sharedRuntime_sparc.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "assembler_sparc.inline.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "interpreter/interpreter.hpp"
32#include "oops/compiledICHolder.hpp"
33#include "prims/jvmtiRedefineClassesTrace.hpp"
34#include "runtime/sharedRuntime.hpp"
35#include "runtime/vframeArray.hpp"
36#include "vmreg_sparc.inline.hpp"
37#ifdef COMPILER1
38#include "c1/c1_Runtime1.hpp"
39#endif
40#ifdef COMPILER2
41#include "opto/runtime.hpp"
42#endif
43#ifdef SHARK
44#include "compiler/compileBroker.hpp"
45#include "shark/sharkCompiler.hpp"
46#endif
47
48#define __ masm->
49
50
51class RegisterSaver {
52
53  // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
54  // The Oregs are problematic. In the 32bit build the compiler can
55  // have O registers live with 64 bit quantities. A window save will
56  // cut the heads off of the registers. We have to do a very extensive
57  // stack dance to save and restore these properly.
58
59  // Note that the Oregs problem only exists if we block at either a polling
60  // page exception a compiled code safepoint that was not originally a call
61  // or deoptimize following one of these kinds of safepoints.
62
63  // Lots of registers to save.  For all builds, a window save will preserve
64  // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
65  // builds a window-save will preserve the %o registers.  In the LION build
66  // we need to save the 64-bit %o registers which requires we save them
67  // before the window-save (as then they become %i registers and get their
68  // heads chopped off on interrupt).  We have to save some %g registers here
69  // as well.
70  enum {
71    // This frame's save area.  Includes extra space for the native call:
72    // vararg's layout space and the like.  Briefly holds the caller's
73    // register save area.
74    call_args_area = frame::register_save_words_sp_offset +
75                     frame::memory_parameter_word_sp_offset*wordSize,
76    // Make sure save locations are always 8 byte aligned.
77    // can't use round_to because it doesn't produce compile time constant
78    start_of_extra_save_area = ((call_args_area + 7) & ~7),
79    g1_offset = start_of_extra_save_area, // g-regs needing saving
80    g3_offset = g1_offset+8,
81    g4_offset = g3_offset+8,
82    g5_offset = g4_offset+8,
83    o0_offset = g5_offset+8,
84    o1_offset = o0_offset+8,
85    o2_offset = o1_offset+8,
86    o3_offset = o2_offset+8,
87    o4_offset = o3_offset+8,
88    o5_offset = o4_offset+8,
89    start_of_flags_save_area = o5_offset+8,
90    ccr_offset = start_of_flags_save_area,
91    fsr_offset = ccr_offset + 8,
92    d00_offset = fsr_offset+8,  // Start of float save area
93    register_save_size = d00_offset+8*32
94  };
95
96
97  public:
98
99  static int Oexception_offset() { return o0_offset; };
100  static int G3_offset() { return g3_offset; };
101  static int G5_offset() { return g5_offset; };
102  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
103  static void restore_live_registers(MacroAssembler* masm);
104
105  // During deoptimization only the result register need to be restored
106  // all the other values have already been extracted.
107
108  static void restore_result_registers(MacroAssembler* masm);
109};
110
111OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
112  // Record volatile registers as callee-save values in an OopMap so their save locations will be
113  // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
114  // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
115  // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
116  // (as the stub's I's) when the runtime routine called by the stub creates its frame.
117  int i;
118  // Always make the frame size 16 byte aligned.
119  int frame_size = round_to(additional_frame_words + register_save_size, 16);
120  // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
121  int frame_size_in_slots = frame_size / sizeof(jint);
122  // CodeBlob frame size is in words.
123  *total_frame_words = frame_size / wordSize;
124  // OopMap* map = new OopMap(*total_frame_words, 0);
125  OopMap* map = new OopMap(frame_size_in_slots, 0);
126
127#if !defined(_LP64)
128
129  // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
130  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
131  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
132  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
133  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
134  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
135  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
136#endif /* _LP64 */
137
138  __ save(SP, -frame_size, SP);
139
140#ifndef _LP64
141  // Reload the 64 bit Oregs. Although they are now Iregs we load them
142  // to Oregs here to avoid interrupts cutting off their heads
143
144  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
145  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
146  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
147  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
148  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
149  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
150
151  __ stx(O0, SP, o0_offset+STACK_BIAS);
152  map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
153
154  __ stx(O1, SP, o1_offset+STACK_BIAS);
155
156  map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
157
158  __ stx(O2, SP, o2_offset+STACK_BIAS);
159  map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
160
161  __ stx(O3, SP, o3_offset+STACK_BIAS);
162  map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
163
164  __ stx(O4, SP, o4_offset+STACK_BIAS);
165  map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
166
167  __ stx(O5, SP, o5_offset+STACK_BIAS);
168  map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
169#endif /* _LP64 */
170
171
172#ifdef _LP64
173  int debug_offset = 0;
174#else
175  int debug_offset = 4;
176#endif
177  // Save the G's
178  __ stx(G1, SP, g1_offset+STACK_BIAS);
179  map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
180
181  __ stx(G3, SP, g3_offset+STACK_BIAS);
182  map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
183
184  __ stx(G4, SP, g4_offset+STACK_BIAS);
185  map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
186
187  __ stx(G5, SP, g5_offset+STACK_BIAS);
188  map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
189
190  // This is really a waste but we'll keep things as they were for now
191  if (true) {
192#ifndef _LP64
193    map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
194    map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
195    map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
196    map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
197    map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
198    map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
199    map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
200    map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
201    map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
202    map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
203#endif /* _LP64 */
204  }
205
206
207  // Save the flags
208  __ rdccr( G5 );
209  __ stx(G5, SP, ccr_offset+STACK_BIAS);
210  __ stxfsr(SP, fsr_offset+STACK_BIAS);
211
212  // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
213  int offset = d00_offset;
214  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
215    FloatRegister f = as_FloatRegister(i);
216    __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
217    // Record as callee saved both halves of double registers (2 float registers).
218    map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
219    map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
220    offset += sizeof(double);
221  }
222
223  // And we're done.
224
225  return map;
226}
227
228
229// Pop the current frame and restore all the registers that we
230// saved.
231void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
232
233  // Restore all the FP registers
234  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
235    __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
236  }
237
238  __ ldx(SP, ccr_offset+STACK_BIAS, G1);
239  __ wrccr (G1) ;
240
241  // Restore the G's
242  // Note that G2 (AKA GThread) must be saved and restored separately.
243  // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
244
245  __ ldx(SP, g1_offset+STACK_BIAS, G1);
246  __ ldx(SP, g3_offset+STACK_BIAS, G3);
247  __ ldx(SP, g4_offset+STACK_BIAS, G4);
248  __ ldx(SP, g5_offset+STACK_BIAS, G5);
249
250
251#if !defined(_LP64)
252  // Restore the 64-bit O's.
253  __ ldx(SP, o0_offset+STACK_BIAS, O0);
254  __ ldx(SP, o1_offset+STACK_BIAS, O1);
255  __ ldx(SP, o2_offset+STACK_BIAS, O2);
256  __ ldx(SP, o3_offset+STACK_BIAS, O3);
257  __ ldx(SP, o4_offset+STACK_BIAS, O4);
258  __ ldx(SP, o5_offset+STACK_BIAS, O5);
259
260  // And temporarily place them in TLS
261
262  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
263  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
264  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
265  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
266  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
267  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
268#endif /* _LP64 */
269
270  // Restore flags
271
272  __ ldxfsr(SP, fsr_offset+STACK_BIAS);
273
274  __ restore();
275
276#if !defined(_LP64)
277  // Now reload the 64bit Oregs after we've restore the window.
278  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
279  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
280  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
281  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
282  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
283  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
284#endif /* _LP64 */
285
286}
287
288// Pop the current frame and restore the registers that might be holding
289// a result.
290void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
291
292#if !defined(_LP64)
293  // 32bit build returns longs in G1
294  __ ldx(SP, g1_offset+STACK_BIAS, G1);
295
296  // Retrieve the 64-bit O's.
297  __ ldx(SP, o0_offset+STACK_BIAS, O0);
298  __ ldx(SP, o1_offset+STACK_BIAS, O1);
299  // and save to TLS
300  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
301  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
302#endif /* _LP64 */
303
304  __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
305
306  __ restore();
307
308#if !defined(_LP64)
309  // Now reload the 64bit Oregs after we've restore the window.
310  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
311  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
312#endif /* _LP64 */
313
314}
315
316// The java_calling_convention describes stack locations as ideal slots on
317// a frame with no abi restrictions. Since we must observe abi restrictions
318// (like the placement of the register window) the slots must be biased by
319// the following value.
320static int reg2offset(VMReg r) {
321  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
322}
323
324static VMRegPair reg64_to_VMRegPair(Register r) {
325  VMRegPair ret;
326  if (wordSize == 8) {
327    ret.set2(r->as_VMReg());
328  } else {
329    ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
330  }
331  return ret;
332}
333
334// ---------------------------------------------------------------------------
335// Read the array of BasicTypes from a signature, and compute where the
336// arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
337// quantities.  Values less than VMRegImpl::stack0 are registers, those above
338// refer to 4-byte stack slots.  All stack slots are based off of the window
339// top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
340// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
341// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
342// integer registers.  Values 64-95 are the (32-bit only) float registers.
343// Each 32-bit quantity is given its own number, so the integer registers
344// (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
345// an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
346
347// Register results are passed in O0-O5, for outgoing call arguments.  To
348// convert to incoming arguments, convert all O's to I's.  The regs array
349// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
350// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
351// 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
352// passed (used as a placeholder for the other half of longs and doubles in
353// the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
354// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
355// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
356// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
357// same VMRegPair.
358
359// Note: the INPUTS in sig_bt are in units of Java argument words, which are
360// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
361// units regardless of build.
362
363
364// ---------------------------------------------------------------------------
365// The compiled Java calling convention.  The Java convention always passes
366// 64-bit values in adjacent aligned locations (either registers or stack),
367// floats in float registers and doubles in aligned float pairs.  Values are
368// packed in the registers.  There is no backing varargs store for values in
369// registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
370// passed in I's, because longs in I's get their heads chopped off at
371// interrupt).
372int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
373                                           VMRegPair *regs,
374                                           int total_args_passed,
375                                           int is_outgoing) {
376  assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
377
378  // Convention is to pack the first 6 int/oop args into the first 6 registers
379  // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
380  // into F0-F7, extras spill to the stack.  Then pad all register sets to
381  // align.  Then put longs and doubles into the same registers as they fit,
382  // else spill to the stack.
383  const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
384  const int flt_reg_max = 8;
385  //
386  // Where 32-bit 1-reg longs start being passed
387  // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
388  // So make it look like we've filled all the G regs that c2 wants to use.
389  Register g_reg = TieredCompilation ? noreg : G1;
390
391  // Count int/oop and float args.  See how many stack slots we'll need and
392  // where the longs & doubles will go.
393  int int_reg_cnt   = 0;
394  int flt_reg_cnt   = 0;
395  // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
396  // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
397  int stk_reg_pairs = 0;
398  for (int i = 0; i < total_args_passed; i++) {
399    switch (sig_bt[i]) {
400    case T_LONG:                // LP64, longs compete with int args
401      assert(sig_bt[i+1] == T_VOID, "");
402#ifdef _LP64
403      if (int_reg_cnt < int_reg_max)  int_reg_cnt++;
404#endif
405      break;
406    case T_OBJECT:
407    case T_ARRAY:
408    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
409      if (int_reg_cnt < int_reg_max)  int_reg_cnt++;
410#ifndef _LP64
411      else                            stk_reg_pairs++;
412#endif
413      break;
414    case T_INT:
415    case T_SHORT:
416    case T_CHAR:
417    case T_BYTE:
418    case T_BOOLEAN:
419      if (int_reg_cnt < int_reg_max)  int_reg_cnt++;
420      else                            stk_reg_pairs++;
421      break;
422    case T_FLOAT:
423      if (flt_reg_cnt < flt_reg_max)  flt_reg_cnt++;
424      else                            stk_reg_pairs++;
425      break;
426    case T_DOUBLE:
427      assert(sig_bt[i+1] == T_VOID, "");
428      break;
429    case T_VOID:
430      break;
431    default:
432      ShouldNotReachHere();
433    }
434  }
435
436  // This is where the longs/doubles start on the stack.
437  stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
438
439  int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
440
441  // int stk_reg = frame::register_save_words*(wordSize>>2);
442  // int stk_reg = SharedRuntime::out_preserve_stack_slots();
443  int stk_reg = 0;
444  int int_reg = 0;
445  int flt_reg = 0;
446
447  // Now do the signature layout
448  for (int i = 0; i < total_args_passed; i++) {
449    switch (sig_bt[i]) {
450    case T_INT:
451    case T_SHORT:
452    case T_CHAR:
453    case T_BYTE:
454    case T_BOOLEAN:
455#ifndef _LP64
456    case T_OBJECT:
457    case T_ARRAY:
458    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
459#endif // _LP64
460      if (int_reg < int_reg_max) {
461        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
462        regs[i].set1(r->as_VMReg());
463      } else {
464        regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
465      }
466      break;
467
468#ifdef _LP64
469    case T_OBJECT:
470    case T_ARRAY:
471    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
472      if (int_reg < int_reg_max) {
473        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
474        regs[i].set2(r->as_VMReg());
475      } else {
476        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
477        stk_reg_pairs += 2;
478      }
479      break;
480#endif // _LP64
481
482    case T_LONG:
483      assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
484#ifdef _LP64
485        if (int_reg < int_reg_max) {
486          Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
487          regs[i].set2(r->as_VMReg());
488        } else {
489          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
490          stk_reg_pairs += 2;
491        }
492#else
493#ifdef COMPILER2
494        // For 32-bit build, can't pass longs in O-regs because they become
495        // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
496        // spare and available.  This convention isn't used by the Sparc ABI or
497        // anywhere else. If we're tiered then we don't use G-regs because c1
498        // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
499        // G0: zero
500        // G1: 1st Long arg
501        // G2: global allocated to TLS
502        // G3: used in inline cache check
503        // G4: 2nd Long arg
504        // G5: used in inline cache check
505        // G6: used by OS
506        // G7: used by OS
507
508        if (g_reg == G1) {
509          regs[i].set2(G1->as_VMReg()); // This long arg in G1
510          g_reg = G4;                  // Where the next arg goes
511        } else if (g_reg == G4) {
512          regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
513          g_reg = noreg;               // No more longs in registers
514        } else {
515          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
516          stk_reg_pairs += 2;
517        }
518#else // COMPILER2
519          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
520          stk_reg_pairs += 2;
521#endif // COMPILER2
522#endif // _LP64
523      break;
524
525    case T_FLOAT:
526      if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
527      else                       regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
528      break;
529    case T_DOUBLE:
530      assert(sig_bt[i+1] == T_VOID, "expecting half");
531      if (flt_reg_pairs + 1 < flt_reg_max) {
532        regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
533        flt_reg_pairs += 2;
534      } else {
535        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
536        stk_reg_pairs += 2;
537      }
538      break;
539    case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
540    default:
541      ShouldNotReachHere();
542    }
543  }
544
545  // retun the amount of stack space these arguments will need.
546  return stk_reg_pairs;
547
548}
549
550// Helper class mostly to avoid passing masm everywhere, and handle
551// store displacement overflow logic.
552class AdapterGenerator {
553  MacroAssembler *masm;
554  Register Rdisp;
555  void set_Rdisp(Register r)  { Rdisp = r; }
556
557  void patch_callers_callsite();
558
559  // base+st_off points to top of argument
560  int arg_offset(const int st_off) { return st_off; }
561  int next_arg_offset(const int st_off) {
562    return st_off - Interpreter::stackElementSize;
563  }
564
565  // Argument slot values may be loaded first into a register because
566  // they might not fit into displacement.
567  RegisterOrConstant arg_slot(const int st_off);
568  RegisterOrConstant next_arg_slot(const int st_off);
569
570  // Stores long into offset pointed to by base
571  void store_c2i_long(Register r, Register base,
572                      const int st_off, bool is_stack);
573  void store_c2i_object(Register r, Register base,
574                        const int st_off);
575  void store_c2i_int(Register r, Register base,
576                     const int st_off);
577  void store_c2i_double(VMReg r_2,
578                        VMReg r_1, Register base, const int st_off);
579  void store_c2i_float(FloatRegister f, Register base,
580                       const int st_off);
581
582 public:
583  void gen_c2i_adapter(int total_args_passed,
584                              // VMReg max_arg,
585                              int comp_args_on_stack, // VMRegStackSlots
586                              const BasicType *sig_bt,
587                              const VMRegPair *regs,
588                              Label& skip_fixup);
589  void gen_i2c_adapter(int total_args_passed,
590                              // VMReg max_arg,
591                              int comp_args_on_stack, // VMRegStackSlots
592                              const BasicType *sig_bt,
593                              const VMRegPair *regs);
594
595  AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
596};
597
598
599// Patch the callers callsite with entry to compiled code if it exists.
600void AdapterGenerator::patch_callers_callsite() {
601  Label L;
602  __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
603  __ br_null(G3_scratch, false, Assembler::pt, L);
604  // Schedule the branch target address early.
605  __ delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
606  // Call into the VM to patch the caller, then jump to compiled callee
607  __ save_frame(4);     // Args in compiled layout; do not blow them
608
609  // Must save all the live Gregs the list is:
610  // G1: 1st Long arg (32bit build)
611  // G2: global allocated to TLS
612  // G3: used in inline cache check (scratch)
613  // G4: 2nd Long arg (32bit build);
614  // G5: used in inline cache check (Method*)
615
616  // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
617
618#ifdef _LP64
619  // mov(s,d)
620  __ mov(G1, L1);
621  __ mov(G4, L4);
622  __ mov(G5_method, L5);
623  __ mov(G5_method, O0);         // VM needs target method
624  __ mov(I7, O1);                // VM needs caller's callsite
625  // Must be a leaf call...
626  // can be very far once the blob has been relocated
627  AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
628  __ relocate(relocInfo::runtime_call_type);
629  __ jumpl_to(dest, O7, O7);
630  __ delayed()->mov(G2_thread, L7_thread_cache);
631  __ mov(L7_thread_cache, G2_thread);
632  __ mov(L1, G1);
633  __ mov(L4, G4);
634  __ mov(L5, G5_method);
635#else
636  __ stx(G1, FP, -8 + STACK_BIAS);
637  __ stx(G4, FP, -16 + STACK_BIAS);
638  __ mov(G5_method, L5);
639  __ mov(G5_method, O0);         // VM needs target method
640  __ mov(I7, O1);                // VM needs caller's callsite
641  // Must be a leaf call...
642  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
643  __ delayed()->mov(G2_thread, L7_thread_cache);
644  __ mov(L7_thread_cache, G2_thread);
645  __ ldx(FP, -8 + STACK_BIAS, G1);
646  __ ldx(FP, -16 + STACK_BIAS, G4);
647  __ mov(L5, G5_method);
648  __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
649#endif /* _LP64 */
650
651  __ restore();      // Restore args
652  __ bind(L);
653}
654
655
656RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
657  RegisterOrConstant roc(arg_offset(st_off));
658  return __ ensure_simm13_or_reg(roc, Rdisp);
659}
660
661RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
662  RegisterOrConstant roc(next_arg_offset(st_off));
663  return __ ensure_simm13_or_reg(roc, Rdisp);
664}
665
666
667// Stores long into offset pointed to by base
668void AdapterGenerator::store_c2i_long(Register r, Register base,
669                                      const int st_off, bool is_stack) {
670#ifdef _LP64
671  // In V9, longs are given 2 64-bit slots in the interpreter, but the
672  // data is passed in only 1 slot.
673  __ stx(r, base, next_arg_slot(st_off));
674#else
675#ifdef COMPILER2
676  // Misaligned store of 64-bit data
677  __ stw(r, base, arg_slot(st_off));    // lo bits
678  __ srlx(r, 32, r);
679  __ stw(r, base, next_arg_slot(st_off));  // hi bits
680#else
681  if (is_stack) {
682    // Misaligned store of 64-bit data
683    __ stw(r, base, arg_slot(st_off));    // lo bits
684    __ srlx(r, 32, r);
685    __ stw(r, base, next_arg_slot(st_off));  // hi bits
686  } else {
687    __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
688    __ stw(r             , base, next_arg_slot(st_off)); // hi bits
689  }
690#endif // COMPILER2
691#endif // _LP64
692}
693
694void AdapterGenerator::store_c2i_object(Register r, Register base,
695                      const int st_off) {
696  __ st_ptr (r, base, arg_slot(st_off));
697}
698
699void AdapterGenerator::store_c2i_int(Register r, Register base,
700                   const int st_off) {
701  __ st (r, base, arg_slot(st_off));
702}
703
704// Stores into offset pointed to by base
705void AdapterGenerator::store_c2i_double(VMReg r_2,
706                      VMReg r_1, Register base, const int st_off) {
707#ifdef _LP64
708  // In V9, doubles are given 2 64-bit slots in the interpreter, but the
709  // data is passed in only 1 slot.
710  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
711#else
712  // Need to marshal 64-bit value from misaligned Lesp loads
713  __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
714  __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
715#endif
716}
717
718void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
719                                       const int st_off) {
720  __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
721}
722
723void AdapterGenerator::gen_c2i_adapter(
724                            int total_args_passed,
725                            // VMReg max_arg,
726                            int comp_args_on_stack, // VMRegStackSlots
727                            const BasicType *sig_bt,
728                            const VMRegPair *regs,
729                            Label& skip_fixup) {
730
731  // Before we get into the guts of the C2I adapter, see if we should be here
732  // at all.  We've come from compiled code and are attempting to jump to the
733  // interpreter, which means the caller made a static call to get here
734  // (vcalls always get a compiled target if there is one).  Check for a
735  // compiled target.  If there is one, we need to patch the caller's call.
736  // However we will run interpreted if we come thru here. The next pass
737  // thru the call site will run compiled. If we ran compiled here then
738  // we can (theorectically) do endless i2c->c2i->i2c transitions during
739  // deopt/uncommon trap cycles. If we always go interpreted here then
740  // we can have at most one and don't need to play any tricks to keep
741  // from endlessly growing the stack.
742  //
743  // Actually if we detected that we had an i2c->c2i transition here we
744  // ought to be able to reset the world back to the state of the interpreted
745  // call and not bother building another interpreter arg area. We don't
746  // do that at this point.
747
748  patch_callers_callsite();
749
750  __ bind(skip_fixup);
751
752  // Since all args are passed on the stack, total_args_passed*wordSize is the
753  // space we need.  Add in varargs area needed by the interpreter. Round up
754  // to stack alignment.
755  const int arg_size = total_args_passed * Interpreter::stackElementSize;
756  const int varargs_area =
757                 (frame::varargs_offset - frame::register_save_words)*wordSize;
758  const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
759
760  int bias = STACK_BIAS;
761  const int interp_arg_offset = frame::varargs_offset*wordSize +
762                        (total_args_passed-1)*Interpreter::stackElementSize;
763
764  Register base = SP;
765
766#ifdef _LP64
767  // In the 64bit build because of wider slots and STACKBIAS we can run
768  // out of bits in the displacement to do loads and stores.  Use g3 as
769  // temporary displacement.
770  if (!Assembler::is_simm13(extraspace)) {
771    __ set(extraspace, G3_scratch);
772    __ sub(SP, G3_scratch, SP);
773  } else {
774    __ sub(SP, extraspace, SP);
775  }
776  set_Rdisp(G3_scratch);
777#else
778  __ sub(SP, extraspace, SP);
779#endif // _LP64
780
781  // First write G1 (if used) to where ever it must go
782  for (int i=0; i<total_args_passed; i++) {
783    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
784    VMReg r_1 = regs[i].first();
785    VMReg r_2 = regs[i].second();
786    if (r_1 == G1_scratch->as_VMReg()) {
787      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
788        store_c2i_object(G1_scratch, base, st_off);
789      } else if (sig_bt[i] == T_LONG) {
790        assert(!TieredCompilation, "should not use register args for longs");
791        store_c2i_long(G1_scratch, base, st_off, false);
792      } else {
793        store_c2i_int(G1_scratch, base, st_off);
794      }
795    }
796  }
797
798  // Now write the args into the outgoing interpreter space
799  for (int i=0; i<total_args_passed; i++) {
800    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
801    VMReg r_1 = regs[i].first();
802    VMReg r_2 = regs[i].second();
803    if (!r_1->is_valid()) {
804      assert(!r_2->is_valid(), "");
805      continue;
806    }
807    // Skip G1 if found as we did it first in order to free it up
808    if (r_1 == G1_scratch->as_VMReg()) {
809      continue;
810    }
811#ifdef ASSERT
812    bool G1_forced = false;
813#endif // ASSERT
814    if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
815#ifdef _LP64
816      Register ld_off = Rdisp;
817      __ set(reg2offset(r_1) + extraspace + bias, ld_off);
818#else
819      int ld_off = reg2offset(r_1) + extraspace + bias;
820#endif // _LP64
821#ifdef ASSERT
822      G1_forced = true;
823#endif // ASSERT
824      r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
825      if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
826      else                  __ ldx(base, ld_off, G1_scratch);
827    }
828
829    if (r_1->is_Register()) {
830      Register r = r_1->as_Register()->after_restore();
831      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
832        store_c2i_object(r, base, st_off);
833      } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
834#ifndef _LP64
835        if (TieredCompilation) {
836          assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
837        }
838#endif // _LP64
839        store_c2i_long(r, base, st_off, r_2->is_stack());
840      } else {
841        store_c2i_int(r, base, st_off);
842      }
843    } else {
844      assert(r_1->is_FloatRegister(), "");
845      if (sig_bt[i] == T_FLOAT) {
846        store_c2i_float(r_1->as_FloatRegister(), base, st_off);
847      } else {
848        assert(sig_bt[i] == T_DOUBLE, "wrong type");
849        store_c2i_double(r_2, r_1, base, st_off);
850      }
851    }
852  }
853
854#ifdef _LP64
855  // Need to reload G3_scratch, used for temporary displacements.
856  __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
857
858  // Pass O5_savedSP as an argument to the interpreter.
859  // The interpreter will restore SP to this value before returning.
860  __ set(extraspace, G1);
861  __ add(SP, G1, O5_savedSP);
862#else
863  // Pass O5_savedSP as an argument to the interpreter.
864  // The interpreter will restore SP to this value before returning.
865  __ add(SP, extraspace, O5_savedSP);
866#endif // _LP64
867
868  __ mov((frame::varargs_offset)*wordSize -
869         1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
870  // Jump to the interpreter just as if interpreter was doing it.
871  __ jmpl(G3_scratch, 0, G0);
872  // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
873  // (really L0) is in use by the compiled frame as a generic temp.  However,
874  // the interpreter does not know where its args are without some kind of
875  // arg pointer being passed in.  Pass it in Gargs.
876  __ delayed()->add(SP, G1, Gargs);
877}
878
879static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
880                        address code_start, address code_end,
881                        Label& L_ok) {
882  Label L_fail;
883  __ set(ExternalAddress(code_start), temp_reg);
884  __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
885  __ cmp(pc_reg, temp_reg);
886  __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
887  __ delayed()->add(temp_reg, temp2_reg, temp_reg);
888  __ cmp(pc_reg, temp_reg);
889  __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
890  __ bind(L_fail);
891}
892
893void AdapterGenerator::gen_i2c_adapter(
894                            int total_args_passed,
895                            // VMReg max_arg,
896                            int comp_args_on_stack, // VMRegStackSlots
897                            const BasicType *sig_bt,
898                            const VMRegPair *regs) {
899
900  // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
901  // layout.  Lesp was saved by the calling I-frame and will be restored on
902  // return.  Meanwhile, outgoing arg space is all owned by the callee
903  // C-frame, so we can mangle it at will.  After adjusting the frame size,
904  // hoist register arguments and repack other args according to the compiled
905  // code convention.  Finally, end in a jump to the compiled code.  The entry
906  // point address is the start of the buffer.
907
908  // We will only enter here from an interpreted frame and never from after
909  // passing thru a c2i. Azul allowed this but we do not. If we lose the
910  // race and use a c2i we will remain interpreted for the race loser(s).
911  // This removes all sorts of headaches on the x86 side and also eliminates
912  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
913
914  // More detail:
915  // Adapters can be frameless because they do not require the caller
916  // to perform additional cleanup work, such as correcting the stack pointer.
917  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
918  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
919  // even if a callee has modified the stack pointer.
920  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
921  // routinely repairs its caller's stack pointer (from sender_sp, which is set
922  // up via the senderSP register).
923  // In other words, if *either* the caller or callee is interpreted, we can
924  // get the stack pointer repaired after a call.
925  // This is why c2i and i2c adapters cannot be indefinitely composed.
926  // In particular, if a c2i adapter were to somehow call an i2c adapter,
927  // both caller and callee would be compiled methods, and neither would
928  // clean up the stack pointer changes performed by the two adapters.
929  // If this happens, control eventually transfers back to the compiled
930  // caller, but with an uncorrected stack, causing delayed havoc.
931
932  if (VerifyAdapterCalls &&
933      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
934    // So, let's test for cascading c2i/i2c adapters right now.
935    //  assert(Interpreter::contains($return_addr) ||
936    //         StubRoutines::contains($return_addr),
937    //         "i2c adapter must return to an interpreter frame");
938    __ block_comment("verify_i2c { ");
939    Label L_ok;
940    if (Interpreter::code() != NULL)
941      range_check(masm, O7, O0, O1,
942                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
943                  L_ok);
944    if (StubRoutines::code1() != NULL)
945      range_check(masm, O7, O0, O1,
946                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
947                  L_ok);
948    if (StubRoutines::code2() != NULL)
949      range_check(masm, O7, O0, O1,
950                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
951                  L_ok);
952    const char* msg = "i2c adapter must return to an interpreter frame";
953    __ block_comment(msg);
954    __ stop(msg);
955    __ bind(L_ok);
956    __ block_comment("} verify_i2ce ");
957  }
958
959  // As you can see from the list of inputs & outputs there are not a lot
960  // of temp registers to work with: mostly G1, G3 & G4.
961
962  // Inputs:
963  // G2_thread      - TLS
964  // G5_method      - Method oop
965  // G4 (Gargs)     - Pointer to interpreter's args
966  // O0..O4         - free for scratch
967  // O5_savedSP     - Caller's saved SP, to be restored if needed
968  // O6             - Current SP!
969  // O7             - Valid return address
970  // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
971
972  // Outputs:
973  // G2_thread      - TLS
974  // G1, G4         - Outgoing long args in 32-bit build
975  // O0-O5          - Outgoing args in compiled layout
976  // O6             - Adjusted or restored SP
977  // O7             - Valid return address
978  // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
979  // F0-F7          - more outgoing args
980
981
982  // Gargs is the incoming argument base, and also an outgoing argument.
983  __ sub(Gargs, BytesPerWord, Gargs);
984
985  // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
986  // WITH O7 HOLDING A VALID RETURN PC
987  //
988  // |              |
989  // :  java stack  :
990  // |              |
991  // +--------------+ <--- start of outgoing args
992  // |   receiver   |   |
993  // : rest of args :   |---size is java-arg-words
994  // |              |   |
995  // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
996  // |              |   |
997  // :    unused    :   |---Space for max Java stack, plus stack alignment
998  // |              |   |
999  // +--------------+ <--- SP + 16*wordsize
1000  // |              |
1001  // :    window    :
1002  // |              |
1003  // +--------------+ <--- SP
1004
1005  // WE REPACK THE STACK.  We use the common calling convention layout as
1006  // discovered by calling SharedRuntime::calling_convention.  We assume it
1007  // causes an arbitrary shuffle of memory, which may require some register
1008  // temps to do the shuffle.  We hope for (and optimize for) the case where
1009  // temps are not needed.  We may have to resize the stack slightly, in case
1010  // we need alignment padding (32-bit interpreter can pass longs & doubles
1011  // misaligned, but the compilers expect them aligned).
1012  //
1013  // |              |
1014  // :  java stack  :
1015  // |              |
1016  // +--------------+ <--- start of outgoing args
1017  // |  pad, align  |   |
1018  // +--------------+   |
1019  // | ints, floats |   |---Outgoing stack args, packed low.
1020  // +--------------+   |   First few args in registers.
1021  // :   doubles    :   |
1022  // |   longs      |   |
1023  // +--------------+ <--- SP' + 16*wordsize
1024  // |              |
1025  // :    window    :
1026  // |              |
1027  // +--------------+ <--- SP'
1028
1029  // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
1030  // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
1031  // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
1032
1033  // Cut-out for having no stack args.  Since up to 6 args are passed
1034  // in registers, we will commonly have no stack args.
1035  if (comp_args_on_stack > 0) {
1036
1037    // Convert VMReg stack slots to words.
1038    int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1039    // Round up to miminum stack alignment, in wordSize
1040    comp_words_on_stack = round_to(comp_words_on_stack, 2);
1041    // Now compute the distance from Lesp to SP.  This calculation does not
1042    // include the space for total_args_passed because Lesp has not yet popped
1043    // the arguments.
1044    __ sub(SP, (comp_words_on_stack)*wordSize, SP);
1045  }
1046
1047  // Will jump to the compiled code just as if compiled code was doing it.
1048  // Pre-load the register-jump target early, to schedule it better.
1049  __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
1050
1051  // Now generate the shuffle code.  Pick up all register args and move the
1052  // rest through G1_scratch.
1053  for (int i=0; i<total_args_passed; i++) {
1054    if (sig_bt[i] == T_VOID) {
1055      // Longs and doubles are passed in native word order, but misaligned
1056      // in the 32-bit build.
1057      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1058      continue;
1059    }
1060
1061    // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
1062    // 32-bit build and aligned in the 64-bit build.  Look for the obvious
1063    // ldx/lddf optimizations.
1064
1065    // Load in argument order going down.
1066    const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1067    set_Rdisp(G1_scratch);
1068
1069    VMReg r_1 = regs[i].first();
1070    VMReg r_2 = regs[i].second();
1071    if (!r_1->is_valid()) {
1072      assert(!r_2->is_valid(), "");
1073      continue;
1074    }
1075    if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
1076      r_1 = F8->as_VMReg();        // as part of the load/store shuffle
1077      if (r_2->is_valid()) r_2 = r_1->next();
1078    }
1079    if (r_1->is_Register()) {  // Register argument
1080      Register r = r_1->as_Register()->after_restore();
1081      if (!r_2->is_valid()) {
1082        __ ld(Gargs, arg_slot(ld_off), r);
1083      } else {
1084#ifdef _LP64
1085        // In V9, longs are given 2 64-bit slots in the interpreter, but the
1086        // data is passed in only 1 slot.
1087        RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
1088              next_arg_slot(ld_off) : arg_slot(ld_off);
1089        __ ldx(Gargs, slot, r);
1090#else
1091        // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1092        // stack shuffle.  Load the first 2 longs into G1/G4 later.
1093#endif
1094      }
1095    } else {
1096      assert(r_1->is_FloatRegister(), "");
1097      if (!r_2->is_valid()) {
1098        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1099      } else {
1100#ifdef _LP64
1101        // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1102        // data is passed in only 1 slot.  This code also handles longs that
1103        // are passed on the stack, but need a stack-to-stack move through a
1104        // spare float register.
1105        RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
1106              next_arg_slot(ld_off) : arg_slot(ld_off);
1107        __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1108#else
1109        // Need to marshal 64-bit value from misaligned Lesp loads
1110        __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1111        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1112#endif
1113      }
1114    }
1115    // Was the argument really intended to be on the stack, but was loaded
1116    // into F8/F9?
1117    if (regs[i].first()->is_stack()) {
1118      assert(r_1->as_FloatRegister() == F8, "fix this code");
1119      // Convert stack slot to an SP offset
1120      int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1121      // Store down the shuffled stack word.  Target address _is_ aligned.
1122      RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
1123      if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
1124      else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
1125    }
1126  }
1127  bool made_space = false;
1128#ifndef _LP64
1129  // May need to pick up a few long args in G1/G4
1130  bool g4_crushed = false;
1131  bool g3_crushed = false;
1132  for (int i=0; i<total_args_passed; i++) {
1133    if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1134      // Load in argument order going down
1135      int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1136      // Need to marshal 64-bit value from misaligned Lesp loads
1137      Register r = regs[i].first()->as_Register()->after_restore();
1138      if (r == G1 || r == G4) {
1139        assert(!g4_crushed, "ordering problem");
1140        if (r == G4){
1141          g4_crushed = true;
1142          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1143          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1144        } else {
1145          // better schedule this way
1146          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1147          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1148        }
1149        g3_crushed = true;
1150        __ sllx(r, 32, r);
1151        __ or3(G3_scratch, r, r);
1152      } else {
1153        assert(r->is_out(), "longs passed in two O registers");
1154        __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
1155        __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
1156      }
1157    }
1158  }
1159#endif
1160
1161  // Jump to the compiled code just as if compiled code was doing it.
1162  //
1163#ifndef _LP64
1164    if (g3_crushed) {
1165      // Rats load was wasted, at least it is in cache...
1166      __ ld_ptr(G5_method, Method::from_compiled_offset(), G3);
1167    }
1168#endif /* _LP64 */
1169
1170    // 6243940 We might end up in handle_wrong_method if
1171    // the callee is deoptimized as we race thru here. If that
1172    // happens we don't want to take a safepoint because the
1173    // caller frame will look interpreted and arguments are now
1174    // "compiled" so it is much better to make this transition
1175    // invisible to the stack walking code. Unfortunately if
1176    // we try and find the callee by normal means a safepoint
1177    // is possible. So we stash the desired callee in the thread
1178    // and the vm will find there should this case occur.
1179    Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1180    __ st_ptr(G5_method, callee_target_addr);
1181
1182    if (StressNonEntrant) {
1183      // Open a big window for deopt failure
1184      __ save_frame(0);
1185      __ mov(G0, L0);
1186      Label loop;
1187      __ bind(loop);
1188      __ sub(L0, 1, L0);
1189      __ br_null_short(L0, Assembler::pt, loop);
1190
1191      __ restore();
1192    }
1193
1194
1195    __ jmpl(G3, 0, G0);
1196    __ delayed()->nop();
1197}
1198
1199// ---------------------------------------------------------------
1200AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1201                                                            int total_args_passed,
1202                                                            // VMReg max_arg,
1203                                                            int comp_args_on_stack, // VMRegStackSlots
1204                                                            const BasicType *sig_bt,
1205                                                            const VMRegPair *regs,
1206                                                            AdapterFingerPrint* fingerprint) {
1207  address i2c_entry = __ pc();
1208
1209  AdapterGenerator agen(masm);
1210
1211  agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1212
1213
1214  // -------------------------------------------------------------------------
1215  // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
1216  // args start out packed in the compiled layout.  They need to be unpacked
1217  // into the interpreter layout.  This will almost always require some stack
1218  // space.  We grow the current (compiled) stack, then repack the args.  We
1219  // finally end in a jump to the generic interpreter entry point.  On exit
1220  // from the interpreter, the interpreter will restore our SP (lest the
1221  // compiled code, which relys solely on SP and not FP, get sick).
1222
1223  address c2i_unverified_entry = __ pc();
1224  Label skip_fixup;
1225  {
1226#if !defined(_LP64) && defined(COMPILER2)
1227    Register R_temp   = L0;   // another scratch register
1228#else
1229    Register R_temp   = G1;   // another scratch register
1230#endif
1231
1232    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1233
1234    __ verify_oop(O0);
1235    __ load_klass(O0, G3_scratch);
1236
1237#if !defined(_LP64) && defined(COMPILER2)
1238    __ save(SP, -frame::register_save_words*wordSize, SP);
1239    __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
1240    __ cmp(G3_scratch, R_temp);
1241    __ restore();
1242#else
1243    __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
1244    __ cmp(G3_scratch, R_temp);
1245#endif
1246
1247    Label ok, ok2;
1248    __ brx(Assembler::equal, false, Assembler::pt, ok);
1249    __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
1250    __ jump_to(ic_miss, G3_scratch);
1251    __ delayed()->nop();
1252
1253    __ bind(ok);
1254    // Method might have been compiled since the call site was patched to
1255    // interpreted if that is the case treat it as a miss so we can get
1256    // the call site corrected.
1257    __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
1258    __ bind(ok2);
1259    __ br_null(G3_scratch, false, Assembler::pt, skip_fixup);
1260    __ delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
1261    __ jump_to(ic_miss, G3_scratch);
1262    __ delayed()->nop();
1263
1264  }
1265
1266  address c2i_entry = __ pc();
1267
1268  agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1269
1270  __ flush();
1271  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1272
1273}
1274
1275// Helper function for native calling conventions
1276static VMReg int_stk_helper( int i ) {
1277  // Bias any stack based VMReg we get by ignoring the window area
1278  // but not the register parameter save area.
1279  //
1280  // This is strange for the following reasons. We'd normally expect
1281  // the calling convention to return an VMReg for a stack slot
1282  // completely ignoring any abi reserved area. C2 thinks of that
1283  // abi area as only out_preserve_stack_slots. This does not include
1284  // the area allocated by the C abi to store down integer arguments
1285  // because the java calling convention does not use it. So
1286  // since c2 assumes that there are only out_preserve_stack_slots
1287  // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1288  // location the c calling convention must add in this bias amount
1289  // to make up for the fact that the out_preserve_stack_slots is
1290  // insufficient for C calls. What a mess. I sure hope those 6
1291  // stack words were worth it on every java call!
1292
1293  // Another way of cleaning this up would be for out_preserve_stack_slots
1294  // to take a parameter to say whether it was C or java calling conventions.
1295  // Then things might look a little better (but not much).
1296
1297  int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1298  if( mem_parm_offset < 0 ) {
1299    return as_oRegister(i)->as_VMReg();
1300  } else {
1301    int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1302    // Now return a biased offset that will be correct when out_preserve_slots is added back in
1303    return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1304  }
1305}
1306
1307
1308int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1309                                         VMRegPair *regs,
1310                                         int total_args_passed) {
1311
1312    // Return the number of VMReg stack_slots needed for the args.
1313    // This value does not include an abi space (like register window
1314    // save area).
1315
1316    // The native convention is V8 if !LP64
1317    // The LP64 convention is the V9 convention which is slightly more sane.
1318
1319    // We return the amount of VMReg stack slots we need to reserve for all
1320    // the arguments NOT counting out_preserve_stack_slots. Since we always
1321    // have space for storing at least 6 registers to memory we start with that.
1322    // See int_stk_helper for a further discussion.
1323    int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1324
1325#ifdef _LP64
1326    // V9 convention: All things "as-if" on double-wide stack slots.
1327    // Hoist any int/ptr/long's in the first 6 to int regs.
1328    // Hoist any flt/dbl's in the first 16 dbl regs.
1329    int j = 0;                  // Count of actual args, not HALVES
1330    for( int i=0; i<total_args_passed; i++, j++ ) {
1331      switch( sig_bt[i] ) {
1332      case T_BOOLEAN:
1333      case T_BYTE:
1334      case T_CHAR:
1335      case T_INT:
1336      case T_SHORT:
1337        regs[i].set1( int_stk_helper( j ) ); break;
1338      case T_LONG:
1339        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1340      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1341      case T_ARRAY:
1342      case T_OBJECT:
1343        regs[i].set2( int_stk_helper( j ) );
1344        break;
1345      case T_FLOAT:
1346        if ( j < 16 ) {
1347          // V9ism: floats go in ODD registers
1348          regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1349        } else {
1350          // V9ism: floats go in ODD stack slot
1351          regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1352        }
1353        break;
1354      case T_DOUBLE:
1355        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1356        if ( j < 16 ) {
1357          // V9ism: doubles go in EVEN/ODD regs
1358          regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1359        } else {
1360          // V9ism: doubles go in EVEN/ODD stack slots
1361          regs[i].set2(VMRegImpl::stack2reg(j<<1));
1362        }
1363        break;
1364      case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1365      default:
1366        ShouldNotReachHere();
1367      }
1368      if (regs[i].first()->is_stack()) {
1369        int off =  regs[i].first()->reg2stack();
1370        if (off > max_stack_slots) max_stack_slots = off;
1371      }
1372      if (regs[i].second()->is_stack()) {
1373        int off =  regs[i].second()->reg2stack();
1374        if (off > max_stack_slots) max_stack_slots = off;
1375      }
1376    }
1377
1378#else // _LP64
1379    // V8 convention: first 6 things in O-regs, rest on stack.
1380    // Alignment is willy-nilly.
1381    for( int i=0; i<total_args_passed; i++ ) {
1382      switch( sig_bt[i] ) {
1383      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1384      case T_ARRAY:
1385      case T_BOOLEAN:
1386      case T_BYTE:
1387      case T_CHAR:
1388      case T_FLOAT:
1389      case T_INT:
1390      case T_OBJECT:
1391      case T_SHORT:
1392        regs[i].set1( int_stk_helper( i ) );
1393        break;
1394      case T_DOUBLE:
1395      case T_LONG:
1396        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1397        regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1398        break;
1399      case T_VOID: regs[i].set_bad(); break;
1400      default:
1401        ShouldNotReachHere();
1402      }
1403      if (regs[i].first()->is_stack()) {
1404        int off =  regs[i].first()->reg2stack();
1405        if (off > max_stack_slots) max_stack_slots = off;
1406      }
1407      if (regs[i].second()->is_stack()) {
1408        int off =  regs[i].second()->reg2stack();
1409        if (off > max_stack_slots) max_stack_slots = off;
1410      }
1411    }
1412#endif // _LP64
1413
1414  return round_to(max_stack_slots + 1, 2);
1415
1416}
1417
1418
1419// ---------------------------------------------------------------------------
1420void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1421  switch (ret_type) {
1422  case T_FLOAT:
1423    __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1424    break;
1425  case T_DOUBLE:
1426    __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1427    break;
1428  }
1429}
1430
1431void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1432  switch (ret_type) {
1433  case T_FLOAT:
1434    __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1435    break;
1436  case T_DOUBLE:
1437    __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1438    break;
1439  }
1440}
1441
1442// Check and forward and pending exception.  Thread is stored in
1443// L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1444// is no exception handler.  We merely pop this frame off and throw the
1445// exception in the caller's frame.
1446static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1447  Label L;
1448  __ br_null(Rex_oop, false, Assembler::pt, L);
1449  __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1450  // Since this is a native call, we *know* the proper exception handler
1451  // without calling into the VM: it's the empty function.  Just pop this
1452  // frame and then jump to forward_exception_entry; O7 will contain the
1453  // native caller's return PC.
1454 AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1455  __ jump_to(exception_entry, G3_scratch);
1456  __ delayed()->restore();      // Pop this frame off.
1457  __ bind(L);
1458}
1459
1460// A simple move of integer like type
1461static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1462  if (src.first()->is_stack()) {
1463    if (dst.first()->is_stack()) {
1464      // stack to stack
1465      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1466      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1467    } else {
1468      // stack to reg
1469      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1470    }
1471  } else if (dst.first()->is_stack()) {
1472    // reg to stack
1473    __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1474  } else {
1475    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1476  }
1477}
1478
1479// On 64 bit we will store integer like items to the stack as
1480// 64 bits items (sparc abi) even though java would only store
1481// 32bits for a parameter. On 32bit it will simply be 32 bits
1482// So this routine will do 32->32 on 32bit and 32->64 on 64bit
1483static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1484  if (src.first()->is_stack()) {
1485    if (dst.first()->is_stack()) {
1486      // stack to stack
1487      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1488      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1489    } else {
1490      // stack to reg
1491      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1492    }
1493  } else if (dst.first()->is_stack()) {
1494    // reg to stack
1495    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1496  } else {
1497    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1498  }
1499}
1500
1501
1502static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1503  if (src.first()->is_stack()) {
1504    if (dst.first()->is_stack()) {
1505      // stack to stack
1506      __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1507      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1508    } else {
1509      // stack to reg
1510      __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1511    }
1512  } else if (dst.first()->is_stack()) {
1513    // reg to stack
1514    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1515  } else {
1516    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1517  }
1518}
1519
1520
1521// An oop arg. Must pass a handle not the oop itself
1522static void object_move(MacroAssembler* masm,
1523                        OopMap* map,
1524                        int oop_handle_offset,
1525                        int framesize_in_slots,
1526                        VMRegPair src,
1527                        VMRegPair dst,
1528                        bool is_receiver,
1529                        int* receiver_offset) {
1530
1531  // must pass a handle. First figure out the location we use as a handle
1532
1533  if (src.first()->is_stack()) {
1534    // Oop is already on the stack
1535    Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1536    __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1537    __ ld_ptr(rHandle, 0, L4);
1538#ifdef _LP64
1539    __ movr( Assembler::rc_z, L4, G0, rHandle );
1540#else
1541    __ tst( L4 );
1542    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1543#endif
1544    if (dst.first()->is_stack()) {
1545      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1546    }
1547    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1548    if (is_receiver) {
1549      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1550    }
1551    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1552  } else {
1553    // Oop is in an input register pass we must flush it to the stack
1554    const Register rOop = src.first()->as_Register();
1555    const Register rHandle = L5;
1556    int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1557    int offset = oop_slot*VMRegImpl::stack_slot_size;
1558    Label skip;
1559    __ st_ptr(rOop, SP, offset + STACK_BIAS);
1560    if (is_receiver) {
1561      *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1562    }
1563    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1564    __ add(SP, offset + STACK_BIAS, rHandle);
1565#ifdef _LP64
1566    __ movr( Assembler::rc_z, rOop, G0, rHandle );
1567#else
1568    __ tst( rOop );
1569    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1570#endif
1571
1572    if (dst.first()->is_stack()) {
1573      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1574    } else {
1575      __ mov(rHandle, dst.first()->as_Register());
1576    }
1577  }
1578}
1579
1580// A float arg may have to do float reg int reg conversion
1581static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1582  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1583
1584  if (src.first()->is_stack()) {
1585    if (dst.first()->is_stack()) {
1586      // stack to stack the easiest of the bunch
1587      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1588      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1589    } else {
1590      // stack to reg
1591      if (dst.first()->is_Register()) {
1592        __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1593      } else {
1594        __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1595      }
1596    }
1597  } else if (dst.first()->is_stack()) {
1598    // reg to stack
1599    if (src.first()->is_Register()) {
1600      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1601    } else {
1602      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1603    }
1604  } else {
1605    // reg to reg
1606    if (src.first()->is_Register()) {
1607      if (dst.first()->is_Register()) {
1608        // gpr -> gpr
1609        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1610      } else {
1611        // gpr -> fpr
1612        __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1613        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1614      }
1615    } else if (dst.first()->is_Register()) {
1616      // fpr -> gpr
1617      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1618      __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1619    } else {
1620      // fpr -> fpr
1621      // In theory these overlap but the ordering is such that this is likely a nop
1622      if ( src.first() != dst.first()) {
1623        __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1624      }
1625    }
1626  }
1627}
1628
1629static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1630  VMRegPair src_lo(src.first());
1631  VMRegPair src_hi(src.second());
1632  VMRegPair dst_lo(dst.first());
1633  VMRegPair dst_hi(dst.second());
1634  simple_move32(masm, src_lo, dst_lo);
1635  simple_move32(masm, src_hi, dst_hi);
1636}
1637
1638// A long move
1639static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1640
1641  // Do the simple ones here else do two int moves
1642  if (src.is_single_phys_reg() ) {
1643    if (dst.is_single_phys_reg()) {
1644      __ mov(src.first()->as_Register(), dst.first()->as_Register());
1645    } else {
1646      // split src into two separate registers
1647      // Remember hi means hi address or lsw on sparc
1648      // Move msw to lsw
1649      if (dst.second()->is_reg()) {
1650        // MSW -> MSW
1651        __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1652        // Now LSW -> LSW
1653        // this will only move lo -> lo and ignore hi
1654        VMRegPair split(dst.second());
1655        simple_move32(masm, src, split);
1656      } else {
1657        VMRegPair split(src.first(), L4->as_VMReg());
1658        // MSW -> MSW (lo ie. first word)
1659        __ srax(src.first()->as_Register(), 32, L4);
1660        split_long_move(masm, split, dst);
1661      }
1662    }
1663  } else if (dst.is_single_phys_reg()) {
1664    if (src.is_adjacent_aligned_on_stack(2)) {
1665      __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1666    } else {
1667      // dst is a single reg.
1668      // Remember lo is low address not msb for stack slots
1669      // and lo is the "real" register for registers
1670      // src is
1671
1672      VMRegPair split;
1673
1674      if (src.first()->is_reg()) {
1675        // src.lo (msw) is a reg, src.hi is stk/reg
1676        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1677        split.set_pair(dst.first(), src.first());
1678      } else {
1679        // msw is stack move to L5
1680        // lsw is stack move to dst.lo (real reg)
1681        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1682        split.set_pair(dst.first(), L5->as_VMReg());
1683      }
1684
1685      // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1686      // msw   -> src.lo/L5,  lsw -> dst.lo
1687      split_long_move(masm, src, split);
1688
1689      // So dst now has the low order correct position the
1690      // msw half
1691      __ sllx(split.first()->as_Register(), 32, L5);
1692
1693      const Register d = dst.first()->as_Register();
1694      __ or3(L5, d, d);
1695    }
1696  } else {
1697    // For LP64 we can probably do better.
1698    split_long_move(masm, src, dst);
1699  }
1700}
1701
1702// A double move
1703static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1704
1705  // The painful thing here is that like long_move a VMRegPair might be
1706  // 1: a single physical register
1707  // 2: two physical registers (v8)
1708  // 3: a physical reg [lo] and a stack slot [hi] (v8)
1709  // 4: two stack slots
1710
1711  // Since src is always a java calling convention we know that the src pair
1712  // is always either all registers or all stack (and aligned?)
1713
1714  // in a register [lo] and a stack slot [hi]
1715  if (src.first()->is_stack()) {
1716    if (dst.first()->is_stack()) {
1717      // stack to stack the easiest of the bunch
1718      // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1719      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1720      __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1721      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1722      __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1723    } else {
1724      // stack to reg
1725      if (dst.second()->is_stack()) {
1726        // stack -> reg, stack -> stack
1727        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1728        if (dst.first()->is_Register()) {
1729          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1730        } else {
1731          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1732        }
1733        // This was missing. (very rare case)
1734        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1735      } else {
1736        // stack -> reg
1737        // Eventually optimize for alignment QQQ
1738        if (dst.first()->is_Register()) {
1739          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1740          __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1741        } else {
1742          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1743          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1744        }
1745      }
1746    }
1747  } else if (dst.first()->is_stack()) {
1748    // reg to stack
1749    if (src.first()->is_Register()) {
1750      // Eventually optimize for alignment QQQ
1751      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1752      if (src.second()->is_stack()) {
1753        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1754        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1755      } else {
1756        __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1757      }
1758    } else {
1759      // fpr to stack
1760      if (src.second()->is_stack()) {
1761        ShouldNotReachHere();
1762      } else {
1763        // Is the stack aligned?
1764        if (reg2offset(dst.first()) & 0x7) {
1765          // No do as pairs
1766          __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1767          __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1768        } else {
1769          __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1770        }
1771      }
1772    }
1773  } else {
1774    // reg to reg
1775    if (src.first()->is_Register()) {
1776      if (dst.first()->is_Register()) {
1777        // gpr -> gpr
1778        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1779        __ mov(src.second()->as_Register(), dst.second()->as_Register());
1780      } else {
1781        // gpr -> fpr
1782        // ought to be able to do a single store
1783        __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1784        __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1785        // ought to be able to do a single load
1786        __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1787        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1788      }
1789    } else if (dst.first()->is_Register()) {
1790      // fpr -> gpr
1791      // ought to be able to do a single store
1792      __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1793      // ought to be able to do a single load
1794      // REMEMBER first() is low address not LSB
1795      __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1796      if (dst.second()->is_Register()) {
1797        __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1798      } else {
1799        __ ld(FP, -4 + STACK_BIAS, L4);
1800        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1801      }
1802    } else {
1803      // fpr -> fpr
1804      // In theory these overlap but the ordering is such that this is likely a nop
1805      if ( src.first() != dst.first()) {
1806        __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1807      }
1808    }
1809  }
1810}
1811
1812// Creates an inner frame if one hasn't already been created, and
1813// saves a copy of the thread in L7_thread_cache
1814static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1815  if (!*already_created) {
1816    __ save_frame(0);
1817    // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1818    // Don't use save_thread because it smashes G2 and we merely want to save a
1819    // copy
1820    __ mov(G2_thread, L7_thread_cache);
1821    *already_created = true;
1822  }
1823}
1824
1825
1826static void save_or_restore_arguments(MacroAssembler* masm,
1827                                      const int stack_slots,
1828                                      const int total_in_args,
1829                                      const int arg_save_area,
1830                                      OopMap* map,
1831                                      VMRegPair* in_regs,
1832                                      BasicType* in_sig_bt) {
1833  // if map is non-NULL then the code should store the values,
1834  // otherwise it should load them.
1835  if (map != NULL) {
1836    // Fill in the map
1837    for (int i = 0; i < total_in_args; i++) {
1838      if (in_sig_bt[i] == T_ARRAY) {
1839        if (in_regs[i].first()->is_stack()) {
1840          int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1841          map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1842        } else if (in_regs[i].first()->is_Register()) {
1843          map->set_oop(in_regs[i].first());
1844        } else {
1845          ShouldNotReachHere();
1846        }
1847      }
1848    }
1849  }
1850
1851  // Save or restore double word values
1852  int handle_index = 0;
1853  for (int i = 0; i < total_in_args; i++) {
1854    int slot = handle_index + arg_save_area;
1855    int offset = slot * VMRegImpl::stack_slot_size;
1856    if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
1857      const Register reg = in_regs[i].first()->as_Register();
1858      if (reg->is_global()) {
1859        handle_index += 2;
1860        assert(handle_index <= stack_slots, "overflow");
1861        if (map != NULL) {
1862          __ stx(reg, SP, offset + STACK_BIAS);
1863        } else {
1864          __ ldx(SP, offset + STACK_BIAS, reg);
1865        }
1866      }
1867    } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
1868      handle_index += 2;
1869      assert(handle_index <= stack_slots, "overflow");
1870      if (map != NULL) {
1871        __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1872      } else {
1873        __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1874      }
1875    }
1876  }
1877  // Save floats
1878  for (int i = 0; i < total_in_args; i++) {
1879    int slot = handle_index + arg_save_area;
1880    int offset = slot * VMRegImpl::stack_slot_size;
1881    if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
1882      handle_index++;
1883      assert(handle_index <= stack_slots, "overflow");
1884      if (map != NULL) {
1885        __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1886      } else {
1887        __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1888      }
1889    }
1890  }
1891
1892}
1893
1894
1895// Check GC_locker::needs_gc and enter the runtime if it's true.  This
1896// keeps a new JNI critical region from starting until a GC has been
1897// forced.  Save down any oops in registers and describe them in an
1898// OopMap.
1899static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1900                                               const int stack_slots,
1901                                               const int total_in_args,
1902                                               const int arg_save_area,
1903                                               OopMapSet* oop_maps,
1904                                               VMRegPair* in_regs,
1905                                               BasicType* in_sig_bt) {
1906  __ block_comment("check GC_locker::needs_gc");
1907  Label cont;
1908  AddressLiteral sync_state(GC_locker::needs_gc_address());
1909  __ load_bool_contents(sync_state, G3_scratch);
1910  __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
1911  __ delayed()->nop();
1912
1913  // Save down any values that are live in registers and call into the
1914  // runtime to halt for a GC
1915  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1916  save_or_restore_arguments(masm, stack_slots, total_in_args,
1917                            arg_save_area, map, in_regs, in_sig_bt);
1918
1919  __ mov(G2_thread, L7_thread_cache);
1920
1921  __ set_last_Java_frame(SP, noreg);
1922
1923  __ block_comment("block_for_jni_critical");
1924  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
1925  __ delayed()->mov(L7_thread_cache, O0);
1926  oop_maps->add_gc_map( __ offset(), map);
1927
1928  __ restore_thread(L7_thread_cache); // restore G2_thread
1929  __ reset_last_Java_frame();
1930
1931  // Reload all the register arguments
1932  save_or_restore_arguments(masm, stack_slots, total_in_args,
1933                            arg_save_area, NULL, in_regs, in_sig_bt);
1934
1935  __ bind(cont);
1936#ifdef ASSERT
1937  if (StressCriticalJNINatives) {
1938    // Stress register saving
1939    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1940    save_or_restore_arguments(masm, stack_slots, total_in_args,
1941                              arg_save_area, map, in_regs, in_sig_bt);
1942    // Destroy argument registers
1943    for (int i = 0; i < total_in_args; i++) {
1944      if (in_regs[i].first()->is_Register()) {
1945        const Register reg = in_regs[i].first()->as_Register();
1946        if (reg->is_global()) {
1947          __ mov(G0, reg);
1948        }
1949      } else if (in_regs[i].first()->is_FloatRegister()) {
1950        __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1951      }
1952    }
1953
1954    save_or_restore_arguments(masm, stack_slots, total_in_args,
1955                              arg_save_area, NULL, in_regs, in_sig_bt);
1956  }
1957#endif
1958}
1959
1960// Unpack an array argument into a pointer to the body and the length
1961// if the array is non-null, otherwise pass 0 for both.
1962static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1963  // Pass the length, ptr pair
1964  Label is_null, done;
1965  if (reg.first()->is_stack()) {
1966    VMRegPair tmp  = reg64_to_VMRegPair(L2);
1967    // Load the arg up from the stack
1968    move_ptr(masm, reg, tmp);
1969    reg = tmp;
1970  }
1971  __ cmp(reg.first()->as_Register(), G0);
1972  __ brx(Assembler::equal, false, Assembler::pt, is_null);
1973  __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
1974  move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
1975  __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
1976  move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
1977  __ ba_short(done);
1978  __ bind(is_null);
1979  // Pass zeros
1980  move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
1981  move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
1982  __ bind(done);
1983}
1984
1985static void verify_oop_args(MacroAssembler* masm,
1986                            int total_args_passed,
1987                            const BasicType* sig_bt,
1988                            const VMRegPair* regs) {
1989  Register temp_reg = G5_method;  // not part of any compiled calling seq
1990  if (VerifyOops) {
1991    for (int i = 0; i < total_args_passed; i++) {
1992      if (sig_bt[i] == T_OBJECT ||
1993          sig_bt[i] == T_ARRAY) {
1994        VMReg r = regs[i].first();
1995        assert(r->is_valid(), "bad oop arg");
1996        if (r->is_stack()) {
1997          RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1998          ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
1999          __ ld_ptr(SP, ld_off, temp_reg);
2000          __ verify_oop(temp_reg);
2001        } else {
2002          __ verify_oop(r->as_Register());
2003        }
2004      }
2005    }
2006  }
2007}
2008
2009static void gen_special_dispatch(MacroAssembler* masm,
2010                                 int total_args_passed,
2011                                 int comp_args_on_stack,
2012                                 vmIntrinsics::ID special_dispatch,
2013                                 const BasicType* sig_bt,
2014                                 const VMRegPair* regs) {
2015  verify_oop_args(masm, total_args_passed, sig_bt, regs);
2016
2017  // Now write the args into the outgoing interpreter space
2018  bool     has_receiver   = false;
2019  Register receiver_reg   = noreg;
2020  int      member_arg_pos = -1;
2021  Register member_reg     = noreg;
2022  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
2023  if (ref_kind != 0) {
2024    member_arg_pos = total_args_passed - 1;  // trailing MemberName argument
2025    member_reg = G5_method;  // known to be free at this point
2026    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
2027  } else if (special_dispatch == vmIntrinsics::_invokeBasic) {
2028    has_receiver = true;
2029  } else {
2030    fatal(err_msg("special_dispatch=%d", special_dispatch));
2031  }
2032
2033  if (member_reg != noreg) {
2034    // Load the member_arg into register, if necessary.
2035    assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
2036    assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
2037    VMReg r = regs[member_arg_pos].first();
2038    assert(r->is_valid(), "bad member arg");
2039    if (r->is_stack()) {
2040      RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
2041      ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
2042      __ ld_ptr(SP, ld_off, member_reg);
2043    } else {
2044      // no data motion is needed
2045      member_reg = r->as_Register();
2046    }
2047  }
2048
2049  if (has_receiver) {
2050    // Make sure the receiver is loaded into a register.
2051    assert(total_args_passed > 0, "oob");
2052    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
2053    VMReg r = regs[0].first();
2054    assert(r->is_valid(), "bad receiver arg");
2055    if (r->is_stack()) {
2056      // Porting note:  This assumes that compiled calling conventions always
2057      // pass the receiver oop in a register.  If this is not true on some
2058      // platform, pick a temp and load the receiver from stack.
2059      assert(false, "receiver always in a register");
2060      receiver_reg = G3_scratch;  // known to be free at this point
2061      RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
2062      ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
2063      __ ld_ptr(SP, ld_off, receiver_reg);
2064    } else {
2065      // no data motion is needed
2066      receiver_reg = r->as_Register();
2067    }
2068  }
2069
2070  // Figure out which address we are really jumping to:
2071  MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
2072                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
2073}
2074
2075// ---------------------------------------------------------------------------
2076// Generate a native wrapper for a given method.  The method takes arguments
2077// in the Java compiled code convention, marshals them to the native
2078// convention (handlizes oops, etc), transitions to native, makes the call,
2079// returns to java state (possibly blocking), unhandlizes any result and
2080// returns.
2081//
2082// Critical native functions are a shorthand for the use of
2083// GetPrimtiveArrayCritical and disallow the use of any other JNI
2084// functions.  The wrapper is expected to unpack the arguments before
2085// passing them to the callee and perform checks before and after the
2086// native call to ensure that they GC_locker
2087// lock_critical/unlock_critical semantics are followed.  Some other
2088// parts of JNI setup are skipped like the tear down of the JNI handle
2089// block and the check for pending exceptions it's impossible for them
2090// to be thrown.
2091//
2092// They are roughly structured like this:
2093//    if (GC_locker::needs_gc())
2094//      SharedRuntime::block_for_jni_critical();
2095//    tranistion to thread_in_native
2096//    unpack arrray arguments and call native entry point
2097//    check for safepoint in progress
2098//    check if any thread suspend flags are set
2099//      call into JVM and possible unlock the JNI critical
2100//      if a GC was suppressed while in the critical native.
2101//    transition back to thread_in_Java
2102//    return to caller
2103//
2104nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
2105                                                methodHandle method,
2106                                                int compile_id,
2107                                                int total_in_args,
2108                                                int comp_args_on_stack, // in VMRegStackSlots
2109                                                BasicType* in_sig_bt,
2110                                                VMRegPair* in_regs,
2111                                                BasicType ret_type) {
2112  if (method->is_method_handle_intrinsic()) {
2113    vmIntrinsics::ID iid = method->intrinsic_id();
2114    intptr_t start = (intptr_t)__ pc();
2115    int vep_offset = ((intptr_t)__ pc()) - start;
2116    gen_special_dispatch(masm,
2117                         total_in_args,
2118                         comp_args_on_stack,
2119                         method->intrinsic_id(),
2120                         in_sig_bt,
2121                         in_regs);
2122    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
2123    __ flush();
2124    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
2125    return nmethod::new_native_nmethod(method,
2126                                       compile_id,
2127                                       masm->code(),
2128                                       vep_offset,
2129                                       frame_complete,
2130                                       stack_slots / VMRegImpl::slots_per_word,
2131                                       in_ByteSize(-1),
2132                                       in_ByteSize(-1),
2133                                       (OopMapSet*)NULL);
2134  }
2135  bool is_critical_native = true;
2136  address native_func = method->critical_native_function();
2137  if (native_func == NULL) {
2138    native_func = method->native_function();
2139    is_critical_native = false;
2140  }
2141  assert(native_func != NULL, "must have function");
2142
2143  // Native nmethod wrappers never take possesion of the oop arguments.
2144  // So the caller will gc the arguments. The only thing we need an
2145  // oopMap for is if the call is static
2146  //
2147  // An OopMap for lock (and class if static), and one for the VM call itself
2148  OopMapSet *oop_maps = new OopMapSet();
2149  intptr_t start = (intptr_t)__ pc();
2150
2151  // First thing make an ic check to see if we should even be here
2152  {
2153    Label L;
2154    const Register temp_reg = G3_scratch;
2155    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2156    __ verify_oop(O0);
2157    __ load_klass(O0, temp_reg);
2158    __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
2159
2160    __ jump_to(ic_miss, temp_reg);
2161    __ delayed()->nop();
2162    __ align(CodeEntryAlignment);
2163    __ bind(L);
2164  }
2165
2166  int vep_offset = ((intptr_t)__ pc()) - start;
2167
2168#ifdef COMPILER1
2169  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
2170    // Object.hashCode can pull the hashCode from the header word
2171    // instead of doing a full VM transition once it's been computed.
2172    // Since hashCode is usually polymorphic at call sites we can't do
2173    // this optimization at the call site without a lot of work.
2174    Label slowCase;
2175    Register receiver             = O0;
2176    Register result               = O0;
2177    Register header               = G3_scratch;
2178    Register hash                 = G3_scratch; // overwrite header value with hash value
2179    Register mask                 = G1;         // to get hash field from header
2180
2181    // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
2182    // We depend on hash_mask being at most 32 bits and avoid the use of
2183    // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
2184    // vm: see markOop.hpp.
2185    __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
2186    __ sethi(markOopDesc::hash_mask, mask);
2187    __ btst(markOopDesc::unlocked_value, header);
2188    __ br(Assembler::zero, false, Assembler::pn, slowCase);
2189    if (UseBiasedLocking) {
2190      // Check if biased and fall through to runtime if so
2191      __ delayed()->nop();
2192      __ btst(markOopDesc::biased_lock_bit_in_place, header);
2193      __ br(Assembler::notZero, false, Assembler::pn, slowCase);
2194    }
2195    __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
2196
2197    // Check for a valid (non-zero) hash code and get its value.
2198#ifdef _LP64
2199    __ srlx(header, markOopDesc::hash_shift, hash);
2200#else
2201    __ srl(header, markOopDesc::hash_shift, hash);
2202#endif
2203    __ andcc(hash, mask, hash);
2204    __ br(Assembler::equal, false, Assembler::pn, slowCase);
2205    __ delayed()->nop();
2206
2207    // leaf return.
2208    __ retl();
2209    __ delayed()->mov(hash, result);
2210    __ bind(slowCase);
2211  }
2212#endif // COMPILER1
2213
2214
2215  // We have received a description of where all the java arg are located
2216  // on entry to the wrapper. We need to convert these args to where
2217  // the jni function will expect them. To figure out where they go
2218  // we convert the java signature to a C signature by inserting
2219  // the hidden arguments as arg[0] and possibly arg[1] (static method)
2220
2221  int total_c_args = total_in_args;
2222  int total_save_slots = 6 * VMRegImpl::slots_per_word;
2223  if (!is_critical_native) {
2224    total_c_args += 1;
2225    if (method->is_static()) {
2226      total_c_args++;
2227    }
2228  } else {
2229    for (int i = 0; i < total_in_args; i++) {
2230      if (in_sig_bt[i] == T_ARRAY) {
2231        // These have to be saved and restored across the safepoint
2232        total_c_args++;
2233      }
2234    }
2235  }
2236
2237  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2238  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2239  BasicType* in_elem_bt = NULL;
2240
2241  int argc = 0;
2242  if (!is_critical_native) {
2243    out_sig_bt[argc++] = T_ADDRESS;
2244    if (method->is_static()) {
2245      out_sig_bt[argc++] = T_OBJECT;
2246    }
2247
2248    for (int i = 0; i < total_in_args ; i++ ) {
2249      out_sig_bt[argc++] = in_sig_bt[i];
2250    }
2251  } else {
2252    Thread* THREAD = Thread::current();
2253    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2254    SignatureStream ss(method->signature());
2255    for (int i = 0; i < total_in_args ; i++ ) {
2256      if (in_sig_bt[i] == T_ARRAY) {
2257        // Arrays are passed as int, elem* pair
2258        out_sig_bt[argc++] = T_INT;
2259        out_sig_bt[argc++] = T_ADDRESS;
2260        Symbol* atype = ss.as_symbol(CHECK_NULL);
2261        const char* at = atype->as_C_string();
2262        if (strlen(at) == 2) {
2263          assert(at[0] == '[', "must be");
2264          switch (at[1]) {
2265            case 'B': in_elem_bt[i]  = T_BYTE; break;
2266            case 'C': in_elem_bt[i]  = T_CHAR; break;
2267            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2268            case 'F': in_elem_bt[i]  = T_FLOAT; break;
2269            case 'I': in_elem_bt[i]  = T_INT; break;
2270            case 'J': in_elem_bt[i]  = T_LONG; break;
2271            case 'S': in_elem_bt[i]  = T_SHORT; break;
2272            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2273            default: ShouldNotReachHere();
2274          }
2275        }
2276      } else {
2277        out_sig_bt[argc++] = in_sig_bt[i];
2278        in_elem_bt[i] = T_VOID;
2279      }
2280      if (in_sig_bt[i] != T_VOID) {
2281        assert(in_sig_bt[i] == ss.type(), "must match");
2282        ss.next();
2283      }
2284    }
2285  }
2286
2287  // Now figure out where the args must be stored and how much stack space
2288  // they require (neglecting out_preserve_stack_slots but space for storing
2289  // the 1st six register arguments). It's weird see int_stk_helper.
2290  //
2291  int out_arg_slots;
2292  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2293
2294  if (is_critical_native) {
2295    // Critical natives may have to call out so they need a save area
2296    // for register arguments.
2297    int double_slots = 0;
2298    int single_slots = 0;
2299    for ( int i = 0; i < total_in_args; i++) {
2300      if (in_regs[i].first()->is_Register()) {
2301        const Register reg = in_regs[i].first()->as_Register();
2302        switch (in_sig_bt[i]) {
2303          case T_ARRAY:
2304          case T_BOOLEAN:
2305          case T_BYTE:
2306          case T_SHORT:
2307          case T_CHAR:
2308          case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
2309          case T_LONG: if (reg->is_global()) double_slots++; break;
2310          default:  ShouldNotReachHere();
2311        }
2312      } else if (in_regs[i].first()->is_FloatRegister()) {
2313        switch (in_sig_bt[i]) {
2314          case T_FLOAT:  single_slots++; break;
2315          case T_DOUBLE: double_slots++; break;
2316          default:  ShouldNotReachHere();
2317        }
2318      }
2319    }
2320    total_save_slots = double_slots * 2 + single_slots;
2321  }
2322
2323  // Compute framesize for the wrapper.  We need to handlize all oops in
2324  // registers. We must create space for them here that is disjoint from
2325  // the windowed save area because we have no control over when we might
2326  // flush the window again and overwrite values that gc has since modified.
2327  // (The live window race)
2328  //
2329  // We always just allocate 6 word for storing down these object. This allow
2330  // us to simply record the base and use the Ireg number to decide which
2331  // slot to use. (Note that the reg number is the inbound number not the
2332  // outbound number).
2333  // We must shuffle args to match the native convention, and include var-args space.
2334
2335  // Calculate the total number of stack slots we will need.
2336
2337  // First count the abi requirement plus all of the outgoing args
2338  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2339
2340  // Now the space for the inbound oop handle area
2341
2342  int oop_handle_offset = round_to(stack_slots, 2);
2343  stack_slots += total_save_slots;
2344
2345  // Now any space we need for handlizing a klass if static method
2346
2347  int klass_slot_offset = 0;
2348  int klass_offset = -1;
2349  int lock_slot_offset = 0;
2350  bool is_static = false;
2351
2352  if (method->is_static()) {
2353    klass_slot_offset = stack_slots;
2354    stack_slots += VMRegImpl::slots_per_word;
2355    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2356    is_static = true;
2357  }
2358
2359  // Plus a lock if needed
2360
2361  if (method->is_synchronized()) {
2362    lock_slot_offset = stack_slots;
2363    stack_slots += VMRegImpl::slots_per_word;
2364  }
2365
2366  // Now a place to save return value or as a temporary for any gpr -> fpr moves
2367  stack_slots += 2;
2368
2369  // Ok The space we have allocated will look like:
2370  //
2371  //
2372  // FP-> |                     |
2373  //      |---------------------|
2374  //      | 2 slots for moves   |
2375  //      |---------------------|
2376  //      | lock box (if sync)  |
2377  //      |---------------------| <- lock_slot_offset
2378  //      | klass (if static)   |
2379  //      |---------------------| <- klass_slot_offset
2380  //      | oopHandle area      |
2381  //      |---------------------| <- oop_handle_offset
2382  //      | outbound memory     |
2383  //      | based arguments     |
2384  //      |                     |
2385  //      |---------------------|
2386  //      | vararg area         |
2387  //      |---------------------|
2388  //      |                     |
2389  // SP-> | out_preserved_slots |
2390  //
2391  //
2392
2393
2394  // Now compute actual number of stack words we need rounding to make
2395  // stack properly aligned.
2396  stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2397
2398  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2399
2400  // Generate stack overflow check before creating frame
2401  __ generate_stack_overflow_check(stack_size);
2402
2403  // Generate a new frame for the wrapper.
2404  __ save(SP, -stack_size, SP);
2405
2406  int frame_complete = ((intptr_t)__ pc()) - start;
2407
2408  __ verify_thread();
2409
2410  if (is_critical_native) {
2411    check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
2412                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2413  }
2414
2415  //
2416  // We immediately shuffle the arguments so that any vm call we have to
2417  // make from here on out (sync slow path, jvmti, etc.) we will have
2418  // captured the oops from our caller and have a valid oopMap for
2419  // them.
2420
2421  // -----------------
2422  // The Grand Shuffle
2423  //
2424  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2425  // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2426  // the class mirror instead of a receiver.  This pretty much guarantees that
2427  // register layout will not match.  We ignore these extra arguments during
2428  // the shuffle. The shuffle is described by the two calling convention
2429  // vectors we have in our possession. We simply walk the java vector to
2430  // get the source locations and the c vector to get the destinations.
2431  // Because we have a new window and the argument registers are completely
2432  // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2433  // here.
2434
2435  // This is a trick. We double the stack slots so we can claim
2436  // the oops in the caller's frame. Since we are sure to have
2437  // more args than the caller doubling is enough to make
2438  // sure we can capture all the incoming oop args from the
2439  // caller.
2440  //
2441  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2442  // Record sp-based slot for receiver on stack for non-static methods
2443  int receiver_offset = -1;
2444
2445  // We move the arguments backward because the floating point registers
2446  // destination will always be to a register with a greater or equal register
2447  // number or the stack.
2448
2449#ifdef ASSERT
2450  bool reg_destroyed[RegisterImpl::number_of_registers];
2451  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2452  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2453    reg_destroyed[r] = false;
2454  }
2455  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2456    freg_destroyed[f] = false;
2457  }
2458
2459#endif /* ASSERT */
2460
2461  for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
2462
2463#ifdef ASSERT
2464    if (in_regs[i].first()->is_Register()) {
2465      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2466    } else if (in_regs[i].first()->is_FloatRegister()) {
2467      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2468    }
2469    if (out_regs[c_arg].first()->is_Register()) {
2470      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2471    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2472      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2473    }
2474#endif /* ASSERT */
2475
2476    switch (in_sig_bt[i]) {
2477      case T_ARRAY:
2478        if (is_critical_native) {
2479          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
2480          c_arg--;
2481          break;
2482        }
2483      case T_OBJECT:
2484        assert(!is_critical_native, "no oop arguments");
2485        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2486                    ((i == 0) && (!is_static)),
2487                    &receiver_offset);
2488        break;
2489      case T_VOID:
2490        break;
2491
2492      case T_FLOAT:
2493        float_move(masm, in_regs[i], out_regs[c_arg]);
2494        break;
2495
2496      case T_DOUBLE:
2497        assert( i + 1 < total_in_args &&
2498                in_sig_bt[i + 1] == T_VOID &&
2499                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2500        double_move(masm, in_regs[i], out_regs[c_arg]);
2501        break;
2502
2503      case T_LONG :
2504        long_move(masm, in_regs[i], out_regs[c_arg]);
2505        break;
2506
2507      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2508
2509      default:
2510        move32_64(masm, in_regs[i], out_regs[c_arg]);
2511    }
2512  }
2513
2514  // Pre-load a static method's oop into O1.  Used both by locking code and
2515  // the normal JNI call code.
2516  if (method->is_static() && !is_critical_native) {
2517    __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2518
2519    // Now handlize the static class mirror in O1.  It's known not-null.
2520    __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2521    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2522    __ add(SP, klass_offset + STACK_BIAS, O1);
2523  }
2524
2525
2526  const Register L6_handle = L6;
2527
2528  if (method->is_synchronized()) {
2529    assert(!is_critical_native, "unhandled");
2530    __ mov(O1, L6_handle);
2531  }
2532
2533  // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2534  // except O6/O7. So if we must call out we must push a new frame. We immediately
2535  // push a new frame and flush the windows.
2536#ifdef _LP64
2537  intptr_t thepc = (intptr_t) __ pc();
2538  {
2539    address here = __ pc();
2540    // Call the next instruction
2541    __ call(here + 8, relocInfo::none);
2542    __ delayed()->nop();
2543  }
2544#else
2545  intptr_t thepc = __ load_pc_address(O7, 0);
2546#endif /* _LP64 */
2547
2548  // We use the same pc/oopMap repeatedly when we call out
2549  oop_maps->add_gc_map(thepc - start, map);
2550
2551  // O7 now has the pc loaded that we will use when we finally call to native.
2552
2553  // Save thread in L7; it crosses a bunch of VM calls below
2554  // Don't use save_thread because it smashes G2 and we merely
2555  // want to save a copy
2556  __ mov(G2_thread, L7_thread_cache);
2557
2558
2559  // If we create an inner frame once is plenty
2560  // when we create it we must also save G2_thread
2561  bool inner_frame_created = false;
2562
2563  // dtrace method entry support
2564  {
2565    SkipIfEqual skip_if(
2566      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2567    // create inner frame
2568    __ save_frame(0);
2569    __ mov(G2_thread, L7_thread_cache);
2570    __ set_metadata_constant(method(), O1);
2571    __ call_VM_leaf(L7_thread_cache,
2572         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2573         G2_thread, O1);
2574    __ restore();
2575  }
2576
2577  // RedefineClasses() tracing support for obsolete method entry
2578  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2579    // create inner frame
2580    __ save_frame(0);
2581    __ mov(G2_thread, L7_thread_cache);
2582    __ set_metadata_constant(method(), O1);
2583    __ call_VM_leaf(L7_thread_cache,
2584         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2585         G2_thread, O1);
2586    __ restore();
2587  }
2588
2589  // We are in the jni frame unless saved_frame is true in which case
2590  // we are in one frame deeper (the "inner" frame). If we are in the
2591  // "inner" frames the args are in the Iregs and if the jni frame then
2592  // they are in the Oregs.
2593  // If we ever need to go to the VM (for locking, jvmti) then
2594  // we will always be in the "inner" frame.
2595
2596  // Lock a synchronized method
2597  int lock_offset = -1;         // Set if locked
2598  if (method->is_synchronized()) {
2599    Register Roop = O1;
2600    const Register L3_box = L3;
2601
2602    create_inner_frame(masm, &inner_frame_created);
2603
2604    __ ld_ptr(I1, 0, O1);
2605    Label done;
2606
2607    lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2608    __ add(FP, lock_offset+STACK_BIAS, L3_box);
2609#ifdef ASSERT
2610    if (UseBiasedLocking) {
2611      // making the box point to itself will make it clear it went unused
2612      // but also be obviously invalid
2613      __ st_ptr(L3_box, L3_box, 0);
2614    }
2615#endif // ASSERT
2616    //
2617    // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2618    //
2619    __ compiler_lock_object(Roop, L1,    L3_box, L2);
2620    __ br(Assembler::equal, false, Assembler::pt, done);
2621    __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2622
2623
2624    // None of the above fast optimizations worked so we have to get into the
2625    // slow case of monitor enter.  Inline a special case of call_VM that
2626    // disallows any pending_exception.
2627    __ mov(Roop, O0);            // Need oop in O0
2628    __ mov(L3_box, O1);
2629
2630    // Record last_Java_sp, in case the VM code releases the JVM lock.
2631
2632    __ set_last_Java_frame(FP, I7);
2633
2634    // do the call
2635    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2636    __ delayed()->mov(L7_thread_cache, O2);
2637
2638    __ restore_thread(L7_thread_cache); // restore G2_thread
2639    __ reset_last_Java_frame();
2640
2641#ifdef ASSERT
2642    { Label L;
2643    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2644    __ br_null_short(O0, Assembler::pt, L);
2645    __ stop("no pending exception allowed on exit from IR::monitorenter");
2646    __ bind(L);
2647    }
2648#endif
2649    __ bind(done);
2650  }
2651
2652
2653  // Finally just about ready to make the JNI call
2654
2655  __ flush_windows();
2656  if (inner_frame_created) {
2657    __ restore();
2658  } else {
2659    // Store only what we need from this frame
2660    // QQQ I think that non-v9 (like we care) we don't need these saves
2661    // either as the flush traps and the current window goes too.
2662    __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2663    __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2664  }
2665
2666  // get JNIEnv* which is first argument to native
2667  if (!is_critical_native) {
2668    __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2669  }
2670
2671  // Use that pc we placed in O7 a while back as the current frame anchor
2672  __ set_last_Java_frame(SP, O7);
2673
2674  // We flushed the windows ages ago now mark them as flushed before transitioning.
2675  __ set(JavaFrameAnchor::flushed, G3_scratch);
2676  __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2677
2678  // Transition from _thread_in_Java to _thread_in_native.
2679  __ set(_thread_in_native, G3_scratch);
2680
2681#ifdef _LP64
2682  AddressLiteral dest(native_func);
2683  __ relocate(relocInfo::runtime_call_type);
2684  __ jumpl_to(dest, O7, O7);
2685#else
2686  __ call(native_func, relocInfo::runtime_call_type);
2687#endif
2688  __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2689
2690  __ restore_thread(L7_thread_cache); // restore G2_thread
2691
2692  // Unpack native results.  For int-types, we do any needed sign-extension
2693  // and move things into I0.  The return value there will survive any VM
2694  // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2695  // specially in the slow-path code.
2696  switch (ret_type) {
2697  case T_VOID:    break;        // Nothing to do!
2698  case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2699  case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2700  // In 64 bits build result is in O0, in O0, O1 in 32bit build
2701  case T_LONG:
2702#ifndef _LP64
2703                  __ mov(O1, I1);
2704#endif
2705                  // Fall thru
2706  case T_OBJECT:                // Really a handle
2707  case T_ARRAY:
2708  case T_INT:
2709                  __ mov(O0, I0);
2710                  break;
2711  case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2712  case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2713  case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2714  case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2715    break;                      // Cannot de-handlize until after reclaiming jvm_lock
2716  default:
2717    ShouldNotReachHere();
2718  }
2719
2720  Label after_transition;
2721  // must we block?
2722
2723  // Block, if necessary, before resuming in _thread_in_Java state.
2724  // In order for GC to work, don't clear the last_Java_sp until after blocking.
2725  { Label no_block;
2726    AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2727
2728    // Switch thread to "native transition" state before reading the synchronization state.
2729    // This additional state is necessary because reading and testing the synchronization
2730    // state is not atomic w.r.t. GC, as this scenario demonstrates:
2731    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2732    //     VM thread changes sync state to synchronizing and suspends threads for GC.
2733    //     Thread A is resumed to finish this native method, but doesn't block here since it
2734    //     didn't see any synchronization is progress, and escapes.
2735    __ set(_thread_in_native_trans, G3_scratch);
2736    __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2737    if(os::is_MP()) {
2738      if (UseMembar) {
2739        // Force this write out before the read below
2740        __ membar(Assembler::StoreLoad);
2741      } else {
2742        // Write serialization page so VM thread can do a pseudo remote membar.
2743        // We use the current thread pointer to calculate a thread specific
2744        // offset to write to within the page. This minimizes bus traffic
2745        // due to cache line collision.
2746        __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2747      }
2748    }
2749    __ load_contents(sync_state, G3_scratch);
2750    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2751
2752    Label L;
2753    Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2754    __ br(Assembler::notEqual, false, Assembler::pn, L);
2755    __ delayed()->ld(suspend_state, G3_scratch);
2756    __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
2757    __ bind(L);
2758
2759    // Block.  Save any potential method result value before the operation and
2760    // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2761    // lets us share the oopMap we used when we went native rather the create
2762    // a distinct one for this pc
2763    //
2764    save_native_result(masm, ret_type, stack_slots);
2765    if (!is_critical_native) {
2766      __ call_VM_leaf(L7_thread_cache,
2767                      CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2768                      G2_thread);
2769    } else {
2770      __ call_VM_leaf(L7_thread_cache,
2771                      CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
2772                      G2_thread);
2773    }
2774
2775    // Restore any method result value
2776    restore_native_result(masm, ret_type, stack_slots);
2777
2778    if (is_critical_native) {
2779      // The call above performed the transition to thread_in_Java so
2780      // skip the transition logic below.
2781      __ ba(after_transition);
2782      __ delayed()->nop();
2783    }
2784
2785    __ bind(no_block);
2786  }
2787
2788  // thread state is thread_in_native_trans. Any safepoint blocking has already
2789  // happened so we can now change state to _thread_in_Java.
2790  __ set(_thread_in_Java, G3_scratch);
2791  __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2792  __ bind(after_transition);
2793
2794  Label no_reguard;
2795  __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2796  __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
2797
2798    save_native_result(masm, ret_type, stack_slots);
2799  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2800  __ delayed()->nop();
2801
2802  __ restore_thread(L7_thread_cache); // restore G2_thread
2803    restore_native_result(masm, ret_type, stack_slots);
2804
2805  __ bind(no_reguard);
2806
2807  // Handle possible exception (will unlock if necessary)
2808
2809  // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2810
2811  // Unlock
2812  if (method->is_synchronized()) {
2813    Label done;
2814    Register I2_ex_oop = I2;
2815    const Register L3_box = L3;
2816    // Get locked oop from the handle we passed to jni
2817    __ ld_ptr(L6_handle, 0, L4);
2818    __ add(SP, lock_offset+STACK_BIAS, L3_box);
2819    // Must save pending exception around the slow-path VM call.  Since it's a
2820    // leaf call, the pending exception (if any) can be kept in a register.
2821    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2822    // Now unlock
2823    //                       (Roop, Rmark, Rbox,   Rscratch)
2824    __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2825    __ br(Assembler::equal, false, Assembler::pt, done);
2826    __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2827
2828    // save and restore any potential method result value around the unlocking
2829    // operation.  Will save in I0 (or stack for FP returns).
2830    save_native_result(masm, ret_type, stack_slots);
2831
2832    // Must clear pending-exception before re-entering the VM.  Since this is
2833    // a leaf call, pending-exception-oop can be safely kept in a register.
2834    __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2835
2836    // slow case of monitor enter.  Inline a special case of call_VM that
2837    // disallows any pending_exception.
2838    __ mov(L3_box, O1);
2839
2840    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2841    __ delayed()->mov(L4, O0);              // Need oop in O0
2842
2843    __ restore_thread(L7_thread_cache); // restore G2_thread
2844
2845#ifdef ASSERT
2846    { Label L;
2847    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2848    __ br_null_short(O0, Assembler::pt, L);
2849    __ stop("no pending exception allowed on exit from IR::monitorexit");
2850    __ bind(L);
2851    }
2852#endif
2853    restore_native_result(masm, ret_type, stack_slots);
2854    // check_forward_pending_exception jump to forward_exception if any pending
2855    // exception is set.  The forward_exception routine expects to see the
2856    // exception in pending_exception and not in a register.  Kind of clumsy,
2857    // since all folks who branch to forward_exception must have tested
2858    // pending_exception first and hence have it in a register already.
2859    __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2860    __ bind(done);
2861  }
2862
2863  // Tell dtrace about this method exit
2864  {
2865    SkipIfEqual skip_if(
2866      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2867    save_native_result(masm, ret_type, stack_slots);
2868    __ set_metadata_constant(method(), O1);
2869    __ call_VM_leaf(L7_thread_cache,
2870       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2871       G2_thread, O1);
2872    restore_native_result(masm, ret_type, stack_slots);
2873  }
2874
2875  // Clear "last Java frame" SP and PC.
2876  __ verify_thread(); // G2_thread must be correct
2877  __ reset_last_Java_frame();
2878
2879  // Unpack oop result
2880  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2881      Label L;
2882      __ addcc(G0, I0, G0);
2883      __ brx(Assembler::notZero, true, Assembler::pt, L);
2884      __ delayed()->ld_ptr(I0, 0, I0);
2885      __ mov(G0, I0);
2886      __ bind(L);
2887      __ verify_oop(I0);
2888  }
2889
2890  if (!is_critical_native) {
2891    // reset handle block
2892    __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2893    __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2894
2895    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2896    check_forward_pending_exception(masm, G3_scratch);
2897  }
2898
2899
2900  // Return
2901
2902#ifndef _LP64
2903  if (ret_type == T_LONG) {
2904
2905    // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2906    __ sllx(I0, 32, G1);          // Shift bits into high G1
2907    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2908    __ or3 (I1, G1, G1);          // OR 64 bits into G1
2909  }
2910#endif
2911
2912  __ ret();
2913  __ delayed()->restore();
2914
2915  __ flush();
2916
2917  nmethod *nm = nmethod::new_native_nmethod(method,
2918                                            compile_id,
2919                                            masm->code(),
2920                                            vep_offset,
2921                                            frame_complete,
2922                                            stack_slots / VMRegImpl::slots_per_word,
2923                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2924                                            in_ByteSize(lock_offset),
2925                                            oop_maps);
2926
2927  if (is_critical_native) {
2928    nm->set_lazy_critical_native(true);
2929  }
2930  return nm;
2931
2932}
2933
2934#ifdef HAVE_DTRACE_H
2935// ---------------------------------------------------------------------------
2936// Generate a dtrace nmethod for a given signature.  The method takes arguments
2937// in the Java compiled code convention, marshals them to the native
2938// abi and then leaves nops at the position you would expect to call a native
2939// function. When the probe is enabled the nops are replaced with a trap
2940// instruction that dtrace inserts and the trace will cause a notification
2941// to dtrace.
2942//
2943// The probes are only able to take primitive types and java/lang/String as
2944// arguments.  No other java types are allowed. Strings are converted to utf8
2945// strings so that from dtrace point of view java strings are converted to C
2946// strings. There is an arbitrary fixed limit on the total space that a method
2947// can use for converting the strings. (256 chars per string in the signature).
2948// So any java string larger then this is truncated.
2949
2950static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2951static bool offsets_initialized = false;
2952
2953nmethod *SharedRuntime::generate_dtrace_nmethod(
2954    MacroAssembler *masm, methodHandle method) {
2955
2956
2957  // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2958  // be single threaded in this method.
2959  assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2960
2961  // Fill in the signature array, for the calling-convention call.
2962  int total_args_passed = method->size_of_parameters();
2963
2964  BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2965  VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2966
2967  // The signature we are going to use for the trap that dtrace will see
2968  // java/lang/String is converted. We drop "this" and any other object
2969  // is converted to NULL.  (A one-slot java/lang/Long object reference
2970  // is converted to a two-slot long, which is why we double the allocation).
2971  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2972  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2973
2974  int i=0;
2975  int total_strings = 0;
2976  int first_arg_to_pass = 0;
2977  int total_c_args = 0;
2978
2979  // Skip the receiver as dtrace doesn't want to see it
2980  if( !method->is_static() ) {
2981    in_sig_bt[i++] = T_OBJECT;
2982    first_arg_to_pass = 1;
2983  }
2984
2985  SignatureStream ss(method->signature());
2986  for ( ; !ss.at_return_type(); ss.next()) {
2987    BasicType bt = ss.type();
2988    in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2989    out_sig_bt[total_c_args++] = bt;
2990    if( bt == T_OBJECT) {
2991      Symbol* s = ss.as_symbol_or_null();
2992      if (s == vmSymbols::java_lang_String()) {
2993        total_strings++;
2994        out_sig_bt[total_c_args-1] = T_ADDRESS;
2995      } else if (s == vmSymbols::java_lang_Boolean() ||
2996                 s == vmSymbols::java_lang_Byte()) {
2997        out_sig_bt[total_c_args-1] = T_BYTE;
2998      } else if (s == vmSymbols::java_lang_Character() ||
2999                 s == vmSymbols::java_lang_Short()) {
3000        out_sig_bt[total_c_args-1] = T_SHORT;
3001      } else if (s == vmSymbols::java_lang_Integer() ||
3002                 s == vmSymbols::java_lang_Float()) {
3003        out_sig_bt[total_c_args-1] = T_INT;
3004      } else if (s == vmSymbols::java_lang_Long() ||
3005                 s == vmSymbols::java_lang_Double()) {
3006        out_sig_bt[total_c_args-1] = T_LONG;
3007        out_sig_bt[total_c_args++] = T_VOID;
3008      }
3009    } else if ( bt == T_LONG || bt == T_DOUBLE ) {
3010      in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3011      // We convert double to long
3012      out_sig_bt[total_c_args-1] = T_LONG;
3013      out_sig_bt[total_c_args++] = T_VOID;
3014    } else if ( bt == T_FLOAT) {
3015      // We convert float to int
3016      out_sig_bt[total_c_args-1] = T_INT;
3017    }
3018  }
3019
3020  assert(i==total_args_passed, "validly parsed signature");
3021
3022  // Now get the compiled-Java layout as input arguments
3023  int comp_args_on_stack;
3024  comp_args_on_stack = SharedRuntime::java_calling_convention(
3025      in_sig_bt, in_regs, total_args_passed, false);
3026
3027  // We have received a description of where all the java arg are located
3028  // on entry to the wrapper. We need to convert these args to where
3029  // the a  native (non-jni) function would expect them. To figure out
3030  // where they go we convert the java signature to a C signature and remove
3031  // T_VOID for any long/double we might have received.
3032
3033
3034  // Now figure out where the args must be stored and how much stack space
3035  // they require (neglecting out_preserve_stack_slots but space for storing
3036  // the 1st six register arguments). It's weird see int_stk_helper.
3037  //
3038  int out_arg_slots;
3039  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
3040
3041  // Calculate the total number of stack slots we will need.
3042
3043  // First count the abi requirement plus all of the outgoing args
3044  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
3045
3046  // Plus a temp for possible converion of float/double/long register args
3047
3048  int conversion_temp = stack_slots;
3049  stack_slots += 2;
3050
3051
3052  // Now space for the string(s) we must convert
3053
3054  int string_locs = stack_slots;
3055  stack_slots += total_strings *
3056                   (max_dtrace_string_size / VMRegImpl::stack_slot_size);
3057
3058  // Ok The space we have allocated will look like:
3059  //
3060  //
3061  // FP-> |                     |
3062  //      |---------------------|
3063  //      | string[n]           |
3064  //      |---------------------| <- string_locs[n]
3065  //      | string[n-1]         |
3066  //      |---------------------| <- string_locs[n-1]
3067  //      | ...                 |
3068  //      | ...                 |
3069  //      |---------------------| <- string_locs[1]
3070  //      | string[0]           |
3071  //      |---------------------| <- string_locs[0]
3072  //      | temp                |
3073  //      |---------------------| <- conversion_temp
3074  //      | outbound memory     |
3075  //      | based arguments     |
3076  //      |                     |
3077  //      |---------------------|
3078  //      |                     |
3079  // SP-> | out_preserved_slots |
3080  //
3081  //
3082
3083  // Now compute actual number of stack words we need rounding to make
3084  // stack properly aligned.
3085  stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
3086
3087  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
3088
3089  intptr_t start = (intptr_t)__ pc();
3090
3091  // First thing make an ic check to see if we should even be here
3092
3093  {
3094    Label L;
3095    const Register temp_reg = G3_scratch;
3096    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
3097    __ verify_oop(O0);
3098    __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
3099    __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
3100
3101    __ jump_to(ic_miss, temp_reg);
3102    __ delayed()->nop();
3103    __ align(CodeEntryAlignment);
3104    __ bind(L);
3105  }
3106
3107  int vep_offset = ((intptr_t)__ pc()) - start;
3108
3109
3110  // The instruction at the verified entry point must be 5 bytes or longer
3111  // because it can be patched on the fly by make_non_entrant. The stack bang
3112  // instruction fits that requirement.
3113
3114  // Generate stack overflow check before creating frame
3115  __ generate_stack_overflow_check(stack_size);
3116
3117  assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
3118         "valid size for make_non_entrant");
3119
3120  // Generate a new frame for the wrapper.
3121  __ save(SP, -stack_size, SP);
3122
3123  // Frame is now completed as far a size and linkage.
3124
3125  int frame_complete = ((intptr_t)__ pc()) - start;
3126
3127#ifdef ASSERT
3128  bool reg_destroyed[RegisterImpl::number_of_registers];
3129  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
3130  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
3131    reg_destroyed[r] = false;
3132  }
3133  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
3134    freg_destroyed[f] = false;
3135  }
3136
3137#endif /* ASSERT */
3138
3139  VMRegPair zero;
3140  const Register g0 = G0; // without this we get a compiler warning (why??)
3141  zero.set2(g0->as_VMReg());
3142
3143  int c_arg, j_arg;
3144
3145  Register conversion_off = noreg;
3146
3147  for (j_arg = first_arg_to_pass, c_arg = 0 ;
3148       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3149
3150    VMRegPair src = in_regs[j_arg];
3151    VMRegPair dst = out_regs[c_arg];
3152
3153#ifdef ASSERT
3154    if (src.first()->is_Register()) {
3155      assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
3156    } else if (src.first()->is_FloatRegister()) {
3157      assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
3158                                               FloatRegisterImpl::S)], "ack!");
3159    }
3160    if (dst.first()->is_Register()) {
3161      reg_destroyed[dst.first()->as_Register()->encoding()] = true;
3162    } else if (dst.first()->is_FloatRegister()) {
3163      freg_destroyed[dst.first()->as_FloatRegister()->encoding(
3164                                                 FloatRegisterImpl::S)] = true;
3165    }
3166#endif /* ASSERT */
3167
3168    switch (in_sig_bt[j_arg]) {
3169      case T_ARRAY:
3170      case T_OBJECT:
3171        {
3172          if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
3173              out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
3174            // need to unbox a one-slot value
3175            Register in_reg = L0;
3176            Register tmp = L2;
3177            if ( src.first()->is_reg() ) {
3178              in_reg = src.first()->as_Register();
3179            } else {
3180              assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
3181                     "must be");
3182              __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
3183            }
3184            // If the final destination is an acceptable register
3185            if ( dst.first()->is_reg() ) {
3186              if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
3187                tmp = dst.first()->as_Register();
3188              }
3189            }
3190
3191            Label skipUnbox;
3192            if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
3193              __ mov(G0, tmp->successor());
3194            }
3195            __ br_null(in_reg, true, Assembler::pn, skipUnbox);
3196            __ delayed()->mov(G0, tmp);
3197
3198            BasicType bt = out_sig_bt[c_arg];
3199            int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
3200            switch (bt) {
3201                case T_BYTE:
3202                  __ ldub(in_reg, box_offset, tmp); break;
3203                case T_SHORT:
3204                  __ lduh(in_reg, box_offset, tmp); break;
3205                case T_INT:
3206                  __ ld(in_reg, box_offset, tmp); break;
3207                case T_LONG:
3208                  __ ld_long(in_reg, box_offset, tmp); break;
3209                default: ShouldNotReachHere();
3210            }
3211
3212            __ bind(skipUnbox);
3213            // If tmp wasn't final destination copy to final destination
3214            if (tmp == L2) {
3215              VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
3216              if (out_sig_bt[c_arg] == T_LONG) {
3217                long_move(masm, tmp_as_VM, dst);
3218              } else {
3219                move32_64(masm, tmp_as_VM, out_regs[c_arg]);
3220              }
3221            }
3222            if (out_sig_bt[c_arg] == T_LONG) {
3223              assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3224              ++c_arg; // move over the T_VOID to keep the loop indices in sync
3225            }
3226          } else if (out_sig_bt[c_arg] == T_ADDRESS) {
3227            Register s =
3228                src.first()->is_reg() ? src.first()->as_Register() : L2;
3229            Register d =
3230                dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3231
3232            // We store the oop now so that the conversion pass can reach
3233            // while in the inner frame. This will be the only store if
3234            // the oop is NULL.
3235            if (s != L2) {
3236              // src is register
3237              if (d != L2) {
3238                // dst is register
3239                __ mov(s, d);
3240              } else {
3241                assert(Assembler::is_simm13(reg2offset(dst.first()) +
3242                          STACK_BIAS), "must be");
3243                __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
3244              }
3245            } else {
3246                // src not a register
3247                assert(Assembler::is_simm13(reg2offset(src.first()) +
3248                           STACK_BIAS), "must be");
3249                __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
3250                if (d == L2) {
3251                  assert(Assembler::is_simm13(reg2offset(dst.first()) +
3252                             STACK_BIAS), "must be");
3253                  __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
3254                }
3255            }
3256          } else if (out_sig_bt[c_arg] != T_VOID) {
3257            // Convert the arg to NULL
3258            if (dst.first()->is_reg()) {
3259              __ mov(G0, dst.first()->as_Register());
3260            } else {
3261              assert(Assembler::is_simm13(reg2offset(dst.first()) +
3262                         STACK_BIAS), "must be");
3263              __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
3264            }
3265          }
3266        }
3267        break;
3268      case T_VOID:
3269        break;
3270
3271      case T_FLOAT:
3272        if (src.first()->is_stack()) {
3273          // Stack to stack/reg is simple
3274          move32_64(masm, src, dst);
3275        } else {
3276          if (dst.first()->is_reg()) {
3277            // freg -> reg
3278            int off =
3279              STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3280            Register d = dst.first()->as_Register();
3281            if (Assembler::is_simm13(off)) {
3282              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3283                     SP, off);
3284              __ ld(SP, off, d);
3285            } else {
3286              if (conversion_off == noreg) {
3287                __ set(off, L6);
3288                conversion_off = L6;
3289              }
3290              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3291                     SP, conversion_off);
3292              __ ld(SP, conversion_off , d);
3293            }
3294          } else {
3295            // freg -> mem
3296            int off = STACK_BIAS + reg2offset(dst.first());
3297            if (Assembler::is_simm13(off)) {
3298              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3299                     SP, off);
3300            } else {
3301              if (conversion_off == noreg) {
3302                __ set(off, L6);
3303                conversion_off = L6;
3304              }
3305              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3306                     SP, conversion_off);
3307            }
3308          }
3309        }
3310        break;
3311
3312      case T_DOUBLE:
3313        assert( j_arg + 1 < total_args_passed &&
3314                in_sig_bt[j_arg + 1] == T_VOID &&
3315                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
3316        if (src.first()->is_stack()) {
3317          // Stack to stack/reg is simple
3318          long_move(masm, src, dst);
3319        } else {
3320          Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3321
3322          // Destination could be an odd reg on 32bit in which case
3323          // we can't load direct to the destination.
3324
3325          if (!d->is_even() && wordSize == 4) {
3326            d = L2;
3327          }
3328          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3329          if (Assembler::is_simm13(off)) {
3330            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3331                   SP, off);
3332            __ ld_long(SP, off, d);
3333          } else {
3334            if (conversion_off == noreg) {
3335              __ set(off, L6);
3336              conversion_off = L6;
3337            }
3338            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3339                   SP, conversion_off);
3340            __ ld_long(SP, conversion_off, d);
3341          }
3342          if (d == L2) {
3343            long_move(masm, reg64_to_VMRegPair(L2), dst);
3344          }
3345        }
3346        break;
3347
3348      case T_LONG :
3349        // 32bit can't do a split move of something like g1 -> O0, O1
3350        // so use a memory temp
3351        if (src.is_single_phys_reg() && wordSize == 4) {
3352          Register tmp = L2;
3353          if (dst.first()->is_reg() &&
3354              (wordSize == 8 || dst.first()->as_Register()->is_even())) {
3355            tmp = dst.first()->as_Register();
3356          }
3357
3358          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3359          if (Assembler::is_simm13(off)) {
3360            __ stx(src.first()->as_Register(), SP, off);
3361            __ ld_long(SP, off, tmp);
3362          } else {
3363            if (conversion_off == noreg) {
3364              __ set(off, L6);
3365              conversion_off = L6;
3366            }
3367            __ stx(src.first()->as_Register(), SP, conversion_off);
3368            __ ld_long(SP, conversion_off, tmp);
3369          }
3370
3371          if (tmp == L2) {
3372            long_move(masm, reg64_to_VMRegPair(L2), dst);
3373          }
3374        } else {
3375          long_move(masm, src, dst);
3376        }
3377        break;
3378
3379      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3380
3381      default:
3382        move32_64(masm, src, dst);
3383    }
3384  }
3385
3386
3387  // If we have any strings we must store any register based arg to the stack
3388  // This includes any still live xmm registers too.
3389
3390  if (total_strings > 0 ) {
3391
3392    // protect all the arg registers
3393    __ save_frame(0);
3394    __ mov(G2_thread, L7_thread_cache);
3395    const Register L2_string_off = L2;
3396
3397    // Get first string offset
3398    __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
3399
3400    for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
3401      if (out_sig_bt[c_arg] == T_ADDRESS) {
3402
3403        VMRegPair dst = out_regs[c_arg];
3404        const Register d = dst.first()->is_reg() ?
3405            dst.first()->as_Register()->after_save() : noreg;
3406
3407        // It's a string the oop and it was already copied to the out arg
3408        // position
3409        if (d != noreg) {
3410          __ mov(d, O0);
3411        } else {
3412          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3413                 "must be");
3414          __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
3415        }
3416        Label skip;
3417
3418        __ br_null(O0, false, Assembler::pn, skip);
3419        __ delayed()->add(FP, L2_string_off, O1);
3420
3421        if (d != noreg) {
3422          __ mov(O1, d);
3423        } else {
3424          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3425                 "must be");
3426          __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
3427        }
3428
3429        __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
3430                relocInfo::runtime_call_type);
3431        __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
3432
3433        __ bind(skip);
3434
3435      }
3436
3437    }
3438    __ mov(L7_thread_cache, G2_thread);
3439    __ restore();
3440
3441  }
3442
3443
3444  // Ok now we are done. Need to place the nop that dtrace wants in order to
3445  // patch in the trap
3446
3447  int patch_offset = ((intptr_t)__ pc()) - start;
3448
3449  __ nop();
3450
3451
3452  // Return
3453
3454  __ ret();
3455  __ delayed()->restore();
3456
3457  __ flush();
3458
3459  nmethod *nm = nmethod::new_dtrace_nmethod(
3460      method, masm->code(), vep_offset, patch_offset, frame_complete,
3461      stack_slots / VMRegImpl::slots_per_word);
3462  return nm;
3463
3464}
3465
3466#endif // HAVE_DTRACE_H
3467
3468// this function returns the adjust size (in number of words) to a c2i adapter
3469// activation for use during deoptimization
3470int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3471  assert(callee_locals >= callee_parameters,
3472          "test and remove; got more parms than locals");
3473  if (callee_locals < callee_parameters)
3474    return 0;                   // No adjustment for negative locals
3475  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3476  return round_to(diff, WordsPerLong);
3477}
3478
3479// "Top of Stack" slots that may be unused by the calling convention but must
3480// otherwise be preserved.
3481// On Intel these are not necessary and the value can be zero.
3482// On Sparc this describes the words reserved for storing a register window
3483// when an interrupt occurs.
3484uint SharedRuntime::out_preserve_stack_slots() {
3485  return frame::register_save_words * VMRegImpl::slots_per_word;
3486}
3487
3488static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3489//
3490// Common out the new frame generation for deopt and uncommon trap
3491//
3492  Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3493  Register        Oreturn0           = O0;
3494  Register        Oreturn1           = O1;
3495  Register        O2UnrollBlock      = O2;
3496  Register        O3array            = O3;         // Array of frame sizes (input)
3497  Register        O4array_size       = O4;         // number of frames (input)
3498  Register        O7frame_size       = O7;         // number of frames (input)
3499
3500  __ ld_ptr(O3array, 0, O7frame_size);
3501  __ sub(G0, O7frame_size, O7frame_size);
3502  __ save(SP, O7frame_size, SP);
3503  __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3504
3505  #ifdef ASSERT
3506  // make sure that the frames are aligned properly
3507#ifndef _LP64
3508  __ btst(wordSize*2-1, SP);
3509  __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
3510#endif
3511  #endif
3512
3513  // Deopt needs to pass some extra live values from frame to frame
3514
3515  if (deopt) {
3516    __ mov(Oreturn0->after_save(), Oreturn0);
3517    __ mov(Oreturn1->after_save(), Oreturn1);
3518  }
3519
3520  __ mov(O4array_size->after_save(), O4array_size);
3521  __ sub(O4array_size, 1, O4array_size);
3522  __ mov(O3array->after_save(), O3array);
3523  __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3524  __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3525
3526  #ifdef ASSERT
3527  // trash registers to show a clear pattern in backtraces
3528  __ set(0xDEAD0000, I0);
3529  __ add(I0,  2, I1);
3530  __ add(I0,  4, I2);
3531  __ add(I0,  6, I3);
3532  __ add(I0,  8, I4);
3533  // Don't touch I5 could have valuable savedSP
3534  __ set(0xDEADBEEF, L0);
3535  __ mov(L0, L1);
3536  __ mov(L0, L2);
3537  __ mov(L0, L3);
3538  __ mov(L0, L4);
3539  __ mov(L0, L5);
3540
3541  // trash the return value as there is nothing to return yet
3542  __ set(0xDEAD0001, O7);
3543  #endif
3544
3545  __ mov(SP, O5_savedSP);
3546}
3547
3548
3549static void make_new_frames(MacroAssembler* masm, bool deopt) {
3550  //
3551  // loop through the UnrollBlock info and create new frames
3552  //
3553  Register        G3pcs              = G3_scratch;
3554  Register        Oreturn0           = O0;
3555  Register        Oreturn1           = O1;
3556  Register        O2UnrollBlock      = O2;
3557  Register        O3array            = O3;
3558  Register        O4array_size       = O4;
3559  Label           loop;
3560
3561  // Before we make new frames, check to see if stack is available.
3562  // Do this after the caller's return address is on top of stack
3563  if (UseStackBanging) {
3564    // Get total frame size for interpreted frames
3565    __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3566    __ bang_stack_size(O4, O3, G3_scratch);
3567  }
3568
3569  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3570  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3571  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3572
3573  // Adjust old interpreter frame to make space for new frame's extra java locals
3574  //
3575  // We capture the original sp for the transition frame only because it is needed in
3576  // order to properly calculate interpreter_sp_adjustment. Even though in real life
3577  // every interpreter frame captures a savedSP it is only needed at the transition
3578  // (fortunately). If we had to have it correct everywhere then we would need to
3579  // be told the sp_adjustment for each frame we create. If the frame size array
3580  // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3581  // for each frame we create and keep up the illusion every where.
3582  //
3583
3584  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3585  __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3586  __ sub(SP, O7, SP);
3587
3588#ifdef ASSERT
3589  // make sure that there is at least one entry in the array
3590  __ tst(O4array_size);
3591  __ breakpoint_trap(Assembler::zero, Assembler::icc);
3592#endif
3593
3594  // Now push the new interpreter frames
3595  __ bind(loop);
3596
3597  // allocate a new frame, filling the registers
3598
3599  gen_new_frame(masm, deopt);        // allocate an interpreter frame
3600
3601  __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
3602  __ delayed()->add(O3array, wordSize, O3array);
3603  __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3604
3605}
3606
3607//------------------------------generate_deopt_blob----------------------------
3608// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3609// instead.
3610void SharedRuntime::generate_deopt_blob() {
3611  // allocate space for the code
3612  ResourceMark rm;
3613  // setup code generation tools
3614  int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3615  if (UseStackBanging) {
3616    pad += StackShadowPages*16 + 32;
3617  }
3618#ifdef _LP64
3619  CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3620#else
3621  // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3622  // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3623  CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3624#endif /* _LP64 */
3625  MacroAssembler* masm               = new MacroAssembler(&buffer);
3626  FloatRegister   Freturn0           = F0;
3627  Register        Greturn1           = G1;
3628  Register        Oreturn0           = O0;
3629  Register        Oreturn1           = O1;
3630  Register        O2UnrollBlock      = O2;
3631  Register        L0deopt_mode       = L0;
3632  Register        G4deopt_mode       = G4_scratch;
3633  int             frame_size_words;
3634  Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3635#if !defined(_LP64) && defined(COMPILER2)
3636  Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3637#endif
3638  Label           cont;
3639
3640  OopMapSet *oop_maps = new OopMapSet();
3641
3642  //
3643  // This is the entry point for code which is returning to a de-optimized
3644  // frame.
3645  // The steps taken by this frame are as follows:
3646  //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3647  //     and all potentially live registers (at a pollpoint many registers can be live).
3648  //
3649  //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3650  //     returns information about the number and size of interpreter frames
3651  //     which are equivalent to the frame which is being deoptimized)
3652  //   - deallocate the unpack frame, restoring only results values. Other
3653  //     volatile registers will now be captured in the vframeArray as needed.
3654  //   - deallocate the deoptimization frame
3655  //   - in a loop using the information returned in the previous step
3656  //     push new interpreter frames (take care to propagate the return
3657  //     values through each new frame pushed)
3658  //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3659  //   - call the C routine: Deoptimization::unpack_frames (this function
3660  //     lays out values on the interpreter frame which was just created)
3661  //   - deallocate the dummy unpack_frame
3662  //   - ensure that all the return values are correctly set and then do
3663  //     a return to the interpreter entry point
3664  //
3665  // Refer to the following methods for more information:
3666  //   - Deoptimization::fetch_unroll_info
3667  //   - Deoptimization::unpack_frames
3668
3669  OopMap* map = NULL;
3670
3671  int start = __ offset();
3672
3673  // restore G2, the trampoline destroyed it
3674  __ get_thread();
3675
3676  // On entry we have been called by the deoptimized nmethod with a call that
3677  // replaced the original call (or safepoint polling location) so the deoptimizing
3678  // pc is now in O7. Return values are still in the expected places
3679
3680  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3681  __ ba(cont);
3682  __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3683
3684  int exception_offset = __ offset() - start;
3685
3686  // restore G2, the trampoline destroyed it
3687  __ get_thread();
3688
3689  // On entry we have been jumped to by the exception handler (or exception_blob
3690  // for server).  O0 contains the exception oop and O7 contains the original
3691  // exception pc.  So if we push a frame here it will look to the
3692  // stack walking code (fetch_unroll_info) just like a normal call so
3693  // state will be extracted normally.
3694
3695  // save exception oop in JavaThread and fall through into the
3696  // exception_in_tls case since they are handled in same way except
3697  // for where the pending exception is kept.
3698  __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3699
3700  //
3701  // Vanilla deoptimization with an exception pending in exception_oop
3702  //
3703  int exception_in_tls_offset = __ offset() - start;
3704
3705  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3706  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3707
3708  // Restore G2_thread
3709  __ get_thread();
3710
3711#ifdef ASSERT
3712  {
3713    // verify that there is really an exception oop in exception_oop
3714    Label has_exception;
3715    __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3716    __ br_notnull_short(Oexception, Assembler::pt, has_exception);
3717    __ stop("no exception in thread");
3718    __ bind(has_exception);
3719
3720    // verify that there is no pending exception
3721    Label no_pending_exception;
3722    Address exception_addr(G2_thread, Thread::pending_exception_offset());
3723    __ ld_ptr(exception_addr, Oexception);
3724    __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
3725    __ stop("must not have pending exception here");
3726    __ bind(no_pending_exception);
3727  }
3728#endif
3729
3730  __ ba(cont);
3731  __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3732
3733  //
3734  // Reexecute entry, similar to c2 uncommon trap
3735  //
3736  int reexecute_offset = __ offset() - start;
3737
3738  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3739  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3740
3741  __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3742
3743  __ bind(cont);
3744
3745  __ set_last_Java_frame(SP, noreg);
3746
3747  // do the call by hand so we can get the oopmap
3748
3749  __ mov(G2_thread, L7_thread_cache);
3750  __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3751  __ delayed()->mov(G2_thread, O0);
3752
3753  // Set an oopmap for the call site this describes all our saved volatile registers
3754
3755  oop_maps->add_gc_map( __ offset()-start, map);
3756
3757  __ mov(L7_thread_cache, G2_thread);
3758
3759  __ reset_last_Java_frame();
3760
3761  // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3762  // so this move will survive
3763
3764  __ mov(L0deopt_mode, G4deopt_mode);
3765
3766  __ mov(O0, O2UnrollBlock->after_save());
3767
3768  RegisterSaver::restore_result_registers(masm);
3769
3770  Label noException;
3771  __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
3772
3773  // Move the pending exception from exception_oop to Oexception so
3774  // the pending exception will be picked up the interpreter.
3775  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3776  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3777  __ bind(noException);
3778
3779  // deallocate the deoptimization frame taking care to preserve the return values
3780  __ mov(Oreturn0,     Oreturn0->after_save());
3781  __ mov(Oreturn1,     Oreturn1->after_save());
3782  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3783  __ restore();
3784
3785  // Allocate new interpreter frame(s) and possible c2i adapter frame
3786
3787  make_new_frames(masm, true);
3788
3789  // push a dummy "unpack_frame" taking care of float return values and
3790  // call Deoptimization::unpack_frames to have the unpacker layout
3791  // information in the interpreter frames just created and then return
3792  // to the interpreter entry point
3793  __ save(SP, -frame_size_words*wordSize, SP);
3794  __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3795#if !defined(_LP64)
3796#if defined(COMPILER2)
3797  // 32-bit 1-register longs return longs in G1
3798  __ stx(Greturn1, saved_Greturn1_addr);
3799#endif
3800  __ set_last_Java_frame(SP, noreg);
3801  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3802#else
3803  // LP64 uses g4 in set_last_Java_frame
3804  __ mov(G4deopt_mode, O1);
3805  __ set_last_Java_frame(SP, G0);
3806  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3807#endif
3808  __ reset_last_Java_frame();
3809  __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3810
3811#if !defined(_LP64) && defined(COMPILER2)
3812  // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3813  // I0/I1 if the return value is long.
3814  Label not_long;
3815  __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
3816  __ ldd(saved_Greturn1_addr,I0);
3817  __ bind(not_long);
3818#endif
3819  __ ret();
3820  __ delayed()->restore();
3821
3822  masm->flush();
3823  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3824  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3825}
3826
3827#ifdef COMPILER2
3828
3829//------------------------------generate_uncommon_trap_blob--------------------
3830// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3831// instead.
3832void SharedRuntime::generate_uncommon_trap_blob() {
3833  // allocate space for the code
3834  ResourceMark rm;
3835  // setup code generation tools
3836  int pad = VerifyThread ? 512 : 0;
3837  if (UseStackBanging) {
3838    pad += StackShadowPages*16 + 32;
3839  }
3840#ifdef _LP64
3841  CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3842#else
3843  // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3844  // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3845  CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3846#endif
3847  MacroAssembler* masm               = new MacroAssembler(&buffer);
3848  Register        O2UnrollBlock      = O2;
3849  Register        O2klass_index      = O2;
3850
3851  //
3852  // This is the entry point for all traps the compiler takes when it thinks
3853  // it cannot handle further execution of compilation code. The frame is
3854  // deoptimized in these cases and converted into interpreter frames for
3855  // execution
3856  // The steps taken by this frame are as follows:
3857  //   - push a fake "unpack_frame"
3858  //   - call the C routine Deoptimization::uncommon_trap (this function
3859  //     packs the current compiled frame into vframe arrays and returns
3860  //     information about the number and size of interpreter frames which
3861  //     are equivalent to the frame which is being deoptimized)
3862  //   - deallocate the "unpack_frame"
3863  //   - deallocate the deoptimization frame
3864  //   - in a loop using the information returned in the previous step
3865  //     push interpreter frames;
3866  //   - create a dummy "unpack_frame"
3867  //   - call the C routine: Deoptimization::unpack_frames (this function
3868  //     lays out values on the interpreter frame which was just created)
3869  //   - deallocate the dummy unpack_frame
3870  //   - return to the interpreter entry point
3871  //
3872  //  Refer to the following methods for more information:
3873  //   - Deoptimization::uncommon_trap
3874  //   - Deoptimization::unpack_frame
3875
3876  // the unloaded class index is in O0 (first parameter to this blob)
3877
3878  // push a dummy "unpack_frame"
3879  // and call Deoptimization::uncommon_trap to pack the compiled frame into
3880  // vframe array and return the UnrollBlock information
3881  __ save_frame(0);
3882  __ set_last_Java_frame(SP, noreg);
3883  __ mov(I0, O2klass_index);
3884  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3885  __ reset_last_Java_frame();
3886  __ mov(O0, O2UnrollBlock->after_save());
3887  __ restore();
3888
3889  // deallocate the deoptimized frame taking care to preserve the return values
3890  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3891  __ restore();
3892
3893  // Allocate new interpreter frame(s) and possible c2i adapter frame
3894
3895  make_new_frames(masm, false);
3896
3897  // push a dummy "unpack_frame" taking care of float return values and
3898  // call Deoptimization::unpack_frames to have the unpacker layout
3899  // information in the interpreter frames just created and then return
3900  // to the interpreter entry point
3901  __ save_frame(0);
3902  __ set_last_Java_frame(SP, noreg);
3903  __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3904  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3905  __ reset_last_Java_frame();
3906  __ ret();
3907  __ delayed()->restore();
3908
3909  masm->flush();
3910  _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3911}
3912
3913#endif // COMPILER2
3914
3915//------------------------------generate_handler_blob-------------------
3916//
3917// Generate a special Compile2Runtime blob that saves all registers, and sets
3918// up an OopMap.
3919//
3920// This blob is jumped to (via a breakpoint and the signal handler) from a
3921// safepoint in compiled code.  On entry to this blob, O7 contains the
3922// address in the original nmethod at which we should resume normal execution.
3923// Thus, this blob looks like a subroutine which must preserve lots of
3924// registers and return normally.  Note that O7 is never register-allocated,
3925// so it is guaranteed to be free here.
3926//
3927
3928// The hardest part of what this blob must do is to save the 64-bit %o
3929// registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3930// an interrupt will chop off their heads.  Making space in the caller's frame
3931// first will let us save the 64-bit %o's before save'ing, but we cannot hand
3932// the adjusted FP off to the GC stack-crawler: this will modify the caller's
3933// SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3934// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3935// Tricky, tricky, tricky...
3936
3937SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
3938  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3939
3940  // allocate space for the code
3941  ResourceMark rm;
3942  // setup code generation tools
3943  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3944  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3945  // even larger with TraceJumps
3946  int pad = TraceJumps ? 512 : 0;
3947  CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3948  MacroAssembler* masm                = new MacroAssembler(&buffer);
3949  int             frame_size_words;
3950  OopMapSet *oop_maps = new OopMapSet();
3951  OopMap* map = NULL;
3952
3953  int start = __ offset();
3954
3955  // If this causes a return before the processing, then do a "restore"
3956  if (cause_return) {
3957    __ restore();
3958  } else {
3959    // Make it look like we were called via the poll
3960    // so that frame constructor always sees a valid return address
3961    __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3962    __ sub(O7, frame::pc_return_offset, O7);
3963  }
3964
3965  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3966
3967  // setup last_Java_sp (blows G4)
3968  __ set_last_Java_frame(SP, noreg);
3969
3970  // call into the runtime to handle illegal instructions exception
3971  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3972  __ mov(G2_thread, O0);
3973  __ save_thread(L7_thread_cache);
3974  __ call(call_ptr);
3975  __ delayed()->nop();
3976
3977  // Set an oopmap for the call site.
3978  // We need this not only for callee-saved registers, but also for volatile
3979  // registers that the compiler might be keeping live across a safepoint.
3980
3981  oop_maps->add_gc_map( __ offset() - start, map);
3982
3983  __ restore_thread(L7_thread_cache);
3984  // clear last_Java_sp
3985  __ reset_last_Java_frame();
3986
3987  // Check for exceptions
3988  Label pending;
3989
3990  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3991  __ br_notnull_short(O1, Assembler::pn, pending);
3992
3993  RegisterSaver::restore_live_registers(masm);
3994
3995  // We are back the the original state on entry and ready to go.
3996
3997  __ retl();
3998  __ delayed()->nop();
3999
4000  // Pending exception after the safepoint
4001
4002  __ bind(pending);
4003
4004  RegisterSaver::restore_live_registers(masm);
4005
4006  // We are back the the original state on entry.
4007
4008  // Tail-call forward_exception_entry, with the issuing PC in O7,
4009  // so it looks like the original nmethod called forward_exception_entry.
4010  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
4011  __ JMP(O0, 0);
4012  __ delayed()->nop();
4013
4014  // -------------
4015  // make sure all code is generated
4016  masm->flush();
4017
4018  // return exception blob
4019  return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
4020}
4021
4022//
4023// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
4024//
4025// Generate a stub that calls into vm to find out the proper destination
4026// of a java call. All the argument registers are live at this point
4027// but since this is generic code we don't know what they are and the caller
4028// must do any gc of the args.
4029//
4030RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
4031  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
4032
4033  // allocate space for the code
4034  ResourceMark rm;
4035  // setup code generation tools
4036  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
4037  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
4038  // even larger with TraceJumps
4039  int pad = TraceJumps ? 512 : 0;
4040  CodeBuffer buffer(name, 1600 + pad, 512);
4041  MacroAssembler* masm                = new MacroAssembler(&buffer);
4042  int             frame_size_words;
4043  OopMapSet *oop_maps = new OopMapSet();
4044  OopMap* map = NULL;
4045
4046  int start = __ offset();
4047
4048  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
4049
4050  int frame_complete = __ offset();
4051
4052  // setup last_Java_sp (blows G4)
4053  __ set_last_Java_frame(SP, noreg);
4054
4055  // call into the runtime to handle illegal instructions exception
4056  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
4057  __ mov(G2_thread, O0);
4058  __ save_thread(L7_thread_cache);
4059  __ call(destination, relocInfo::runtime_call_type);
4060  __ delayed()->nop();
4061
4062  // O0 contains the address we are going to jump to assuming no exception got installed
4063
4064  // Set an oopmap for the call site.
4065  // We need this not only for callee-saved registers, but also for volatile
4066  // registers that the compiler might be keeping live across a safepoint.
4067
4068  oop_maps->add_gc_map( __ offset() - start, map);
4069
4070  __ restore_thread(L7_thread_cache);
4071  // clear last_Java_sp
4072  __ reset_last_Java_frame();
4073
4074  // Check for exceptions
4075  Label pending;
4076
4077  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
4078  __ br_notnull_short(O1, Assembler::pn, pending);
4079
4080  // get the returned Method*
4081
4082  __ get_vm_result_2(G5_method);
4083  __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
4084
4085  // O0 is where we want to jump, overwrite G3 which is saved and scratch
4086
4087  __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
4088
4089  RegisterSaver::restore_live_registers(masm);
4090
4091  // We are back the the original state on entry and ready to go.
4092
4093  __ JMP(G3, 0);
4094  __ delayed()->nop();
4095
4096  // Pending exception after the safepoint
4097
4098  __ bind(pending);
4099
4100  RegisterSaver::restore_live_registers(masm);
4101
4102  // We are back the the original state on entry.
4103
4104  // Tail-call forward_exception_entry, with the issuing PC in O7,
4105  // so it looks like the original nmethod called forward_exception_entry.
4106  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
4107  __ JMP(O0, 0);
4108  __ delayed()->nop();
4109
4110  // -------------
4111  // make sure all code is generated
4112  masm->flush();
4113
4114  // return the  blob
4115  // frame_size_words or bytes??
4116  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
4117}
4118