sharedRuntime_sparc.cpp revision 196:d1605aabd0a1
190075Sobrien/*
2169689Skan * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
390075Sobrien * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
490075Sobrien *
5132718Skan * This code is free software; you can redistribute it and/or modify it
690075Sobrien * under the terms of the GNU General Public License version 2 only, as
7132718Skan * published by the Free Software Foundation.
890075Sobrien *
990075Sobrien * This code is distributed in the hope that it will be useful, but WITHOUT
1090075Sobrien * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1190075Sobrien * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12132718Skan * version 2 for more details (a copy is included in the LICENSE file that
1390075Sobrien * accompanied this code).
1490075Sobrien *
1590075Sobrien * You should have received a copy of the GNU General Public License version
1690075Sobrien * 2 along with this work; if not, write to the Free Software Foundation,
1790075Sobrien * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18132718Skan *
19169689Skan * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20169689Skan * CA 95054 USA or visit www.sun.com if you need additional information or
2190075Sobrien * have any questions.
2290075Sobrien *
2390075Sobrien */
24132718Skan
25132718Skan#include "incls/_precompiled.incl"
2690075Sobrien#include "incls/_sharedRuntime_sparc.cpp.incl"
2790075Sobrien
2890075Sobrien#define __ masm->
2990075Sobrien
30169689Skan#ifdef COMPILER2
31169689SkanUncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
3290075Sobrien#endif // COMPILER2
33169689Skan
3490075SobrienDeoptimizationBlob* SharedRuntime::_deopt_blob;
35169689SkanSafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
36169689SkanSafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
3790075SobrienRuntimeStub*        SharedRuntime::_wrong_method_blob;
3890075SobrienRuntimeStub*        SharedRuntime::_ic_miss_blob;
3990075SobrienRuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
40169689SkanRuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
41169689SkanRuntimeStub*        SharedRuntime::_resolve_static_call_blob;
4290075Sobrien
43169689Skanclass RegisterSaver {
44169689Skan
4590075Sobrien  // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
4690075Sobrien  // The Oregs are problematic. In the 32bit build the compiler can
4790075Sobrien  // have O registers live with 64 bit quantities. A window save will
48132718Skan  // cut the heads off of the registers. We have to do a very extensive
49132718Skan  // stack dance to save and restore these properly.
50169689Skan
51169689Skan  // Note that the Oregs problem only exists if we block at either a polling
52169689Skan  // page exception a compiled code safepoint that was not originally a call
53169689Skan  // or deoptimize following one of these kinds of safepoints.
5490075Sobrien
5590075Sobrien  // Lots of registers to save.  For all builds, a window save will preserve
5690075Sobrien  // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
5790075Sobrien  // builds a window-save will preserve the %o registers.  In the LION build
5890075Sobrien  // we need to save the 64-bit %o registers which requires we save them
5990075Sobrien  // before the window-save (as then they become %i registers and get their
6090075Sobrien  // heads chopped off on interrupt).  We have to save some %g registers here
6190075Sobrien  // as well.
6290075Sobrien  enum {
6390075Sobrien    // This frame's save area.  Includes extra space for the native call:
64132718Skan    // vararg's layout space and the like.  Briefly holds the caller's
6590075Sobrien    // register save area.
66169689Skan    call_args_area = frame::register_save_words_sp_offset +
6790075Sobrien                     frame::memory_parameter_word_sp_offset*wordSize,
6890075Sobrien    // Make sure save locations are always 8 byte aligned.
6990075Sobrien    // can't use round_to because it doesn't produce compile time constant
7090075Sobrien    start_of_extra_save_area = ((call_args_area + 7) & ~7),
7190075Sobrien    g1_offset = start_of_extra_save_area, // g-regs needing saving
7290075Sobrien    g3_offset = g1_offset+8,
7390075Sobrien    g4_offset = g3_offset+8,
7490075Sobrien    g5_offset = g4_offset+8,
7590075Sobrien    o0_offset = g5_offset+8,
76132718Skan    o1_offset = o0_offset+8,
7790075Sobrien    o2_offset = o1_offset+8,
7890075Sobrien    o3_offset = o2_offset+8,
7990075Sobrien    o4_offset = o3_offset+8,
8090075Sobrien    o5_offset = o4_offset+8,
8190075Sobrien    start_of_flags_save_area = o5_offset+8,
8290075Sobrien    ccr_offset = start_of_flags_save_area,
8390075Sobrien    fsr_offset = ccr_offset + 8,
8490075Sobrien    d00_offset = fsr_offset+8,  // Start of float save area
8590075Sobrien    register_save_size = d00_offset+8*32
8690075Sobrien  };
8790075Sobrien
8890075Sobrien
8990075Sobrien  public:
9090075Sobrien
9190075Sobrien  static int Oexception_offset() { return o0_offset; };
9290075Sobrien  static int G3_offset() { return g3_offset; };
93132718Skan  static int G5_offset() { return g5_offset; };
9490075Sobrien  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
9590075Sobrien  static void restore_live_registers(MacroAssembler* masm);
9690075Sobrien
9790075Sobrien  // During deoptimization only the result register need to be restored
9890075Sobrien  // all the other values have already been extracted.
9990075Sobrien
10090075Sobrien  static void restore_result_registers(MacroAssembler* masm);
101132718Skan};
10290075Sobrien
103117395SkanOopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
10490075Sobrien  // Record volatile registers as callee-save values in an OopMap so their save locations will be
10590075Sobrien  // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
106169689Skan  // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
10790075Sobrien  // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
10890075Sobrien  // (as the stub's I's) when the runtime routine called by the stub creates its frame.
10990075Sobrien  int i;
11090075Sobrien  // Always make the frame size 16 bytr aligned.
111169689Skan  int frame_size = round_to(additional_frame_words + register_save_size, 16);
11290075Sobrien  // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
113169689Skan  int frame_size_in_slots = frame_size / sizeof(jint);
11490075Sobrien  // CodeBlob frame size is in words.
11590075Sobrien  *total_frame_words = frame_size / wordSize;
116169689Skan  // OopMap* map = new OopMap(*total_frame_words, 0);
117169689Skan  OopMap* map = new OopMap(frame_size_in_slots, 0);
11890075Sobrien
11990075Sobrien#if !defined(_LP64)
12090075Sobrien
12190075Sobrien  // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
12290075Sobrien  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
12390075Sobrien  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
12490075Sobrien  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
12590075Sobrien  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
12690075Sobrien  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
127169689Skan  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
12890075Sobrien#endif /* _LP64 */
12990075Sobrien
13090075Sobrien  __ save(SP, -frame_size, SP);
13190075Sobrien
13290075Sobrien#ifndef _LP64
133132718Skan  // Reload the 64 bit Oregs. Although they are now Iregs we load them
13490075Sobrien  // to Oregs here to avoid interrupts cutting off their heads
13590075Sobrien
13690075Sobrien  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
13790075Sobrien  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
138169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
13990075Sobrien  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
14090075Sobrien  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
14190075Sobrien  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
14290075Sobrien
143169689Skan  __ stx(O0, SP, o0_offset+STACK_BIAS);
14490075Sobrien  map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
14590075Sobrien
146132718Skan  __ stx(O1, SP, o1_offset+STACK_BIAS);
14790075Sobrien
14890075Sobrien  map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
14990075Sobrien
150169689Skan  __ stx(O2, SP, o2_offset+STACK_BIAS);
15190075Sobrien  map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
15290075Sobrien
15390075Sobrien  __ stx(O3, SP, o3_offset+STACK_BIAS);
15490075Sobrien  map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
15590075Sobrien
15690075Sobrien  __ stx(O4, SP, o4_offset+STACK_BIAS);
15790075Sobrien  map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
15890075Sobrien
159169689Skan  __ stx(O5, SP, o5_offset+STACK_BIAS);
160169689Skan  map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
16190075Sobrien#endif /* _LP64 */
162169689Skan
163169689Skan
164169689Skan#ifdef _LP64
165169689Skan  int debug_offset = 0;
166169689Skan#else
167169689Skan  int debug_offset = 4;
168169689Skan#endif
169169689Skan  // Save the G's
170169689Skan  __ stx(G1, SP, g1_offset+STACK_BIAS);
171169689Skan  map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
172169689Skan
173169689Skan  __ stx(G3, SP, g3_offset+STACK_BIAS);
174169689Skan  map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
175169689Skan
176169689Skan  __ stx(G4, SP, g4_offset+STACK_BIAS);
177169689Skan  map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
178169689Skan
179169689Skan  __ stx(G5, SP, g5_offset+STACK_BIAS);
180169689Skan  map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
181169689Skan
182169689Skan  // This is really a waste but we'll keep things as they were for now
183169689Skan  if (true) {
184169689Skan#ifndef _LP64
185169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
186169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
187169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
188169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
189169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
190169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
191169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
192169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
193169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
194169689Skan    map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
195169689Skan#endif /* _LP64 */
196169689Skan  }
197169689Skan
198169689Skan
199169689Skan  // Save the flags
200169689Skan  __ rdccr( G5 );
201169689Skan  __ stx(G5, SP, ccr_offset+STACK_BIAS);
202169689Skan  __ stxfsr(SP, fsr_offset+STACK_BIAS);
203169689Skan
204169689Skan  // Save all the FP registers
205169689Skan  int offset = d00_offset;
206169689Skan  for( int i=0; i<64; i+=2 ) {
207169689Skan    FloatRegister f = as_FloatRegister(i);
208169689Skan    __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
209169689Skan    map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
210169689Skan    if (true) {
211169689Skan      map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
212169689Skan    }
213169689Skan    offset += sizeof(double);
214169689Skan  }
215169689Skan
216169689Skan  // And we're done.
217169689Skan
218169689Skan  return map;
219169689Skan}
220169689Skan
221169689Skan
222169689Skan// Pop the current frame and restore all the registers that we
223169689Skan// saved.
224169689Skanvoid RegisterSaver::restore_live_registers(MacroAssembler* masm) {
225169689Skan
226169689Skan  // Restore all the FP registers
227169689Skan  for( int i=0; i<64; i+=2 ) {
228169689Skan    __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
229169689Skan  }
230169689Skan
231169689Skan  __ ldx(SP, ccr_offset+STACK_BIAS, G1);
232169689Skan  __ wrccr (G1) ;
233169689Skan
234169689Skan  // Restore the G's
235169689Skan  // Note that G2 (AKA GThread) must be saved and restored separately.
236169689Skan  // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
237169689Skan
238169689Skan  __ ldx(SP, g1_offset+STACK_BIAS, G1);
239169689Skan  __ ldx(SP, g3_offset+STACK_BIAS, G3);
240169689Skan  __ ldx(SP, g4_offset+STACK_BIAS, G4);
241169689Skan  __ ldx(SP, g5_offset+STACK_BIAS, G5);
242169689Skan
243169689Skan
244169689Skan#if !defined(_LP64)
245169689Skan  // Restore the 64-bit O's.
246169689Skan  __ ldx(SP, o0_offset+STACK_BIAS, O0);
247169689Skan  __ ldx(SP, o1_offset+STACK_BIAS, O1);
248169689Skan  __ ldx(SP, o2_offset+STACK_BIAS, O2);
249169689Skan  __ ldx(SP, o3_offset+STACK_BIAS, O3);
250169689Skan  __ ldx(SP, o4_offset+STACK_BIAS, O4);
251169689Skan  __ ldx(SP, o5_offset+STACK_BIAS, O5);
252169689Skan
253169689Skan  // And temporarily place them in TLS
254169689Skan
255169689Skan  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
256169689Skan  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
257169689Skan  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
258169689Skan  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
259169689Skan  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
260169689Skan  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
261169689Skan#endif /* _LP64 */
262169689Skan
263169689Skan  // Restore flags
264169689Skan
265169689Skan  __ ldxfsr(SP, fsr_offset+STACK_BIAS);
266169689Skan
267169689Skan  __ restore();
268169689Skan
269169689Skan#if !defined(_LP64)
270169689Skan  // Now reload the 64bit Oregs after we've restore the window.
271169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
272169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
273169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
274169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
275169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
276169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
277169689Skan#endif /* _LP64 */
278169689Skan
279169689Skan}
280169689Skan
281169689Skan// Pop the current frame and restore the registers that might be holding
282169689Skan// a result.
283169689Skanvoid RegisterSaver::restore_result_registers(MacroAssembler* masm) {
284169689Skan
285169689Skan#if !defined(_LP64)
286169689Skan  // 32bit build returns longs in G1
287169689Skan  __ ldx(SP, g1_offset+STACK_BIAS, G1);
288169689Skan
289169689Skan  // Retrieve the 64-bit O's.
290169689Skan  __ ldx(SP, o0_offset+STACK_BIAS, O0);
291169689Skan  __ ldx(SP, o1_offset+STACK_BIAS, O1);
292169689Skan  // and save to TLS
293169689Skan  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
294169689Skan  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
295169689Skan#endif /* _LP64 */
296169689Skan
297169689Skan  __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
298169689Skan
299169689Skan  __ restore();
300169689Skan
301169689Skan#if !defined(_LP64)
302169689Skan  // Now reload the 64bit Oregs after we've restore the window.
303169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
304169689Skan  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
305169689Skan#endif /* _LP64 */
306169689Skan
307169689Skan}
308169689Skan
309169689Skan// The java_calling_convention describes stack locations as ideal slots on
310169689Skan// a frame with no abi restrictions. Since we must observe abi restrictions
311169689Skan// (like the placement of the register window) the slots must be biased by
312169689Skan// the following value.
313169689Skanstatic int reg2offset(VMReg r) {
314169689Skan  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
315169689Skan}
316169689Skan
317169689Skan// ---------------------------------------------------------------------------
318169689Skan// Read the array of BasicTypes from a signature, and compute where the
319169689Skan// arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
320169689Skan// quantities.  Values less than VMRegImpl::stack0 are registers, those above
321169689Skan// refer to 4-byte stack slots.  All stack slots are based off of the window
322169689Skan// top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
323169689Skan// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
324169689Skan// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
325169689Skan// integer registers.  Values 64-95 are the (32-bit only) float registers.
326169689Skan// Each 32-bit quantity is given its own number, so the integer registers
327169689Skan// (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
328169689Skan// an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
329169689Skan
330169689Skan// Register results are passed in O0-O5, for outgoing call arguments.  To
331169689Skan// convert to incoming arguments, convert all O's to I's.  The regs array
332169689Skan// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
333169689Skan// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
334169689Skan// 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
335169689Skan// passed (used as a placeholder for the other half of longs and doubles in
336169689Skan// the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
337169689Skan// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
338169689Skan// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
339169689Skan// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
340169689Skan// same VMRegPair.
341169689Skan
342169689Skan// Note: the INPUTS in sig_bt are in units of Java argument words, which are
343169689Skan// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
344169689Skan// units regardless of build.
345169689Skan
346169689Skan
347169689Skan// ---------------------------------------------------------------------------
348169689Skan// The compiled Java calling convention.  The Java convention always passes
349169689Skan// 64-bit values in adjacent aligned locations (either registers or stack),
350169689Skan// floats in float registers and doubles in aligned float pairs.  Values are
351169689Skan// packed in the registers.  There is no backing varargs store for values in
352169689Skan// registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
353169689Skan// passed in I's, because longs in I's get their heads chopped off at
354169689Skan// interrupt).
355169689Skanint SharedRuntime::java_calling_convention(const BasicType *sig_bt,
356169689Skan                                           VMRegPair *regs,
357169689Skan                                           int total_args_passed,
358169689Skan                                           int is_outgoing) {
359169689Skan  assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
360169689Skan
361169689Skan  // Convention is to pack the first 6 int/oop args into the first 6 registers
362169689Skan  // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
363169689Skan  // into F0-F7, extras spill to the stack.  Then pad all register sets to
364169689Skan  // align.  Then put longs and doubles into the same registers as they fit,
365169689Skan  // else spill to the stack.
366169689Skan  const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
367169689Skan  const int flt_reg_max = 8;
368169689Skan  //
369169689Skan  // Where 32-bit 1-reg longs start being passed
370169689Skan  // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
371169689Skan  // So make it look like we've filled all the G regs that c2 wants to use.
372169689Skan  Register g_reg = TieredCompilation ? noreg : G1;
373169689Skan
374169689Skan  // Count int/oop and float args.  See how many stack slots we'll need and
375169689Skan  // where the longs & doubles will go.
376169689Skan  int int_reg_cnt   = 0;
377169689Skan  int flt_reg_cnt   = 0;
378169689Skan  // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
379169689Skan  // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
380169689Skan  int stk_reg_pairs = 0;
381169689Skan  for (int i = 0; i < total_args_passed; i++) {
382169689Skan    switch (sig_bt[i]) {
383169689Skan    case T_LONG:                // LP64, longs compete with int args
384169689Skan      assert(sig_bt[i+1] == T_VOID, "");
385169689Skan#ifdef _LP64
386169689Skan      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
387169689Skan#endif
388169689Skan      break;
389169689Skan    case T_OBJECT:
390169689Skan    case T_ARRAY:
391169689Skan    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
392169689Skan      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
393169689Skan#ifndef _LP64
394169689Skan      else                            stk_reg_pairs++;
395169689Skan#endif
396169689Skan      break;
397169689Skan    case T_INT:
398169689Skan    case T_SHORT:
399169689Skan    case T_CHAR:
400169689Skan    case T_BYTE:
401169689Skan    case T_BOOLEAN:
402169689Skan      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
403169689Skan      else                            stk_reg_pairs++;
404169689Skan      break;
405169689Skan    case T_FLOAT:
406169689Skan      if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
407169689Skan      else                            stk_reg_pairs++;
408169689Skan      break;
409169689Skan    case T_DOUBLE:
410169689Skan      assert(sig_bt[i+1] == T_VOID, "");
411169689Skan      break;
412169689Skan    case T_VOID:
413169689Skan      break;
414169689Skan    default:
415169689Skan      ShouldNotReachHere();
416169689Skan    }
417169689Skan  }
418169689Skan
419169689Skan  // This is where the longs/doubles start on the stack.
420169689Skan  stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
421169689Skan
422169689Skan  int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
423169689Skan  int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
424169689Skan
425169689Skan  // int stk_reg = frame::register_save_words*(wordSize>>2);
426169689Skan  // int stk_reg = SharedRuntime::out_preserve_stack_slots();
427169689Skan  int stk_reg = 0;
428169689Skan  int int_reg = 0;
429169689Skan  int flt_reg = 0;
430169689Skan
431169689Skan  // Now do the signature layout
432169689Skan  for (int i = 0; i < total_args_passed; i++) {
433169689Skan    switch (sig_bt[i]) {
434169689Skan    case T_INT:
435169689Skan    case T_SHORT:
436169689Skan    case T_CHAR:
437169689Skan    case T_BYTE:
438169689Skan    case T_BOOLEAN:
439169689Skan#ifndef _LP64
440169689Skan    case T_OBJECT:
441169689Skan    case T_ARRAY:
442169689Skan    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
443169689Skan#endif // _LP64
444169689Skan      if (int_reg < int_reg_max) {
445169689Skan        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
446169689Skan        regs[i].set1(r->as_VMReg());
447169689Skan      } else {
448169689Skan        regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
449169689Skan      }
450169689Skan      break;
451169689Skan
452169689Skan#ifdef _LP64
453169689Skan    case T_OBJECT:
454169689Skan    case T_ARRAY:
455169689Skan    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
456169689Skan      if (int_reg < int_reg_max) {
457169689Skan        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
458169689Skan        regs[i].set2(r->as_VMReg());
459169689Skan      } else {
460169689Skan        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
461169689Skan        stk_reg_pairs += 2;
462169689Skan      }
463169689Skan      break;
464169689Skan#endif // _LP64
465169689Skan
466169689Skan    case T_LONG:
467169689Skan      assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
468169689Skan#ifdef COMPILER2
469169689Skan#ifdef _LP64
470169689Skan        // Can't be tiered (yet)
471169689Skan        if (int_reg < int_reg_max) {
472169689Skan          Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
473169689Skan          regs[i].set2(r->as_VMReg());
474169689Skan        } else {
475169689Skan          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
476169689Skan          stk_reg_pairs += 2;
477169689Skan        }
478169689Skan#else
479169689Skan        // For 32-bit build, can't pass longs in O-regs because they become
480169689Skan        // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
481169689Skan        // spare and available.  This convention isn't used by the Sparc ABI or
482169689Skan        // anywhere else. If we're tiered then we don't use G-regs because c1
483169689Skan        // can't deal with them as a "pair".
484169689Skan        // G0: zero
485169689Skan        // G1: 1st Long arg
486169689Skan        // G2: global allocated to TLS
487169689Skan        // G3: used in inline cache check
488169689Skan        // G4: 2nd Long arg
489169689Skan        // G5: used in inline cache check
490169689Skan        // G6: used by OS
491169689Skan        // G7: used by OS
492169689Skan
493169689Skan        if (g_reg == G1) {
494169689Skan          regs[i].set2(G1->as_VMReg()); // This long arg in G1
495169689Skan          g_reg = G4;                  // Where the next arg goes
496169689Skan        } else if (g_reg == G4) {
497169689Skan          regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
498169689Skan          g_reg = noreg;               // No more longs in registers
499169689Skan        } else {
500169689Skan          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
501169689Skan          stk_reg_pairs += 2;
502169689Skan        }
503169689Skan#endif // _LP64
504169689Skan#else // COMPILER2
505169689Skan        if (int_reg_pairs + 1 < int_reg_max) {
506169689Skan          if (is_outgoing) {
507169689Skan            regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
508169689Skan          } else {
509169689Skan            regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
510169689Skan          }
511169689Skan          int_reg_pairs += 2;
512169689Skan        } else {
513169689Skan          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
514169689Skan          stk_reg_pairs += 2;
515169689Skan        }
516169689Skan#endif // COMPILER2
517169689Skan      break;
518169689Skan
519169689Skan    case T_FLOAT:
520169689Skan      if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
521169689Skan      else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
522169689Skan      break;
523169689Skan    case T_DOUBLE:
524169689Skan      assert(sig_bt[i+1] == T_VOID, "expecting half");
525169689Skan      if (flt_reg_pairs + 1 < flt_reg_max) {
526169689Skan        regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
527169689Skan        flt_reg_pairs += 2;
528169689Skan      } else {
529169689Skan        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
530169689Skan        stk_reg_pairs += 2;
531169689Skan      }
532169689Skan      break;
533169689Skan    case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
534169689Skan    default:
535169689Skan      ShouldNotReachHere();
536169689Skan    }
537169689Skan  }
538169689Skan
539169689Skan  // retun the amount of stack space these arguments will need.
540169689Skan  return stk_reg_pairs;
541169689Skan
542169689Skan}
543169689Skan
544169689Skan// Helper class mostly to avoid passing masm everywhere, and handle store
545169689Skan// displacement overflow logic for LP64
546169689Skanclass AdapterGenerator {
547169689Skan  MacroAssembler *masm;
548169689Skan#ifdef _LP64
549169689Skan  Register Rdisp;
550169689Skan  void set_Rdisp(Register r)  { Rdisp = r; }
551169689Skan#endif // _LP64
552169689Skan
553169689Skan  void patch_callers_callsite();
554169689Skan  void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch);
555169689Skan
556169689Skan  // base+st_off points to top of argument
557169689Skan  int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); }
558169689Skan  int next_arg_offset(const int st_off) {
559169689Skan    return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
560169689Skan  }
561169689Skan
562169689Skan#ifdef _LP64
563169689Skan  // On _LP64 argument slot values are loaded first into a register
564169689Skan  // because they might not fit into displacement.
565169689Skan  Register arg_slot(const int st_off);
566169689Skan  Register next_arg_slot(const int st_off);
567169689Skan#else
568169689Skan  int arg_slot(const int st_off)      { return arg_offset(st_off); }
569169689Skan  int next_arg_slot(const int st_off) { return next_arg_offset(st_off); }
570169689Skan#endif // _LP64
571169689Skan
572169689Skan  // Stores long into offset pointed to by base
573169689Skan  void store_c2i_long(Register r, Register base,
574169689Skan                      const int st_off, bool is_stack);
575169689Skan  void store_c2i_object(Register r, Register base,
576169689Skan                        const int st_off);
577169689Skan  void store_c2i_int(Register r, Register base,
578169689Skan                     const int st_off);
579169689Skan  void store_c2i_double(VMReg r_2,
580169689Skan                        VMReg r_1, Register base, const int st_off);
581169689Skan  void store_c2i_float(FloatRegister f, Register base,
582169689Skan                       const int st_off);
583169689Skan
584169689Skan public:
585169689Skan  void gen_c2i_adapter(int total_args_passed,
586169689Skan                              // VMReg max_arg,
587169689Skan                              int comp_args_on_stack, // VMRegStackSlots
588169689Skan                              const BasicType *sig_bt,
589169689Skan                              const VMRegPair *regs,
590169689Skan                              Label& skip_fixup);
591169689Skan  void gen_i2c_adapter(int total_args_passed,
592169689Skan                              // VMReg max_arg,
593169689Skan                              int comp_args_on_stack, // VMRegStackSlots
594169689Skan                              const BasicType *sig_bt,
595169689Skan                              const VMRegPair *regs);
596169689Skan
597169689Skan  AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
598169689Skan};
599169689Skan
600169689Skan
601169689Skan// Patch the callers callsite with entry to compiled code if it exists.
602169689Skanvoid AdapterGenerator::patch_callers_callsite() {
603169689Skan  Label L;
604169689Skan  __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
605169689Skan  __ br_null(G3_scratch, false, __ pt, L);
606169689Skan  // Schedule the branch target address early.
607169689Skan  __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
608169689Skan  // Call into the VM to patch the caller, then jump to compiled callee
609169689Skan  __ save_frame(4);     // Args in compiled layout; do not blow them
610169689Skan
611169689Skan  // Must save all the live Gregs the list is:
612169689Skan  // G1: 1st Long arg (32bit build)
613169689Skan  // G2: global allocated to TLS
614169689Skan  // G3: used in inline cache check (scratch)
615169689Skan  // G4: 2nd Long arg (32bit build);
616169689Skan  // G5: used in inline cache check (methodOop)
617169689Skan
618169689Skan  // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
619169689Skan
620169689Skan#ifdef _LP64
621169689Skan  // mov(s,d)
622169689Skan  __ mov(G1, L1);
623  __ mov(G4, L4);
624  __ mov(G5_method, L5);
625  __ mov(G5_method, O0);         // VM needs target method
626  __ mov(I7, O1);                // VM needs caller's callsite
627  // Must be a leaf call...
628  // can be very far once the blob has been relocated
629  Address dest(O7, CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
630  __ relocate(relocInfo::runtime_call_type);
631  __ jumpl_to(dest, O7);
632  __ delayed()->mov(G2_thread, L7_thread_cache);
633  __ mov(L7_thread_cache, G2_thread);
634  __ mov(L1, G1);
635  __ mov(L4, G4);
636  __ mov(L5, G5_method);
637#else
638  __ stx(G1, FP, -8 + STACK_BIAS);
639  __ stx(G4, FP, -16 + STACK_BIAS);
640  __ mov(G5_method, L5);
641  __ mov(G5_method, O0);         // VM needs target method
642  __ mov(I7, O1);                // VM needs caller's callsite
643  // Must be a leaf call...
644  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
645  __ delayed()->mov(G2_thread, L7_thread_cache);
646  __ mov(L7_thread_cache, G2_thread);
647  __ ldx(FP, -8 + STACK_BIAS, G1);
648  __ ldx(FP, -16 + STACK_BIAS, G4);
649  __ mov(L5, G5_method);
650  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
651#endif /* _LP64 */
652
653  __ restore();      // Restore args
654  __ bind(L);
655}
656
657void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off,
658                 Register scratch) {
659  if (TaggedStackInterpreter) {
660    int tag_off = st_off + Interpreter::tag_offset_in_bytes();
661#ifdef _LP64
662    Register tag_slot = Rdisp;
663    __ set(tag_off, tag_slot);
664#else
665    int tag_slot = tag_off;
666#endif // _LP64
667    // have to store zero because local slots can be reused (rats!)
668    if (t == frame::TagValue) {
669      __ st_ptr(G0, base, tag_slot);
670    } else if (t == frame::TagCategory2) {
671      __ st_ptr(G0, base, tag_slot);
672      int next_tag_off  = st_off - Interpreter::stackElementSize() +
673                                   Interpreter::tag_offset_in_bytes();
674#ifdef _LP64
675      __ set(next_tag_off, tag_slot);
676#else
677      tag_slot = next_tag_off;
678#endif // _LP64
679      __ st_ptr(G0, base, tag_slot);
680    } else {
681      __ mov(t, scratch);
682      __ st_ptr(scratch, base, tag_slot);
683    }
684  }
685}
686
687#ifdef _LP64
688Register AdapterGenerator::arg_slot(const int st_off) {
689  __ set( arg_offset(st_off), Rdisp);
690  return Rdisp;
691}
692
693Register AdapterGenerator::next_arg_slot(const int st_off){
694  __ set( next_arg_offset(st_off), Rdisp);
695  return Rdisp;
696}
697#endif // _LP64
698
699// Stores long into offset pointed to by base
700void AdapterGenerator::store_c2i_long(Register r, Register base,
701                                      const int st_off, bool is_stack) {
702#ifdef COMPILER2
703#ifdef _LP64
704  // In V9, longs are given 2 64-bit slots in the interpreter, but the
705  // data is passed in only 1 slot.
706  __ stx(r, base, next_arg_slot(st_off));
707#else
708  // Misaligned store of 64-bit data
709  __ stw(r, base, arg_slot(st_off));    // lo bits
710  __ srlx(r, 32, r);
711  __ stw(r, base, next_arg_slot(st_off));  // hi bits
712#endif // _LP64
713#else
714  if (is_stack) {
715    // Misaligned store of 64-bit data
716    __ stw(r, base, arg_slot(st_off));    // lo bits
717    __ srlx(r, 32, r);
718    __ stw(r, base, next_arg_slot(st_off));  // hi bits
719  } else {
720    __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
721    __ stw(r             , base, next_arg_slot(st_off)); // hi bits
722  }
723#endif // COMPILER2
724  tag_c2i_arg(frame::TagCategory2, base, st_off, r);
725}
726
727void AdapterGenerator::store_c2i_object(Register r, Register base,
728                      const int st_off) {
729  __ st_ptr (r, base, arg_slot(st_off));
730  tag_c2i_arg(frame::TagReference, base, st_off, r);
731}
732
733void AdapterGenerator::store_c2i_int(Register r, Register base,
734                   const int st_off) {
735  __ st (r, base, arg_slot(st_off));
736  tag_c2i_arg(frame::TagValue, base, st_off, r);
737}
738
739// Stores into offset pointed to by base
740void AdapterGenerator::store_c2i_double(VMReg r_2,
741                      VMReg r_1, Register base, const int st_off) {
742#ifdef _LP64
743  // In V9, doubles are given 2 64-bit slots in the interpreter, but the
744  // data is passed in only 1 slot.
745  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
746#else
747  // Need to marshal 64-bit value from misaligned Lesp loads
748  __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
749  __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
750#endif
751  tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch);
752}
753
754void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
755                                       const int st_off) {
756  __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
757  tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch);
758}
759
760void AdapterGenerator::gen_c2i_adapter(
761                            int total_args_passed,
762                            // VMReg max_arg,
763                            int comp_args_on_stack, // VMRegStackSlots
764                            const BasicType *sig_bt,
765                            const VMRegPair *regs,
766                            Label& skip_fixup) {
767
768  // Before we get into the guts of the C2I adapter, see if we should be here
769  // at all.  We've come from compiled code and are attempting to jump to the
770  // interpreter, which means the caller made a static call to get here
771  // (vcalls always get a compiled target if there is one).  Check for a
772  // compiled target.  If there is one, we need to patch the caller's call.
773  // However we will run interpreted if we come thru here. The next pass
774  // thru the call site will run compiled. If we ran compiled here then
775  // we can (theorectically) do endless i2c->c2i->i2c transitions during
776  // deopt/uncommon trap cycles. If we always go interpreted here then
777  // we can have at most one and don't need to play any tricks to keep
778  // from endlessly growing the stack.
779  //
780  // Actually if we detected that we had an i2c->c2i transition here we
781  // ought to be able to reset the world back to the state of the interpreted
782  // call and not bother building another interpreter arg area. We don't
783  // do that at this point.
784
785  patch_callers_callsite();
786
787  __ bind(skip_fixup);
788
789  // Since all args are passed on the stack, total_args_passed*wordSize is the
790  // space we need.  Add in varargs area needed by the interpreter. Round up
791  // to stack alignment.
792  const int arg_size = total_args_passed * Interpreter::stackElementSize();
793  const int varargs_area =
794                 (frame::varargs_offset - frame::register_save_words)*wordSize;
795  const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
796
797  int bias = STACK_BIAS;
798  const int interp_arg_offset = frame::varargs_offset*wordSize +
799                        (total_args_passed-1)*Interpreter::stackElementSize();
800
801  Register base = SP;
802
803#ifdef _LP64
804  // In the 64bit build because of wider slots and STACKBIAS we can run
805  // out of bits in the displacement to do loads and stores.  Use g3 as
806  // temporary displacement.
807  if (! __ is_simm13(extraspace)) {
808    __ set(extraspace, G3_scratch);
809    __ sub(SP, G3_scratch, SP);
810  } else {
811    __ sub(SP, extraspace, SP);
812  }
813  set_Rdisp(G3_scratch);
814#else
815  __ sub(SP, extraspace, SP);
816#endif // _LP64
817
818  // First write G1 (if used) to where ever it must go
819  for (int i=0; i<total_args_passed; i++) {
820    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
821    VMReg r_1 = regs[i].first();
822    VMReg r_2 = regs[i].second();
823    if (r_1 == G1_scratch->as_VMReg()) {
824      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
825        store_c2i_object(G1_scratch, base, st_off);
826      } else if (sig_bt[i] == T_LONG) {
827        assert(!TieredCompilation, "should not use register args for longs");
828        store_c2i_long(G1_scratch, base, st_off, false);
829      } else {
830        store_c2i_int(G1_scratch, base, st_off);
831      }
832    }
833  }
834
835  // Now write the args into the outgoing interpreter space
836  for (int i=0; i<total_args_passed; i++) {
837    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
838    VMReg r_1 = regs[i].first();
839    VMReg r_2 = regs[i].second();
840    if (!r_1->is_valid()) {
841      assert(!r_2->is_valid(), "");
842      continue;
843    }
844    // Skip G1 if found as we did it first in order to free it up
845    if (r_1 == G1_scratch->as_VMReg()) {
846      continue;
847    }
848#ifdef ASSERT
849    bool G1_forced = false;
850#endif // ASSERT
851    if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
852#ifdef _LP64
853      Register ld_off = Rdisp;
854      __ set(reg2offset(r_1) + extraspace + bias, ld_off);
855#else
856      int ld_off = reg2offset(r_1) + extraspace + bias;
857#ifdef ASSERT
858      G1_forced = true;
859#endif // ASSERT
860#endif // _LP64
861      r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
862      if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
863      else                  __ ldx(base, ld_off, G1_scratch);
864    }
865
866    if (r_1->is_Register()) {
867      Register r = r_1->as_Register()->after_restore();
868      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
869        store_c2i_object(r, base, st_off);
870      } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
871        if (TieredCompilation) {
872          assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
873        }
874        store_c2i_long(r, base, st_off, r_2->is_stack());
875      } else {
876        store_c2i_int(r, base, st_off);
877      }
878    } else {
879      assert(r_1->is_FloatRegister(), "");
880      if (sig_bt[i] == T_FLOAT) {
881        store_c2i_float(r_1->as_FloatRegister(), base, st_off);
882      } else {
883        assert(sig_bt[i] == T_DOUBLE, "wrong type");
884        store_c2i_double(r_2, r_1, base, st_off);
885      }
886    }
887  }
888
889#ifdef _LP64
890  // Need to reload G3_scratch, used for temporary displacements.
891  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
892
893  // Pass O5_savedSP as an argument to the interpreter.
894  // The interpreter will restore SP to this value before returning.
895  __ set(extraspace, G1);
896  __ add(SP, G1, O5_savedSP);
897#else
898  // Pass O5_savedSP as an argument to the interpreter.
899  // The interpreter will restore SP to this value before returning.
900  __ add(SP, extraspace, O5_savedSP);
901#endif // _LP64
902
903  __ mov((frame::varargs_offset)*wordSize -
904         1*Interpreter::stackElementSize()+bias+BytesPerWord, G1);
905  // Jump to the interpreter just as if interpreter was doing it.
906  __ jmpl(G3_scratch, 0, G0);
907  // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
908  // (really L0) is in use by the compiled frame as a generic temp.  However,
909  // the interpreter does not know where its args are without some kind of
910  // arg pointer being passed in.  Pass it in Gargs.
911  __ delayed()->add(SP, G1, Gargs);
912}
913
914void AdapterGenerator::gen_i2c_adapter(
915                            int total_args_passed,
916                            // VMReg max_arg,
917                            int comp_args_on_stack, // VMRegStackSlots
918                            const BasicType *sig_bt,
919                            const VMRegPair *regs) {
920
921  // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
922  // layout.  Lesp was saved by the calling I-frame and will be restored on
923  // return.  Meanwhile, outgoing arg space is all owned by the callee
924  // C-frame, so we can mangle it at will.  After adjusting the frame size,
925  // hoist register arguments and repack other args according to the compiled
926  // code convention.  Finally, end in a jump to the compiled code.  The entry
927  // point address is the start of the buffer.
928
929  // We will only enter here from an interpreted frame and never from after
930  // passing thru a c2i. Azul allowed this but we do not. If we lose the
931  // race and use a c2i we will remain interpreted for the race loser(s).
932  // This removes all sorts of headaches on the x86 side and also eliminates
933  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
934
935  // As you can see from the list of inputs & outputs there are not a lot
936  // of temp registers to work with: mostly G1, G3 & G4.
937
938  // Inputs:
939  // G2_thread      - TLS
940  // G5_method      - Method oop
941  // O0             - Flag telling us to restore SP from O5
942  // O4_args        - Pointer to interpreter's args
943  // O5             - Caller's saved SP, to be restored if needed
944  // O6             - Current SP!
945  // O7             - Valid return address
946  // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
947
948  // Outputs:
949  // G2_thread      - TLS
950  // G1, G4         - Outgoing long args in 32-bit build
951  // O0-O5          - Outgoing args in compiled layout
952  // O6             - Adjusted or restored SP
953  // O7             - Valid return address
954  // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
955  // F0-F7          - more outgoing args
956
957
958  // O4 is about to get loaded up with compiled callee's args
959  __ sub(Gargs, BytesPerWord, Gargs);
960
961#ifdef ASSERT
962  {
963    // on entry OsavedSP and SP should be equal
964    Label ok;
965    __ cmp(O5_savedSP, SP);
966    __ br(Assembler::equal, false, Assembler::pt, ok);
967    __ delayed()->nop();
968    __ stop("I5_savedSP not set");
969    __ should_not_reach_here();
970    __ bind(ok);
971  }
972#endif
973
974  // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
975  // WITH O7 HOLDING A VALID RETURN PC
976  //
977  // |              |
978  // :  java stack  :
979  // |              |
980  // +--------------+ <--- start of outgoing args
981  // |   receiver   |   |
982  // : rest of args :   |---size is java-arg-words
983  // |              |   |
984  // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
985  // |              |   |
986  // :    unused    :   |---Space for max Java stack, plus stack alignment
987  // |              |   |
988  // +--------------+ <--- SP + 16*wordsize
989  // |              |
990  // :    window    :
991  // |              |
992  // +--------------+ <--- SP
993
994  // WE REPACK THE STACK.  We use the common calling convention layout as
995  // discovered by calling SharedRuntime::calling_convention.  We assume it
996  // causes an arbitrary shuffle of memory, which may require some register
997  // temps to do the shuffle.  We hope for (and optimize for) the case where
998  // temps are not needed.  We may have to resize the stack slightly, in case
999  // we need alignment padding (32-bit interpreter can pass longs & doubles
1000  // misaligned, but the compilers expect them aligned).
1001  //
1002  // |              |
1003  // :  java stack  :
1004  // |              |
1005  // +--------------+ <--- start of outgoing args
1006  // |  pad, align  |   |
1007  // +--------------+   |
1008  // | ints, floats |   |---Outgoing stack args, packed low.
1009  // +--------------+   |   First few args in registers.
1010  // :   doubles    :   |
1011  // |   longs      |   |
1012  // +--------------+ <--- SP' + 16*wordsize
1013  // |              |
1014  // :    window    :
1015  // |              |
1016  // +--------------+ <--- SP'
1017
1018  // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
1019  // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
1020  // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
1021
1022  // Cut-out for having no stack args.  Since up to 6 args are passed
1023  // in registers, we will commonly have no stack args.
1024  if (comp_args_on_stack > 0) {
1025
1026    // Convert VMReg stack slots to words.
1027    int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1028    // Round up to miminum stack alignment, in wordSize
1029    comp_words_on_stack = round_to(comp_words_on_stack, 2);
1030    // Now compute the distance from Lesp to SP.  This calculation does not
1031    // include the space for total_args_passed because Lesp has not yet popped
1032    // the arguments.
1033    __ sub(SP, (comp_words_on_stack)*wordSize, SP);
1034  }
1035
1036  // Will jump to the compiled code just as if compiled code was doing it.
1037  // Pre-load the register-jump target early, to schedule it better.
1038  __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
1039
1040  // Now generate the shuffle code.  Pick up all register args and move the
1041  // rest through G1_scratch.
1042  for (int i=0; i<total_args_passed; i++) {
1043    if (sig_bt[i] == T_VOID) {
1044      // Longs and doubles are passed in native word order, but misaligned
1045      // in the 32-bit build.
1046      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1047      continue;
1048    }
1049
1050    // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
1051    // 32-bit build and aligned in the 64-bit build.  Look for the obvious
1052    // ldx/lddf optimizations.
1053
1054    // Load in argument order going down.
1055    const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
1056#ifdef _LP64
1057    set_Rdisp(G1_scratch);
1058#endif // _LP64
1059
1060    VMReg r_1 = regs[i].first();
1061    VMReg r_2 = regs[i].second();
1062    if (!r_1->is_valid()) {
1063      assert(!r_2->is_valid(), "");
1064      continue;
1065    }
1066    if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
1067      r_1 = F8->as_VMReg();        // as part of the load/store shuffle
1068      if (r_2->is_valid()) r_2 = r_1->next();
1069    }
1070    if (r_1->is_Register()) {  // Register argument
1071      Register r = r_1->as_Register()->after_restore();
1072      if (!r_2->is_valid()) {
1073        __ ld(Gargs, arg_slot(ld_off), r);
1074      } else {
1075#ifdef _LP64
1076        // In V9, longs are given 2 64-bit slots in the interpreter, but the
1077        // data is passed in only 1 slot.
1078        Register slot = (sig_bt[i]==T_LONG) ?
1079              next_arg_slot(ld_off) : arg_slot(ld_off);
1080        __ ldx(Gargs, slot, r);
1081#else
1082        // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1083        // stack shuffle.  Load the first 2 longs into G1/G4 later.
1084#endif
1085      }
1086    } else {
1087      assert(r_1->is_FloatRegister(), "");
1088      if (!r_2->is_valid()) {
1089        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1090      } else {
1091#ifdef _LP64
1092        // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1093        // data is passed in only 1 slot.  This code also handles longs that
1094        // are passed on the stack, but need a stack-to-stack move through a
1095        // spare float register.
1096        Register slot = (sig_bt[i]==T_LONG || sig_bt[i] == T_DOUBLE) ?
1097              next_arg_slot(ld_off) : arg_slot(ld_off);
1098        __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1099#else
1100        // Need to marshal 64-bit value from misaligned Lesp loads
1101        __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1102        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1103#endif
1104      }
1105    }
1106    // Was the argument really intended to be on the stack, but was loaded
1107    // into F8/F9?
1108    if (regs[i].first()->is_stack()) {
1109      assert(r_1->as_FloatRegister() == F8, "fix this code");
1110      // Convert stack slot to an SP offset
1111      int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1112      // Store down the shuffled stack word.  Target address _is_ aligned.
1113      if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, st_off);
1114      else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, st_off);
1115    }
1116  }
1117  bool made_space = false;
1118#ifndef _LP64
1119  // May need to pick up a few long args in G1/G4
1120  bool g4_crushed = false;
1121  bool g3_crushed = false;
1122  for (int i=0; i<total_args_passed; i++) {
1123    if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1124      // Load in argument order going down
1125      int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
1126      // Need to marshal 64-bit value from misaligned Lesp loads
1127      Register r = regs[i].first()->as_Register()->after_restore();
1128      if (r == G1 || r == G4) {
1129        assert(!g4_crushed, "ordering problem");
1130        if (r == G4){
1131          g4_crushed = true;
1132          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1133          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1134        } else {
1135          // better schedule this way
1136          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1137          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1138        }
1139        g3_crushed = true;
1140        __ sllx(r, 32, r);
1141        __ or3(G3_scratch, r, r);
1142      } else {
1143        assert(r->is_out(), "longs passed in two O registers");
1144        __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
1145        __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
1146      }
1147    }
1148  }
1149#endif
1150
1151  // Jump to the compiled code just as if compiled code was doing it.
1152  //
1153#ifndef _LP64
1154    if (g3_crushed) {
1155      // Rats load was wasted, at least it is in cache...
1156      __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
1157    }
1158#endif /* _LP64 */
1159
1160    // 6243940 We might end up in handle_wrong_method if
1161    // the callee is deoptimized as we race thru here. If that
1162    // happens we don't want to take a safepoint because the
1163    // caller frame will look interpreted and arguments are now
1164    // "compiled" so it is much better to make this transition
1165    // invisible to the stack walking code. Unfortunately if
1166    // we try and find the callee by normal means a safepoint
1167    // is possible. So we stash the desired callee in the thread
1168    // and the vm will find there should this case occur.
1169    Address callee_target_addr(G2_thread, 0, in_bytes(JavaThread::callee_target_offset()));
1170    __ st_ptr(G5_method, callee_target_addr);
1171
1172    if (StressNonEntrant) {
1173      // Open a big window for deopt failure
1174      __ save_frame(0);
1175      __ mov(G0, L0);
1176      Label loop;
1177      __ bind(loop);
1178      __ sub(L0, 1, L0);
1179      __ br_null(L0, false, Assembler::pt, loop);
1180      __ delayed()->nop();
1181
1182      __ restore();
1183    }
1184
1185
1186    __ jmpl(G3, 0, G0);
1187    __ delayed()->nop();
1188}
1189
1190// ---------------------------------------------------------------
1191AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1192                                                            int total_args_passed,
1193                                                            // VMReg max_arg,
1194                                                            int comp_args_on_stack, // VMRegStackSlots
1195                                                            const BasicType *sig_bt,
1196                                                            const VMRegPair *regs) {
1197  address i2c_entry = __ pc();
1198
1199  AdapterGenerator agen(masm);
1200
1201  agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1202
1203
1204  // -------------------------------------------------------------------------
1205  // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
1206  // args start out packed in the compiled layout.  They need to be unpacked
1207  // into the interpreter layout.  This will almost always require some stack
1208  // space.  We grow the current (compiled) stack, then repack the args.  We
1209  // finally end in a jump to the generic interpreter entry point.  On exit
1210  // from the interpreter, the interpreter will restore our SP (lest the
1211  // compiled code, which relys solely on SP and not FP, get sick).
1212
1213  address c2i_unverified_entry = __ pc();
1214  Label skip_fixup;
1215  {
1216#if !defined(_LP64) && defined(COMPILER2)
1217    Register R_temp   = L0;   // another scratch register
1218#else
1219    Register R_temp   = G1;   // another scratch register
1220#endif
1221
1222    Address ic_miss(G3_scratch, SharedRuntime::get_ic_miss_stub());
1223
1224    __ verify_oop(O0);
1225    __ verify_oop(G5_method);
1226    __ load_klass(O0, G3_scratch);
1227    __ verify_oop(G3_scratch);
1228
1229#if !defined(_LP64) && defined(COMPILER2)
1230    __ save(SP, -frame::register_save_words*wordSize, SP);
1231    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1232    __ verify_oop(R_temp);
1233    __ cmp(G3_scratch, R_temp);
1234    __ restore();
1235#else
1236    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1237    __ verify_oop(R_temp);
1238    __ cmp(G3_scratch, R_temp);
1239#endif
1240
1241    Label ok, ok2;
1242    __ brx(Assembler::equal, false, Assembler::pt, ok);
1243    __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
1244    __ jump_to(ic_miss);
1245    __ delayed()->nop();
1246
1247    __ bind(ok);
1248    // Method might have been compiled since the call site was patched to
1249    // interpreted if that is the case treat it as a miss so we can get
1250    // the call site corrected.
1251    __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
1252    __ bind(ok2);
1253    __ br_null(G3_scratch, false, __ pt, skip_fixup);
1254    __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
1255    __ jump_to(ic_miss);
1256    __ delayed()->nop();
1257
1258  }
1259
1260  address c2i_entry = __ pc();
1261
1262  agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1263
1264  __ flush();
1265  return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
1266
1267}
1268
1269// Helper function for native calling conventions
1270static VMReg int_stk_helper( int i ) {
1271  // Bias any stack based VMReg we get by ignoring the window area
1272  // but not the register parameter save area.
1273  //
1274  // This is strange for the following reasons. We'd normally expect
1275  // the calling convention to return an VMReg for a stack slot
1276  // completely ignoring any abi reserved area. C2 thinks of that
1277  // abi area as only out_preserve_stack_slots. This does not include
1278  // the area allocated by the C abi to store down integer arguments
1279  // because the java calling convention does not use it. So
1280  // since c2 assumes that there are only out_preserve_stack_slots
1281  // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1282  // location the c calling convention must add in this bias amount
1283  // to make up for the fact that the out_preserve_stack_slots is
1284  // insufficient for C calls. What a mess. I sure hope those 6
1285  // stack words were worth it on every java call!
1286
1287  // Another way of cleaning this up would be for out_preserve_stack_slots
1288  // to take a parameter to say whether it was C or java calling conventions.
1289  // Then things might look a little better (but not much).
1290
1291  int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1292  if( mem_parm_offset < 0 ) {
1293    return as_oRegister(i)->as_VMReg();
1294  } else {
1295    int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1296    // Now return a biased offset that will be correct when out_preserve_slots is added back in
1297    return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1298  }
1299}
1300
1301
1302int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1303                                         VMRegPair *regs,
1304                                         int total_args_passed) {
1305
1306    // Return the number of VMReg stack_slots needed for the args.
1307    // This value does not include an abi space (like register window
1308    // save area).
1309
1310    // The native convention is V8 if !LP64
1311    // The LP64 convention is the V9 convention which is slightly more sane.
1312
1313    // We return the amount of VMReg stack slots we need to reserve for all
1314    // the arguments NOT counting out_preserve_stack_slots. Since we always
1315    // have space for storing at least 6 registers to memory we start with that.
1316    // See int_stk_helper for a further discussion.
1317    int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1318
1319#ifdef _LP64
1320    // V9 convention: All things "as-if" on double-wide stack slots.
1321    // Hoist any int/ptr/long's in the first 6 to int regs.
1322    // Hoist any flt/dbl's in the first 16 dbl regs.
1323    int j = 0;                  // Count of actual args, not HALVES
1324    for( int i=0; i<total_args_passed; i++, j++ ) {
1325      switch( sig_bt[i] ) {
1326      case T_BOOLEAN:
1327      case T_BYTE:
1328      case T_CHAR:
1329      case T_INT:
1330      case T_SHORT:
1331        regs[i].set1( int_stk_helper( j ) ); break;
1332      case T_LONG:
1333        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1334      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1335      case T_ARRAY:
1336      case T_OBJECT:
1337        regs[i].set2( int_stk_helper( j ) );
1338        break;
1339      case T_FLOAT:
1340        if ( j < 16 ) {
1341          // V9ism: floats go in ODD registers
1342          regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1343        } else {
1344          // V9ism: floats go in ODD stack slot
1345          regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1346        }
1347        break;
1348      case T_DOUBLE:
1349        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1350        if ( j < 16 ) {
1351          // V9ism: doubles go in EVEN/ODD regs
1352          regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1353        } else {
1354          // V9ism: doubles go in EVEN/ODD stack slots
1355          regs[i].set2(VMRegImpl::stack2reg(j<<1));
1356        }
1357        break;
1358      case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1359      default:
1360        ShouldNotReachHere();
1361      }
1362      if (regs[i].first()->is_stack()) {
1363        int off =  regs[i].first()->reg2stack();
1364        if (off > max_stack_slots) max_stack_slots = off;
1365      }
1366      if (regs[i].second()->is_stack()) {
1367        int off =  regs[i].second()->reg2stack();
1368        if (off > max_stack_slots) max_stack_slots = off;
1369      }
1370    }
1371
1372#else // _LP64
1373    // V8 convention: first 6 things in O-regs, rest on stack.
1374    // Alignment is willy-nilly.
1375    for( int i=0; i<total_args_passed; i++ ) {
1376      switch( sig_bt[i] ) {
1377      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1378      case T_ARRAY:
1379      case T_BOOLEAN:
1380      case T_BYTE:
1381      case T_CHAR:
1382      case T_FLOAT:
1383      case T_INT:
1384      case T_OBJECT:
1385      case T_SHORT:
1386        regs[i].set1( int_stk_helper( i ) );
1387        break;
1388      case T_DOUBLE:
1389      case T_LONG:
1390        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1391        regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1392        break;
1393      case T_VOID: regs[i].set_bad(); break;
1394      default:
1395        ShouldNotReachHere();
1396      }
1397      if (regs[i].first()->is_stack()) {
1398        int off =  regs[i].first()->reg2stack();
1399        if (off > max_stack_slots) max_stack_slots = off;
1400      }
1401      if (regs[i].second()->is_stack()) {
1402        int off =  regs[i].second()->reg2stack();
1403        if (off > max_stack_slots) max_stack_slots = off;
1404      }
1405    }
1406#endif // _LP64
1407
1408  return round_to(max_stack_slots + 1, 2);
1409
1410}
1411
1412
1413// ---------------------------------------------------------------------------
1414void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1415  switch (ret_type) {
1416  case T_FLOAT:
1417    __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1418    break;
1419  case T_DOUBLE:
1420    __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1421    break;
1422  }
1423}
1424
1425void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1426  switch (ret_type) {
1427  case T_FLOAT:
1428    __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1429    break;
1430  case T_DOUBLE:
1431    __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1432    break;
1433  }
1434}
1435
1436// Check and forward and pending exception.  Thread is stored in
1437// L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1438// is no exception handler.  We merely pop this frame off and throw the
1439// exception in the caller's frame.
1440static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1441  Label L;
1442  __ br_null(Rex_oop, false, Assembler::pt, L);
1443  __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1444  // Since this is a native call, we *know* the proper exception handler
1445  // without calling into the VM: it's the empty function.  Just pop this
1446  // frame and then jump to forward_exception_entry; O7 will contain the
1447  // native caller's return PC.
1448  Address exception_entry(G3_scratch, StubRoutines::forward_exception_entry());
1449  __ jump_to(exception_entry);
1450  __ delayed()->restore();      // Pop this frame off.
1451  __ bind(L);
1452}
1453
1454// A simple move of integer like type
1455static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1456  if (src.first()->is_stack()) {
1457    if (dst.first()->is_stack()) {
1458      // stack to stack
1459      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1460      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1461    } else {
1462      // stack to reg
1463      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1464    }
1465  } else if (dst.first()->is_stack()) {
1466    // reg to stack
1467    __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1468  } else {
1469    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1470  }
1471}
1472
1473// On 64 bit we will store integer like items to the stack as
1474// 64 bits items (sparc abi) even though java would only store
1475// 32bits for a parameter. On 32bit it will simply be 32 bits
1476// So this routine will do 32->32 on 32bit and 32->64 on 64bit
1477static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1478  if (src.first()->is_stack()) {
1479    if (dst.first()->is_stack()) {
1480      // stack to stack
1481      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1482      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1483    } else {
1484      // stack to reg
1485      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1486    }
1487  } else if (dst.first()->is_stack()) {
1488    // reg to stack
1489    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1490  } else {
1491    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1492  }
1493}
1494
1495
1496// An oop arg. Must pass a handle not the oop itself
1497static void object_move(MacroAssembler* masm,
1498                        OopMap* map,
1499                        int oop_handle_offset,
1500                        int framesize_in_slots,
1501                        VMRegPair src,
1502                        VMRegPair dst,
1503                        bool is_receiver,
1504                        int* receiver_offset) {
1505
1506  // must pass a handle. First figure out the location we use as a handle
1507
1508  if (src.first()->is_stack()) {
1509    // Oop is already on the stack
1510    Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1511    __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1512    __ ld_ptr(rHandle, 0, L4);
1513#ifdef _LP64
1514    __ movr( Assembler::rc_z, L4, G0, rHandle );
1515#else
1516    __ tst( L4 );
1517    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1518#endif
1519    if (dst.first()->is_stack()) {
1520      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1521    }
1522    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1523    if (is_receiver) {
1524      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1525    }
1526    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1527  } else {
1528    // Oop is in an input register pass we must flush it to the stack
1529    const Register rOop = src.first()->as_Register();
1530    const Register rHandle = L5;
1531    int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1532    int offset = oop_slot*VMRegImpl::stack_slot_size;
1533    Label skip;
1534    __ st_ptr(rOop, SP, offset + STACK_BIAS);
1535    if (is_receiver) {
1536      *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1537    }
1538    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1539    __ add(SP, offset + STACK_BIAS, rHandle);
1540#ifdef _LP64
1541    __ movr( Assembler::rc_z, rOop, G0, rHandle );
1542#else
1543    __ tst( rOop );
1544    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1545#endif
1546
1547    if (dst.first()->is_stack()) {
1548      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1549    } else {
1550      __ mov(rHandle, dst.first()->as_Register());
1551    }
1552  }
1553}
1554
1555// A float arg may have to do float reg int reg conversion
1556static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1557  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1558
1559  if (src.first()->is_stack()) {
1560    if (dst.first()->is_stack()) {
1561      // stack to stack the easiest of the bunch
1562      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1563      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1564    } else {
1565      // stack to reg
1566      if (dst.first()->is_Register()) {
1567        __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1568      } else {
1569        __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1570      }
1571    }
1572  } else if (dst.first()->is_stack()) {
1573    // reg to stack
1574    if (src.first()->is_Register()) {
1575      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1576    } else {
1577      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1578    }
1579  } else {
1580    // reg to reg
1581    if (src.first()->is_Register()) {
1582      if (dst.first()->is_Register()) {
1583        // gpr -> gpr
1584        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1585      } else {
1586        // gpr -> fpr
1587        __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1588        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1589      }
1590    } else if (dst.first()->is_Register()) {
1591      // fpr -> gpr
1592      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1593      __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1594    } else {
1595      // fpr -> fpr
1596      // In theory these overlap but the ordering is such that this is likely a nop
1597      if ( src.first() != dst.first()) {
1598        __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1599      }
1600    }
1601  }
1602}
1603
1604static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1605  VMRegPair src_lo(src.first());
1606  VMRegPair src_hi(src.second());
1607  VMRegPair dst_lo(dst.first());
1608  VMRegPair dst_hi(dst.second());
1609  simple_move32(masm, src_lo, dst_lo);
1610  simple_move32(masm, src_hi, dst_hi);
1611}
1612
1613// A long move
1614static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1615
1616  // Do the simple ones here else do two int moves
1617  if (src.is_single_phys_reg() ) {
1618    if (dst.is_single_phys_reg()) {
1619      __ mov(src.first()->as_Register(), dst.first()->as_Register());
1620    } else {
1621      // split src into two separate registers
1622      // Remember hi means hi address or lsw on sparc
1623      // Move msw to lsw
1624      if (dst.second()->is_reg()) {
1625        // MSW -> MSW
1626        __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1627        // Now LSW -> LSW
1628        // this will only move lo -> lo and ignore hi
1629        VMRegPair split(dst.second());
1630        simple_move32(masm, src, split);
1631      } else {
1632        VMRegPair split(src.first(), L4->as_VMReg());
1633        // MSW -> MSW (lo ie. first word)
1634        __ srax(src.first()->as_Register(), 32, L4);
1635        split_long_move(masm, split, dst);
1636      }
1637    }
1638  } else if (dst.is_single_phys_reg()) {
1639    if (src.is_adjacent_aligned_on_stack(2)) {
1640      __ ld_long(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1641    } else {
1642      // dst is a single reg.
1643      // Remember lo is low address not msb for stack slots
1644      // and lo is the "real" register for registers
1645      // src is
1646
1647      VMRegPair split;
1648
1649      if (src.first()->is_reg()) {
1650        // src.lo (msw) is a reg, src.hi is stk/reg
1651        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1652        split.set_pair(dst.first(), src.first());
1653      } else {
1654        // msw is stack move to L5
1655        // lsw is stack move to dst.lo (real reg)
1656        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1657        split.set_pair(dst.first(), L5->as_VMReg());
1658      }
1659
1660      // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1661      // msw   -> src.lo/L5,  lsw -> dst.lo
1662      split_long_move(masm, src, split);
1663
1664      // So dst now has the low order correct position the
1665      // msw half
1666      __ sllx(split.first()->as_Register(), 32, L5);
1667
1668      const Register d = dst.first()->as_Register();
1669      __ or3(L5, d, d);
1670    }
1671  } else {
1672    // For LP64 we can probably do better.
1673    split_long_move(masm, src, dst);
1674  }
1675}
1676
1677// A double move
1678static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1679
1680  // The painful thing here is that like long_move a VMRegPair might be
1681  // 1: a single physical register
1682  // 2: two physical registers (v8)
1683  // 3: a physical reg [lo] and a stack slot [hi] (v8)
1684  // 4: two stack slots
1685
1686  // Since src is always a java calling convention we know that the src pair
1687  // is always either all registers or all stack (and aligned?)
1688
1689  // in a register [lo] and a stack slot [hi]
1690  if (src.first()->is_stack()) {
1691    if (dst.first()->is_stack()) {
1692      // stack to stack the easiest of the bunch
1693      // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1694      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1695      __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1696      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1697      __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1698    } else {
1699      // stack to reg
1700      if (dst.second()->is_stack()) {
1701        // stack -> reg, stack -> stack
1702        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1703        if (dst.first()->is_Register()) {
1704          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1705        } else {
1706          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1707        }
1708        // This was missing. (very rare case)
1709        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1710      } else {
1711        // stack -> reg
1712        // Eventually optimize for alignment QQQ
1713        if (dst.first()->is_Register()) {
1714          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1715          __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1716        } else {
1717          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1718          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1719        }
1720      }
1721    }
1722  } else if (dst.first()->is_stack()) {
1723    // reg to stack
1724    if (src.first()->is_Register()) {
1725      // Eventually optimize for alignment QQQ
1726      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1727      if (src.second()->is_stack()) {
1728        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1729        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1730      } else {
1731        __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1732      }
1733    } else {
1734      // fpr to stack
1735      if (src.second()->is_stack()) {
1736        ShouldNotReachHere();
1737      } else {
1738        // Is the stack aligned?
1739        if (reg2offset(dst.first()) & 0x7) {
1740          // No do as pairs
1741          __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1742          __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1743        } else {
1744          __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1745        }
1746      }
1747    }
1748  } else {
1749    // reg to reg
1750    if (src.first()->is_Register()) {
1751      if (dst.first()->is_Register()) {
1752        // gpr -> gpr
1753        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1754        __ mov(src.second()->as_Register(), dst.second()->as_Register());
1755      } else {
1756        // gpr -> fpr
1757        // ought to be able to do a single store
1758        __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1759        __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1760        // ought to be able to do a single load
1761        __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1762        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1763      }
1764    } else if (dst.first()->is_Register()) {
1765      // fpr -> gpr
1766      // ought to be able to do a single store
1767      __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1768      // ought to be able to do a single load
1769      // REMEMBER first() is low address not LSB
1770      __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1771      if (dst.second()->is_Register()) {
1772        __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1773      } else {
1774        __ ld(FP, -4 + STACK_BIAS, L4);
1775        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1776      }
1777    } else {
1778      // fpr -> fpr
1779      // In theory these overlap but the ordering is such that this is likely a nop
1780      if ( src.first() != dst.first()) {
1781        __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1782      }
1783    }
1784  }
1785}
1786
1787// Creates an inner frame if one hasn't already been created, and
1788// saves a copy of the thread in L7_thread_cache
1789static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1790  if (!*already_created) {
1791    __ save_frame(0);
1792    // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1793    // Don't use save_thread because it smashes G2 and we merely want to save a
1794    // copy
1795    __ mov(G2_thread, L7_thread_cache);
1796    *already_created = true;
1797  }
1798}
1799
1800// ---------------------------------------------------------------------------
1801// Generate a native wrapper for a given method.  The method takes arguments
1802// in the Java compiled code convention, marshals them to the native
1803// convention (handlizes oops, etc), transitions to native, makes the call,
1804// returns to java state (possibly blocking), unhandlizes any result and
1805// returns.
1806nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1807                                                methodHandle method,
1808                                                int total_in_args,
1809                                                int comp_args_on_stack, // in VMRegStackSlots
1810                                                BasicType *in_sig_bt,
1811                                                VMRegPair *in_regs,
1812                                                BasicType ret_type) {
1813
1814
1815  // Native nmethod wrappers never take possesion of the oop arguments.
1816  // So the caller will gc the arguments. The only thing we need an
1817  // oopMap for is if the call is static
1818  //
1819  // An OopMap for lock (and class if static), and one for the VM call itself
1820  OopMapSet *oop_maps = new OopMapSet();
1821  intptr_t start = (intptr_t)__ pc();
1822
1823  // First thing make an ic check to see if we should even be here
1824  {
1825    Label L;
1826    const Register temp_reg = G3_scratch;
1827    Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
1828    __ verify_oop(O0);
1829    __ load_klass(O0, temp_reg);
1830    __ cmp(temp_reg, G5_inline_cache_reg);
1831    __ brx(Assembler::equal, true, Assembler::pt, L);
1832    __ delayed()->nop();
1833
1834    __ jump_to(ic_miss, 0);
1835    __ delayed()->nop();
1836    __ align(CodeEntryAlignment);
1837    __ bind(L);
1838  }
1839
1840  int vep_offset = ((intptr_t)__ pc()) - start;
1841
1842#ifdef COMPILER1
1843  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1844    // Object.hashCode can pull the hashCode from the header word
1845    // instead of doing a full VM transition once it's been computed.
1846    // Since hashCode is usually polymorphic at call sites we can't do
1847    // this optimization at the call site without a lot of work.
1848    Label slowCase;
1849    Register receiver             = O0;
1850    Register result               = O0;
1851    Register header               = G3_scratch;
1852    Register hash                 = G3_scratch; // overwrite header value with hash value
1853    Register mask                 = G1;         // to get hash field from header
1854
1855    // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1856    // We depend on hash_mask being at most 32 bits and avoid the use of
1857    // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1858    // vm: see markOop.hpp.
1859    __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1860    __ sethi(markOopDesc::hash_mask, mask);
1861    __ btst(markOopDesc::unlocked_value, header);
1862    __ br(Assembler::zero, false, Assembler::pn, slowCase);
1863    if (UseBiasedLocking) {
1864      // Check if biased and fall through to runtime if so
1865      __ delayed()->nop();
1866      __ btst(markOopDesc::biased_lock_bit_in_place, header);
1867      __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1868    }
1869    __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1870
1871    // Check for a valid (non-zero) hash code and get its value.
1872#ifdef _LP64
1873    __ srlx(header, markOopDesc::hash_shift, hash);
1874#else
1875    __ srl(header, markOopDesc::hash_shift, hash);
1876#endif
1877    __ andcc(hash, mask, hash);
1878    __ br(Assembler::equal, false, Assembler::pn, slowCase);
1879    __ delayed()->nop();
1880
1881    // leaf return.
1882    __ retl();
1883    __ delayed()->mov(hash, result);
1884    __ bind(slowCase);
1885  }
1886#endif // COMPILER1
1887
1888
1889  // We have received a description of where all the java arg are located
1890  // on entry to the wrapper. We need to convert these args to where
1891  // the jni function will expect them. To figure out where they go
1892  // we convert the java signature to a C signature by inserting
1893  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1894
1895  int total_c_args = total_in_args + 1;
1896  if (method->is_static()) {
1897    total_c_args++;
1898  }
1899
1900  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1901  VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1902
1903  int argc = 0;
1904  out_sig_bt[argc++] = T_ADDRESS;
1905  if (method->is_static()) {
1906    out_sig_bt[argc++] = T_OBJECT;
1907  }
1908
1909  for (int i = 0; i < total_in_args ; i++ ) {
1910    out_sig_bt[argc++] = in_sig_bt[i];
1911  }
1912
1913  // Now figure out where the args must be stored and how much stack space
1914  // they require (neglecting out_preserve_stack_slots but space for storing
1915  // the 1st six register arguments). It's weird see int_stk_helper.
1916  //
1917  int out_arg_slots;
1918  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1919
1920  // Compute framesize for the wrapper.  We need to handlize all oops in
1921  // registers. We must create space for them here that is disjoint from
1922  // the windowed save area because we have no control over when we might
1923  // flush the window again and overwrite values that gc has since modified.
1924  // (The live window race)
1925  //
1926  // We always just allocate 6 word for storing down these object. This allow
1927  // us to simply record the base and use the Ireg number to decide which
1928  // slot to use. (Note that the reg number is the inbound number not the
1929  // outbound number).
1930  // We must shuffle args to match the native convention, and include var-args space.
1931
1932  // Calculate the total number of stack slots we will need.
1933
1934  // First count the abi requirement plus all of the outgoing args
1935  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1936
1937  // Now the space for the inbound oop handle area
1938
1939  int oop_handle_offset = stack_slots;
1940  stack_slots += 6*VMRegImpl::slots_per_word;
1941
1942  // Now any space we need for handlizing a klass if static method
1943
1944  int oop_temp_slot_offset = 0;
1945  int klass_slot_offset = 0;
1946  int klass_offset = -1;
1947  int lock_slot_offset = 0;
1948  bool is_static = false;
1949
1950  if (method->is_static()) {
1951    klass_slot_offset = stack_slots;
1952    stack_slots += VMRegImpl::slots_per_word;
1953    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1954    is_static = true;
1955  }
1956
1957  // Plus a lock if needed
1958
1959  if (method->is_synchronized()) {
1960    lock_slot_offset = stack_slots;
1961    stack_slots += VMRegImpl::slots_per_word;
1962  }
1963
1964  // Now a place to save return value or as a temporary for any gpr -> fpr moves
1965  stack_slots += 2;
1966
1967  // Ok The space we have allocated will look like:
1968  //
1969  //
1970  // FP-> |                     |
1971  //      |---------------------|
1972  //      | 2 slots for moves   |
1973  //      |---------------------|
1974  //      | lock box (if sync)  |
1975  //      |---------------------| <- lock_slot_offset
1976  //      | klass (if static)   |
1977  //      |---------------------| <- klass_slot_offset
1978  //      | oopHandle area      |
1979  //      |---------------------| <- oop_handle_offset
1980  //      | outbound memory     |
1981  //      | based arguments     |
1982  //      |                     |
1983  //      |---------------------|
1984  //      | vararg area         |
1985  //      |---------------------|
1986  //      |                     |
1987  // SP-> | out_preserved_slots |
1988  //
1989  //
1990
1991
1992  // Now compute actual number of stack words we need rounding to make
1993  // stack properly aligned.
1994  stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1995
1996  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1997
1998  // Generate stack overflow check before creating frame
1999  __ generate_stack_overflow_check(stack_size);
2000
2001  // Generate a new frame for the wrapper.
2002  __ save(SP, -stack_size, SP);
2003
2004  int frame_complete = ((intptr_t)__ pc()) - start;
2005
2006  __ verify_thread();
2007
2008
2009  //
2010  // We immediately shuffle the arguments so that any vm call we have to
2011  // make from here on out (sync slow path, jvmti, etc.) we will have
2012  // captured the oops from our caller and have a valid oopMap for
2013  // them.
2014
2015  // -----------------
2016  // The Grand Shuffle
2017  //
2018  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2019  // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2020  // the class mirror instead of a receiver.  This pretty much guarantees that
2021  // register layout will not match.  We ignore these extra arguments during
2022  // the shuffle. The shuffle is described by the two calling convention
2023  // vectors we have in our possession. We simply walk the java vector to
2024  // get the source locations and the c vector to get the destinations.
2025  // Because we have a new window and the argument registers are completely
2026  // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2027  // here.
2028
2029  // This is a trick. We double the stack slots so we can claim
2030  // the oops in the caller's frame. Since we are sure to have
2031  // more args than the caller doubling is enough to make
2032  // sure we can capture all the incoming oop args from the
2033  // caller.
2034  //
2035  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2036  int c_arg = total_c_args - 1;
2037  // Record sp-based slot for receiver on stack for non-static methods
2038  int receiver_offset = -1;
2039
2040  // We move the arguments backward because the floating point registers
2041  // destination will always be to a register with a greater or equal register
2042  // number or the stack.
2043
2044#ifdef ASSERT
2045  bool reg_destroyed[RegisterImpl::number_of_registers];
2046  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2047  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2048    reg_destroyed[r] = false;
2049  }
2050  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2051    freg_destroyed[f] = false;
2052  }
2053
2054#endif /* ASSERT */
2055
2056  for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
2057
2058#ifdef ASSERT
2059    if (in_regs[i].first()->is_Register()) {
2060      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2061    } else if (in_regs[i].first()->is_FloatRegister()) {
2062      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2063    }
2064    if (out_regs[c_arg].first()->is_Register()) {
2065      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2066    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2067      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2068    }
2069#endif /* ASSERT */
2070
2071    switch (in_sig_bt[i]) {
2072      case T_ARRAY:
2073      case T_OBJECT:
2074        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2075                    ((i == 0) && (!is_static)),
2076                    &receiver_offset);
2077        break;
2078      case T_VOID:
2079        break;
2080
2081      case T_FLOAT:
2082        float_move(masm, in_regs[i], out_regs[c_arg]);
2083          break;
2084
2085      case T_DOUBLE:
2086        assert( i + 1 < total_in_args &&
2087                in_sig_bt[i + 1] == T_VOID &&
2088                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2089        double_move(masm, in_regs[i], out_regs[c_arg]);
2090        break;
2091
2092      case T_LONG :
2093        long_move(masm, in_regs[i], out_regs[c_arg]);
2094        break;
2095
2096      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2097
2098      default:
2099        move32_64(masm, in_regs[i], out_regs[c_arg]);
2100    }
2101  }
2102
2103  // Pre-load a static method's oop into O1.  Used both by locking code and
2104  // the normal JNI call code.
2105  if (method->is_static()) {
2106    __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2107
2108    // Now handlize the static class mirror in O1.  It's known not-null.
2109    __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2110    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2111    __ add(SP, klass_offset + STACK_BIAS, O1);
2112  }
2113
2114
2115  const Register L6_handle = L6;
2116
2117  if (method->is_synchronized()) {
2118    __ mov(O1, L6_handle);
2119  }
2120
2121  // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2122  // except O6/O7. So if we must call out we must push a new frame. We immediately
2123  // push a new frame and flush the windows.
2124
2125#ifdef _LP64
2126  intptr_t thepc = (intptr_t) __ pc();
2127  {
2128    address here = __ pc();
2129    // Call the next instruction
2130    __ call(here + 8, relocInfo::none);
2131    __ delayed()->nop();
2132  }
2133#else
2134  intptr_t thepc = __ load_pc_address(O7, 0);
2135#endif /* _LP64 */
2136
2137  // We use the same pc/oopMap repeatedly when we call out
2138  oop_maps->add_gc_map(thepc - start, map);
2139
2140  // O7 now has the pc loaded that we will use when we finally call to native.
2141
2142  // Save thread in L7; it crosses a bunch of VM calls below
2143  // Don't use save_thread because it smashes G2 and we merely
2144  // want to save a copy
2145  __ mov(G2_thread, L7_thread_cache);
2146
2147
2148  // If we create an inner frame once is plenty
2149  // when we create it we must also save G2_thread
2150  bool inner_frame_created = false;
2151
2152  // dtrace method entry support
2153  {
2154    SkipIfEqual skip_if(
2155      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2156    // create inner frame
2157    __ save_frame(0);
2158    __ mov(G2_thread, L7_thread_cache);
2159    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2160    __ call_VM_leaf(L7_thread_cache,
2161         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2162         G2_thread, O1);
2163    __ restore();
2164  }
2165
2166  // We are in the jni frame unless saved_frame is true in which case
2167  // we are in one frame deeper (the "inner" frame). If we are in the
2168  // "inner" frames the args are in the Iregs and if the jni frame then
2169  // they are in the Oregs.
2170  // If we ever need to go to the VM (for locking, jvmti) then
2171  // we will always be in the "inner" frame.
2172
2173  // Lock a synchronized method
2174  int lock_offset = -1;         // Set if locked
2175  if (method->is_synchronized()) {
2176    Register Roop = O1;
2177    const Register L3_box = L3;
2178
2179    create_inner_frame(masm, &inner_frame_created);
2180
2181    __ ld_ptr(I1, 0, O1);
2182    Label done;
2183
2184    lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2185    __ add(FP, lock_offset+STACK_BIAS, L3_box);
2186#ifdef ASSERT
2187    if (UseBiasedLocking) {
2188      // making the box point to itself will make it clear it went unused
2189      // but also be obviously invalid
2190      __ st_ptr(L3_box, L3_box, 0);
2191    }
2192#endif // ASSERT
2193    //
2194    // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2195    //
2196    __ compiler_lock_object(Roop, L1,    L3_box, L2);
2197    __ br(Assembler::equal, false, Assembler::pt, done);
2198    __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2199
2200
2201    // None of the above fast optimizations worked so we have to get into the
2202    // slow case of monitor enter.  Inline a special case of call_VM that
2203    // disallows any pending_exception.
2204    __ mov(Roop, O0);            // Need oop in O0
2205    __ mov(L3_box, O1);
2206
2207    // Record last_Java_sp, in case the VM code releases the JVM lock.
2208
2209    __ set_last_Java_frame(FP, I7);
2210
2211    // do the call
2212    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2213    __ delayed()->mov(L7_thread_cache, O2);
2214
2215    __ restore_thread(L7_thread_cache); // restore G2_thread
2216    __ reset_last_Java_frame();
2217
2218#ifdef ASSERT
2219    { Label L;
2220    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2221    __ br_null(O0, false, Assembler::pt, L);
2222    __ delayed()->nop();
2223    __ stop("no pending exception allowed on exit from IR::monitorenter");
2224    __ bind(L);
2225    }
2226#endif
2227    __ bind(done);
2228  }
2229
2230
2231  // Finally just about ready to make the JNI call
2232
2233  __ flush_windows();
2234  if (inner_frame_created) {
2235    __ restore();
2236  } else {
2237    // Store only what we need from this frame
2238    // QQQ I think that non-v9 (like we care) we don't need these saves
2239    // either as the flush traps and the current window goes too.
2240    __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2241    __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2242  }
2243
2244  // get JNIEnv* which is first argument to native
2245
2246  __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2247
2248  // Use that pc we placed in O7 a while back as the current frame anchor
2249
2250  __ set_last_Java_frame(SP, O7);
2251
2252  // Transition from _thread_in_Java to _thread_in_native.
2253  __ set(_thread_in_native, G3_scratch);
2254  __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
2255
2256  // We flushed the windows ages ago now mark them as flushed
2257
2258  // mark windows as flushed
2259  __ set(JavaFrameAnchor::flushed, G3_scratch);
2260
2261  Address flags(G2_thread,
2262                0,
2263                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
2264
2265#ifdef _LP64
2266  Address dest(O7, method->native_function());
2267  __ relocate(relocInfo::runtime_call_type);
2268  __ jumpl_to(dest, O7);
2269#else
2270  __ call(method->native_function(), relocInfo::runtime_call_type);
2271#endif
2272  __ delayed()->st(G3_scratch, flags);
2273
2274  __ restore_thread(L7_thread_cache); // restore G2_thread
2275
2276  // Unpack native results.  For int-types, we do any needed sign-extension
2277  // and move things into I0.  The return value there will survive any VM
2278  // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2279  // specially in the slow-path code.
2280  switch (ret_type) {
2281  case T_VOID:    break;        // Nothing to do!
2282  case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2283  case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2284  // In 64 bits build result is in O0, in O0, O1 in 32bit build
2285  case T_LONG:
2286#ifndef _LP64
2287                  __ mov(O1, I1);
2288#endif
2289                  // Fall thru
2290  case T_OBJECT:                // Really a handle
2291  case T_ARRAY:
2292  case T_INT:
2293                  __ mov(O0, I0);
2294                  break;
2295  case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2296  case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2297  case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2298  case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2299    break;                      // Cannot de-handlize until after reclaiming jvm_lock
2300  default:
2301    ShouldNotReachHere();
2302  }
2303
2304  // must we block?
2305
2306  // Block, if necessary, before resuming in _thread_in_Java state.
2307  // In order for GC to work, don't clear the last_Java_sp until after blocking.
2308  { Label no_block;
2309    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
2310
2311    // Switch thread to "native transition" state before reading the synchronization state.
2312    // This additional state is necessary because reading and testing the synchronization
2313    // state is not atomic w.r.t. GC, as this scenario demonstrates:
2314    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2315    //     VM thread changes sync state to synchronizing and suspends threads for GC.
2316    //     Thread A is resumed to finish this native method, but doesn't block here since it
2317    //     didn't see any synchronization is progress, and escapes.
2318    __ set(_thread_in_native_trans, G3_scratch);
2319    __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
2320    if(os::is_MP()) {
2321      if (UseMembar) {
2322        // Force this write out before the read below
2323        __ membar(Assembler::StoreLoad);
2324      } else {
2325        // Write serialization page so VM thread can do a pseudo remote membar.
2326        // We use the current thread pointer to calculate a thread specific
2327        // offset to write to within the page. This minimizes bus traffic
2328        // due to cache line collision.
2329        __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2330      }
2331    }
2332    __ load_contents(sync_state, G3_scratch);
2333    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2334
2335    Label L;
2336    Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
2337    __ br(Assembler::notEqual, false, Assembler::pn, L);
2338    __ delayed()->
2339      ld(suspend_state, G3_scratch);
2340    __ cmp(G3_scratch, 0);
2341    __ br(Assembler::equal, false, Assembler::pt, no_block);
2342    __ delayed()->nop();
2343    __ bind(L);
2344
2345    // Block.  Save any potential method result value before the operation and
2346    // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2347    // lets us share the oopMap we used when we went native rather the create
2348    // a distinct one for this pc
2349    //
2350    save_native_result(masm, ret_type, stack_slots);
2351    __ call_VM_leaf(L7_thread_cache,
2352                    CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2353                    G2_thread);
2354
2355    // Restore any method result value
2356    restore_native_result(masm, ret_type, stack_slots);
2357    __ bind(no_block);
2358  }
2359
2360  // thread state is thread_in_native_trans. Any safepoint blocking has already
2361  // happened so we can now change state to _thread_in_Java.
2362
2363
2364  __ set(_thread_in_Java, G3_scratch);
2365  __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
2366
2367
2368  Label no_reguard;
2369  __ ld(G2_thread, in_bytes(JavaThread::stack_guard_state_offset()), G3_scratch);
2370  __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
2371  __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
2372  __ delayed()->nop();
2373
2374    save_native_result(masm, ret_type, stack_slots);
2375  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2376  __ delayed()->nop();
2377
2378  __ restore_thread(L7_thread_cache); // restore G2_thread
2379    restore_native_result(masm, ret_type, stack_slots);
2380
2381  __ bind(no_reguard);
2382
2383  // Handle possible exception (will unlock if necessary)
2384
2385  // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2386
2387  // Unlock
2388  if (method->is_synchronized()) {
2389    Label done;
2390    Register I2_ex_oop = I2;
2391    const Register L3_box = L3;
2392    // Get locked oop from the handle we passed to jni
2393    __ ld_ptr(L6_handle, 0, L4);
2394    __ add(SP, lock_offset+STACK_BIAS, L3_box);
2395    // Must save pending exception around the slow-path VM call.  Since it's a
2396    // leaf call, the pending exception (if any) can be kept in a register.
2397    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2398    // Now unlock
2399    //                       (Roop, Rmark, Rbox,   Rscratch)
2400    __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2401    __ br(Assembler::equal, false, Assembler::pt, done);
2402    __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2403
2404    // save and restore any potential method result value around the unlocking
2405    // operation.  Will save in I0 (or stack for FP returns).
2406    save_native_result(masm, ret_type, stack_slots);
2407
2408    // Must clear pending-exception before re-entering the VM.  Since this is
2409    // a leaf call, pending-exception-oop can be safely kept in a register.
2410    __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2411
2412    // slow case of monitor enter.  Inline a special case of call_VM that
2413    // disallows any pending_exception.
2414    __ mov(L3_box, O1);
2415
2416    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2417    __ delayed()->mov(L4, O0);              // Need oop in O0
2418
2419    __ restore_thread(L7_thread_cache); // restore G2_thread
2420
2421#ifdef ASSERT
2422    { Label L;
2423    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2424    __ br_null(O0, false, Assembler::pt, L);
2425    __ delayed()->nop();
2426    __ stop("no pending exception allowed on exit from IR::monitorexit");
2427    __ bind(L);
2428    }
2429#endif
2430    restore_native_result(masm, ret_type, stack_slots);
2431    // check_forward_pending_exception jump to forward_exception if any pending
2432    // exception is set.  The forward_exception routine expects to see the
2433    // exception in pending_exception and not in a register.  Kind of clumsy,
2434    // since all folks who branch to forward_exception must have tested
2435    // pending_exception first and hence have it in a register already.
2436    __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2437    __ bind(done);
2438  }
2439
2440  // Tell dtrace about this method exit
2441  {
2442    SkipIfEqual skip_if(
2443      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2444    save_native_result(masm, ret_type, stack_slots);
2445    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2446    __ call_VM_leaf(L7_thread_cache,
2447       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2448       G2_thread, O1);
2449    restore_native_result(masm, ret_type, stack_slots);
2450  }
2451
2452  // Clear "last Java frame" SP and PC.
2453  __ verify_thread(); // G2_thread must be correct
2454  __ reset_last_Java_frame();
2455
2456  // Unpack oop result
2457  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2458      Label L;
2459      __ addcc(G0, I0, G0);
2460      __ brx(Assembler::notZero, true, Assembler::pt, L);
2461      __ delayed()->ld_ptr(I0, 0, I0);
2462      __ mov(G0, I0);
2463      __ bind(L);
2464      __ verify_oop(I0);
2465  }
2466
2467  // reset handle block
2468  __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2469  __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2470
2471  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2472  check_forward_pending_exception(masm, G3_scratch);
2473
2474
2475  // Return
2476
2477#ifndef _LP64
2478  if (ret_type == T_LONG) {
2479
2480    // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2481    __ sllx(I0, 32, G1);          // Shift bits into high G1
2482    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2483    __ or3 (I1, G1, G1);          // OR 64 bits into G1
2484  }
2485#endif
2486
2487  __ ret();
2488  __ delayed()->restore();
2489
2490  __ flush();
2491
2492  nmethod *nm = nmethod::new_native_nmethod(method,
2493                                            masm->code(),
2494                                            vep_offset,
2495                                            frame_complete,
2496                                            stack_slots / VMRegImpl::slots_per_word,
2497                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2498                                            in_ByteSize(lock_offset),
2499                                            oop_maps);
2500  return nm;
2501
2502}
2503
2504#ifdef HAVE_DTRACE_H
2505// ---------------------------------------------------------------------------
2506// Generate a dtrace nmethod for a given signature.  The method takes arguments
2507// in the Java compiled code convention, marshals them to the native
2508// abi and then leaves nops at the position you would expect to call a native
2509// function. When the probe is enabled the nops are replaced with a trap
2510// instruction that dtrace inserts and the trace will cause a notification
2511// to dtrace.
2512//
2513// The probes are only able to take primitive types and java/lang/String as
2514// arguments.  No other java types are allowed. Strings are converted to utf8
2515// strings so that from dtrace point of view java strings are converted to C
2516// strings. There is an arbitrary fixed limit on the total space that a method
2517// can use for converting the strings. (256 chars per string in the signature).
2518// So any java string larger then this is truncated.
2519
2520static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2521static bool offsets_initialized = false;
2522
2523static VMRegPair reg64_to_VMRegPair(Register r) {
2524  VMRegPair ret;
2525  if (wordSize == 8) {
2526    ret.set2(r->as_VMReg());
2527  } else {
2528    ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
2529  }
2530  return ret;
2531}
2532
2533
2534nmethod *SharedRuntime::generate_dtrace_nmethod(
2535    MacroAssembler *masm, methodHandle method) {
2536
2537
2538  // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2539  // be single threaded in this method.
2540  assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2541
2542  // Fill in the signature array, for the calling-convention call.
2543  int total_args_passed = method->size_of_parameters();
2544
2545  BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2546  VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2547
2548  // The signature we are going to use for the trap that dtrace will see
2549  // java/lang/String is converted. We drop "this" and any other object
2550  // is converted to NULL.  (A one-slot java/lang/Long object reference
2551  // is converted to a two-slot long, which is why we double the allocation).
2552  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2553  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2554
2555  int i=0;
2556  int total_strings = 0;
2557  int first_arg_to_pass = 0;
2558  int total_c_args = 0;
2559
2560  // Skip the receiver as dtrace doesn't want to see it
2561  if( !method->is_static() ) {
2562    in_sig_bt[i++] = T_OBJECT;
2563    first_arg_to_pass = 1;
2564  }
2565
2566  SignatureStream ss(method->signature());
2567  for ( ; !ss.at_return_type(); ss.next()) {
2568    BasicType bt = ss.type();
2569    in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2570    out_sig_bt[total_c_args++] = bt;
2571    if( bt == T_OBJECT) {
2572      symbolOop s = ss.as_symbol_or_null();
2573      if (s == vmSymbols::java_lang_String()) {
2574        total_strings++;
2575        out_sig_bt[total_c_args-1] = T_ADDRESS;
2576      } else if (s == vmSymbols::java_lang_Boolean() ||
2577                 s == vmSymbols::java_lang_Byte()) {
2578        out_sig_bt[total_c_args-1] = T_BYTE;
2579      } else if (s == vmSymbols::java_lang_Character() ||
2580                 s == vmSymbols::java_lang_Short()) {
2581        out_sig_bt[total_c_args-1] = T_SHORT;
2582      } else if (s == vmSymbols::java_lang_Integer() ||
2583                 s == vmSymbols::java_lang_Float()) {
2584        out_sig_bt[total_c_args-1] = T_INT;
2585      } else if (s == vmSymbols::java_lang_Long() ||
2586                 s == vmSymbols::java_lang_Double()) {
2587        out_sig_bt[total_c_args-1] = T_LONG;
2588        out_sig_bt[total_c_args++] = T_VOID;
2589      }
2590    } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2591      in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2592      // We convert double to long
2593      out_sig_bt[total_c_args-1] = T_LONG;
2594      out_sig_bt[total_c_args++] = T_VOID;
2595    } else if ( bt == T_FLOAT) {
2596      // We convert float to int
2597      out_sig_bt[total_c_args-1] = T_INT;
2598    }
2599  }
2600
2601  assert(i==total_args_passed, "validly parsed signature");
2602
2603  // Now get the compiled-Java layout as input arguments
2604  int comp_args_on_stack;
2605  comp_args_on_stack = SharedRuntime::java_calling_convention(
2606      in_sig_bt, in_regs, total_args_passed, false);
2607
2608  // We have received a description of where all the java arg are located
2609  // on entry to the wrapper. We need to convert these args to where
2610  // the a  native (non-jni) function would expect them. To figure out
2611  // where they go we convert the java signature to a C signature and remove
2612  // T_VOID for any long/double we might have received.
2613
2614
2615  // Now figure out where the args must be stored and how much stack space
2616  // they require (neglecting out_preserve_stack_slots but space for storing
2617  // the 1st six register arguments). It's weird see int_stk_helper.
2618  //
2619  int out_arg_slots;
2620  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2621
2622  // Calculate the total number of stack slots we will need.
2623
2624  // First count the abi requirement plus all of the outgoing args
2625  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2626
2627  // Plus a temp for possible converion of float/double/long register args
2628
2629  int conversion_temp = stack_slots;
2630  stack_slots += 2;
2631
2632
2633  // Now space for the string(s) we must convert
2634
2635  int string_locs = stack_slots;
2636  stack_slots += total_strings *
2637                   (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2638
2639  // Ok The space we have allocated will look like:
2640  //
2641  //
2642  // FP-> |                     |
2643  //      |---------------------|
2644  //      | string[n]           |
2645  //      |---------------------| <- string_locs[n]
2646  //      | string[n-1]         |
2647  //      |---------------------| <- string_locs[n-1]
2648  //      | ...                 |
2649  //      | ...                 |
2650  //      |---------------------| <- string_locs[1]
2651  //      | string[0]           |
2652  //      |---------------------| <- string_locs[0]
2653  //      | temp                |
2654  //      |---------------------| <- conversion_temp
2655  //      | outbound memory     |
2656  //      | based arguments     |
2657  //      |                     |
2658  //      |---------------------|
2659  //      |                     |
2660  // SP-> | out_preserved_slots |
2661  //
2662  //
2663
2664  // Now compute actual number of stack words we need rounding to make
2665  // stack properly aligned.
2666  stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2667
2668  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2669
2670  intptr_t start = (intptr_t)__ pc();
2671
2672  // First thing make an ic check to see if we should even be here
2673
2674  {
2675    Label L;
2676    const Register temp_reg = G3_scratch;
2677    Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
2678    __ verify_oop(O0);
2679    __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2680    __ cmp(temp_reg, G5_inline_cache_reg);
2681    __ brx(Assembler::equal, true, Assembler::pt, L);
2682    __ delayed()->nop();
2683
2684    __ jump_to(ic_miss, 0);
2685    __ delayed()->nop();
2686    __ align(CodeEntryAlignment);
2687    __ bind(L);
2688  }
2689
2690  int vep_offset = ((intptr_t)__ pc()) - start;
2691
2692
2693  // The instruction at the verified entry point must be 5 bytes or longer
2694  // because it can be patched on the fly by make_non_entrant. The stack bang
2695  // instruction fits that requirement.
2696
2697  // Generate stack overflow check before creating frame
2698  __ generate_stack_overflow_check(stack_size);
2699
2700  assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2701         "valid size for make_non_entrant");
2702
2703  // Generate a new frame for the wrapper.
2704  __ save(SP, -stack_size, SP);
2705
2706  // Frame is now completed as far a size and linkage.
2707
2708  int frame_complete = ((intptr_t)__ pc()) - start;
2709
2710#ifdef ASSERT
2711  bool reg_destroyed[RegisterImpl::number_of_registers];
2712  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2713  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2714    reg_destroyed[r] = false;
2715  }
2716  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2717    freg_destroyed[f] = false;
2718  }
2719
2720#endif /* ASSERT */
2721
2722  VMRegPair zero;
2723  const Register g0 = G0; // without this we get a compiler warning (why??)
2724  zero.set2(g0->as_VMReg());
2725
2726  int c_arg, j_arg;
2727
2728  Register conversion_off = noreg;
2729
2730  for (j_arg = first_arg_to_pass, c_arg = 0 ;
2731       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2732
2733    VMRegPair src = in_regs[j_arg];
2734    VMRegPair dst = out_regs[c_arg];
2735
2736#ifdef ASSERT
2737    if (src.first()->is_Register()) {
2738      assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2739    } else if (src.first()->is_FloatRegister()) {
2740      assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2741                                               FloatRegisterImpl::S)], "ack!");
2742    }
2743    if (dst.first()->is_Register()) {
2744      reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2745    } else if (dst.first()->is_FloatRegister()) {
2746      freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2747                                                 FloatRegisterImpl::S)] = true;
2748    }
2749#endif /* ASSERT */
2750
2751    switch (in_sig_bt[j_arg]) {
2752      case T_ARRAY:
2753      case T_OBJECT:
2754        {
2755          if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2756              out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2757            // need to unbox a one-slot value
2758            Register in_reg = L0;
2759            Register tmp = L2;
2760            if ( src.first()->is_reg() ) {
2761              in_reg = src.first()->as_Register();
2762            } else {
2763              assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2764                     "must be");
2765              __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2766            }
2767            // If the final destination is an acceptable register
2768            if ( dst.first()->is_reg() ) {
2769              if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2770                tmp = dst.first()->as_Register();
2771              }
2772            }
2773
2774            Label skipUnbox;
2775            if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2776              __ mov(G0, tmp->successor());
2777            }
2778            __ br_null(in_reg, true, Assembler::pn, skipUnbox);
2779            __ delayed()->mov(G0, tmp);
2780
2781            BasicType bt = out_sig_bt[c_arg];
2782            int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2783            switch (bt) {
2784                case T_BYTE:
2785                  __ ldub(in_reg, box_offset, tmp); break;
2786                case T_SHORT:
2787                  __ lduh(in_reg, box_offset, tmp); break;
2788                case T_INT:
2789                  __ ld(in_reg, box_offset, tmp); break;
2790                case T_LONG:
2791                  __ ld_long(in_reg, box_offset, tmp); break;
2792                default: ShouldNotReachHere();
2793            }
2794
2795            __ bind(skipUnbox);
2796            // If tmp wasn't final destination copy to final destination
2797            if (tmp == L2) {
2798              VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
2799              if (out_sig_bt[c_arg] == T_LONG) {
2800                long_move(masm, tmp_as_VM, dst);
2801              } else {
2802                move32_64(masm, tmp_as_VM, out_regs[c_arg]);
2803              }
2804            }
2805            if (out_sig_bt[c_arg] == T_LONG) {
2806              assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2807              ++c_arg; // move over the T_VOID to keep the loop indices in sync
2808            }
2809          } else if (out_sig_bt[c_arg] == T_ADDRESS) {
2810            Register s =
2811                src.first()->is_reg() ? src.first()->as_Register() : L2;
2812            Register d =
2813                dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2814
2815            // We store the oop now so that the conversion pass can reach
2816            // while in the inner frame. This will be the only store if
2817            // the oop is NULL.
2818            if (s != L2) {
2819              // src is register
2820              if (d != L2) {
2821                // dst is register
2822                __ mov(s, d);
2823              } else {
2824                assert(Assembler::is_simm13(reg2offset(dst.first()) +
2825                          STACK_BIAS), "must be");
2826                __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
2827              }
2828            } else {
2829                // src not a register
2830                assert(Assembler::is_simm13(reg2offset(src.first()) +
2831                           STACK_BIAS), "must be");
2832                __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
2833                if (d == L2) {
2834                  assert(Assembler::is_simm13(reg2offset(dst.first()) +
2835                             STACK_BIAS), "must be");
2836                  __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
2837                }
2838            }
2839          } else if (out_sig_bt[c_arg] != T_VOID) {
2840            // Convert the arg to NULL
2841            if (dst.first()->is_reg()) {
2842              __ mov(G0, dst.first()->as_Register());
2843            } else {
2844              assert(Assembler::is_simm13(reg2offset(dst.first()) +
2845                         STACK_BIAS), "must be");
2846              __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
2847            }
2848          }
2849        }
2850        break;
2851      case T_VOID:
2852        break;
2853
2854      case T_FLOAT:
2855        if (src.first()->is_stack()) {
2856          // Stack to stack/reg is simple
2857          move32_64(masm, src, dst);
2858        } else {
2859          if (dst.first()->is_reg()) {
2860            // freg -> reg
2861            int off =
2862              STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2863            Register d = dst.first()->as_Register();
2864            if (Assembler::is_simm13(off)) {
2865              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2866                     SP, off);
2867              __ ld(SP, off, d);
2868            } else {
2869              if (conversion_off == noreg) {
2870                __ set(off, L6);
2871                conversion_off = L6;
2872              }
2873              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2874                     SP, conversion_off);
2875              __ ld(SP, conversion_off , d);
2876            }
2877          } else {
2878            // freg -> mem
2879            int off = STACK_BIAS + reg2offset(dst.first());
2880            if (Assembler::is_simm13(off)) {
2881              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2882                     SP, off);
2883            } else {
2884              if (conversion_off == noreg) {
2885                __ set(off, L6);
2886                conversion_off = L6;
2887              }
2888              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2889                     SP, conversion_off);
2890            }
2891          }
2892        }
2893        break;
2894
2895      case T_DOUBLE:
2896        assert( j_arg + 1 < total_args_passed &&
2897                in_sig_bt[j_arg + 1] == T_VOID &&
2898                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2899        if (src.first()->is_stack()) {
2900          // Stack to stack/reg is simple
2901          long_move(masm, src, dst);
2902        } else {
2903          Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2904
2905          // Destination could be an odd reg on 32bit in which case
2906          // we can't load direct to the destination.
2907
2908          if (!d->is_even() && wordSize == 4) {
2909            d = L2;
2910          }
2911          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2912          if (Assembler::is_simm13(off)) {
2913            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2914                   SP, off);
2915            __ ld_long(SP, off, d);
2916          } else {
2917            if (conversion_off == noreg) {
2918              __ set(off, L6);
2919              conversion_off = L6;
2920            }
2921            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2922                   SP, conversion_off);
2923            __ ld_long(SP, conversion_off, d);
2924          }
2925          if (d == L2) {
2926            long_move(masm, reg64_to_VMRegPair(L2), dst);
2927          }
2928        }
2929        break;
2930
2931      case T_LONG :
2932        // 32bit can't do a split move of something like g1 -> O0, O1
2933        // so use a memory temp
2934        if (src.is_single_phys_reg() && wordSize == 4) {
2935          Register tmp = L2;
2936          if (dst.first()->is_reg() &&
2937              (wordSize == 8 || dst.first()->as_Register()->is_even())) {
2938            tmp = dst.first()->as_Register();
2939          }
2940
2941          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2942          if (Assembler::is_simm13(off)) {
2943            __ stx(src.first()->as_Register(), SP, off);
2944            __ ld_long(SP, off, tmp);
2945          } else {
2946            if (conversion_off == noreg) {
2947              __ set(off, L6);
2948              conversion_off = L6;
2949            }
2950            __ stx(src.first()->as_Register(), SP, conversion_off);
2951            __ ld_long(SP, conversion_off, tmp);
2952          }
2953
2954          if (tmp == L2) {
2955            long_move(masm, reg64_to_VMRegPair(L2), dst);
2956          }
2957        } else {
2958          long_move(masm, src, dst);
2959        }
2960        break;
2961
2962      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2963
2964      default:
2965        move32_64(masm, src, dst);
2966    }
2967  }
2968
2969
2970  // If we have any strings we must store any register based arg to the stack
2971  // This includes any still live xmm registers too.
2972
2973  if (total_strings > 0 ) {
2974
2975    // protect all the arg registers
2976    __ save_frame(0);
2977    __ mov(G2_thread, L7_thread_cache);
2978    const Register L2_string_off = L2;
2979
2980    // Get first string offset
2981    __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
2982
2983    for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
2984      if (out_sig_bt[c_arg] == T_ADDRESS) {
2985
2986        VMRegPair dst = out_regs[c_arg];
2987        const Register d = dst.first()->is_reg() ?
2988            dst.first()->as_Register()->after_save() : noreg;
2989
2990        // It's a string the oop and it was already copied to the out arg
2991        // position
2992        if (d != noreg) {
2993          __ mov(d, O0);
2994        } else {
2995          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2996                 "must be");
2997          __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
2998        }
2999        Label skip;
3000
3001        __ br_null(O0, false, Assembler::pn, skip);
3002        __ delayed()->add(FP, L2_string_off, O1);
3003
3004        if (d != noreg) {
3005          __ mov(O1, d);
3006        } else {
3007          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3008                 "must be");
3009          __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
3010        }
3011
3012        __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
3013                relocInfo::runtime_call_type);
3014        __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
3015
3016        __ bind(skip);
3017
3018      }
3019
3020    }
3021    __ mov(L7_thread_cache, G2_thread);
3022    __ restore();
3023
3024  }
3025
3026
3027  // Ok now we are done. Need to place the nop that dtrace wants in order to
3028  // patch in the trap
3029
3030  int patch_offset = ((intptr_t)__ pc()) - start;
3031
3032  __ nop();
3033
3034
3035  // Return
3036
3037  __ ret();
3038  __ delayed()->restore();
3039
3040  __ flush();
3041
3042  nmethod *nm = nmethod::new_dtrace_nmethod(
3043      method, masm->code(), vep_offset, patch_offset, frame_complete,
3044      stack_slots / VMRegImpl::slots_per_word);
3045  return nm;
3046
3047}
3048
3049#endif // HAVE_DTRACE_H
3050
3051// this function returns the adjust size (in number of words) to a c2i adapter
3052// activation for use during deoptimization
3053int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3054  assert(callee_locals >= callee_parameters,
3055          "test and remove; got more parms than locals");
3056  if (callee_locals < callee_parameters)
3057    return 0;                   // No adjustment for negative locals
3058  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords();
3059  return round_to(diff, WordsPerLong);
3060}
3061
3062// "Top of Stack" slots that may be unused by the calling convention but must
3063// otherwise be preserved.
3064// On Intel these are not necessary and the value can be zero.
3065// On Sparc this describes the words reserved for storing a register window
3066// when an interrupt occurs.
3067uint SharedRuntime::out_preserve_stack_slots() {
3068  return frame::register_save_words * VMRegImpl::slots_per_word;
3069}
3070
3071static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3072//
3073// Common out the new frame generation for deopt and uncommon trap
3074//
3075  Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3076  Register        Oreturn0           = O0;
3077  Register        Oreturn1           = O1;
3078  Register        O2UnrollBlock      = O2;
3079  Register        O3array            = O3;         // Array of frame sizes (input)
3080  Register        O4array_size       = O4;         // number of frames (input)
3081  Register        O7frame_size       = O7;         // number of frames (input)
3082
3083  __ ld_ptr(O3array, 0, O7frame_size);
3084  __ sub(G0, O7frame_size, O7frame_size);
3085  __ save(SP, O7frame_size, SP);
3086  __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3087
3088  #ifdef ASSERT
3089  // make sure that the frames are aligned properly
3090#ifndef _LP64
3091  __ btst(wordSize*2-1, SP);
3092  __ breakpoint_trap(Assembler::notZero);
3093#endif
3094  #endif
3095
3096  // Deopt needs to pass some extra live values from frame to frame
3097
3098  if (deopt) {
3099    __ mov(Oreturn0->after_save(), Oreturn0);
3100    __ mov(Oreturn1->after_save(), Oreturn1);
3101  }
3102
3103  __ mov(O4array_size->after_save(), O4array_size);
3104  __ sub(O4array_size, 1, O4array_size);
3105  __ mov(O3array->after_save(), O3array);
3106  __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3107  __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3108
3109  #ifdef ASSERT
3110  // trash registers to show a clear pattern in backtraces
3111  __ set(0xDEAD0000, I0);
3112  __ add(I0,  2, I1);
3113  __ add(I0,  4, I2);
3114  __ add(I0,  6, I3);
3115  __ add(I0,  8, I4);
3116  // Don't touch I5 could have valuable savedSP
3117  __ set(0xDEADBEEF, L0);
3118  __ mov(L0, L1);
3119  __ mov(L0, L2);
3120  __ mov(L0, L3);
3121  __ mov(L0, L4);
3122  __ mov(L0, L5);
3123
3124  // trash the return value as there is nothing to return yet
3125  __ set(0xDEAD0001, O7);
3126  #endif
3127
3128  __ mov(SP, O5_savedSP);
3129}
3130
3131
3132static void make_new_frames(MacroAssembler* masm, bool deopt) {
3133  //
3134  // loop through the UnrollBlock info and create new frames
3135  //
3136  Register        G3pcs              = G3_scratch;
3137  Register        Oreturn0           = O0;
3138  Register        Oreturn1           = O1;
3139  Register        O2UnrollBlock      = O2;
3140  Register        O3array            = O3;
3141  Register        O4array_size       = O4;
3142  Label           loop;
3143
3144  // Before we make new frames, check to see if stack is available.
3145  // Do this after the caller's return address is on top of stack
3146  if (UseStackBanging) {
3147    // Get total frame size for interpreted frames
3148    __ ld(Address(O2UnrollBlock, 0,
3149         Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()), O4);
3150    __ bang_stack_size(O4, O3, G3_scratch);
3151  }
3152
3153  __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()), O4array_size);
3154  __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()), G3pcs);
3155
3156  __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()), O3array);
3157
3158  // Adjust old interpreter frame to make space for new frame's extra java locals
3159  //
3160  // We capture the original sp for the transition frame only because it is needed in
3161  // order to properly calculate interpreter_sp_adjustment. Even though in real life
3162  // every interpreter frame captures a savedSP it is only needed at the transition
3163  // (fortunately). If we had to have it correct everywhere then we would need to
3164  // be told the sp_adjustment for each frame we create. If the frame size array
3165  // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3166  // for each frame we create and keep up the illusion every where.
3167  //
3168
3169  __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()), O7);
3170  __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3171  __ sub(SP, O7, SP);
3172
3173#ifdef ASSERT
3174  // make sure that there is at least one entry in the array
3175  __ tst(O4array_size);
3176  __ breakpoint_trap(Assembler::zero);
3177#endif
3178
3179  // Now push the new interpreter frames
3180  __ bind(loop);
3181
3182  // allocate a new frame, filling the registers
3183
3184  gen_new_frame(masm, deopt);        // allocate an interpreter frame
3185
3186  __ tst(O4array_size);
3187  __ br(Assembler::notZero, false, Assembler::pn, loop);
3188  __ delayed()->add(O3array, wordSize, O3array);
3189  __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3190
3191}
3192
3193//------------------------------generate_deopt_blob----------------------------
3194// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3195// instead.
3196void SharedRuntime::generate_deopt_blob() {
3197  // allocate space for the code
3198  ResourceMark rm;
3199  // setup code generation tools
3200  int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3201#ifdef _LP64
3202  CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3203#else
3204  // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3205  // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3206  CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3207#endif /* _LP64 */
3208  MacroAssembler* masm               = new MacroAssembler(&buffer);
3209  FloatRegister   Freturn0           = F0;
3210  Register        Greturn1           = G1;
3211  Register        Oreturn0           = O0;
3212  Register        Oreturn1           = O1;
3213  Register        O2UnrollBlock      = O2;
3214  Register        O3tmp              = O3;
3215  Register        I5exception_tmp    = I5;
3216  Register        G4exception_tmp    = G4_scratch;
3217  int             frame_size_words;
3218  Address         saved_Freturn0_addr(FP, 0, -sizeof(double) + STACK_BIAS);
3219#if !defined(_LP64) && defined(COMPILER2)
3220  Address         saved_Greturn1_addr(FP, 0, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3221#endif
3222  Label           cont;
3223
3224  OopMapSet *oop_maps = new OopMapSet();
3225
3226  //
3227  // This is the entry point for code which is returning to a de-optimized
3228  // frame.
3229  // The steps taken by this frame are as follows:
3230  //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3231  //     and all potentially live registers (at a pollpoint many registers can be live).
3232  //
3233  //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3234  //     returns information about the number and size of interpreter frames
3235  //     which are equivalent to the frame which is being deoptimized)
3236  //   - deallocate the unpack frame, restoring only results values. Other
3237  //     volatile registers will now be captured in the vframeArray as needed.
3238  //   - deallocate the deoptimization frame
3239  //   - in a loop using the information returned in the previous step
3240  //     push new interpreter frames (take care to propagate the return
3241  //     values through each new frame pushed)
3242  //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3243  //   - call the C routine: Deoptimization::unpack_frames (this function
3244  //     lays out values on the interpreter frame which was just created)
3245  //   - deallocate the dummy unpack_frame
3246  //   - ensure that all the return values are correctly set and then do
3247  //     a return to the interpreter entry point
3248  //
3249  // Refer to the following methods for more information:
3250  //   - Deoptimization::fetch_unroll_info
3251  //   - Deoptimization::unpack_frames
3252
3253  OopMap* map = NULL;
3254
3255  int start = __ offset();
3256
3257  // restore G2, the trampoline destroyed it
3258  __ get_thread();
3259
3260  // On entry we have been called by the deoptimized nmethod with a call that
3261  // replaced the original call (or safepoint polling location) so the deoptimizing
3262  // pc is now in O7. Return values are still in the expected places
3263
3264  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3265  __ ba(false, cont);
3266  __ delayed()->mov(Deoptimization::Unpack_deopt, I5exception_tmp);
3267
3268  int exception_offset = __ offset() - start;
3269
3270  // restore G2, the trampoline destroyed it
3271  __ get_thread();
3272
3273  // On entry we have been jumped to by the exception handler (or exception_blob
3274  // for server).  O0 contains the exception oop and O7 contains the original
3275  // exception pc.  So if we push a frame here it will look to the
3276  // stack walking code (fetch_unroll_info) just like a normal call so
3277  // state will be extracted normally.
3278
3279  // save exception oop in JavaThread and fall through into the
3280  // exception_in_tls case since they are handled in same way except
3281  // for where the pending exception is kept.
3282  __ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3283
3284  //
3285  // Vanilla deoptimization with an exception pending in exception_oop
3286  //
3287  int exception_in_tls_offset = __ offset() - start;
3288
3289  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3290  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3291
3292  // Restore G2_thread
3293  __ get_thread();
3294
3295#ifdef ASSERT
3296  {
3297    // verify that there is really an exception oop in exception_oop
3298    Label has_exception;
3299    __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3300    __ br_notnull(Oexception, false, Assembler::pt, has_exception);
3301    __ delayed()-> nop();
3302    __ stop("no exception in thread");
3303    __ bind(has_exception);
3304
3305    // verify that there is no pending exception
3306    Label no_pending_exception;
3307    Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
3308    __ ld_ptr(exception_addr, Oexception);
3309    __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
3310    __ delayed()->nop();
3311    __ stop("must not have pending exception here");
3312    __ bind(no_pending_exception);
3313  }
3314#endif
3315
3316  __ ba(false, cont);
3317  __ delayed()->mov(Deoptimization::Unpack_exception, I5exception_tmp);;
3318
3319  //
3320  // Reexecute entry, similar to c2 uncommon trap
3321  //
3322  int reexecute_offset = __ offset() - start;
3323
3324  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3325  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3326
3327  __ mov(Deoptimization::Unpack_reexecute, I5exception_tmp);
3328
3329  __ bind(cont);
3330
3331  __ set_last_Java_frame(SP, noreg);
3332
3333  // do the call by hand so we can get the oopmap
3334
3335  __ mov(G2_thread, L7_thread_cache);
3336  __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3337  __ delayed()->mov(G2_thread, O0);
3338
3339  // Set an oopmap for the call site this describes all our saved volatile registers
3340
3341  oop_maps->add_gc_map( __ offset()-start, map);
3342
3343  __ mov(L7_thread_cache, G2_thread);
3344
3345  __ reset_last_Java_frame();
3346
3347  // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3348  // so this move will survive
3349
3350  __ mov(I5exception_tmp, G4exception_tmp);
3351
3352  __ mov(O0, O2UnrollBlock->after_save());
3353
3354  RegisterSaver::restore_result_registers(masm);
3355
3356  Label noException;
3357  __ cmp(G4exception_tmp, Deoptimization::Unpack_exception);   // Was exception pending?
3358  __ br(Assembler::notEqual, false, Assembler::pt, noException);
3359  __ delayed()->nop();
3360
3361  // Move the pending exception from exception_oop to Oexception so
3362  // the pending exception will be picked up the interpreter.
3363  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3364  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3365  __ bind(noException);
3366
3367  // deallocate the deoptimization frame taking care to preserve the return values
3368  __ mov(Oreturn0,     Oreturn0->after_save());
3369  __ mov(Oreturn1,     Oreturn1->after_save());
3370  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3371  __ restore();
3372
3373  // Allocate new interpreter frame(s) and possible c2i adapter frame
3374
3375  make_new_frames(masm, true);
3376
3377  // push a dummy "unpack_frame" taking care of float return values and
3378  // call Deoptimization::unpack_frames to have the unpacker layout
3379  // information in the interpreter frames just created and then return
3380  // to the interpreter entry point
3381  __ save(SP, -frame_size_words*wordSize, SP);
3382  __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3383#if !defined(_LP64)
3384#if defined(COMPILER2)
3385  if (!TieredCompilation) {
3386    // 32-bit 1-register longs return longs in G1
3387    __ stx(Greturn1, saved_Greturn1_addr);
3388  }
3389#endif
3390  __ set_last_Java_frame(SP, noreg);
3391  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4exception_tmp);
3392#else
3393  // LP64 uses g4 in set_last_Java_frame
3394  __ mov(G4exception_tmp, O1);
3395  __ set_last_Java_frame(SP, G0);
3396  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3397#endif
3398  __ reset_last_Java_frame();
3399  __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3400
3401  // In tiered we never use C2 to compile methods returning longs so
3402  // the result is where we expect it already.
3403
3404#if !defined(_LP64) && defined(COMPILER2)
3405  // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3406  // I0/I1 if the return value is long.  In the tiered world there is
3407  // a mismatch between how C1 and C2 return longs compiles and so
3408  // currently compilation of methods which return longs is disabled
3409  // for C2 and so is this code.  Eventually C1 and C2 will do the
3410  // same thing for longs in the tiered world.
3411  if (!TieredCompilation) {
3412    Label not_long;
3413    __ cmp(O0,T_LONG);
3414    __ br(Assembler::notEqual, false, Assembler::pt, not_long);
3415    __ delayed()->nop();
3416    __ ldd(saved_Greturn1_addr,I0);
3417    __ bind(not_long);
3418  }
3419#endif
3420  __ ret();
3421  __ delayed()->restore();
3422
3423  masm->flush();
3424  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3425  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3426}
3427
3428#ifdef COMPILER2
3429
3430//------------------------------generate_uncommon_trap_blob--------------------
3431// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3432// instead.
3433void SharedRuntime::generate_uncommon_trap_blob() {
3434  // allocate space for the code
3435  ResourceMark rm;
3436  // setup code generation tools
3437  int pad = VerifyThread ? 512 : 0;
3438#ifdef _LP64
3439  CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3440#else
3441  // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3442  // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3443  CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3444#endif
3445  MacroAssembler* masm               = new MacroAssembler(&buffer);
3446  Register        O2UnrollBlock      = O2;
3447  Register        O3tmp              = O3;
3448  Register        O2klass_index      = O2;
3449
3450  //
3451  // This is the entry point for all traps the compiler takes when it thinks
3452  // it cannot handle further execution of compilation code. The frame is
3453  // deoptimized in these cases and converted into interpreter frames for
3454  // execution
3455  // The steps taken by this frame are as follows:
3456  //   - push a fake "unpack_frame"
3457  //   - call the C routine Deoptimization::uncommon_trap (this function
3458  //     packs the current compiled frame into vframe arrays and returns
3459  //     information about the number and size of interpreter frames which
3460  //     are equivalent to the frame which is being deoptimized)
3461  //   - deallocate the "unpack_frame"
3462  //   - deallocate the deoptimization frame
3463  //   - in a loop using the information returned in the previous step
3464  //     push interpreter frames;
3465  //   - create a dummy "unpack_frame"
3466  //   - call the C routine: Deoptimization::unpack_frames (this function
3467  //     lays out values on the interpreter frame which was just created)
3468  //   - deallocate the dummy unpack_frame
3469  //   - return to the interpreter entry point
3470  //
3471  //  Refer to the following methods for more information:
3472  //   - Deoptimization::uncommon_trap
3473  //   - Deoptimization::unpack_frame
3474
3475  // the unloaded class index is in O0 (first parameter to this blob)
3476
3477  // push a dummy "unpack_frame"
3478  // and call Deoptimization::uncommon_trap to pack the compiled frame into
3479  // vframe array and return the UnrollBlock information
3480  __ save_frame(0);
3481  __ set_last_Java_frame(SP, noreg);
3482  __ mov(I0, O2klass_index);
3483  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3484  __ reset_last_Java_frame();
3485  __ mov(O0, O2UnrollBlock->after_save());
3486  __ restore();
3487
3488  // deallocate the deoptimized frame taking care to preserve the return values
3489  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3490  __ restore();
3491
3492  // Allocate new interpreter frame(s) and possible c2i adapter frame
3493
3494  make_new_frames(masm, false);
3495
3496  // push a dummy "unpack_frame" taking care of float return values and
3497  // call Deoptimization::unpack_frames to have the unpacker layout
3498  // information in the interpreter frames just created and then return
3499  // to the interpreter entry point
3500  __ save_frame(0);
3501  __ set_last_Java_frame(SP, noreg);
3502  __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3503  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3504  __ reset_last_Java_frame();
3505  __ ret();
3506  __ delayed()->restore();
3507
3508  masm->flush();
3509  _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3510}
3511
3512#endif // COMPILER2
3513
3514//------------------------------generate_handler_blob-------------------
3515//
3516// Generate a special Compile2Runtime blob that saves all registers, and sets
3517// up an OopMap.
3518//
3519// This blob is jumped to (via a breakpoint and the signal handler) from a
3520// safepoint in compiled code.  On entry to this blob, O7 contains the
3521// address in the original nmethod at which we should resume normal execution.
3522// Thus, this blob looks like a subroutine which must preserve lots of
3523// registers and return normally.  Note that O7 is never register-allocated,
3524// so it is guaranteed to be free here.
3525//
3526
3527// The hardest part of what this blob must do is to save the 64-bit %o
3528// registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3529// an interrupt will chop off their heads.  Making space in the caller's frame
3530// first will let us save the 64-bit %o's before save'ing, but we cannot hand
3531// the adjusted FP off to the GC stack-crawler: this will modify the caller's
3532// SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3533// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3534// Tricky, tricky, tricky...
3535
3536static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3537  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3538
3539  // allocate space for the code
3540  ResourceMark rm;
3541  // setup code generation tools
3542  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3543  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3544  // even larger with TraceJumps
3545  int pad = TraceJumps ? 512 : 0;
3546  CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3547  MacroAssembler* masm                = new MacroAssembler(&buffer);
3548  int             frame_size_words;
3549  OopMapSet *oop_maps = new OopMapSet();
3550  OopMap* map = NULL;
3551
3552  int start = __ offset();
3553
3554  // If this causes a return before the processing, then do a "restore"
3555  if (cause_return) {
3556    __ restore();
3557  } else {
3558    // Make it look like we were called via the poll
3559    // so that frame constructor always sees a valid return address
3560    __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3561    __ sub(O7, frame::pc_return_offset, O7);
3562  }
3563
3564  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3565
3566  // setup last_Java_sp (blows G4)
3567  __ set_last_Java_frame(SP, noreg);
3568
3569  // call into the runtime to handle illegal instructions exception
3570  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3571  __ mov(G2_thread, O0);
3572  __ save_thread(L7_thread_cache);
3573  __ call(call_ptr);
3574  __ delayed()->nop();
3575
3576  // Set an oopmap for the call site.
3577  // We need this not only for callee-saved registers, but also for volatile
3578  // registers that the compiler might be keeping live across a safepoint.
3579
3580  oop_maps->add_gc_map( __ offset() - start, map);
3581
3582  __ restore_thread(L7_thread_cache);
3583  // clear last_Java_sp
3584  __ reset_last_Java_frame();
3585
3586  // Check for exceptions
3587  Label pending;
3588
3589  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3590  __ tst(O1);
3591  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3592  __ delayed()->nop();
3593
3594  RegisterSaver::restore_live_registers(masm);
3595
3596  // We are back the the original state on entry and ready to go.
3597
3598  __ retl();
3599  __ delayed()->nop();
3600
3601  // Pending exception after the safepoint
3602
3603  __ bind(pending);
3604
3605  RegisterSaver::restore_live_registers(masm);
3606
3607  // We are back the the original state on entry.
3608
3609  // Tail-call forward_exception_entry, with the issuing PC in O7,
3610  // so it looks like the original nmethod called forward_exception_entry.
3611  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3612  __ JMP(O0, 0);
3613  __ delayed()->nop();
3614
3615  // -------------
3616  // make sure all code is generated
3617  masm->flush();
3618
3619  // return exception blob
3620  return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3621}
3622
3623//
3624// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3625//
3626// Generate a stub that calls into vm to find out the proper destination
3627// of a java call. All the argument registers are live at this point
3628// but since this is generic code we don't know what they are and the caller
3629// must do any gc of the args.
3630//
3631static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3632  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3633
3634  // allocate space for the code
3635  ResourceMark rm;
3636  // setup code generation tools
3637  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3638  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3639  // even larger with TraceJumps
3640  int pad = TraceJumps ? 512 : 0;
3641  CodeBuffer buffer(name, 1600 + pad, 512);
3642  MacroAssembler* masm                = new MacroAssembler(&buffer);
3643  int             frame_size_words;
3644  OopMapSet *oop_maps = new OopMapSet();
3645  OopMap* map = NULL;
3646
3647  int start = __ offset();
3648
3649  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3650
3651  int frame_complete = __ offset();
3652
3653  // setup last_Java_sp (blows G4)
3654  __ set_last_Java_frame(SP, noreg);
3655
3656  // call into the runtime to handle illegal instructions exception
3657  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3658  __ mov(G2_thread, O0);
3659  __ save_thread(L7_thread_cache);
3660  __ call(destination, relocInfo::runtime_call_type);
3661  __ delayed()->nop();
3662
3663  // O0 contains the address we are going to jump to assuming no exception got installed
3664
3665  // Set an oopmap for the call site.
3666  // We need this not only for callee-saved registers, but also for volatile
3667  // registers that the compiler might be keeping live across a safepoint.
3668
3669  oop_maps->add_gc_map( __ offset() - start, map);
3670
3671  __ restore_thread(L7_thread_cache);
3672  // clear last_Java_sp
3673  __ reset_last_Java_frame();
3674
3675  // Check for exceptions
3676  Label pending;
3677
3678  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3679  __ tst(O1);
3680  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3681  __ delayed()->nop();
3682
3683  // get the returned methodOop
3684
3685  __ get_vm_result(G5_method);
3686  __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3687
3688  // O0 is where we want to jump, overwrite G3 which is saved and scratch
3689
3690  __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3691
3692  RegisterSaver::restore_live_registers(masm);
3693
3694  // We are back the the original state on entry and ready to go.
3695
3696  __ JMP(G3, 0);
3697  __ delayed()->nop();
3698
3699  // Pending exception after the safepoint
3700
3701  __ bind(pending);
3702
3703  RegisterSaver::restore_live_registers(masm);
3704
3705  // We are back the the original state on entry.
3706
3707  // Tail-call forward_exception_entry, with the issuing PC in O7,
3708  // so it looks like the original nmethod called forward_exception_entry.
3709  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3710  __ JMP(O0, 0);
3711  __ delayed()->nop();
3712
3713  // -------------
3714  // make sure all code is generated
3715  masm->flush();
3716
3717  // return the  blob
3718  // frame_size_words or bytes??
3719  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3720}
3721
3722void SharedRuntime::generate_stubs() {
3723
3724  _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3725                                             "wrong_method_stub");
3726
3727  _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3728                                        "ic_miss_stub");
3729
3730  _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3731                                        "resolve_opt_virtual_call");
3732
3733  _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3734                                        "resolve_virtual_call");
3735
3736  _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3737                                        "resolve_static_call");
3738
3739  _polling_page_safepoint_handler_blob =
3740    generate_handler_blob(CAST_FROM_FN_PTR(address,
3741                   SafepointSynchronize::handle_polling_page_exception), false);
3742
3743  _polling_page_return_handler_blob =
3744    generate_handler_blob(CAST_FROM_FN_PTR(address,
3745                   SafepointSynchronize::handle_polling_page_exception), true);
3746
3747  generate_deopt_blob();
3748
3749#ifdef COMPILER2
3750  generate_uncommon_trap_blob();
3751#endif // COMPILER2
3752}
3753