
1123    int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1124    // Now return a biased offset that will be correct when out_preserve_slots is added back in
1125    return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1126  }
1127}
1128
1129
1130int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1131                                         VMRegPair *regs,
1132                                         VMRegPair *regs2,
1133                                         int total_args_passed) {
1134    assert(regs2 == NULL, "not needed on sparc");
1135
1136    // Return the number of VMReg stack_slots needed for the args.
1137    // This value does not include an abi space (like register window
1138    // save area).
1139
1140    // The native convention is V8 if !LP64
1141    // The LP64 convention is the V9 convention which is slightly more sane.
1142
1143    // We return the amount of VMReg stack slots we need to reserve for all
1144    // the arguments NOT counting out_preserve_stack_slots. Since we always
1145    // have space for storing at least 6 registers to memory we start with that.
1146    // See int_stk_helper for a further discussion.
1147    int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1148
1149#ifdef _LP64
1150    // V9 convention: All things "as-if" on double-wide stack slots.
1151    // Hoist any int/ptr/long's in the first 6 to int regs.
1152    // Hoist any flt/dbl's in the first 16 dbl regs.
1153    int j = 0;                  // Count of actual args, not HALVES
1154    VMRegPair param_array_reg;  // location of the argument in the parameter array
1155    for (int i = 0; i < total_args_passed; i++, j++) {
1156      param_array_reg.set_bad();
1157      switch (sig_bt[i]) {
1158      case T_BOOLEAN:
1159      case T_BYTE:
1160      case T_CHAR:
1161      case T_INT:
1162      case T_SHORT:
1163        regs[i].set1(int_stk_helper(j));
1164        break;
1165      case T_LONG:
1166        assert(sig_bt[i+1] == T_VOID, "expecting half");
1167      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1168      case T_ARRAY:
1169      case T_OBJECT:
1170      case T_METADATA:
1171        regs[i].set2(int_stk_helper(j));
1172        break;
1173      case T_FLOAT:
1174        // Per SPARC Compliance Definition 2.4.1, page 3P-12 available here
1175        // http://www.sparc.org/wp-content/uploads/2014/01/SCD.2.4.1.pdf.gz
1176        //
1177        // "When a callee prototype exists, and does not indicate variable arguments,
1178        // floating-point values assigned to locations %sp+BIAS+128 through %sp+BIAS+248
1179        // will be promoted to floating-point registers"
1180        //
1181        // By "promoted" it means that the argument is located in two places, an unused
1182        // spill slot in the "parameter array" (starts at %sp+BIAS+128), and a live
1183        // float register.  In most cases, there are 6 or fewer arguments of any type,
1184        // and the standard parameter array slots (%sp+BIAS+128 to %sp+BIAS+176 exclusive)
1185        // serve as shadow slots.  Per the spec floating point registers %d6 to %d16
1186        // require slots beyond that (up to %sp+BIAS+248).
1187        //
1188        {
1189          // V9ism: floats go in ODD registers and stack slots
1190          int float_index = 1 + (j << 1);
1191          param_array_reg.set1(VMRegImpl::stack2reg(float_index));
1192          if (j < 16) {
1193            regs[i].set1(as_FloatRegister(float_index)->as_VMReg());
1194          } else {
1195            regs[i] = param_array_reg;
1196          }
1197        }
1198        break;
1199      case T_DOUBLE:
1200        {
1201          assert(sig_bt[i + 1] == T_VOID, "expecting half");
1202          // V9ism: doubles go in EVEN/ODD regs and stack slots
1203          int double_index = (j << 1);
1204          param_array_reg.set2(VMRegImpl::stack2reg(double_index));
1205          if (j < 16) {
1206            regs[i].set2(as_FloatRegister(double_index)->as_VMReg());
1207          } else {
1208            // V9ism: doubles go in EVEN/ODD stack slots
1209            regs[i] = param_array_reg;
1210          }
1211        }
1212        break;
1213      case T_VOID:
1214        regs[i].set_bad();
1215        j--;
1216        break; // Do not count HALVES
1217      default:
1218        ShouldNotReachHere();
1219      }
1220      // Keep track of the deepest parameter array slot.
1221      if (!param_array_reg.first()->is_valid()) {
1222        param_array_reg = regs[i];
1223      }
1224      if (param_array_reg.first()->is_stack()) {
1225        int off = param_array_reg.first()->reg2stack();
1226        if (off > max_stack_slots) max_stack_slots = off;
1227      }
1228      if (param_array_reg.second()->is_stack()) {
1229        int off = param_array_reg.second()->reg2stack();
1230        if (off > max_stack_slots) max_stack_slots = off;
1231      }
1232    }
1233
1234#else // _LP64
1235    // V8 convention: first 6 things in O-regs, rest on stack.
1236    // Alignment is willy-nilly.
1237    for (int i = 0; i < total_args_passed; i++) {
1238      switch (sig_bt[i]) {
1239      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1240      case T_ARRAY:
1241      case T_BOOLEAN:
1242      case T_BYTE:
1243      case T_CHAR:
1244      case T_FLOAT:
1245      case T_INT:
1246      case T_OBJECT:
1247      case T_METADATA:
1248      case T_SHORT:
1249        regs[i].set1(int_stk_helper(i));
1250        break;
1251      case T_DOUBLE:
1252      case T_LONG:
1253        assert(sig_bt[i + 1] == T_VOID, "expecting half");
1254        regs[i].set_pair(int_stk_helper(i + 1), int_stk_helper(i));
1255        break;
1256      case T_VOID: regs[i].set_bad(); break;
1257      default:
1258        ShouldNotReachHere();
1259      }
1260      if (regs[i].first()->is_stack()) {
1261        int off = regs[i].first()->reg2stack();
1262        if (off > max_stack_slots) max_stack_slots = off;
1263      }
1264      if (regs[i].second()->is_stack()) {
1265        int off = regs[i].second()->reg2stack();
1266        if (off > max_stack_slots) max_stack_slots = off;
1267      }
1268    }
1269#endif // _LP64
1270
1271  return round_to(max_stack_slots + 1, 2);
1272
1273}
1274
1275
1276// ---------------------------------------------------------------------------
1277void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1278  switch (ret_type) {
1279  case T_FLOAT:
1280    __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1281    break;
1282  case T_DOUBLE:
1283    __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1284    break;
1285  }
1286}
1287
1288void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1289  switch (ret_type) {
1290  case T_FLOAT:
1291    __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1292    break;
1293  case T_DOUBLE:
1294    __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1295    break;
1296  }
1297}
1298
1299// Check and forward and pending exception.  Thread is stored in
1300// L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1301// is no exception handler.  We merely pop this frame off and throw the
1302// exception in the caller's frame.
1303static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1304  Label L;
1305  __ br_null(Rex_oop, false, Assembler::pt, L);
1306  __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1307  // Since this is a native call, we *know* the proper exception handler
1308  // without calling into the VM: it's the empty function.  Just pop this
1309  // frame and then jump to forward_exception_entry; O7 will contain the
1310  // native caller's return PC.
1311 AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1312  __ jump_to(exception_entry, G3_scratch);
1313  __ delayed()->restore();      // Pop this frame off.
1314  __ bind(L);
1315}
1316
1317// A simple move of integer like type
1318static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1319  if (src.first()->is_stack()) {
1320    if (dst.first()->is_stack()) {
1321      // stack to stack
1322      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1323      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1324    } else {
1325      // stack to reg
1326      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1327    }
1328  } else if (dst.first()->is_stack()) {
1329    // reg to stack
1330    __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1331  } else {
1332    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1333  }
1334}
1335
1336// On 64 bit we will store integer like items to the stack as
1337// 64 bits items (sparc abi) even though java would only store
1338// 32bits for a parameter. On 32bit it will simply be 32 bits
1339// So this routine will do 32->32 on 32bit and 32->64 on 64bit
1340static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1341  if (src.first()->is_stack()) {
1342    if (dst.first()->is_stack()) {
1343      // stack to stack
1344      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1345      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1346    } else {
1347      // stack to reg
1348      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1349    }
1350  } else if (dst.first()->is_stack()) {
1351    // reg to stack
1352    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1353  } else {
1354    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1355  }
1356}
1357
1358
1359static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1360  if (src.first()->is_stack()) {
1361    if (dst.first()->is_stack()) {
1362      // stack to stack
1363      __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1364      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1365    } else {
1366      // stack to reg
1367      __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1368    }
1369  } else if (dst.first()->is_stack()) {
1370    // reg to stack
1371    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1372  } else {
1373    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1374  }
1375}
1376
1377
1378// An oop arg. Must pass a handle not the oop itself
1379static void object_move(MacroAssembler* masm,
1380                        OopMap* map,
1381                        int oop_handle_offset,
1382                        int framesize_in_slots,
1383                        VMRegPair src,
1384                        VMRegPair dst,
1385                        bool is_receiver,
1386                        int* receiver_offset) {
1387
1388  // must pass a handle. First figure out the location we use as a handle
1389
1390  if (src.first()->is_stack()) {
1391    // Oop is already on the stack
1392    Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1393    __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1394    __ ld_ptr(rHandle, 0, L4);
1395#ifdef _LP64
1396    __ movr( Assembler::rc_z, L4, G0, rHandle );
1397#else
1398    __ tst( L4 );
1399    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1400#endif
1401    if (dst.first()->is_stack()) {
1402      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1403    }
1404    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1405    if (is_receiver) {
1406      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1407    }
1408    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1409  } else {
1410    // Oop is in an input register pass we must flush it to the stack
1411    const Register rOop = src.first()->as_Register();
1412    const Register rHandle = L5;
1413    int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1414    int offset = oop_slot * VMRegImpl::stack_slot_size;
1415    __ st_ptr(rOop, SP, offset + STACK_BIAS);
1416    if (is_receiver) {
1417       *receiver_offset = offset;
1418    }
1419    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1420    __ add(SP, offset + STACK_BIAS, rHandle);
1421#ifdef _LP64
1422    __ movr( Assembler::rc_z, rOop, G0, rHandle );
1423#else
1424    __ tst( rOop );
1425    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1426#endif
1427
1428    if (dst.first()->is_stack()) {
1429      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1430    } else {
1431      __ mov(rHandle, dst.first()->as_Register());
1432    }
1433  }
1434}
1435
1436// A float arg may have to do float reg int reg conversion
1437static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1438  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1439
1440  if (src.first()->is_stack()) {
1441    if (dst.first()->is_stack()) {
1442      // stack to stack the easiest of the bunch
1443      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1444      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1445    } else {
1446      // stack to reg
1447      if (dst.first()->is_Register()) {
1448        __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1449      } else {
1450        __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1451      }
1452    }
1453  } else if (dst.first()->is_stack()) {
1454    // reg to stack
1455    if (src.first()->is_Register()) {
1456      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1457    } else {
1458      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1459    }
1460  } else {
1461    // reg to reg
1462    if (src.first()->is_Register()) {
1463      if (dst.first()->is_Register()) {
1464        // gpr -> gpr
1465        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1466      } else {
1467        // gpr -> fpr
1468        __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1469        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1470      }
1471    } else if (dst.first()->is_Register()) {
1472      // fpr -> gpr
1473      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1474      __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1475    } else {
1476      // fpr -> fpr
1477      // In theory these overlap but the ordering is such that this is likely a nop
1478      if ( src.first() != dst.first()) {
1479        __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1480      }
1481    }
1482  }
1483}
1484
1485static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1486  VMRegPair src_lo(src.first());
1487  VMRegPair src_hi(src.second());
1488  VMRegPair dst_lo(dst.first());
1489  VMRegPair dst_hi(dst.second());
1490  simple_move32(masm, src_lo, dst_lo);
1491  simple_move32(masm, src_hi, dst_hi);
1492}
1493
1494// A long move
1495static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1496
1497  // Do the simple ones here else do two int moves
1498  if (src.is_single_phys_reg() ) {
1499    if (dst.is_single_phys_reg()) {
1500      __ mov(src.first()->as_Register(), dst.first()->as_Register());
1501    } else {
1502      // split src into two separate registers
1503      // Remember hi means hi address or lsw on sparc
1504      // Move msw to lsw
1505      if (dst.second()->is_reg()) {
1506        // MSW -> MSW
1507        __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1508        // Now LSW -> LSW
1509        // this will only move lo -> lo and ignore hi
1510        VMRegPair split(dst.second());
1511        simple_move32(masm, src, split);
1512      } else {
1513        VMRegPair split(src.first(), L4->as_VMReg());
1514        // MSW -> MSW (lo ie. first word)
1515        __ srax(src.first()->as_Register(), 32, L4);
1516        split_long_move(masm, split, dst);
1517      }
1518    }
1519  } else if (dst.is_single_phys_reg()) {
1520    if (src.is_adjacent_aligned_on_stack(2)) {
1521      __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1522    } else {
1523      // dst is a single reg.
1524      // Remember lo is low address not msb for stack slots
1525      // and lo is the "real" register for registers
1526      // src is
1527
1528      VMRegPair split;
1529
1530      if (src.first()->is_reg()) {
1531        // src.lo (msw) is a reg, src.hi is stk/reg
1532        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1533        split.set_pair(dst.first(), src.first());
1534      } else {
1535        // msw is stack move to L5
1536        // lsw is stack move to dst.lo (real reg)
1537        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1538        split.set_pair(dst.first(), L5->as_VMReg());
1539      }
1540
1541      // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1542      // msw   -> src.lo/L5,  lsw -> dst.lo
1543      split_long_move(masm, src, split);
1544
1545      // So dst now has the low order correct position the
1546      // msw half
1547      __ sllx(split.first()->as_Register(), 32, L5);
1548
1549      const Register d = dst.first()->as_Register();
1550      __ or3(L5, d, d);
1551    }
1552  } else {
1553    // For LP64 we can probably do better.
1554    split_long_move(masm, src, dst);
1555  }
1556}
1557
1558// A double move
1559static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1560
1561  // The painful thing here is that like long_move a VMRegPair might be
1562  // 1: a single physical register
1563  // 2: two physical registers (v8)
1564  // 3: a physical reg [lo] and a stack slot [hi] (v8)
1565  // 4: two stack slots
1566
1567  // Since src is always a java calling convention we know that the src pair
1568  // is always either all registers or all stack (and aligned?)
1569
1570  // in a register [lo] and a stack slot [hi]
1571  if (src.first()->is_stack()) {
1572    if (dst.first()->is_stack()) {
1573      // stack to stack the easiest of the bunch
1574      // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1575      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1576      __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1577      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1578      __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1579    } else {
1580      // stack to reg
1581      if (dst.second()->is_stack()) {
1582        // stack -> reg, stack -> stack
1583        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1584        if (dst.first()->is_Register()) {
1585          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1586        } else {
1587          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1588        }
1589        // This was missing. (very rare case)
1590        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1591      } else {
1592        // stack -> reg
1593        // Eventually optimize for alignment QQQ
1594        if (dst.first()->is_Register()) {
1595          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1596          __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1597        } else {
1598          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1599          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1600        }
1601      }
1602    }
1603  } else if (dst.first()->is_stack()) {
1604    // reg to stack
1605    if (src.first()->is_Register()) {
1606      // Eventually optimize for alignment QQQ
1607      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1608      if (src.second()->is_stack()) {
1609        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1610        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1611      } else {
1612        __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1613      }
1614    } else {
1615      // fpr to stack
1616      if (src.second()->is_stack()) {
1617        ShouldNotReachHere();
1618      } else {
1619        // Is the stack aligned?
1620        if (reg2offset(dst.first()) & 0x7) {
1621          // No do as pairs
1622          __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1623          __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1624        } else {
1625          __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1626        }
1627      }
1628    }
1629  } else {
1630    // reg to reg
1631    if (src.first()->is_Register()) {
1632      if (dst.first()->is_Register()) {
1633        // gpr -> gpr
1634        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1635        __ mov(src.second()->as_Register(), dst.second()->as_Register());
1636      } else {
1637        // gpr -> fpr
1638        // ought to be able to do a single store
1639        __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1640        __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1641        // ought to be able to do a single load
1642        __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1643        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1644      }
1645    } else if (dst.first()->is_Register()) {
1646      // fpr -> gpr
1647      // ought to be able to do a single store
1648      __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1649      // ought to be able to do a single load
1650      // REMEMBER first() is low address not LSB
1651      __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1652      if (dst.second()->is_Register()) {
1653        __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1654      } else {
1655        __ ld(FP, -4 + STACK_BIAS, L4);
1656        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1657      }
1658    } else {
1659      // fpr -> fpr
1660      // In theory these overlap but the ordering is such that this is likely a nop
1661      if ( src.first() != dst.first()) {
1662        __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1663      }
1664    }
1665  }
1666}
1667
1668// Creates an inner frame if one hasn't already been created, and
1669// saves a copy of the thread in L7_thread_cache
1670static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1671  if (!*already_created) {
1672    __ save_frame(0);
1673    // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1674    // Don't use save_thread because it smashes G2 and we merely want to save a
1675    // copy
1676    __ mov(G2_thread, L7_thread_cache);
1677    *already_created = true;
1678  }
1679}
1680
1681
1682static void save_or_restore_arguments(MacroAssembler* masm,
1683                                      const int stack_slots,
1684                                      const int total_in_args,
1685                                      const int arg_save_area,
1686                                      OopMap* map,
1687                                      VMRegPair* in_regs,
1688                                      BasicType* in_sig_bt) {
1689  // if map is non-NULL then the code should store the values,
1690  // otherwise it should load them.
1691  if (map != NULL) {
1692    // Fill in the map
1693    for (int i = 0; i < total_in_args; i++) {
1694      if (in_sig_bt[i] == T_ARRAY) {
1695        if (in_regs[i].first()->is_stack()) {
1696          int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1697          map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1698        } else if (in_regs[i].first()->is_Register()) {
1699          map->set_oop(in_regs[i].first());
1700        } else {
1701          ShouldNotReachHere();
1702        }
1703      }
1704    }
1705  }
1706
1707  // Save or restore double word values
1708  int handle_index = 0;
1709  for (int i = 0; i < total_in_args; i++) {
1710    int slot = handle_index + arg_save_area;
1711    int offset = slot * VMRegImpl::stack_slot_size;
1712    if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
1713      const Register reg = in_regs[i].first()->as_Register();
1714      if (reg->is_global()) {
1715        handle_index += 2;
1716        assert(handle_index <= stack_slots, "overflow");
1717        if (map != NULL) {
1718          __ stx(reg, SP, offset + STACK_BIAS);
1719        } else {
1720          __ ldx(SP, offset + STACK_BIAS, reg);
1721        }
1722      }
1723    } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
1724      handle_index += 2;
1725      assert(handle_index <= stack_slots, "overflow");
1726      if (map != NULL) {
1727        __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1728      } else {
1729        __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1730      }
1731    }
1732  }
1733  // Save floats
1734  for (int i = 0; i < total_in_args; i++) {
1735    int slot = handle_index + arg_save_area;
1736    int offset = slot * VMRegImpl::stack_slot_size;
1737    if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
1738      handle_index++;
1739      assert(handle_index <= stack_slots, "overflow");
1740      if (map != NULL) {
1741        __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1742      } else {
1743        __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1744      }
1745    }
1746  }
1747
1748}
1749
1750
1751// Check GC_locker::needs_gc and enter the runtime if it's true.  This
1752// keeps a new JNI critical region from starting until a GC has been
1753// forced.  Save down any oops in registers and describe them in an
1754// OopMap.
1755static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1756                                               const int stack_slots,
1757                                               const int total_in_args,
1758                                               const int arg_save_area,
1759                                               OopMapSet* oop_maps,
1760                                               VMRegPair* in_regs,
1761                                               BasicType* in_sig_bt) {
1762  __ block_comment("check GC_locker::needs_gc");
1763  Label cont;
1764  AddressLiteral sync_state(GC_locker::needs_gc_address());
1765  __ load_bool_contents(sync_state, G3_scratch);
1766  __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
1767  __ delayed()->nop();
1768
1769  // Save down any values that are live in registers and call into the
1770  // runtime to halt for a GC
1771  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1772  save_or_restore_arguments(masm, stack_slots, total_in_args,
1773                            arg_save_area, map, in_regs, in_sig_bt);
1774
1775  __ mov(G2_thread, L7_thread_cache);
1776
1777  __ set_last_Java_frame(SP, noreg);
1778
1779  __ block_comment("block_for_jni_critical");
1780  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
1781  __ delayed()->mov(L7_thread_cache, O0);
1782  oop_maps->add_gc_map( __ offset(), map);
1783
1784  __ restore_thread(L7_thread_cache); // restore G2_thread
1785  __ reset_last_Java_frame();
1786
1787  // Reload all the register arguments
1788  save_or_restore_arguments(masm, stack_slots, total_in_args,
1789                            arg_save_area, NULL, in_regs, in_sig_bt);
1790
1791  __ bind(cont);
1792#ifdef ASSERT
1793  if (StressCriticalJNINatives) {
1794    // Stress register saving
1795    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1796    save_or_restore_arguments(masm, stack_slots, total_in_args,
1797                              arg_save_area, map, in_regs, in_sig_bt);
1798    // Destroy argument registers
1799    for (int i = 0; i < total_in_args; i++) {
1800      if (in_regs[i].first()->is_Register()) {
1801        const Register reg = in_regs[i].first()->as_Register();
1802        if (reg->is_global()) {
1803          __ mov(G0, reg);
1804        }
1805      } else if (in_regs[i].first()->is_FloatRegister()) {
1806        __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1807      }
1808    }
1809
1810    save_or_restore_arguments(masm, stack_slots, total_in_args,
1811                              arg_save_area, NULL, in_regs, in_sig_bt);
1812  }
1813#endif
1814}
1815
1816// Unpack an array argument into a pointer to the body and the length
1817// if the array is non-null, otherwise pass 0 for both.
1818static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1819  // Pass the length, ptr pair
1820  Label is_null, done;
1821  if (reg.first()->is_stack()) {
1822    VMRegPair tmp  = reg64_to_VMRegPair(L2);
1823    // Load the arg up from the stack
1824    move_ptr(masm, reg, tmp);
1825    reg = tmp;
1826  }
1827  __ cmp(reg.first()->as_Register(), G0);
1828  __ brx(Assembler::equal, false, Assembler::pt, is_null);
1829  __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
1830  move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
1831  __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
1832  move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
1833  __ ba_short(done);
1834  __ bind(is_null);
1835  // Pass zeros
1836  move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
1837  move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
1838  __ bind(done);
1839}
1840
1841static void verify_oop_args(MacroAssembler* masm,
1842                            methodHandle method,
1843                            const BasicType* sig_bt,
1844                            const VMRegPair* regs) {
1845  Register temp_reg = G5_method;  // not part of any compiled calling seq
1846  if (VerifyOops) {
1847    for (int i = 0; i < method->size_of_parameters(); i++) {
1848      if (sig_bt[i] == T_OBJECT ||
1849          sig_bt[i] == T_ARRAY) {
1850        VMReg r = regs[i].first();
1851        assert(r->is_valid(), "bad oop arg");
1852        if (r->is_stack()) {
1853          RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1854          ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
1855          __ ld_ptr(SP, ld_off, temp_reg);
1856          __ verify_oop(temp_reg);
1857        } else {
1858          __ verify_oop(r->as_Register());
1859        }
1860      }
1861    }
1862  }
1863}
1864
1865static void gen_special_dispatch(MacroAssembler* masm,
1866                                 methodHandle method,
1867                                 const BasicType* sig_bt,
1868                                 const VMRegPair* regs) {
1869  verify_oop_args(masm, method, sig_bt, regs);
1870  vmIntrinsics::ID iid = method->intrinsic_id();
1871
1872  // Now write the args into the outgoing interpreter space
1873  bool     has_receiver   = false;
1874  Register receiver_reg   = noreg;
1875  int      member_arg_pos = -1;
1876  Register member_reg     = noreg;
1877  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1878  if (ref_kind != 0) {
1879    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1880    member_reg = G5_method;  // known to be free at this point
1881    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1882  } else if (iid == vmIntrinsics::_invokeBasic) {
1883    has_receiver = true;
1884  } else {
1885    fatal("unexpected intrinsic id %d", iid);
1886  }
1887
1888  if (member_reg != noreg) {
1889    // Load the member_arg into register, if necessary.
1890    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1891    VMReg r = regs[member_arg_pos].first();
1892    if (r->is_stack()) {
1893      RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1894      ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1895      __ ld_ptr(SP, ld_off, member_reg);
1896    } else {
1897      // no data motion is needed
1898      member_reg = r->as_Register();
1899    }
1900  }
1901
1902  if (has_receiver) {
1903    // Make sure the receiver is loaded into a register.
1904    assert(method->size_of_parameters() > 0, "oob");
1905    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1906    VMReg r = regs[0].first();
1907    assert(r->is_valid(), "bad receiver arg");
1908    if (r->is_stack()) {
1909      // Porting note:  This assumes that compiled calling conventions always
1910      // pass the receiver oop in a register.  If this is not true on some
1911      // platform, pick a temp and load the receiver from stack.
1912      fatal("receiver always in a register");
1913      receiver_reg = G3_scratch;  // known to be free at this point
1914      RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1915      ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1916      __ ld_ptr(SP, ld_off, receiver_reg);
1917    } else {
1918      // no data motion is needed
1919      receiver_reg = r->as_Register();
1920    }
1921  }
1922
1923  // Figure out which address we are really jumping to:
1924  MethodHandles::generate_method_handle_dispatch(masm, iid,
1925                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1926}
1927
1928// ---------------------------------------------------------------------------
1929// Generate a native wrapper for a given method.  The method takes arguments
1930// in the Java compiled code convention, marshals them to the native
1931// convention (handlizes oops, etc), transitions to native, makes the call,
1932// returns to java state (possibly blocking), unhandlizes any result and
1933// returns.
1934//
1935// Critical native functions are a shorthand for the use of
1936// GetPrimtiveArrayCritical and disallow the use of any other JNI
1937// functions.  The wrapper is expected to unpack the arguments before
1938// passing them to the callee and perform checks before and after the
1939// native call to ensure that they GC_locker
1940// lock_critical/unlock_critical semantics are followed.  Some other
1941// parts of JNI setup are skipped like the tear down of the JNI handle
1942// block and the check for pending exceptions it's impossible for them
1943// to be thrown.
1944//
1945// They are roughly structured like this:
1946//    if (GC_locker::needs_gc())
1947//      SharedRuntime::block_for_jni_critical();
1948//    tranistion to thread_in_native
1949//    unpack arrray arguments and call native entry point
1950//    check for safepoint in progress
1951//    check if any thread suspend flags are set
1952//      call into JVM and possible unlock the JNI critical
1953//      if a GC was suppressed while in the critical native.
1954//    transition back to thread_in_Java
1955//    return to caller
1956//
1957nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1958                                                const methodHandle& method,
1959                                                int compile_id,
1960                                                BasicType* in_sig_bt,
1961                                                VMRegPair* in_regs,
1962                                                BasicType ret_type) {
1963  if (method->is_method_handle_intrinsic()) {
1964    vmIntrinsics::ID iid = method->intrinsic_id();
1965    intptr_t start = (intptr_t)__ pc();
1966    int vep_offset = ((intptr_t)__ pc()) - start;
1967    gen_special_dispatch(masm,
1968                         method,
1969                         in_sig_bt,
1970                         in_regs);
1971    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1972    __ flush();
1973    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1974    return nmethod::new_native_nmethod(method,
1975                                       compile_id,
1976                                       masm->code(),
1977                                       vep_offset,
1978                                       frame_complete,
1979                                       stack_slots / VMRegImpl::slots_per_word,
1980                                       in_ByteSize(-1),
1981                                       in_ByteSize(-1),
1982                                       (OopMapSet*)NULL);
1983  }
1984  bool is_critical_native = true;
1985  address native_func = method->critical_native_function();
1986  if (native_func == NULL) {
1987    native_func = method->native_function();
1988    is_critical_native = false;
1989  }
1990  assert(native_func != NULL, "must have function");
1991
1992  // Native nmethod wrappers never take possesion of the oop arguments.
1993  // So the caller will gc the arguments. The only thing we need an
1994  // oopMap for is if the call is static
1995  //
1996  // An OopMap for lock (and class if static), and one for the VM call itself
1997  OopMapSet *oop_maps = new OopMapSet();
1998  intptr_t start = (intptr_t)__ pc();
1999
2000  // First thing make an ic check to see if we should even be here
2001  {
2002    Label L;
2003    const Register temp_reg = G3_scratch;
2004    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2005    __ verify_oop(O0);
2006    __ load_klass(O0, temp_reg);
2007    __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
2008
2009    __ jump_to(ic_miss, temp_reg);
2010    __ delayed()->nop();
2011    __ align(CodeEntryAlignment);
2012    __ bind(L);
2013  }
2014
2015  int vep_offset = ((intptr_t)__ pc()) - start;
2016
2017#ifdef COMPILER1
2018  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
2019    // Object.hashCode can pull the hashCode from the header word
2020    // instead of doing a full VM transition once it's been computed.
2021    // Since hashCode is usually polymorphic at call sites we can't do
2022    // this optimization at the call site without a lot of work.
2023    Label slowCase;
2024    Register receiver             = O0;
2025    Register result               = O0;
2026    Register header               = G3_scratch;
2027    Register hash                 = G3_scratch; // overwrite header value with hash value
2028    Register mask                 = G1;         // to get hash field from header
2029
2030    // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
2031    // We depend on hash_mask being at most 32 bits and avoid the use of
2032    // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
2033    // vm: see markOop.hpp.
2034    __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
2035    __ sethi(markOopDesc::hash_mask, mask);
2036    __ btst(markOopDesc::unlocked_value, header);
2037    __ br(Assembler::zero, false, Assembler::pn, slowCase);
2038    if (UseBiasedLocking) {
2039      // Check if biased and fall through to runtime if so
2040      __ delayed()->nop();
2041      __ btst(markOopDesc::biased_lock_bit_in_place, header);
2042      __ br(Assembler::notZero, false, Assembler::pn, slowCase);
2043    }
2044    __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
2045
2046    // Check for a valid (non-zero) hash code and get its value.
2047#ifdef _LP64
2048    __ srlx(header, markOopDesc::hash_shift, hash);
2049#else
2050    __ srl(header, markOopDesc::hash_shift, hash);
2051#endif
2052    __ andcc(hash, mask, hash);
2053    __ br(Assembler::equal, false, Assembler::pn, slowCase);
2054    __ delayed()->nop();
2055
2056    // leaf return.
2057    __ retl();
2058    __ delayed()->mov(hash, result);
2059    __ bind(slowCase);
2060  }
2061#endif // COMPILER1
2062
2063
2064  // We have received a description of where all the java arg are located
2065  // on entry to the wrapper. We need to convert these args to where
2066  // the jni function will expect them. To figure out where they go
2067  // we convert the java signature to a C signature by inserting
2068  // the hidden arguments as arg[0] and possibly arg[1] (static method)
2069
2070  const int total_in_args = method->size_of_parameters();
2071  int total_c_args = total_in_args;
2072  int total_save_slots = 6 * VMRegImpl::slots_per_word;
2073  if (!is_critical_native) {
2074    total_c_args += 1;
2075    if (method->is_static()) {
2076      total_c_args++;
2077    }
2078  } else {
2079    for (int i = 0; i < total_in_args; i++) {
2080      if (in_sig_bt[i] == T_ARRAY) {
2081        // These have to be saved and restored across the safepoint
2082        total_c_args++;
2083      }
2084    }
2085  }
2086
2087  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2088  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2089  BasicType* in_elem_bt = NULL;
2090
2091  int argc = 0;
2092  if (!is_critical_native) {
2093    out_sig_bt[argc++] = T_ADDRESS;
2094    if (method->is_static()) {
2095      out_sig_bt[argc++] = T_OBJECT;
2096    }
2097
2098    for (int i = 0; i < total_in_args ; i++ ) {
2099      out_sig_bt[argc++] = in_sig_bt[i];
2100    }
2101  } else {
2102    Thread* THREAD = Thread::current();
2103    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2104    SignatureStream ss(method->signature());
2105    for (int i = 0; i < total_in_args ; i++ ) {
2106      if (in_sig_bt[i] == T_ARRAY) {
2107        // Arrays are passed as int, elem* pair
2108        out_sig_bt[argc++] = T_INT;
2109        out_sig_bt[argc++] = T_ADDRESS;
2110        Symbol* atype = ss.as_symbol(CHECK_NULL);
2111        const char* at = atype->as_C_string();
2112        if (strlen(at) == 2) {
2113          assert(at[0] == '[', "must be");
2114          switch (at[1]) {
2115            case 'B': in_elem_bt[i]  = T_BYTE; break;
2116            case 'C': in_elem_bt[i]  = T_CHAR; break;
2117            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2118            case 'F': in_elem_bt[i]  = T_FLOAT; break;
2119            case 'I': in_elem_bt[i]  = T_INT; break;
2120            case 'J': in_elem_bt[i]  = T_LONG; break;
2121            case 'S': in_elem_bt[i]  = T_SHORT; break;
2122            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2123            default: ShouldNotReachHere();
2124          }
2125        }
2126      } else {
2127        out_sig_bt[argc++] = in_sig_bt[i];
2128        in_elem_bt[i] = T_VOID;
2129      }
2130      if (in_sig_bt[i] != T_VOID) {
2131        assert(in_sig_bt[i] == ss.type(), "must match");
2132        ss.next();
2133      }
2134    }
2135  }
2136
2137  // Now figure out where the args must be stored and how much stack space
2138  // they require (neglecting out_preserve_stack_slots but space for storing
2139  // the 1st six register arguments). It's weird see int_stk_helper.
2140  //
2141  int out_arg_slots;
2142  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2143
2144  if (is_critical_native) {
2145    // Critical natives may have to call out so they need a save area
2146    // for register arguments.
2147    int double_slots = 0;
2148    int single_slots = 0;
2149    for ( int i = 0; i < total_in_args; i++) {
2150      if (in_regs[i].first()->is_Register()) {
2151        const Register reg = in_regs[i].first()->as_Register();
2152        switch (in_sig_bt[i]) {
2153          case T_ARRAY:
2154          case T_BOOLEAN:
2155          case T_BYTE:
2156          case T_SHORT:
2157          case T_CHAR:
2158          case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
2159          case T_LONG: if (reg->is_global()) double_slots++; break;
2160          default:  ShouldNotReachHere();
2161        }
2162      } else if (in_regs[i].first()->is_FloatRegister()) {
2163        switch (in_sig_bt[i]) {
2164          case T_FLOAT:  single_slots++; break;
2165          case T_DOUBLE: double_slots++; break;
2166          default:  ShouldNotReachHere();
2167        }
2168      }
2169    }
2170    total_save_slots = double_slots * 2 + single_slots;
2171  }
2172
2173  // Compute framesize for the wrapper.  We need to handlize all oops in
2174  // registers. We must create space for them here that is disjoint from
2175  // the windowed save area because we have no control over when we might
2176  // flush the window again and overwrite values that gc has since modified.
2177  // (The live window race)
2178  //
2179  // We always just allocate 6 word for storing down these object. This allow
2180  // us to simply record the base and use the Ireg number to decide which
2181  // slot to use. (Note that the reg number is the inbound number not the
2182  // outbound number).
2183  // We must shuffle args to match the native convention, and include var-args space.
2184
2185  // Calculate the total number of stack slots we will need.
2186
2187  // First count the abi requirement plus all of the outgoing args
2188  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2189
2190  // Now the space for the inbound oop handle area
2191
2192  int oop_handle_offset = round_to(stack_slots, 2);
2193  stack_slots += total_save_slots;
2194
2195  // Now any space we need for handlizing a klass if static method
2196
2197  int klass_slot_offset = 0;
2198  int klass_offset = -1;
2199  int lock_slot_offset = 0;
2200  bool is_static = false;
2201
2202  if (method->is_static()) {
2203    klass_slot_offset = stack_slots;
2204    stack_slots += VMRegImpl::slots_per_word;
2205    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2206    is_static = true;
2207  }
2208
2209  // Plus a lock if needed
2210
2211  if (method->is_synchronized()) {
2212    lock_slot_offset = stack_slots;
2213    stack_slots += VMRegImpl::slots_per_word;
2214  }
2215
2216  // Now a place to save return value or as a temporary for any gpr -> fpr moves
2217  stack_slots += 2;
2218
2219  // Ok The space we have allocated will look like:
2220  //
2221  //
2222  // FP-> |                     |
2223  //      |---------------------|
2224  //      | 2 slots for moves   |
2225  //      |---------------------|
2226  //      | lock box (if sync)  |
2227  //      |---------------------| <- lock_slot_offset
2228  //      | klass (if static)   |
2229  //      |---------------------| <- klass_slot_offset
2230  //      | oopHandle area      |
2231  //      |---------------------| <- oop_handle_offset
2232  //      | outbound memory     |
2233  //      | based arguments     |
2234  //      |                     |
2235  //      |---------------------|
2236  //      | vararg area         |
2237  //      |---------------------|
2238  //      |                     |
2239  // SP-> | out_preserved_slots |
2240  //
2241  //
2242
2243
2244  // Now compute actual number of stack words we need rounding to make
2245  // stack properly aligned.
2246  stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2247
2248  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2249
2250  // Generate stack overflow check before creating frame
2251  __ generate_stack_overflow_check(stack_size);
2252
2253  // Generate a new frame for the wrapper.
2254  __ save(SP, -stack_size, SP);
2255
2256  int frame_complete = ((intptr_t)__ pc()) - start;
2257
2258  __ verify_thread();
2259
2260  if (is_critical_native) {
2261    check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
2262                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2263  }
2264
2265  //
2266  // We immediately shuffle the arguments so that any vm call we have to
2267  // make from here on out (sync slow path, jvmti, etc.) we will have
2268  // captured the oops from our caller and have a valid oopMap for
2269  // them.
2270
2271  // -----------------
2272  // The Grand Shuffle
2273  //
2274  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2275  // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2276  // the class mirror instead of a receiver.  This pretty much guarantees that
2277  // register layout will not match.  We ignore these extra arguments during
2278  // the shuffle. The shuffle is described by the two calling convention
2279  // vectors we have in our possession. We simply walk the java vector to
2280  // get the source locations and the c vector to get the destinations.
2281  // Because we have a new window and the argument registers are completely
2282  // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2283  // here.
2284
2285  // This is a trick. We double the stack slots so we can claim
2286  // the oops in the caller's frame. Since we are sure to have
2287  // more args than the caller doubling is enough to make
2288  // sure we can capture all the incoming oop args from the
2289  // caller.
2290  //
2291  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2292  // Record sp-based slot for receiver on stack for non-static methods
2293  int receiver_offset = -1;
2294
2295  // We move the arguments backward because the floating point registers
2296  // destination will always be to a register with a greater or equal register
2297  // number or the stack.
2298
2299#ifdef ASSERT
2300  bool reg_destroyed[RegisterImpl::number_of_registers];
2301  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2302  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2303    reg_destroyed[r] = false;
2304  }
2305  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2306    freg_destroyed[f] = false;
2307  }
2308
2309#endif /* ASSERT */
2310
2311  for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
2312
2313#ifdef ASSERT
2314    if (in_regs[i].first()->is_Register()) {
2315      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2316    } else if (in_regs[i].first()->is_FloatRegister()) {
2317      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2318    }
2319    if (out_regs[c_arg].first()->is_Register()) {
2320      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2321    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2322      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2323    }
2324#endif /* ASSERT */
2325
2326    switch (in_sig_bt[i]) {
2327      case T_ARRAY:
2328        if (is_critical_native) {
2329          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
2330          c_arg--;
2331          break;
2332        }
2333      case T_OBJECT:
2334        assert(!is_critical_native, "no oop arguments");
2335        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2336                    ((i == 0) && (!is_static)),
2337                    &receiver_offset);
2338        break;
2339      case T_VOID:
2340        break;
2341
2342      case T_FLOAT:
2343        float_move(masm, in_regs[i], out_regs[c_arg]);
2344        break;
2345
2346      case T_DOUBLE:
2347        assert( i + 1 < total_in_args &&
2348                in_sig_bt[i + 1] == T_VOID &&
2349                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2350        double_move(masm, in_regs[i], out_regs[c_arg]);
2351        break;
2352
2353      case T_LONG :
2354        long_move(masm, in_regs[i], out_regs[c_arg]);
2355        break;
2356
2357      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2358
2359      default:
2360        move32_64(masm, in_regs[i], out_regs[c_arg]);
2361    }
2362  }
2363
2364  // Pre-load a static method's oop into O1.  Used both by locking code and
2365  // the normal JNI call code.
2366  if (method->is_static() && !is_critical_native) {
2367    __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
2368
2369    // Now handlize the static class mirror in O1.  It's known not-null.
2370    __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2371    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2372    __ add(SP, klass_offset + STACK_BIAS, O1);
2373  }
2374
2375
2376  const Register L6_handle = L6;
2377
2378  if (method->is_synchronized()) {
2379    assert(!is_critical_native, "unhandled");
2380    __ mov(O1, L6_handle);
2381  }
2382
2383  // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2384  // except O6/O7. So if we must call out we must push a new frame. We immediately
2385  // push a new frame and flush the windows.
2386#ifdef _LP64
2387  intptr_t thepc = (intptr_t) __ pc();
2388  {
2389    address here = __ pc();
2390    // Call the next instruction
2391    __ call(here + 8, relocInfo::none);
2392    __ delayed()->nop();
2393  }
2394#else
2395  intptr_t thepc = __ load_pc_address(O7, 0);
2396#endif /* _LP64 */
2397
2398  // We use the same pc/oopMap repeatedly when we call out
2399  oop_maps->add_gc_map(thepc - start, map);
2400
2401  // O7 now has the pc loaded that we will use when we finally call to native.
2402
2403  // Save thread in L7; it crosses a bunch of VM calls below
2404  // Don't use save_thread because it smashes G2 and we merely
2405  // want to save a copy
2406  __ mov(G2_thread, L7_thread_cache);
2407
2408
2409  // If we create an inner frame once is plenty
2410  // when we create it we must also save G2_thread
2411  bool inner_frame_created = false;
2412
2413  // dtrace method entry support
2414  {
2415    SkipIfEqual skip_if(
2416      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2417    // create inner frame
2418    __ save_frame(0);
2419    __ mov(G2_thread, L7_thread_cache);
2420    __ set_metadata_constant(method(), O1);
2421    __ call_VM_leaf(L7_thread_cache,
2422         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2423         G2_thread, O1);
2424    __ restore();
2425  }
2426
2427  // RedefineClasses() tracing support for obsolete method entry
2428  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2429    // create inner frame
2430    __ save_frame(0);
2431    __ mov(G2_thread, L7_thread_cache);
2432    __ set_metadata_constant(method(), O1);
2433    __ call_VM_leaf(L7_thread_cache,
2434         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2435         G2_thread, O1);
2436    __ restore();
2437  }
2438
2439  // We are in the jni frame unless saved_frame is true in which case
2440  // we are in one frame deeper (the "inner" frame). If we are in the
2441  // "inner" frames the args are in the Iregs and if the jni frame then
2442  // they are in the Oregs.
2443  // If we ever need to go to the VM (for locking, jvmti) then
2444  // we will always be in the "inner" frame.
2445
2446  // Lock a synchronized method
2447  int lock_offset = -1;         // Set if locked
2448  if (method->is_synchronized()) {
2449    Register Roop = O1;
2450    const Register L3_box = L3;
2451
2452    create_inner_frame(masm, &inner_frame_created);
2453
2454    __ ld_ptr(I1, 0, O1);
2455    Label done;
2456
2457    lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2458    __ add(FP, lock_offset+STACK_BIAS, L3_box);
2459#ifdef ASSERT
2460    if (UseBiasedLocking) {
2461      // making the box point to itself will make it clear it went unused
2462      // but also be obviously invalid
2463      __ st_ptr(L3_box, L3_box, 0);
2464    }
2465#endif // ASSERT
2466    //
2467    // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2468    //
2469    __ compiler_lock_object(Roop, L1,    L3_box, L2);
2470    __ br(Assembler::equal, false, Assembler::pt, done);
2471    __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2472
2473
2474    // None of the above fast optimizations worked so we have to get into the
2475    // slow case of monitor enter.  Inline a special case of call_VM that
2476    // disallows any pending_exception.
2477    __ mov(Roop, O0);            // Need oop in O0
2478    __ mov(L3_box, O1);
2479
2480    // Record last_Java_sp, in case the VM code releases the JVM lock.
2481
2482    __ set_last_Java_frame(FP, I7);
2483
2484    // do the call
2485    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2486    __ delayed()->mov(L7_thread_cache, O2);
2487
2488    __ restore_thread(L7_thread_cache); // restore G2_thread
2489    __ reset_last_Java_frame();
2490
2491#ifdef ASSERT
2492    { Label L;
2493    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2494    __ br_null_short(O0, Assembler::pt, L);
2495    __ stop("no pending exception allowed on exit from IR::monitorenter");
2496    __ bind(L);
2497    }
2498#endif
2499    __ bind(done);
2500  }
2501
2502
2503  // Finally just about ready to make the JNI call
2504
2505  __ flushw();
2506  if (inner_frame_created) {
2507    __ restore();
2508  } else {
2509    // Store only what we need from this frame
2510    // QQQ I think that non-v9 (like we care) we don't need these saves
2511    // either as the flush traps and the current window goes too.
2512    __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2513    __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2514  }
2515
2516  // get JNIEnv* which is first argument to native
2517  if (!is_critical_native) {
2518    __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2519  }
2520
2521  // Use that pc we placed in O7 a while back as the current frame anchor
2522  __ set_last_Java_frame(SP, O7);
2523
2524  // We flushed the windows ages ago now mark them as flushed before transitioning.
2525  __ set(JavaFrameAnchor::flushed, G3_scratch);
2526  __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2527
2528  // Transition from _thread_in_Java to _thread_in_native.
2529  __ set(_thread_in_native, G3_scratch);
2530
2531#ifdef _LP64
2532  AddressLiteral dest(native_func);
2533  __ relocate(relocInfo::runtime_call_type);
2534  __ jumpl_to(dest, O7, O7);
2535#else
2536  __ call(native_func, relocInfo::runtime_call_type);
2537#endif
2538  __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2539
2540  __ restore_thread(L7_thread_cache); // restore G2_thread
2541
2542  // Unpack native results.  For int-types, we do any needed sign-extension
2543  // and move things into I0.  The return value there will survive any VM
2544  // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2545  // specially in the slow-path code.
2546  switch (ret_type) {
2547  case T_VOID:    break;        // Nothing to do!
2548  case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2549  case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2550  // In 64 bits build result is in O0, in O0, O1 in 32bit build
2551  case T_LONG:
2552#ifndef _LP64
2553                  __ mov(O1, I1);
2554#endif
2555                  // Fall thru
2556  case T_OBJECT:                // Really a handle
2557  case T_ARRAY:
2558  case T_INT:
2559                  __ mov(O0, I0);
2560                  break;
2561  case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2562  case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2563  case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2564  case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2565    break;                      // Cannot de-handlize until after reclaiming jvm_lock
2566  default:
2567    ShouldNotReachHere();
2568  }
2569
2570  Label after_transition;
2571  // must we block?
2572
2573  // Block, if necessary, before resuming in _thread_in_Java state.
2574  // In order for GC to work, don't clear the last_Java_sp until after blocking.
2575  { Label no_block;
2576    AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2577
2578    // Switch thread to "native transition" state before reading the synchronization state.
2579    // This additional state is necessary because reading and testing the synchronization
2580    // state is not atomic w.r.t. GC, as this scenario demonstrates:
2581    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2582    //     VM thread changes sync state to synchronizing and suspends threads for GC.
2583    //     Thread A is resumed to finish this native method, but doesn't block here since it
2584    //     didn't see any synchronization is progress, and escapes.
2585    __ set(_thread_in_native_trans, G3_scratch);
2586    __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2587    if(os::is_MP()) {
2588      if (UseMembar) {
2589        // Force this write out before the read below
2590        __ membar(Assembler::StoreLoad);
2591      } else {
2592        // Write serialization page so VM thread can do a pseudo remote membar.
2593        // We use the current thread pointer to calculate a thread specific
2594        // offset to write to within the page. This minimizes bus traffic
2595        // due to cache line collision.
2596        __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2597      }
2598    }
2599    __ load_contents(sync_state, G3_scratch);
2600    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2601
2602    Label L;
2603    Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2604    __ br(Assembler::notEqual, false, Assembler::pn, L);
2605    __ delayed()->ld(suspend_state, G3_scratch);
2606    __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
2607    __ bind(L);
2608
2609    // Block.  Save any potential method result value before the operation and
2610    // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2611    // lets us share the oopMap we used when we went native rather the create
2612    // a distinct one for this pc
2613    //
2614    save_native_result(masm, ret_type, stack_slots);
2615    if (!is_critical_native) {
2616      __ call_VM_leaf(L7_thread_cache,
2617                      CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2618                      G2_thread);
2619    } else {
2620      __ call_VM_leaf(L7_thread_cache,
2621                      CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
2622                      G2_thread);
2623    }
2624
2625    // Restore any method result value
2626    restore_native_result(masm, ret_type, stack_slots);
2627
2628    if (is_critical_native) {
2629      // The call above performed the transition to thread_in_Java so
2630      // skip the transition logic below.
2631      __ ba(after_transition);
2632      __ delayed()->nop();
2633    }
2634
2635    __ bind(no_block);
2636  }
2637
2638  // thread state is thread_in_native_trans. Any safepoint blocking has already
2639  // happened so we can now change state to _thread_in_Java.
2640  __ set(_thread_in_Java, G3_scratch);
2641  __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2642  __ bind(after_transition);
2643
2644  Label no_reguard;
2645  __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2646  __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
2647
2648    save_native_result(masm, ret_type, stack_slots);
2649  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2650  __ delayed()->nop();
2651
2652  __ restore_thread(L7_thread_cache); // restore G2_thread
2653    restore_native_result(masm, ret_type, stack_slots);
2654
2655  __ bind(no_reguard);
2656
2657  // Handle possible exception (will unlock if necessary)
2658
2659  // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2660
2661  // Unlock
2662  if (method->is_synchronized()) {
2663    Label done;
2664    Register I2_ex_oop = I2;
2665    const Register L3_box = L3;
2666    // Get locked oop from the handle we passed to jni
2667    __ ld_ptr(L6_handle, 0, L4);
2668    __ add(SP, lock_offset+STACK_BIAS, L3_box);
2669    // Must save pending exception around the slow-path VM call.  Since it's a
2670    // leaf call, the pending exception (if any) can be kept in a register.
2671    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2672    // Now unlock
2673    //                       (Roop, Rmark, Rbox,   Rscratch)
2674    __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2675    __ br(Assembler::equal, false, Assembler::pt, done);
2676    __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2677
2678    // save and restore any potential method result value around the unlocking
2679    // operation.  Will save in I0 (or stack for FP returns).
2680    save_native_result(masm, ret_type, stack_slots);
2681
2682    // Must clear pending-exception before re-entering the VM.  Since this is
2683    // a leaf call, pending-exception-oop can be safely kept in a register.
2684    __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2685
2686    // slow case of monitor enter.  Inline a special case of call_VM that
2687    // disallows any pending_exception.
2688    __ mov(L3_box, O1);
2689
2690    // Pass in current thread pointer
2691    __ mov(G2_thread, O2);
2692
2693    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2694    __ delayed()->mov(L4, O0);              // Need oop in O0
2695
2696    __ restore_thread(L7_thread_cache); // restore G2_thread
2697
2698#ifdef ASSERT
2699    { Label L;
2700    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2701    __ br_null_short(O0, Assembler::pt, L);
2702    __ stop("no pending exception allowed on exit from IR::monitorexit");
2703    __ bind(L);
2704    }
2705#endif
2706    restore_native_result(masm, ret_type, stack_slots);
2707    // check_forward_pending_exception jump to forward_exception if any pending
2708    // exception is set.  The forward_exception routine expects to see the
2709    // exception in pending_exception and not in a register.  Kind of clumsy,
2710    // since all folks who branch to forward_exception must have tested
2711    // pending_exception first and hence have it in a register already.
2712    __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2713    __ bind(done);
2714  }
2715
2716  // Tell dtrace about this method exit
2717  {
2718    SkipIfEqual skip_if(
2719      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2720    save_native_result(masm, ret_type, stack_slots);
2721    __ set_metadata_constant(method(), O1);
2722    __ call_VM_leaf(L7_thread_cache,
2723       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2724       G2_thread, O1);
2725    restore_native_result(masm, ret_type, stack_slots);
2726  }
2727
2728  // Clear "last Java frame" SP and PC.
2729  __ verify_thread(); // G2_thread must be correct
2730  __ reset_last_Java_frame();
2731
2732  // Unpack oop result
2733  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2734      Label L;
2735      __ addcc(G0, I0, G0);
2736      __ brx(Assembler::notZero, true, Assembler::pt, L);
2737      __ delayed()->ld_ptr(I0, 0, I0);
2738      __ mov(G0, I0);
2739      __ bind(L);
2740      __ verify_oop(I0);
2741  }
2742
2743  if (!is_critical_native) {
2744    // reset handle block
2745    __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2746    __ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2747
2748    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2749    check_forward_pending_exception(masm, G3_scratch);
2750  }
2751
2752
2753  // Return
2754
2755#ifndef _LP64
2756  if (ret_type == T_LONG) {
2757
2758    // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2759    __ sllx(I0, 32, G1);          // Shift bits into high G1
2760    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2761    __ or3 (I1, G1, G1);          // OR 64 bits into G1
2762  }
2763#endif
2764
2765  __ ret();
2766  __ delayed()->restore();
2767
2768  __ flush();
2769
2770  nmethod *nm = nmethod::new_native_nmethod(method,
2771                                            compile_id,
2772                                            masm->code(),
2773                                            vep_offset,
2774                                            frame_complete,
2775                                            stack_slots / VMRegImpl::slots_per_word,
2776                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2777                                            in_ByteSize(lock_offset),
2778                                            oop_maps);
2779
2780  if (is_critical_native) {
2781    nm->set_lazy_critical_native(true);
2782  }
2783  return nm;
2784
2785}
2786
2787// this function returns the adjust size (in number of words) to a c2i adapter
2788// activation for use during deoptimization
2789int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2790  assert(callee_locals >= callee_parameters,
2791          "test and remove; got more parms than locals");
2792  if (callee_locals < callee_parameters)
2793    return 0;                   // No adjustment for negative locals
2794  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2795  return round_to(diff, WordsPerLong);
2796}
2797
2798// "Top of Stack" slots that may be unused by the calling convention but must
2799// otherwise be preserved.
2800// On Intel these are not necessary and the value can be zero.
2801// On Sparc this describes the words reserved for storing a register window
2802// when an interrupt occurs.
2803uint SharedRuntime::out_preserve_stack_slots() {
2804  return frame::register_save_words * VMRegImpl::slots_per_word;
2805}
2806
2807static void gen_new_frame(MacroAssembler* masm, bool deopt) {
2808//
2809// Common out the new frame generation for deopt and uncommon trap
2810//
2811  Register        G3pcs              = G3_scratch; // Array of new pcs (input)
2812  Register        Oreturn0           = O0;
2813  Register        Oreturn1           = O1;
2814  Register        O2UnrollBlock      = O2;
2815  Register        O3array            = O3;         // Array of frame sizes (input)
2816  Register        O4array_size       = O4;         // number of frames (input)
2817  Register        O7frame_size       = O7;         // number of frames (input)
2818
2819  __ ld_ptr(O3array, 0, O7frame_size);
2820  __ sub(G0, O7frame_size, O7frame_size);
2821  __ save(SP, O7frame_size, SP);
2822  __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
2823
2824  #ifdef ASSERT
2825  // make sure that the frames are aligned properly
2826#ifndef _LP64
2827  __ btst(wordSize*2-1, SP);
2828  __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
2829#endif
2830  #endif
2831
2832  // Deopt needs to pass some extra live values from frame to frame
2833
2834  if (deopt) {
2835    __ mov(Oreturn0->after_save(), Oreturn0);
2836    __ mov(Oreturn1->after_save(), Oreturn1);
2837  }
2838
2839  __ mov(O4array_size->after_save(), O4array_size);
2840  __ sub(O4array_size, 1, O4array_size);
2841  __ mov(O3array->after_save(), O3array);
2842  __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
2843  __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
2844
2845  #ifdef ASSERT
2846  // trash registers to show a clear pattern in backtraces
2847  __ set(0xDEAD0000, I0);
2848  __ add(I0,  2, I1);
2849  __ add(I0,  4, I2);
2850  __ add(I0,  6, I3);
2851  __ add(I0,  8, I4);
2852  // Don't touch I5 could have valuable savedSP
2853  __ set(0xDEADBEEF, L0);
2854  __ mov(L0, L1);
2855  __ mov(L0, L2);
2856  __ mov(L0, L3);
2857  __ mov(L0, L4);
2858  __ mov(L0, L5);
2859
2860  // trash the return value as there is nothing to return yet
2861  __ set(0xDEAD0001, O7);
2862  #endif
2863
2864  __ mov(SP, O5_savedSP);
2865}
2866
2867
2868static void make_new_frames(MacroAssembler* masm, bool deopt) {
2869  //
2870  // loop through the UnrollBlock info and create new frames
2871  //
2872  Register        G3pcs              = G3_scratch;
2873  Register        Oreturn0           = O0;
2874  Register        Oreturn1           = O1;
2875  Register        O2UnrollBlock      = O2;
2876  Register        O3array            = O3;
2877  Register        O4array_size       = O4;
2878  Label           loop;
2879
2880#ifdef ASSERT
2881  // Compilers generate code that bang the stack by as much as the
2882  // interpreter would need. So this stack banging should never
2883  // trigger a fault. Verify that it does not on non product builds.
2884  if (UseStackBanging) {
2885    // Get total frame size for interpreted frames
2886    __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
2887    __ bang_stack_size(O4, O3, G3_scratch);
2888  }
2889#endif
2890
2891  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
2892  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
2893  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
2894
2895  // Adjust old interpreter frame to make space for new frame's extra java locals
2896  //
2897  // We capture the original sp for the transition frame only because it is needed in
2898  // order to properly calculate interpreter_sp_adjustment. Even though in real life
2899  // every interpreter frame captures a savedSP it is only needed at the transition
2900  // (fortunately). If we had to have it correct everywhere then we would need to
2901  // be told the sp_adjustment for each frame we create. If the frame size array
2902  // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
2903  // for each frame we create and keep up the illusion every where.
2904  //
2905
2906  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
2907  __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
2908  __ sub(SP, O7, SP);
2909
2910#ifdef ASSERT
2911  // make sure that there is at least one entry in the array
2912  __ tst(O4array_size);
2913  __ breakpoint_trap(Assembler::zero, Assembler::icc);
2914#endif
2915
2916  // Now push the new interpreter frames
2917  __ bind(loop);
2918
2919  // allocate a new frame, filling the registers
2920
2921  gen_new_frame(masm, deopt);        // allocate an interpreter frame
2922
2923  __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
2924  __ delayed()->add(O3array, wordSize, O3array);
2925  __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
2926
2927}
2928
2929//------------------------------generate_deopt_blob----------------------------
2930// Ought to generate an ideal graph & compile, but here's some SPARC ASM
2931// instead.
2932void SharedRuntime::generate_deopt_blob() {
2933  // allocate space for the code
2934  ResourceMark rm;
2935  // setup code generation tools
2936  int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
2937#ifdef ASSERT
2938  if (UseStackBanging) {
2939    pad += StackShadowPages*16 + 32;
2940  }
2941#endif
2942#if INCLUDE_JVMCI
2943  if (EnableJVMCI) {
2944    pad += 1000; // Increase the buffer size when compiling for JVMCI
2945  }
2946#endif
2947#ifdef _LP64
2948  CodeBuffer buffer("deopt_blob", 2100+pad, 512);
2949#else
2950  // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
2951  // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
2952  CodeBuffer buffer("deopt_blob", 1600+pad, 512);
2953#endif /* _LP64 */
2954  MacroAssembler* masm               = new MacroAssembler(&buffer);
2955  FloatRegister   Freturn0           = F0;
2956  Register        Greturn1           = G1;
2957  Register        Oreturn0           = O0;
2958  Register        Oreturn1           = O1;
2959  Register        O2UnrollBlock      = O2;
2960  Register        L0deopt_mode       = L0;
2961  Register        G4deopt_mode       = G4_scratch;
2962  int             frame_size_words;
2963  Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
2964#if !defined(_LP64) && defined(COMPILER2)
2965  Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
2966#endif
2967  Label           cont;
2968
2969  OopMapSet *oop_maps = new OopMapSet();
2970
2971  //
2972  // This is the entry point for code which is returning to a de-optimized
2973  // frame.
2974  // The steps taken by this frame are as follows:
2975  //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
2976  //     and all potentially live registers (at a pollpoint many registers can be live).
2977  //
2978  //   - call the C routine: Deoptimization::fetch_unroll_info (this function
2979  //     returns information about the number and size of interpreter frames
2980  //     which are equivalent to the frame which is being deoptimized)
2981  //   - deallocate the unpack frame, restoring only results values. Other
2982  //     volatile registers will now be captured in the vframeArray as needed.
2983  //   - deallocate the deoptimization frame
2984  //   - in a loop using the information returned in the previous step
2985  //     push new interpreter frames (take care to propagate the return
2986  //     values through each new frame pushed)
2987  //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
2988  //   - call the C routine: Deoptimization::unpack_frames (this function
2989  //     lays out values on the interpreter frame which was just created)
2990  //   - deallocate the dummy unpack_frame
2991  //   - ensure that all the return values are correctly set and then do
2992  //     a return to the interpreter entry point
2993  //
2994  // Refer to the following methods for more information:
2995  //   - Deoptimization::fetch_unroll_info
2996  //   - Deoptimization::unpack_frames
2997
2998  OopMap* map = NULL;
2999
3000  int start = __ offset();
3001
3002  // restore G2, the trampoline destroyed it
3003  __ get_thread();
3004
3005  // On entry we have been called by the deoptimized nmethod with a call that
3006  // replaced the original call (or safepoint polling location) so the deoptimizing
3007  // pc is now in O7. Return values are still in the expected places
3008
3009  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3010  __ ba(cont);
3011  __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3012
3013
3014#if INCLUDE_JVMCI
3015  Label after_fetch_unroll_info_call;
3016  int implicit_exception_uncommon_trap_offset = 0;
3017  int uncommon_trap_offset = 0;
3018
3019  if (EnableJVMCI) {
3020    masm->block_comment("BEGIN implicit_exception_uncommon_trap");
3021    implicit_exception_uncommon_trap_offset = __ offset() - start;
3022
3023    __ ld_ptr(G2_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()), O7);
3024    __ st_ptr(G0, Address(G2_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
3025    __ add(O7, -8, O7);
3026
3027    uncommon_trap_offset = __ offset() - start;
3028
3029    // Save everything in sight.
3030    (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3031    __ set_last_Java_frame(SP, NULL);
3032
3033    __ ld(G2_thread, in_bytes(JavaThread::pending_deoptimization_offset()), O1);
3034    __ sub(G0, 1, L1);
3035    __ st(L1, G2_thread, in_bytes(JavaThread::pending_deoptimization_offset()));
3036
3037    __ mov((int32_t)Deoptimization::Unpack_reexecute, L0deopt_mode);
3038    __ mov(G2_thread, O0);
3039    __ call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
3040    __ delayed()->nop();
3041    oop_maps->add_gc_map( __ offset()-start, map->deep_copy());
3042    __ get_thread();
3043    __ add(O7, 8, O7);
3044    __ reset_last_Java_frame();
3045
3046    __ ba(after_fetch_unroll_info_call);
3047    __ delayed()->nop(); // Delay slot
3048    masm->block_comment("END implicit_exception_uncommon_trap");
3049  } // EnableJVMCI
3050#endif // INCLUDE_JVMCI
3051
3052  int exception_offset = __ offset() - start;
3053
3054  // restore G2, the trampoline destroyed it
3055  __ get_thread();
3056
3057  // On entry we have been jumped to by the exception handler (or exception_blob
3058  // for server).  O0 contains the exception oop and O7 contains the original
3059  // exception pc.  So if we push a frame here it will look to the
3060  // stack walking code (fetch_unroll_info) just like a normal call so
3061  // state will be extracted normally.
3062
3063  // save exception oop in JavaThread and fall through into the
3064  // exception_in_tls case since they are handled in same way except
3065  // for where the pending exception is kept.
3066  __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3067
3068  //
3069  // Vanilla deoptimization with an exception pending in exception_oop
3070  //
3071  int exception_in_tls_offset = __ offset() - start;
3072
3073  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3074  // Opens a new stack frame
3075  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3076
3077  // Restore G2_thread
3078  __ get_thread();
3079
3080#ifdef ASSERT
3081  {
3082    // verify that there is really an exception oop in exception_oop
3083    Label has_exception;
3084    __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3085    __ br_notnull_short(Oexception, Assembler::pt, has_exception);
3086    __ stop("no exception in thread");
3087    __ bind(has_exception);
3088
3089    // verify that there is no pending exception
3090    Label no_pending_exception;
3091    Address exception_addr(G2_thread, Thread::pending_exception_offset());
3092    __ ld_ptr(exception_addr, Oexception);
3093    __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
3094    __ stop("must not have pending exception here");
3095    __ bind(no_pending_exception);
3096  }
3097#endif
3098
3099  __ ba(cont);
3100  __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3101
3102  //
3103  // Reexecute entry, similar to c2 uncommon trap
3104  //
3105  int reexecute_offset = __ offset() - start;
3106#if INCLUDE_JVMCI && !defined(COMPILER1)
3107  if (EnableJVMCI && UseJVMCICompiler) {
3108    // JVMCI does not use this kind of deoptimization
3109    __ should_not_reach_here();
3110  }
3111#endif
3112  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3113  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3114
3115  __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3116
3117  __ bind(cont);
3118
3119  __ set_last_Java_frame(SP, noreg);
3120
3121  // do the call by hand so we can get the oopmap
3122
3123  __ mov(G2_thread, L7_thread_cache);
3124  __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3125  __ delayed()->mov(G2_thread, O0);
3126
3127  // Set an oopmap for the call site this describes all our saved volatile registers
3128
3129  oop_maps->add_gc_map( __ offset()-start, map);
3130
3131  __ mov(L7_thread_cache, G2_thread);
3132
3133  __ reset_last_Java_frame();
3134
3135#if INCLUDE_JVMCI
3136  if (EnableJVMCI) {
3137    __ bind(after_fetch_unroll_info_call);
3138  }
3139#endif
3140  // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3141  // so this move will survive
3142
3143  __ mov(L0deopt_mode, G4deopt_mode);
3144
3145  __ mov(O0, O2UnrollBlock->after_save());
3146
3147  RegisterSaver::restore_result_registers(masm);
3148
3149  Label noException;
3150  __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
3151
3152  // Move the pending exception from exception_oop to Oexception so
3153  // the pending exception will be picked up the interpreter.
3154  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3155  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3156  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
3157  __ bind(noException);
3158
3159  // deallocate the deoptimization frame taking care to preserve the return values
3160  __ mov(Oreturn0,     Oreturn0->after_save());
3161  __ mov(Oreturn1,     Oreturn1->after_save());
3162  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3163  __ restore();
3164
3165  // Allocate new interpreter frame(s) and possible c2i adapter frame
3166
3167  make_new_frames(masm, true);
3168
3169  // push a dummy "unpack_frame" taking care of float return values and
3170  // call Deoptimization::unpack_frames to have the unpacker layout
3171  // information in the interpreter frames just created and then return
3172  // to the interpreter entry point
3173  __ save(SP, -frame_size_words*wordSize, SP);
3174  __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3175#if !defined(_LP64)
3176#if defined(COMPILER2)
3177  // 32-bit 1-register longs return longs in G1
3178  __ stx(Greturn1, saved_Greturn1_addr);
3179#endif
3180  __ set_last_Java_frame(SP, noreg);
3181  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3182#else
3183  // LP64 uses g4 in set_last_Java_frame
3184  __ mov(G4deopt_mode, O1);
3185  __ set_last_Java_frame(SP, G0);
3186  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3187#endif
3188  __ reset_last_Java_frame();
3189  __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3190
3191#if !defined(_LP64) && defined(COMPILER2)
3192  // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3193  // I0/I1 if the return value is long.
3194  Label not_long;
3195  __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
3196  __ ldd(saved_Greturn1_addr,I0);
3197  __ bind(not_long);
3198#endif
3199  __ ret();
3200  __ delayed()->restore();
3201
3202  masm->flush();
3203  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3204  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3205#if INCLUDE_JVMCI
3206  if (EnableJVMCI) {
3207    _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3208    _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3209  }
3210#endif
3211}
3212
3213#ifdef COMPILER2
3214
3215//------------------------------generate_uncommon_trap_blob--------------------
3216// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3217// instead.
3218void SharedRuntime::generate_uncommon_trap_blob() {
3219  // allocate space for the code
3220  ResourceMark rm;
3221  // setup code generation tools
3222  int pad = VerifyThread ? 512 : 0;
3223#ifdef ASSERT
3224  if (UseStackBanging) {
3225    pad += StackShadowPages*16 + 32;
3226  }
3227#endif
3228#ifdef _LP64
3229  CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3230#else
3231  // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3232  // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3233  CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3234#endif
3235  MacroAssembler* masm               = new MacroAssembler(&buffer);
3236  Register        O2UnrollBlock      = O2;
3237  Register        O2klass_index      = O2;
3238
3239  //
3240  // This is the entry point for all traps the compiler takes when it thinks
3241  // it cannot handle further execution of compilation code. The frame is
3242  // deoptimized in these cases and converted into interpreter frames for
3243  // execution
3244  // The steps taken by this frame are as follows:
3245  //   - push a fake "unpack_frame"
3246  //   - call the C routine Deoptimization::uncommon_trap (this function
3247  //     packs the current compiled frame into vframe arrays and returns
3248  //     information about the number and size of interpreter frames which
3249  //     are equivalent to the frame which is being deoptimized)
3250  //   - deallocate the "unpack_frame"
3251  //   - deallocate the deoptimization frame
3252  //   - in a loop using the information returned in the previous step
3253  //     push interpreter frames;
3254  //   - create a dummy "unpack_frame"
3255  //   - call the C routine: Deoptimization::unpack_frames (this function
3256  //     lays out values on the interpreter frame which was just created)
3257  //   - deallocate the dummy unpack_frame
3258  //   - return to the interpreter entry point
3259  //
3260  //  Refer to the following methods for more information:
3261  //   - Deoptimization::uncommon_trap
3262  //   - Deoptimization::unpack_frame
3263
3264  // the unloaded class index is in O0 (first parameter to this blob)
3265
3266  // push a dummy "unpack_frame"
3267  // and call Deoptimization::uncommon_trap to pack the compiled frame into
3268  // vframe array and return the UnrollBlock information
3269  __ save_frame(0);
3270  __ set_last_Java_frame(SP, noreg);
3271  __ mov(I0, O2klass_index);
3272  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3273  __ reset_last_Java_frame();
3274  __ mov(O0, O2UnrollBlock->after_save());
3275  __ restore();
3276
3277  // deallocate the deoptimized frame taking care to preserve the return values
3278  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3279  __ restore();
3280
3281  // Allocate new interpreter frame(s) and possible c2i adapter frame
3282
3283  make_new_frames(masm, false);
3284
3285  // push a dummy "unpack_frame" taking care of float return values and
3286  // call Deoptimization::unpack_frames to have the unpacker layout
3287  // information in the interpreter frames just created and then return
3288  // to the interpreter entry point
3289  __ save_frame(0);
3290  __ set_last_Java_frame(SP, noreg);
3291  __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3292  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3293  __ reset_last_Java_frame();
3294  __ ret();
3295  __ delayed()->restore();
3296
3297  masm->flush();
3298  _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3299}
3300
3301#endif // COMPILER2
3302
3303//------------------------------generate_handler_blob-------------------
3304//
3305// Generate a special Compile2Runtime blob that saves all registers, and sets
3306// up an OopMap.
3307//
3308// This blob is jumped to (via a breakpoint and the signal handler) from a
3309// safepoint in compiled code.  On entry to this blob, O7 contains the
3310// address in the original nmethod at which we should resume normal execution.
3311// Thus, this blob looks like a subroutine which must preserve lots of
3312// registers and return normally.  Note that O7 is never register-allocated,
3313// so it is guaranteed to be free here.
3314//
3315
3316// The hardest part of what this blob must do is to save the 64-bit %o
3317// registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3318// an interrupt will chop off their heads.  Making space in the caller's frame
3319// first will let us save the 64-bit %o's before save'ing, but we cannot hand
3320// the adjusted FP off to the GC stack-crawler: this will modify the caller's
3321// SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3322// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3323// Tricky, tricky, tricky...
3324
3325SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3326  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3327
3328  // allocate space for the code
3329  ResourceMark rm;
3330  // setup code generation tools
3331  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3332  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3333  // even larger with TraceJumps
3334  int pad = TraceJumps ? 512 : 0;
3335  CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3336  MacroAssembler* masm                = new MacroAssembler(&buffer);
3337  int             frame_size_words;
3338  OopMapSet *oop_maps = new OopMapSet();
3339  OopMap* map = NULL;
3340
3341  int start = __ offset();
3342
3343  bool cause_return = (poll_type == POLL_AT_RETURN);
3344  // If this causes a return before the processing, then do a "restore"
3345  if (cause_return) {
3346    __ restore();
3347  } else {
3348    // Make it look like we were called via the poll
3349    // so that frame constructor always sees a valid return address
3350    __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3351    __ sub(O7, frame::pc_return_offset, O7);
3352  }
3353
3354  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3355
3356  // setup last_Java_sp (blows G4)
3357  __ set_last_Java_frame(SP, noreg);
3358
3359  // call into the runtime to handle illegal instructions exception
3360  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3361  __ mov(G2_thread, O0);
3362  __ save_thread(L7_thread_cache);
3363  __ call(call_ptr);
3364  __ delayed()->nop();
3365
3366  // Set an oopmap for the call site.
3367  // We need this not only for callee-saved registers, but also for volatile
3368  // registers that the compiler might be keeping live across a safepoint.
3369
3370  oop_maps->add_gc_map( __ offset() - start, map);
3371
3372  __ restore_thread(L7_thread_cache);
3373  // clear last_Java_sp
3374  __ reset_last_Java_frame();
3375
3376  // Check for exceptions
3377  Label pending;
3378
3379  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3380  __ br_notnull_short(O1, Assembler::pn, pending);
3381
3382  RegisterSaver::restore_live_registers(masm);
3383
3384  // We are back the the original state on entry and ready to go.
3385
3386  __ retl();
3387  __ delayed()->nop();
3388
3389  // Pending exception after the safepoint
3390
3391  __ bind(pending);
3392
3393  RegisterSaver::restore_live_registers(masm);
3394
3395  // We are back the the original state on entry.
3396
3397  // Tail-call forward_exception_entry, with the issuing PC in O7,
3398  // so it looks like the original nmethod called forward_exception_entry.
3399  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3400  __ JMP(O0, 0);
3401  __ delayed()->nop();
3402
3403  // -------------
3404  // make sure all code is generated
3405  masm->flush();
3406
3407  // return exception blob
3408  return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3409}
3410
3411//
3412// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3413//
3414// Generate a stub that calls into vm to find out the proper destination
3415// of a java call. All the argument registers are live at this point
3416// but since this is generic code we don't know what they are and the caller
3417// must do any gc of the args.
3418//
3419RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3420  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3421
3422  // allocate space for the code
3423  ResourceMark rm;
3424  // setup code generation tools
3425  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3426  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3427  // even larger with TraceJumps
3428  int pad = TraceJumps ? 512 : 0;
3429  CodeBuffer buffer(name, 1600 + pad, 512);
3430  MacroAssembler* masm                = new MacroAssembler(&buffer);
3431  int             frame_size_words;
3432  OopMapSet *oop_maps = new OopMapSet();
3433  OopMap* map = NULL;
3434
3435  int start = __ offset();
3436
3437  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3438
3439  int frame_complete = __ offset();
3440
3441  // setup last_Java_sp (blows G4)
3442  __ set_last_Java_frame(SP, noreg);
3443
3444  // call into the runtime to handle illegal instructions exception
3445  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3446  __ mov(G2_thread, O0);
3447  __ save_thread(L7_thread_cache);
3448  __ call(destination, relocInfo::runtime_call_type);
3449  __ delayed()->nop();
3450
3451  // O0 contains the address we are going to jump to assuming no exception got installed
3452
3453  // Set an oopmap for the call site.
3454  // We need this not only for callee-saved registers, but also for volatile
3455  // registers that the compiler might be keeping live across a safepoint.
3456
3457  oop_maps->add_gc_map( __ offset() - start, map);
3458
3459  __ restore_thread(L7_thread_cache);
3460  // clear last_Java_sp
3461  __ reset_last_Java_frame();
3462
3463  // Check for exceptions
3464  Label pending;
3465
3466  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3467  __ br_notnull_short(O1, Assembler::pn, pending);
3468
3469  // get the returned Method*
3470
3471  __ get_vm_result_2(G5_method);
3472  __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3473
3474  // O0 is where we want to jump, overwrite G3 which is saved and scratch
3475
3476  __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3477
3478  RegisterSaver::restore_live_registers(masm);
3479
3480  // We are back the the original state on entry and ready to go.
3481
3482  __ JMP(G3, 0);
3483  __ delayed()->nop();
3484
3485  // Pending exception after the safepoint
3486
3487  __ bind(pending);
3488
3489  RegisterSaver::restore_live_registers(masm);
3490
3491  // We are back the the original state on entry.
3492
3493  // Tail-call forward_exception_entry, with the issuing PC in O7,
3494  // so it looks like the original nmethod called forward_exception_entry.
3495  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3496  __ JMP(O0, 0);
3497  __ delayed()->nop();
3498
3499  // -------------
3500  // make sure all code is generated
3501  masm->flush();
3502
3503  // return the  blob
3504  // frame_size_words or bytes??
3505  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3506}
3507