sharedRuntime_sparc.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.hpp"
27#include "assembler_sparc.inline.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "interpreter/interpreter.hpp"
32#include "oops/compiledICHolderOop.hpp"
33#include "prims/jvmtiRedefineClassesTrace.hpp"
34#include "runtime/sharedRuntime.hpp"
35#include "runtime/vframeArray.hpp"
36#include "vmreg_sparc.inline.hpp"
37#ifdef COMPILER1
38#include "c1/c1_Runtime1.hpp"
39#endif
40#ifdef COMPILER2
41#include "opto/runtime.hpp"
42#endif
43#ifdef SHARK
44#include "compiler/compileBroker.hpp"
45#include "shark/sharkCompiler.hpp"
46#endif
47
48#define __ masm->
49
50#ifdef COMPILER2
51UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
52#endif // COMPILER2
53
54DeoptimizationBlob* SharedRuntime::_deopt_blob;
55SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
56SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
57RuntimeStub*        SharedRuntime::_wrong_method_blob;
58RuntimeStub*        SharedRuntime::_ic_miss_blob;
59RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
60RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
61RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
62
63class RegisterSaver {
64
65  // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
66  // The Oregs are problematic. In the 32bit build the compiler can
67  // have O registers live with 64 bit quantities. A window save will
68  // cut the heads off of the registers. We have to do a very extensive
69  // stack dance to save and restore these properly.
70
71  // Note that the Oregs problem only exists if we block at either a polling
72  // page exception a compiled code safepoint that was not originally a call
73  // or deoptimize following one of these kinds of safepoints.
74
75  // Lots of registers to save.  For all builds, a window save will preserve
76  // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
77  // builds a window-save will preserve the %o registers.  In the LION build
78  // we need to save the 64-bit %o registers which requires we save them
79  // before the window-save (as then they become %i registers and get their
80  // heads chopped off on interrupt).  We have to save some %g registers here
81  // as well.
82  enum {
83    // This frame's save area.  Includes extra space for the native call:
84    // vararg's layout space and the like.  Briefly holds the caller's
85    // register save area.
86    call_args_area = frame::register_save_words_sp_offset +
87                     frame::memory_parameter_word_sp_offset*wordSize,
88    // Make sure save locations are always 8 byte aligned.
89    // can't use round_to because it doesn't produce compile time constant
90    start_of_extra_save_area = ((call_args_area + 7) & ~7),
91    g1_offset = start_of_extra_save_area, // g-regs needing saving
92    g3_offset = g1_offset+8,
93    g4_offset = g3_offset+8,
94    g5_offset = g4_offset+8,
95    o0_offset = g5_offset+8,
96    o1_offset = o0_offset+8,
97    o2_offset = o1_offset+8,
98    o3_offset = o2_offset+8,
99    o4_offset = o3_offset+8,
100    o5_offset = o4_offset+8,
101    start_of_flags_save_area = o5_offset+8,
102    ccr_offset = start_of_flags_save_area,
103    fsr_offset = ccr_offset + 8,
104    d00_offset = fsr_offset+8,  // Start of float save area
105    register_save_size = d00_offset+8*32
106  };
107
108
109  public:
110
111  static int Oexception_offset() { return o0_offset; };
112  static int G3_offset() { return g3_offset; };
113  static int G5_offset() { return g5_offset; };
114  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
115  static void restore_live_registers(MacroAssembler* masm);
116
117  // During deoptimization only the result register need to be restored
118  // all the other values have already been extracted.
119
120  static void restore_result_registers(MacroAssembler* masm);
121};
122
123OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
124  // Record volatile registers as callee-save values in an OopMap so their save locations will be
125  // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
126  // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
127  // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
128  // (as the stub's I's) when the runtime routine called by the stub creates its frame.
129  int i;
130  // Always make the frame size 16 byte aligned.
131  int frame_size = round_to(additional_frame_words + register_save_size, 16);
132  // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
133  int frame_size_in_slots = frame_size / sizeof(jint);
134  // CodeBlob frame size is in words.
135  *total_frame_words = frame_size / wordSize;
136  // OopMap* map = new OopMap(*total_frame_words, 0);
137  OopMap* map = new OopMap(frame_size_in_slots, 0);
138
139#if !defined(_LP64)
140
141  // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
142  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
143  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
144  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
145  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
146  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
147  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
148#endif /* _LP64 */
149
150  __ save(SP, -frame_size, SP);
151
152#ifndef _LP64
153  // Reload the 64 bit Oregs. Although they are now Iregs we load them
154  // to Oregs here to avoid interrupts cutting off their heads
155
156  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
157  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
158  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
159  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
160  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
161  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
162
163  __ stx(O0, SP, o0_offset+STACK_BIAS);
164  map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
165
166  __ stx(O1, SP, o1_offset+STACK_BIAS);
167
168  map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
169
170  __ stx(O2, SP, o2_offset+STACK_BIAS);
171  map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
172
173  __ stx(O3, SP, o3_offset+STACK_BIAS);
174  map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
175
176  __ stx(O4, SP, o4_offset+STACK_BIAS);
177  map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
178
179  __ stx(O5, SP, o5_offset+STACK_BIAS);
180  map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
181#endif /* _LP64 */
182
183
184#ifdef _LP64
185  int debug_offset = 0;
186#else
187  int debug_offset = 4;
188#endif
189  // Save the G's
190  __ stx(G1, SP, g1_offset+STACK_BIAS);
191  map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
192
193  __ stx(G3, SP, g3_offset+STACK_BIAS);
194  map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
195
196  __ stx(G4, SP, g4_offset+STACK_BIAS);
197  map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
198
199  __ stx(G5, SP, g5_offset+STACK_BIAS);
200  map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
201
202  // This is really a waste but we'll keep things as they were for now
203  if (true) {
204#ifndef _LP64
205    map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
206    map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
207    map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
208    map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
209    map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
210    map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
211    map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
212    map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
213    map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
214    map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
215#endif /* _LP64 */
216  }
217
218
219  // Save the flags
220  __ rdccr( G5 );
221  __ stx(G5, SP, ccr_offset+STACK_BIAS);
222  __ stxfsr(SP, fsr_offset+STACK_BIAS);
223
224  // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
225  int offset = d00_offset;
226  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
227    FloatRegister f = as_FloatRegister(i);
228    __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
229    // Record as callee saved both halves of double registers (2 float registers).
230    map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
231    map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
232    offset += sizeof(double);
233  }
234
235  // And we're done.
236
237  return map;
238}
239
240
241// Pop the current frame and restore all the registers that we
242// saved.
243void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
244
245  // Restore all the FP registers
246  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
247    __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
248  }
249
250  __ ldx(SP, ccr_offset+STACK_BIAS, G1);
251  __ wrccr (G1) ;
252
253  // Restore the G's
254  // Note that G2 (AKA GThread) must be saved and restored separately.
255  // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
256
257  __ ldx(SP, g1_offset+STACK_BIAS, G1);
258  __ ldx(SP, g3_offset+STACK_BIAS, G3);
259  __ ldx(SP, g4_offset+STACK_BIAS, G4);
260  __ ldx(SP, g5_offset+STACK_BIAS, G5);
261
262
263#if !defined(_LP64)
264  // Restore the 64-bit O's.
265  __ ldx(SP, o0_offset+STACK_BIAS, O0);
266  __ ldx(SP, o1_offset+STACK_BIAS, O1);
267  __ ldx(SP, o2_offset+STACK_BIAS, O2);
268  __ ldx(SP, o3_offset+STACK_BIAS, O3);
269  __ ldx(SP, o4_offset+STACK_BIAS, O4);
270  __ ldx(SP, o5_offset+STACK_BIAS, O5);
271
272  // And temporarily place them in TLS
273
274  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
275  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
276  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
277  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
278  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
279  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
280#endif /* _LP64 */
281
282  // Restore flags
283
284  __ ldxfsr(SP, fsr_offset+STACK_BIAS);
285
286  __ restore();
287
288#if !defined(_LP64)
289  // Now reload the 64bit Oregs after we've restore the window.
290  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
291  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
292  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
293  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
294  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
295  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
296#endif /* _LP64 */
297
298}
299
300// Pop the current frame and restore the registers that might be holding
301// a result.
302void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
303
304#if !defined(_LP64)
305  // 32bit build returns longs in G1
306  __ ldx(SP, g1_offset+STACK_BIAS, G1);
307
308  // Retrieve the 64-bit O's.
309  __ ldx(SP, o0_offset+STACK_BIAS, O0);
310  __ ldx(SP, o1_offset+STACK_BIAS, O1);
311  // and save to TLS
312  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
313  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
314#endif /* _LP64 */
315
316  __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
317
318  __ restore();
319
320#if !defined(_LP64)
321  // Now reload the 64bit Oregs after we've restore the window.
322  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
323  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
324#endif /* _LP64 */
325
326}
327
328// The java_calling_convention describes stack locations as ideal slots on
329// a frame with no abi restrictions. Since we must observe abi restrictions
330// (like the placement of the register window) the slots must be biased by
331// the following value.
332static int reg2offset(VMReg r) {
333  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
334}
335
336// ---------------------------------------------------------------------------
337// Read the array of BasicTypes from a signature, and compute where the
338// arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
339// quantities.  Values less than VMRegImpl::stack0 are registers, those above
340// refer to 4-byte stack slots.  All stack slots are based off of the window
341// top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
342// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
343// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
344// integer registers.  Values 64-95 are the (32-bit only) float registers.
345// Each 32-bit quantity is given its own number, so the integer registers
346// (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
347// an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
348
349// Register results are passed in O0-O5, for outgoing call arguments.  To
350// convert to incoming arguments, convert all O's to I's.  The regs array
351// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
352// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
353// 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
354// passed (used as a placeholder for the other half of longs and doubles in
355// the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
356// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
357// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
358// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
359// same VMRegPair.
360
361// Note: the INPUTS in sig_bt are in units of Java argument words, which are
362// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
363// units regardless of build.
364
365
366// ---------------------------------------------------------------------------
367// The compiled Java calling convention.  The Java convention always passes
368// 64-bit values in adjacent aligned locations (either registers or stack),
369// floats in float registers and doubles in aligned float pairs.  Values are
370// packed in the registers.  There is no backing varargs store for values in
371// registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
372// passed in I's, because longs in I's get their heads chopped off at
373// interrupt).
374int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
375                                           VMRegPair *regs,
376                                           int total_args_passed,
377                                           int is_outgoing) {
378  assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
379
380  // Convention is to pack the first 6 int/oop args into the first 6 registers
381  // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
382  // into F0-F7, extras spill to the stack.  Then pad all register sets to
383  // align.  Then put longs and doubles into the same registers as they fit,
384  // else spill to the stack.
385  const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
386  const int flt_reg_max = 8;
387  //
388  // Where 32-bit 1-reg longs start being passed
389  // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
390  // So make it look like we've filled all the G regs that c2 wants to use.
391  Register g_reg = TieredCompilation ? noreg : G1;
392
393  // Count int/oop and float args.  See how many stack slots we'll need and
394  // where the longs & doubles will go.
395  int int_reg_cnt   = 0;
396  int flt_reg_cnt   = 0;
397  // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
398  // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
399  int stk_reg_pairs = 0;
400  for (int i = 0; i < total_args_passed; i++) {
401    switch (sig_bt[i]) {
402    case T_LONG:                // LP64, longs compete with int args
403      assert(sig_bt[i+1] == T_VOID, "");
404#ifdef _LP64
405      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
406#endif
407      break;
408    case T_OBJECT:
409    case T_ARRAY:
410    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
411      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
412#ifndef _LP64
413      else                            stk_reg_pairs++;
414#endif
415      break;
416    case T_INT:
417    case T_SHORT:
418    case T_CHAR:
419    case T_BYTE:
420    case T_BOOLEAN:
421      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
422      else                            stk_reg_pairs++;
423      break;
424    case T_FLOAT:
425      if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
426      else                            stk_reg_pairs++;
427      break;
428    case T_DOUBLE:
429      assert(sig_bt[i+1] == T_VOID, "");
430      break;
431    case T_VOID:
432      break;
433    default:
434      ShouldNotReachHere();
435    }
436  }
437
438  // This is where the longs/doubles start on the stack.
439  stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
440
441  int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
442  int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
443
444  // int stk_reg = frame::register_save_words*(wordSize>>2);
445  // int stk_reg = SharedRuntime::out_preserve_stack_slots();
446  int stk_reg = 0;
447  int int_reg = 0;
448  int flt_reg = 0;
449
450  // Now do the signature layout
451  for (int i = 0; i < total_args_passed; i++) {
452    switch (sig_bt[i]) {
453    case T_INT:
454    case T_SHORT:
455    case T_CHAR:
456    case T_BYTE:
457    case T_BOOLEAN:
458#ifndef _LP64
459    case T_OBJECT:
460    case T_ARRAY:
461    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
462#endif // _LP64
463      if (int_reg < int_reg_max) {
464        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
465        regs[i].set1(r->as_VMReg());
466      } else {
467        regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
468      }
469      break;
470
471#ifdef _LP64
472    case T_OBJECT:
473    case T_ARRAY:
474    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
475      if (int_reg < int_reg_max) {
476        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
477        regs[i].set2(r->as_VMReg());
478      } else {
479        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
480        stk_reg_pairs += 2;
481      }
482      break;
483#endif // _LP64
484
485    case T_LONG:
486      assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
487#ifdef _LP64
488        if (int_reg < int_reg_max) {
489          Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
490          regs[i].set2(r->as_VMReg());
491        } else {
492          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
493          stk_reg_pairs += 2;
494        }
495#else
496#ifdef COMPILER2
497        // For 32-bit build, can't pass longs in O-regs because they become
498        // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
499        // spare and available.  This convention isn't used by the Sparc ABI or
500        // anywhere else. If we're tiered then we don't use G-regs because c1
501        // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
502        // G0: zero
503        // G1: 1st Long arg
504        // G2: global allocated to TLS
505        // G3: used in inline cache check
506        // G4: 2nd Long arg
507        // G5: used in inline cache check
508        // G6: used by OS
509        // G7: used by OS
510
511        if (g_reg == G1) {
512          regs[i].set2(G1->as_VMReg()); // This long arg in G1
513          g_reg = G4;                  // Where the next arg goes
514        } else if (g_reg == G4) {
515          regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
516          g_reg = noreg;               // No more longs in registers
517        } else {
518          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
519          stk_reg_pairs += 2;
520        }
521#else // COMPILER2
522        if (int_reg_pairs + 1 < int_reg_max) {
523          if (is_outgoing) {
524            regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
525          } else {
526            regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
527          }
528          int_reg_pairs += 2;
529        } else {
530          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
531          stk_reg_pairs += 2;
532        }
533#endif // COMPILER2
534#endif // _LP64
535      break;
536
537    case T_FLOAT:
538      if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
539      else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
540      break;
541    case T_DOUBLE:
542      assert(sig_bt[i+1] == T_VOID, "expecting half");
543      if (flt_reg_pairs + 1 < flt_reg_max) {
544        regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
545        flt_reg_pairs += 2;
546      } else {
547        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
548        stk_reg_pairs += 2;
549      }
550      break;
551    case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
552    default:
553      ShouldNotReachHere();
554    }
555  }
556
557  // retun the amount of stack space these arguments will need.
558  return stk_reg_pairs;
559
560}
561
562// Helper class mostly to avoid passing masm everywhere, and handle
563// store displacement overflow logic.
564class AdapterGenerator {
565  MacroAssembler *masm;
566  Register Rdisp;
567  void set_Rdisp(Register r)  { Rdisp = r; }
568
569  void patch_callers_callsite();
570
571  // base+st_off points to top of argument
572  int arg_offset(const int st_off) { return st_off; }
573  int next_arg_offset(const int st_off) {
574    return st_off - Interpreter::stackElementSize;
575  }
576
577  // Argument slot values may be loaded first into a register because
578  // they might not fit into displacement.
579  RegisterOrConstant arg_slot(const int st_off);
580  RegisterOrConstant next_arg_slot(const int st_off);
581
582  // Stores long into offset pointed to by base
583  void store_c2i_long(Register r, Register base,
584                      const int st_off, bool is_stack);
585  void store_c2i_object(Register r, Register base,
586                        const int st_off);
587  void store_c2i_int(Register r, Register base,
588                     const int st_off);
589  void store_c2i_double(VMReg r_2,
590                        VMReg r_1, Register base, const int st_off);
591  void store_c2i_float(FloatRegister f, Register base,
592                       const int st_off);
593
594 public:
595  void gen_c2i_adapter(int total_args_passed,
596                              // VMReg max_arg,
597                              int comp_args_on_stack, // VMRegStackSlots
598                              const BasicType *sig_bt,
599                              const VMRegPair *regs,
600                              Label& skip_fixup);
601  void gen_i2c_adapter(int total_args_passed,
602                              // VMReg max_arg,
603                              int comp_args_on_stack, // VMRegStackSlots
604                              const BasicType *sig_bt,
605                              const VMRegPair *regs);
606
607  AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
608};
609
610
611// Patch the callers callsite with entry to compiled code if it exists.
612void AdapterGenerator::patch_callers_callsite() {
613  Label L;
614  __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
615  __ br_null(G3_scratch, false, __ pt, L);
616  // Schedule the branch target address early.
617  __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
618  // Call into the VM to patch the caller, then jump to compiled callee
619  __ save_frame(4);     // Args in compiled layout; do not blow them
620
621  // Must save all the live Gregs the list is:
622  // G1: 1st Long arg (32bit build)
623  // G2: global allocated to TLS
624  // G3: used in inline cache check (scratch)
625  // G4: 2nd Long arg (32bit build);
626  // G5: used in inline cache check (methodOop)
627
628  // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
629
630#ifdef _LP64
631  // mov(s,d)
632  __ mov(G1, L1);
633  __ mov(G4, L4);
634  __ mov(G5_method, L5);
635  __ mov(G5_method, O0);         // VM needs target method
636  __ mov(I7, O1);                // VM needs caller's callsite
637  // Must be a leaf call...
638  // can be very far once the blob has been relocated
639  AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
640  __ relocate(relocInfo::runtime_call_type);
641  __ jumpl_to(dest, O7, O7);
642  __ delayed()->mov(G2_thread, L7_thread_cache);
643  __ mov(L7_thread_cache, G2_thread);
644  __ mov(L1, G1);
645  __ mov(L4, G4);
646  __ mov(L5, G5_method);
647#else
648  __ stx(G1, FP, -8 + STACK_BIAS);
649  __ stx(G4, FP, -16 + STACK_BIAS);
650  __ mov(G5_method, L5);
651  __ mov(G5_method, O0);         // VM needs target method
652  __ mov(I7, O1);                // VM needs caller's callsite
653  // Must be a leaf call...
654  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
655  __ delayed()->mov(G2_thread, L7_thread_cache);
656  __ mov(L7_thread_cache, G2_thread);
657  __ ldx(FP, -8 + STACK_BIAS, G1);
658  __ ldx(FP, -16 + STACK_BIAS, G4);
659  __ mov(L5, G5_method);
660  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
661#endif /* _LP64 */
662
663  __ restore();      // Restore args
664  __ bind(L);
665}
666
667
668RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
669  RegisterOrConstant roc(arg_offset(st_off));
670  return __ ensure_simm13_or_reg(roc, Rdisp);
671}
672
673RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
674  RegisterOrConstant roc(next_arg_offset(st_off));
675  return __ ensure_simm13_or_reg(roc, Rdisp);
676}
677
678
679// Stores long into offset pointed to by base
680void AdapterGenerator::store_c2i_long(Register r, Register base,
681                                      const int st_off, bool is_stack) {
682#ifdef _LP64
683  // In V9, longs are given 2 64-bit slots in the interpreter, but the
684  // data is passed in only 1 slot.
685  __ stx(r, base, next_arg_slot(st_off));
686#else
687#ifdef COMPILER2
688  // Misaligned store of 64-bit data
689  __ stw(r, base, arg_slot(st_off));    // lo bits
690  __ srlx(r, 32, r);
691  __ stw(r, base, next_arg_slot(st_off));  // hi bits
692#else
693  if (is_stack) {
694    // Misaligned store of 64-bit data
695    __ stw(r, base, arg_slot(st_off));    // lo bits
696    __ srlx(r, 32, r);
697    __ stw(r, base, next_arg_slot(st_off));  // hi bits
698  } else {
699    __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
700    __ stw(r             , base, next_arg_slot(st_off)); // hi bits
701  }
702#endif // COMPILER2
703#endif // _LP64
704}
705
706void AdapterGenerator::store_c2i_object(Register r, Register base,
707                      const int st_off) {
708  __ st_ptr (r, base, arg_slot(st_off));
709}
710
711void AdapterGenerator::store_c2i_int(Register r, Register base,
712                   const int st_off) {
713  __ st (r, base, arg_slot(st_off));
714}
715
716// Stores into offset pointed to by base
717void AdapterGenerator::store_c2i_double(VMReg r_2,
718                      VMReg r_1, Register base, const int st_off) {
719#ifdef _LP64
720  // In V9, doubles are given 2 64-bit slots in the interpreter, but the
721  // data is passed in only 1 slot.
722  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
723#else
724  // Need to marshal 64-bit value from misaligned Lesp loads
725  __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
726  __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
727#endif
728}
729
730void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
731                                       const int st_off) {
732  __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
733}
734
735void AdapterGenerator::gen_c2i_adapter(
736                            int total_args_passed,
737                            // VMReg max_arg,
738                            int comp_args_on_stack, // VMRegStackSlots
739                            const BasicType *sig_bt,
740                            const VMRegPair *regs,
741                            Label& skip_fixup) {
742
743  // Before we get into the guts of the C2I adapter, see if we should be here
744  // at all.  We've come from compiled code and are attempting to jump to the
745  // interpreter, which means the caller made a static call to get here
746  // (vcalls always get a compiled target if there is one).  Check for a
747  // compiled target.  If there is one, we need to patch the caller's call.
748  // However we will run interpreted if we come thru here. The next pass
749  // thru the call site will run compiled. If we ran compiled here then
750  // we can (theorectically) do endless i2c->c2i->i2c transitions during
751  // deopt/uncommon trap cycles. If we always go interpreted here then
752  // we can have at most one and don't need to play any tricks to keep
753  // from endlessly growing the stack.
754  //
755  // Actually if we detected that we had an i2c->c2i transition here we
756  // ought to be able to reset the world back to the state of the interpreted
757  // call and not bother building another interpreter arg area. We don't
758  // do that at this point.
759
760  patch_callers_callsite();
761
762  __ bind(skip_fixup);
763
764  // Since all args are passed on the stack, total_args_passed*wordSize is the
765  // space we need.  Add in varargs area needed by the interpreter. Round up
766  // to stack alignment.
767  const int arg_size = total_args_passed * Interpreter::stackElementSize;
768  const int varargs_area =
769                 (frame::varargs_offset - frame::register_save_words)*wordSize;
770  const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
771
772  int bias = STACK_BIAS;
773  const int interp_arg_offset = frame::varargs_offset*wordSize +
774                        (total_args_passed-1)*Interpreter::stackElementSize;
775
776  Register base = SP;
777
778#ifdef _LP64
779  // In the 64bit build because of wider slots and STACKBIAS we can run
780  // out of bits in the displacement to do loads and stores.  Use g3 as
781  // temporary displacement.
782  if (! __ is_simm13(extraspace)) {
783    __ set(extraspace, G3_scratch);
784    __ sub(SP, G3_scratch, SP);
785  } else {
786    __ sub(SP, extraspace, SP);
787  }
788  set_Rdisp(G3_scratch);
789#else
790  __ sub(SP, extraspace, SP);
791#endif // _LP64
792
793  // First write G1 (if used) to where ever it must go
794  for (int i=0; i<total_args_passed; i++) {
795    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
796    VMReg r_1 = regs[i].first();
797    VMReg r_2 = regs[i].second();
798    if (r_1 == G1_scratch->as_VMReg()) {
799      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
800        store_c2i_object(G1_scratch, base, st_off);
801      } else if (sig_bt[i] == T_LONG) {
802        assert(!TieredCompilation, "should not use register args for longs");
803        store_c2i_long(G1_scratch, base, st_off, false);
804      } else {
805        store_c2i_int(G1_scratch, base, st_off);
806      }
807    }
808  }
809
810  // Now write the args into the outgoing interpreter space
811  for (int i=0; i<total_args_passed; i++) {
812    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
813    VMReg r_1 = regs[i].first();
814    VMReg r_2 = regs[i].second();
815    if (!r_1->is_valid()) {
816      assert(!r_2->is_valid(), "");
817      continue;
818    }
819    // Skip G1 if found as we did it first in order to free it up
820    if (r_1 == G1_scratch->as_VMReg()) {
821      continue;
822    }
823#ifdef ASSERT
824    bool G1_forced = false;
825#endif // ASSERT
826    if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
827#ifdef _LP64
828      Register ld_off = Rdisp;
829      __ set(reg2offset(r_1) + extraspace + bias, ld_off);
830#else
831      int ld_off = reg2offset(r_1) + extraspace + bias;
832#endif // _LP64
833#ifdef ASSERT
834      G1_forced = true;
835#endif // ASSERT
836      r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
837      if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
838      else                  __ ldx(base, ld_off, G1_scratch);
839    }
840
841    if (r_1->is_Register()) {
842      Register r = r_1->as_Register()->after_restore();
843      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
844        store_c2i_object(r, base, st_off);
845      } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
846#ifndef _LP64
847        if (TieredCompilation) {
848          assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
849        }
850#endif // _LP64
851        store_c2i_long(r, base, st_off, r_2->is_stack());
852      } else {
853        store_c2i_int(r, base, st_off);
854      }
855    } else {
856      assert(r_1->is_FloatRegister(), "");
857      if (sig_bt[i] == T_FLOAT) {
858        store_c2i_float(r_1->as_FloatRegister(), base, st_off);
859      } else {
860        assert(sig_bt[i] == T_DOUBLE, "wrong type");
861        store_c2i_double(r_2, r_1, base, st_off);
862      }
863    }
864  }
865
866#ifdef _LP64
867  // Need to reload G3_scratch, used for temporary displacements.
868  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
869
870  // Pass O5_savedSP as an argument to the interpreter.
871  // The interpreter will restore SP to this value before returning.
872  __ set(extraspace, G1);
873  __ add(SP, G1, O5_savedSP);
874#else
875  // Pass O5_savedSP as an argument to the interpreter.
876  // The interpreter will restore SP to this value before returning.
877  __ add(SP, extraspace, O5_savedSP);
878#endif // _LP64
879
880  __ mov((frame::varargs_offset)*wordSize -
881         1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
882  // Jump to the interpreter just as if interpreter was doing it.
883  __ jmpl(G3_scratch, 0, G0);
884  // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
885  // (really L0) is in use by the compiled frame as a generic temp.  However,
886  // the interpreter does not know where its args are without some kind of
887  // arg pointer being passed in.  Pass it in Gargs.
888  __ delayed()->add(SP, G1, Gargs);
889}
890
891void AdapterGenerator::gen_i2c_adapter(
892                            int total_args_passed,
893                            // VMReg max_arg,
894                            int comp_args_on_stack, // VMRegStackSlots
895                            const BasicType *sig_bt,
896                            const VMRegPair *regs) {
897
898  // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
899  // layout.  Lesp was saved by the calling I-frame and will be restored on
900  // return.  Meanwhile, outgoing arg space is all owned by the callee
901  // C-frame, so we can mangle it at will.  After adjusting the frame size,
902  // hoist register arguments and repack other args according to the compiled
903  // code convention.  Finally, end in a jump to the compiled code.  The entry
904  // point address is the start of the buffer.
905
906  // We will only enter here from an interpreted frame and never from after
907  // passing thru a c2i. Azul allowed this but we do not. If we lose the
908  // race and use a c2i we will remain interpreted for the race loser(s).
909  // This removes all sorts of headaches on the x86 side and also eliminates
910  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
911
912  // As you can see from the list of inputs & outputs there are not a lot
913  // of temp registers to work with: mostly G1, G3 & G4.
914
915  // Inputs:
916  // G2_thread      - TLS
917  // G5_method      - Method oop
918  // G4 (Gargs)     - Pointer to interpreter's args
919  // O0..O4         - free for scratch
920  // O5_savedSP     - Caller's saved SP, to be restored if needed
921  // O6             - Current SP!
922  // O7             - Valid return address
923  // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
924
925  // Outputs:
926  // G2_thread      - TLS
927  // G1, G4         - Outgoing long args in 32-bit build
928  // O0-O5          - Outgoing args in compiled layout
929  // O6             - Adjusted or restored SP
930  // O7             - Valid return address
931  // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
932  // F0-F7          - more outgoing args
933
934
935  // Gargs is the incoming argument base, and also an outgoing argument.
936  __ sub(Gargs, BytesPerWord, Gargs);
937
938  // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
939  // WITH O7 HOLDING A VALID RETURN PC
940  //
941  // |              |
942  // :  java stack  :
943  // |              |
944  // +--------------+ <--- start of outgoing args
945  // |   receiver   |   |
946  // : rest of args :   |---size is java-arg-words
947  // |              |   |
948  // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
949  // |              |   |
950  // :    unused    :   |---Space for max Java stack, plus stack alignment
951  // |              |   |
952  // +--------------+ <--- SP + 16*wordsize
953  // |              |
954  // :    window    :
955  // |              |
956  // +--------------+ <--- SP
957
958  // WE REPACK THE STACK.  We use the common calling convention layout as
959  // discovered by calling SharedRuntime::calling_convention.  We assume it
960  // causes an arbitrary shuffle of memory, which may require some register
961  // temps to do the shuffle.  We hope for (and optimize for) the case where
962  // temps are not needed.  We may have to resize the stack slightly, in case
963  // we need alignment padding (32-bit interpreter can pass longs & doubles
964  // misaligned, but the compilers expect them aligned).
965  //
966  // |              |
967  // :  java stack  :
968  // |              |
969  // +--------------+ <--- start of outgoing args
970  // |  pad, align  |   |
971  // +--------------+   |
972  // | ints, floats |   |---Outgoing stack args, packed low.
973  // +--------------+   |   First few args in registers.
974  // :   doubles    :   |
975  // |   longs      |   |
976  // +--------------+ <--- SP' + 16*wordsize
977  // |              |
978  // :    window    :
979  // |              |
980  // +--------------+ <--- SP'
981
982  // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
983  // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
984  // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
985
986  // Cut-out for having no stack args.  Since up to 6 args are passed
987  // in registers, we will commonly have no stack args.
988  if (comp_args_on_stack > 0) {
989
990    // Convert VMReg stack slots to words.
991    int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
992    // Round up to miminum stack alignment, in wordSize
993    comp_words_on_stack = round_to(comp_words_on_stack, 2);
994    // Now compute the distance from Lesp to SP.  This calculation does not
995    // include the space for total_args_passed because Lesp has not yet popped
996    // the arguments.
997    __ sub(SP, (comp_words_on_stack)*wordSize, SP);
998  }
999
1000  // Will jump to the compiled code just as if compiled code was doing it.
1001  // Pre-load the register-jump target early, to schedule it better.
1002  __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
1003
1004  // Now generate the shuffle code.  Pick up all register args and move the
1005  // rest through G1_scratch.
1006  for (int i=0; i<total_args_passed; i++) {
1007    if (sig_bt[i] == T_VOID) {
1008      // Longs and doubles are passed in native word order, but misaligned
1009      // in the 32-bit build.
1010      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1011      continue;
1012    }
1013
1014    // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
1015    // 32-bit build and aligned in the 64-bit build.  Look for the obvious
1016    // ldx/lddf optimizations.
1017
1018    // Load in argument order going down.
1019    const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1020    set_Rdisp(G1_scratch);
1021
1022    VMReg r_1 = regs[i].first();
1023    VMReg r_2 = regs[i].second();
1024    if (!r_1->is_valid()) {
1025      assert(!r_2->is_valid(), "");
1026      continue;
1027    }
1028    if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
1029      r_1 = F8->as_VMReg();        // as part of the load/store shuffle
1030      if (r_2->is_valid()) r_2 = r_1->next();
1031    }
1032    if (r_1->is_Register()) {  // Register argument
1033      Register r = r_1->as_Register()->after_restore();
1034      if (!r_2->is_valid()) {
1035        __ ld(Gargs, arg_slot(ld_off), r);
1036      } else {
1037#ifdef _LP64
1038        // In V9, longs are given 2 64-bit slots in the interpreter, but the
1039        // data is passed in only 1 slot.
1040        RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
1041              next_arg_slot(ld_off) : arg_slot(ld_off);
1042        __ ldx(Gargs, slot, r);
1043#else
1044        // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1045        // stack shuffle.  Load the first 2 longs into G1/G4 later.
1046#endif
1047      }
1048    } else {
1049      assert(r_1->is_FloatRegister(), "");
1050      if (!r_2->is_valid()) {
1051        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1052      } else {
1053#ifdef _LP64
1054        // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1055        // data is passed in only 1 slot.  This code also handles longs that
1056        // are passed on the stack, but need a stack-to-stack move through a
1057        // spare float register.
1058        RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
1059              next_arg_slot(ld_off) : arg_slot(ld_off);
1060        __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1061#else
1062        // Need to marshal 64-bit value from misaligned Lesp loads
1063        __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1064        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1065#endif
1066      }
1067    }
1068    // Was the argument really intended to be on the stack, but was loaded
1069    // into F8/F9?
1070    if (regs[i].first()->is_stack()) {
1071      assert(r_1->as_FloatRegister() == F8, "fix this code");
1072      // Convert stack slot to an SP offset
1073      int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1074      // Store down the shuffled stack word.  Target address _is_ aligned.
1075      RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
1076      if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
1077      else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
1078    }
1079  }
1080  bool made_space = false;
1081#ifndef _LP64
1082  // May need to pick up a few long args in G1/G4
1083  bool g4_crushed = false;
1084  bool g3_crushed = false;
1085  for (int i=0; i<total_args_passed; i++) {
1086    if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1087      // Load in argument order going down
1088      int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1089      // Need to marshal 64-bit value from misaligned Lesp loads
1090      Register r = regs[i].first()->as_Register()->after_restore();
1091      if (r == G1 || r == G4) {
1092        assert(!g4_crushed, "ordering problem");
1093        if (r == G4){
1094          g4_crushed = true;
1095          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1096          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1097        } else {
1098          // better schedule this way
1099          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1100          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1101        }
1102        g3_crushed = true;
1103        __ sllx(r, 32, r);
1104        __ or3(G3_scratch, r, r);
1105      } else {
1106        assert(r->is_out(), "longs passed in two O registers");
1107        __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
1108        __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
1109      }
1110    }
1111  }
1112#endif
1113
1114  // Jump to the compiled code just as if compiled code was doing it.
1115  //
1116#ifndef _LP64
1117    if (g3_crushed) {
1118      // Rats load was wasted, at least it is in cache...
1119      __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
1120    }
1121#endif /* _LP64 */
1122
1123    // 6243940 We might end up in handle_wrong_method if
1124    // the callee is deoptimized as we race thru here. If that
1125    // happens we don't want to take a safepoint because the
1126    // caller frame will look interpreted and arguments are now
1127    // "compiled" so it is much better to make this transition
1128    // invisible to the stack walking code. Unfortunately if
1129    // we try and find the callee by normal means a safepoint
1130    // is possible. So we stash the desired callee in the thread
1131    // and the vm will find there should this case occur.
1132    Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1133    __ st_ptr(G5_method, callee_target_addr);
1134
1135    if (StressNonEntrant) {
1136      // Open a big window for deopt failure
1137      __ save_frame(0);
1138      __ mov(G0, L0);
1139      Label loop;
1140      __ bind(loop);
1141      __ sub(L0, 1, L0);
1142      __ br_null(L0, false, Assembler::pt, loop);
1143      __ delayed()->nop();
1144
1145      __ restore();
1146    }
1147
1148
1149    __ jmpl(G3, 0, G0);
1150    __ delayed()->nop();
1151}
1152
1153// ---------------------------------------------------------------
1154AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1155                                                            int total_args_passed,
1156                                                            // VMReg max_arg,
1157                                                            int comp_args_on_stack, // VMRegStackSlots
1158                                                            const BasicType *sig_bt,
1159                                                            const VMRegPair *regs,
1160                                                            AdapterFingerPrint* fingerprint) {
1161  address i2c_entry = __ pc();
1162
1163  AdapterGenerator agen(masm);
1164
1165  agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1166
1167
1168  // -------------------------------------------------------------------------
1169  // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
1170  // args start out packed in the compiled layout.  They need to be unpacked
1171  // into the interpreter layout.  This will almost always require some stack
1172  // space.  We grow the current (compiled) stack, then repack the args.  We
1173  // finally end in a jump to the generic interpreter entry point.  On exit
1174  // from the interpreter, the interpreter will restore our SP (lest the
1175  // compiled code, which relys solely on SP and not FP, get sick).
1176
1177  address c2i_unverified_entry = __ pc();
1178  Label skip_fixup;
1179  {
1180#if !defined(_LP64) && defined(COMPILER2)
1181    Register R_temp   = L0;   // another scratch register
1182#else
1183    Register R_temp   = G1;   // another scratch register
1184#endif
1185
1186    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1187
1188    __ verify_oop(O0);
1189    __ verify_oop(G5_method);
1190    __ load_klass(O0, G3_scratch);
1191    __ verify_oop(G3_scratch);
1192
1193#if !defined(_LP64) && defined(COMPILER2)
1194    __ save(SP, -frame::register_save_words*wordSize, SP);
1195    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1196    __ verify_oop(R_temp);
1197    __ cmp(G3_scratch, R_temp);
1198    __ restore();
1199#else
1200    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1201    __ verify_oop(R_temp);
1202    __ cmp(G3_scratch, R_temp);
1203#endif
1204
1205    Label ok, ok2;
1206    __ brx(Assembler::equal, false, Assembler::pt, ok);
1207    __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
1208    __ jump_to(ic_miss, G3_scratch);
1209    __ delayed()->nop();
1210
1211    __ bind(ok);
1212    // Method might have been compiled since the call site was patched to
1213    // interpreted if that is the case treat it as a miss so we can get
1214    // the call site corrected.
1215    __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
1216    __ bind(ok2);
1217    __ br_null(G3_scratch, false, __ pt, skip_fixup);
1218    __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
1219    __ jump_to(ic_miss, G3_scratch);
1220    __ delayed()->nop();
1221
1222  }
1223
1224  address c2i_entry = __ pc();
1225
1226  agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1227
1228  __ flush();
1229  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1230
1231}
1232
1233// Helper function for native calling conventions
1234static VMReg int_stk_helper( int i ) {
1235  // Bias any stack based VMReg we get by ignoring the window area
1236  // but not the register parameter save area.
1237  //
1238  // This is strange for the following reasons. We'd normally expect
1239  // the calling convention to return an VMReg for a stack slot
1240  // completely ignoring any abi reserved area. C2 thinks of that
1241  // abi area as only out_preserve_stack_slots. This does not include
1242  // the area allocated by the C abi to store down integer arguments
1243  // because the java calling convention does not use it. So
1244  // since c2 assumes that there are only out_preserve_stack_slots
1245  // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1246  // location the c calling convention must add in this bias amount
1247  // to make up for the fact that the out_preserve_stack_slots is
1248  // insufficient for C calls. What a mess. I sure hope those 6
1249  // stack words were worth it on every java call!
1250
1251  // Another way of cleaning this up would be for out_preserve_stack_slots
1252  // to take a parameter to say whether it was C or java calling conventions.
1253  // Then things might look a little better (but not much).
1254
1255  int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1256  if( mem_parm_offset < 0 ) {
1257    return as_oRegister(i)->as_VMReg();
1258  } else {
1259    int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1260    // Now return a biased offset that will be correct when out_preserve_slots is added back in
1261    return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1262  }
1263}
1264
1265
1266int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1267                                         VMRegPair *regs,
1268                                         int total_args_passed) {
1269
1270    // Return the number of VMReg stack_slots needed for the args.
1271    // This value does not include an abi space (like register window
1272    // save area).
1273
1274    // The native convention is V8 if !LP64
1275    // The LP64 convention is the V9 convention which is slightly more sane.
1276
1277    // We return the amount of VMReg stack slots we need to reserve for all
1278    // the arguments NOT counting out_preserve_stack_slots. Since we always
1279    // have space for storing at least 6 registers to memory we start with that.
1280    // See int_stk_helper for a further discussion.
1281    int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1282
1283#ifdef _LP64
1284    // V9 convention: All things "as-if" on double-wide stack slots.
1285    // Hoist any int/ptr/long's in the first 6 to int regs.
1286    // Hoist any flt/dbl's in the first 16 dbl regs.
1287    int j = 0;                  // Count of actual args, not HALVES
1288    for( int i=0; i<total_args_passed; i++, j++ ) {
1289      switch( sig_bt[i] ) {
1290      case T_BOOLEAN:
1291      case T_BYTE:
1292      case T_CHAR:
1293      case T_INT:
1294      case T_SHORT:
1295        regs[i].set1( int_stk_helper( j ) ); break;
1296      case T_LONG:
1297        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1298      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1299      case T_ARRAY:
1300      case T_OBJECT:
1301        regs[i].set2( int_stk_helper( j ) );
1302        break;
1303      case T_FLOAT:
1304        if ( j < 16 ) {
1305          // V9ism: floats go in ODD registers
1306          regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1307        } else {
1308          // V9ism: floats go in ODD stack slot
1309          regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1310        }
1311        break;
1312      case T_DOUBLE:
1313        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1314        if ( j < 16 ) {
1315          // V9ism: doubles go in EVEN/ODD regs
1316          regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1317        } else {
1318          // V9ism: doubles go in EVEN/ODD stack slots
1319          regs[i].set2(VMRegImpl::stack2reg(j<<1));
1320        }
1321        break;
1322      case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1323      default:
1324        ShouldNotReachHere();
1325      }
1326      if (regs[i].first()->is_stack()) {
1327        int off =  regs[i].first()->reg2stack();
1328        if (off > max_stack_slots) max_stack_slots = off;
1329      }
1330      if (regs[i].second()->is_stack()) {
1331        int off =  regs[i].second()->reg2stack();
1332        if (off > max_stack_slots) max_stack_slots = off;
1333      }
1334    }
1335
1336#else // _LP64
1337    // V8 convention: first 6 things in O-regs, rest on stack.
1338    // Alignment is willy-nilly.
1339    for( int i=0; i<total_args_passed; i++ ) {
1340      switch( sig_bt[i] ) {
1341      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1342      case T_ARRAY:
1343      case T_BOOLEAN:
1344      case T_BYTE:
1345      case T_CHAR:
1346      case T_FLOAT:
1347      case T_INT:
1348      case T_OBJECT:
1349      case T_SHORT:
1350        regs[i].set1( int_stk_helper( i ) );
1351        break;
1352      case T_DOUBLE:
1353      case T_LONG:
1354        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1355        regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1356        break;
1357      case T_VOID: regs[i].set_bad(); break;
1358      default:
1359        ShouldNotReachHere();
1360      }
1361      if (regs[i].first()->is_stack()) {
1362        int off =  regs[i].first()->reg2stack();
1363        if (off > max_stack_slots) max_stack_slots = off;
1364      }
1365      if (regs[i].second()->is_stack()) {
1366        int off =  regs[i].second()->reg2stack();
1367        if (off > max_stack_slots) max_stack_slots = off;
1368      }
1369    }
1370#endif // _LP64
1371
1372  return round_to(max_stack_slots + 1, 2);
1373
1374}
1375
1376
1377// ---------------------------------------------------------------------------
1378void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1379  switch (ret_type) {
1380  case T_FLOAT:
1381    __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1382    break;
1383  case T_DOUBLE:
1384    __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1385    break;
1386  }
1387}
1388
1389void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1390  switch (ret_type) {
1391  case T_FLOAT:
1392    __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1393    break;
1394  case T_DOUBLE:
1395    __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1396    break;
1397  }
1398}
1399
1400// Check and forward and pending exception.  Thread is stored in
1401// L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1402// is no exception handler.  We merely pop this frame off and throw the
1403// exception in the caller's frame.
1404static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1405  Label L;
1406  __ br_null(Rex_oop, false, Assembler::pt, L);
1407  __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1408  // Since this is a native call, we *know* the proper exception handler
1409  // without calling into the VM: it's the empty function.  Just pop this
1410  // frame and then jump to forward_exception_entry; O7 will contain the
1411  // native caller's return PC.
1412 AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1413  __ jump_to(exception_entry, G3_scratch);
1414  __ delayed()->restore();      // Pop this frame off.
1415  __ bind(L);
1416}
1417
1418// A simple move of integer like type
1419static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1420  if (src.first()->is_stack()) {
1421    if (dst.first()->is_stack()) {
1422      // stack to stack
1423      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1424      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1425    } else {
1426      // stack to reg
1427      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1428    }
1429  } else if (dst.first()->is_stack()) {
1430    // reg to stack
1431    __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1432  } else {
1433    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1434  }
1435}
1436
1437// On 64 bit we will store integer like items to the stack as
1438// 64 bits items (sparc abi) even though java would only store
1439// 32bits for a parameter. On 32bit it will simply be 32 bits
1440// So this routine will do 32->32 on 32bit and 32->64 on 64bit
1441static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1442  if (src.first()->is_stack()) {
1443    if (dst.first()->is_stack()) {
1444      // stack to stack
1445      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1446      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1447    } else {
1448      // stack to reg
1449      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1450    }
1451  } else if (dst.first()->is_stack()) {
1452    // reg to stack
1453    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1454  } else {
1455    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1456  }
1457}
1458
1459
1460// An oop arg. Must pass a handle not the oop itself
1461static void object_move(MacroAssembler* masm,
1462                        OopMap* map,
1463                        int oop_handle_offset,
1464                        int framesize_in_slots,
1465                        VMRegPair src,
1466                        VMRegPair dst,
1467                        bool is_receiver,
1468                        int* receiver_offset) {
1469
1470  // must pass a handle. First figure out the location we use as a handle
1471
1472  if (src.first()->is_stack()) {
1473    // Oop is already on the stack
1474    Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1475    __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1476    __ ld_ptr(rHandle, 0, L4);
1477#ifdef _LP64
1478    __ movr( Assembler::rc_z, L4, G0, rHandle );
1479#else
1480    __ tst( L4 );
1481    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1482#endif
1483    if (dst.first()->is_stack()) {
1484      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1485    }
1486    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1487    if (is_receiver) {
1488      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1489    }
1490    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1491  } else {
1492    // Oop is in an input register pass we must flush it to the stack
1493    const Register rOop = src.first()->as_Register();
1494    const Register rHandle = L5;
1495    int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1496    int offset = oop_slot*VMRegImpl::stack_slot_size;
1497    Label skip;
1498    __ st_ptr(rOop, SP, offset + STACK_BIAS);
1499    if (is_receiver) {
1500      *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1501    }
1502    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1503    __ add(SP, offset + STACK_BIAS, rHandle);
1504#ifdef _LP64
1505    __ movr( Assembler::rc_z, rOop, G0, rHandle );
1506#else
1507    __ tst( rOop );
1508    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1509#endif
1510
1511    if (dst.first()->is_stack()) {
1512      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1513    } else {
1514      __ mov(rHandle, dst.first()->as_Register());
1515    }
1516  }
1517}
1518
1519// A float arg may have to do float reg int reg conversion
1520static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1521  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1522
1523  if (src.first()->is_stack()) {
1524    if (dst.first()->is_stack()) {
1525      // stack to stack the easiest of the bunch
1526      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1527      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1528    } else {
1529      // stack to reg
1530      if (dst.first()->is_Register()) {
1531        __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1532      } else {
1533        __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1534      }
1535    }
1536  } else if (dst.first()->is_stack()) {
1537    // reg to stack
1538    if (src.first()->is_Register()) {
1539      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1540    } else {
1541      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1542    }
1543  } else {
1544    // reg to reg
1545    if (src.first()->is_Register()) {
1546      if (dst.first()->is_Register()) {
1547        // gpr -> gpr
1548        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1549      } else {
1550        // gpr -> fpr
1551        __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1552        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1553      }
1554    } else if (dst.first()->is_Register()) {
1555      // fpr -> gpr
1556      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1557      __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1558    } else {
1559      // fpr -> fpr
1560      // In theory these overlap but the ordering is such that this is likely a nop
1561      if ( src.first() != dst.first()) {
1562        __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1563      }
1564    }
1565  }
1566}
1567
1568static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1569  VMRegPair src_lo(src.first());
1570  VMRegPair src_hi(src.second());
1571  VMRegPair dst_lo(dst.first());
1572  VMRegPair dst_hi(dst.second());
1573  simple_move32(masm, src_lo, dst_lo);
1574  simple_move32(masm, src_hi, dst_hi);
1575}
1576
1577// A long move
1578static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1579
1580  // Do the simple ones here else do two int moves
1581  if (src.is_single_phys_reg() ) {
1582    if (dst.is_single_phys_reg()) {
1583      __ mov(src.first()->as_Register(), dst.first()->as_Register());
1584    } else {
1585      // split src into two separate registers
1586      // Remember hi means hi address or lsw on sparc
1587      // Move msw to lsw
1588      if (dst.second()->is_reg()) {
1589        // MSW -> MSW
1590        __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1591        // Now LSW -> LSW
1592        // this will only move lo -> lo and ignore hi
1593        VMRegPair split(dst.second());
1594        simple_move32(masm, src, split);
1595      } else {
1596        VMRegPair split(src.first(), L4->as_VMReg());
1597        // MSW -> MSW (lo ie. first word)
1598        __ srax(src.first()->as_Register(), 32, L4);
1599        split_long_move(masm, split, dst);
1600      }
1601    }
1602  } else if (dst.is_single_phys_reg()) {
1603    if (src.is_adjacent_aligned_on_stack(2)) {
1604      __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1605    } else {
1606      // dst is a single reg.
1607      // Remember lo is low address not msb for stack slots
1608      // and lo is the "real" register for registers
1609      // src is
1610
1611      VMRegPair split;
1612
1613      if (src.first()->is_reg()) {
1614        // src.lo (msw) is a reg, src.hi is stk/reg
1615        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1616        split.set_pair(dst.first(), src.first());
1617      } else {
1618        // msw is stack move to L5
1619        // lsw is stack move to dst.lo (real reg)
1620        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1621        split.set_pair(dst.first(), L5->as_VMReg());
1622      }
1623
1624      // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1625      // msw   -> src.lo/L5,  lsw -> dst.lo
1626      split_long_move(masm, src, split);
1627
1628      // So dst now has the low order correct position the
1629      // msw half
1630      __ sllx(split.first()->as_Register(), 32, L5);
1631
1632      const Register d = dst.first()->as_Register();
1633      __ or3(L5, d, d);
1634    }
1635  } else {
1636    // For LP64 we can probably do better.
1637    split_long_move(masm, src, dst);
1638  }
1639}
1640
1641// A double move
1642static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1643
1644  // The painful thing here is that like long_move a VMRegPair might be
1645  // 1: a single physical register
1646  // 2: two physical registers (v8)
1647  // 3: a physical reg [lo] and a stack slot [hi] (v8)
1648  // 4: two stack slots
1649
1650  // Since src is always a java calling convention we know that the src pair
1651  // is always either all registers or all stack (and aligned?)
1652
1653  // in a register [lo] and a stack slot [hi]
1654  if (src.first()->is_stack()) {
1655    if (dst.first()->is_stack()) {
1656      // stack to stack the easiest of the bunch
1657      // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1658      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1659      __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1660      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1661      __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1662    } else {
1663      // stack to reg
1664      if (dst.second()->is_stack()) {
1665        // stack -> reg, stack -> stack
1666        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1667        if (dst.first()->is_Register()) {
1668          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1669        } else {
1670          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1671        }
1672        // This was missing. (very rare case)
1673        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1674      } else {
1675        // stack -> reg
1676        // Eventually optimize for alignment QQQ
1677        if (dst.first()->is_Register()) {
1678          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1679          __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1680        } else {
1681          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1682          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1683        }
1684      }
1685    }
1686  } else if (dst.first()->is_stack()) {
1687    // reg to stack
1688    if (src.first()->is_Register()) {
1689      // Eventually optimize for alignment QQQ
1690      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1691      if (src.second()->is_stack()) {
1692        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1693        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1694      } else {
1695        __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1696      }
1697    } else {
1698      // fpr to stack
1699      if (src.second()->is_stack()) {
1700        ShouldNotReachHere();
1701      } else {
1702        // Is the stack aligned?
1703        if (reg2offset(dst.first()) & 0x7) {
1704          // No do as pairs
1705          __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1706          __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1707        } else {
1708          __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1709        }
1710      }
1711    }
1712  } else {
1713    // reg to reg
1714    if (src.first()->is_Register()) {
1715      if (dst.first()->is_Register()) {
1716        // gpr -> gpr
1717        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1718        __ mov(src.second()->as_Register(), dst.second()->as_Register());
1719      } else {
1720        // gpr -> fpr
1721        // ought to be able to do a single store
1722        __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1723        __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1724        // ought to be able to do a single load
1725        __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1726        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1727      }
1728    } else if (dst.first()->is_Register()) {
1729      // fpr -> gpr
1730      // ought to be able to do a single store
1731      __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1732      // ought to be able to do a single load
1733      // REMEMBER first() is low address not LSB
1734      __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1735      if (dst.second()->is_Register()) {
1736        __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1737      } else {
1738        __ ld(FP, -4 + STACK_BIAS, L4);
1739        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1740      }
1741    } else {
1742      // fpr -> fpr
1743      // In theory these overlap but the ordering is such that this is likely a nop
1744      if ( src.first() != dst.first()) {
1745        __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1746      }
1747    }
1748  }
1749}
1750
1751// Creates an inner frame if one hasn't already been created, and
1752// saves a copy of the thread in L7_thread_cache
1753static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1754  if (!*already_created) {
1755    __ save_frame(0);
1756    // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1757    // Don't use save_thread because it smashes G2 and we merely want to save a
1758    // copy
1759    __ mov(G2_thread, L7_thread_cache);
1760    *already_created = true;
1761  }
1762}
1763
1764// ---------------------------------------------------------------------------
1765// Generate a native wrapper for a given method.  The method takes arguments
1766// in the Java compiled code convention, marshals them to the native
1767// convention (handlizes oops, etc), transitions to native, makes the call,
1768// returns to java state (possibly blocking), unhandlizes any result and
1769// returns.
1770nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1771                                                methodHandle method,
1772                                                int total_in_args,
1773                                                int comp_args_on_stack, // in VMRegStackSlots
1774                                                BasicType *in_sig_bt,
1775                                                VMRegPair *in_regs,
1776                                                BasicType ret_type) {
1777
1778  // Native nmethod wrappers never take possesion of the oop arguments.
1779  // So the caller will gc the arguments. The only thing we need an
1780  // oopMap for is if the call is static
1781  //
1782  // An OopMap for lock (and class if static), and one for the VM call itself
1783  OopMapSet *oop_maps = new OopMapSet();
1784  intptr_t start = (intptr_t)__ pc();
1785
1786  // First thing make an ic check to see if we should even be here
1787  {
1788    Label L;
1789    const Register temp_reg = G3_scratch;
1790    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1791    __ verify_oop(O0);
1792    __ load_klass(O0, temp_reg);
1793    __ cmp(temp_reg, G5_inline_cache_reg);
1794    __ brx(Assembler::equal, true, Assembler::pt, L);
1795    __ delayed()->nop();
1796
1797    __ jump_to(ic_miss, temp_reg);
1798    __ delayed()->nop();
1799    __ align(CodeEntryAlignment);
1800    __ bind(L);
1801  }
1802
1803  int vep_offset = ((intptr_t)__ pc()) - start;
1804
1805#ifdef COMPILER1
1806  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1807    // Object.hashCode can pull the hashCode from the header word
1808    // instead of doing a full VM transition once it's been computed.
1809    // Since hashCode is usually polymorphic at call sites we can't do
1810    // this optimization at the call site without a lot of work.
1811    Label slowCase;
1812    Register receiver             = O0;
1813    Register result               = O0;
1814    Register header               = G3_scratch;
1815    Register hash                 = G3_scratch; // overwrite header value with hash value
1816    Register mask                 = G1;         // to get hash field from header
1817
1818    // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1819    // We depend on hash_mask being at most 32 bits and avoid the use of
1820    // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1821    // vm: see markOop.hpp.
1822    __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1823    __ sethi(markOopDesc::hash_mask, mask);
1824    __ btst(markOopDesc::unlocked_value, header);
1825    __ br(Assembler::zero, false, Assembler::pn, slowCase);
1826    if (UseBiasedLocking) {
1827      // Check if biased and fall through to runtime if so
1828      __ delayed()->nop();
1829      __ btst(markOopDesc::biased_lock_bit_in_place, header);
1830      __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1831    }
1832    __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1833
1834    // Check for a valid (non-zero) hash code and get its value.
1835#ifdef _LP64
1836    __ srlx(header, markOopDesc::hash_shift, hash);
1837#else
1838    __ srl(header, markOopDesc::hash_shift, hash);
1839#endif
1840    __ andcc(hash, mask, hash);
1841    __ br(Assembler::equal, false, Assembler::pn, slowCase);
1842    __ delayed()->nop();
1843
1844    // leaf return.
1845    __ retl();
1846    __ delayed()->mov(hash, result);
1847    __ bind(slowCase);
1848  }
1849#endif // COMPILER1
1850
1851
1852  // We have received a description of where all the java arg are located
1853  // on entry to the wrapper. We need to convert these args to where
1854  // the jni function will expect them. To figure out where they go
1855  // we convert the java signature to a C signature by inserting
1856  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1857
1858  int total_c_args = total_in_args + 1;
1859  if (method->is_static()) {
1860    total_c_args++;
1861  }
1862
1863  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1864  VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1865
1866  int argc = 0;
1867  out_sig_bt[argc++] = T_ADDRESS;
1868  if (method->is_static()) {
1869    out_sig_bt[argc++] = T_OBJECT;
1870  }
1871
1872  for (int i = 0; i < total_in_args ; i++ ) {
1873    out_sig_bt[argc++] = in_sig_bt[i];
1874  }
1875
1876  // Now figure out where the args must be stored and how much stack space
1877  // they require (neglecting out_preserve_stack_slots but space for storing
1878  // the 1st six register arguments). It's weird see int_stk_helper.
1879  //
1880  int out_arg_slots;
1881  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1882
1883  // Compute framesize for the wrapper.  We need to handlize all oops in
1884  // registers. We must create space for them here that is disjoint from
1885  // the windowed save area because we have no control over when we might
1886  // flush the window again and overwrite values that gc has since modified.
1887  // (The live window race)
1888  //
1889  // We always just allocate 6 word for storing down these object. This allow
1890  // us to simply record the base and use the Ireg number to decide which
1891  // slot to use. (Note that the reg number is the inbound number not the
1892  // outbound number).
1893  // We must shuffle args to match the native convention, and include var-args space.
1894
1895  // Calculate the total number of stack slots we will need.
1896
1897  // First count the abi requirement plus all of the outgoing args
1898  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1899
1900  // Now the space for the inbound oop handle area
1901
1902  int oop_handle_offset = stack_slots;
1903  stack_slots += 6*VMRegImpl::slots_per_word;
1904
1905  // Now any space we need for handlizing a klass if static method
1906
1907  int oop_temp_slot_offset = 0;
1908  int klass_slot_offset = 0;
1909  int klass_offset = -1;
1910  int lock_slot_offset = 0;
1911  bool is_static = false;
1912
1913  if (method->is_static()) {
1914    klass_slot_offset = stack_slots;
1915    stack_slots += VMRegImpl::slots_per_word;
1916    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1917    is_static = true;
1918  }
1919
1920  // Plus a lock if needed
1921
1922  if (method->is_synchronized()) {
1923    lock_slot_offset = stack_slots;
1924    stack_slots += VMRegImpl::slots_per_word;
1925  }
1926
1927  // Now a place to save return value or as a temporary for any gpr -> fpr moves
1928  stack_slots += 2;
1929
1930  // Ok The space we have allocated will look like:
1931  //
1932  //
1933  // FP-> |                     |
1934  //      |---------------------|
1935  //      | 2 slots for moves   |
1936  //      |---------------------|
1937  //      | lock box (if sync)  |
1938  //      |---------------------| <- lock_slot_offset
1939  //      | klass (if static)   |
1940  //      |---------------------| <- klass_slot_offset
1941  //      | oopHandle area      |
1942  //      |---------------------| <- oop_handle_offset
1943  //      | outbound memory     |
1944  //      | based arguments     |
1945  //      |                     |
1946  //      |---------------------|
1947  //      | vararg area         |
1948  //      |---------------------|
1949  //      |                     |
1950  // SP-> | out_preserved_slots |
1951  //
1952  //
1953
1954
1955  // Now compute actual number of stack words we need rounding to make
1956  // stack properly aligned.
1957  stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1958
1959  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1960
1961  // Generate stack overflow check before creating frame
1962  __ generate_stack_overflow_check(stack_size);
1963
1964  // Generate a new frame for the wrapper.
1965  __ save(SP, -stack_size, SP);
1966
1967  int frame_complete = ((intptr_t)__ pc()) - start;
1968
1969  __ verify_thread();
1970
1971
1972  //
1973  // We immediately shuffle the arguments so that any vm call we have to
1974  // make from here on out (sync slow path, jvmti, etc.) we will have
1975  // captured the oops from our caller and have a valid oopMap for
1976  // them.
1977
1978  // -----------------
1979  // The Grand Shuffle
1980  //
1981  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1982  // (derived from JavaThread* which is in L7_thread_cache) and, if static,
1983  // the class mirror instead of a receiver.  This pretty much guarantees that
1984  // register layout will not match.  We ignore these extra arguments during
1985  // the shuffle. The shuffle is described by the two calling convention
1986  // vectors we have in our possession. We simply walk the java vector to
1987  // get the source locations and the c vector to get the destinations.
1988  // Because we have a new window and the argument registers are completely
1989  // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
1990  // here.
1991
1992  // This is a trick. We double the stack slots so we can claim
1993  // the oops in the caller's frame. Since we are sure to have
1994  // more args than the caller doubling is enough to make
1995  // sure we can capture all the incoming oop args from the
1996  // caller.
1997  //
1998  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1999  int c_arg = total_c_args - 1;
2000  // Record sp-based slot for receiver on stack for non-static methods
2001  int receiver_offset = -1;
2002
2003  // We move the arguments backward because the floating point registers
2004  // destination will always be to a register with a greater or equal register
2005  // number or the stack.
2006
2007#ifdef ASSERT
2008  bool reg_destroyed[RegisterImpl::number_of_registers];
2009  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2010  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2011    reg_destroyed[r] = false;
2012  }
2013  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2014    freg_destroyed[f] = false;
2015  }
2016
2017#endif /* ASSERT */
2018
2019  for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
2020
2021#ifdef ASSERT
2022    if (in_regs[i].first()->is_Register()) {
2023      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2024    } else if (in_regs[i].first()->is_FloatRegister()) {
2025      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2026    }
2027    if (out_regs[c_arg].first()->is_Register()) {
2028      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2029    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2030      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2031    }
2032#endif /* ASSERT */
2033
2034    switch (in_sig_bt[i]) {
2035      case T_ARRAY:
2036      case T_OBJECT:
2037        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2038                    ((i == 0) && (!is_static)),
2039                    &receiver_offset);
2040        break;
2041      case T_VOID:
2042        break;
2043
2044      case T_FLOAT:
2045        float_move(masm, in_regs[i], out_regs[c_arg]);
2046          break;
2047
2048      case T_DOUBLE:
2049        assert( i + 1 < total_in_args &&
2050                in_sig_bt[i + 1] == T_VOID &&
2051                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2052        double_move(masm, in_regs[i], out_regs[c_arg]);
2053        break;
2054
2055      case T_LONG :
2056        long_move(masm, in_regs[i], out_regs[c_arg]);
2057        break;
2058
2059      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2060
2061      default:
2062        move32_64(masm, in_regs[i], out_regs[c_arg]);
2063    }
2064  }
2065
2066  // Pre-load a static method's oop into O1.  Used both by locking code and
2067  // the normal JNI call code.
2068  if (method->is_static()) {
2069    __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2070
2071    // Now handlize the static class mirror in O1.  It's known not-null.
2072    __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2073    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2074    __ add(SP, klass_offset + STACK_BIAS, O1);
2075  }
2076
2077
2078  const Register L6_handle = L6;
2079
2080  if (method->is_synchronized()) {
2081    __ mov(O1, L6_handle);
2082  }
2083
2084  // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2085  // except O6/O7. So if we must call out we must push a new frame. We immediately
2086  // push a new frame and flush the windows.
2087
2088#ifdef _LP64
2089  intptr_t thepc = (intptr_t) __ pc();
2090  {
2091    address here = __ pc();
2092    // Call the next instruction
2093    __ call(here + 8, relocInfo::none);
2094    __ delayed()->nop();
2095  }
2096#else
2097  intptr_t thepc = __ load_pc_address(O7, 0);
2098#endif /* _LP64 */
2099
2100  // We use the same pc/oopMap repeatedly when we call out
2101  oop_maps->add_gc_map(thepc - start, map);
2102
2103  // O7 now has the pc loaded that we will use when we finally call to native.
2104
2105  // Save thread in L7; it crosses a bunch of VM calls below
2106  // Don't use save_thread because it smashes G2 and we merely
2107  // want to save a copy
2108  __ mov(G2_thread, L7_thread_cache);
2109
2110
2111  // If we create an inner frame once is plenty
2112  // when we create it we must also save G2_thread
2113  bool inner_frame_created = false;
2114
2115  // dtrace method entry support
2116  {
2117    SkipIfEqual skip_if(
2118      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2119    // create inner frame
2120    __ save_frame(0);
2121    __ mov(G2_thread, L7_thread_cache);
2122    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2123    __ call_VM_leaf(L7_thread_cache,
2124         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2125         G2_thread, O1);
2126    __ restore();
2127  }
2128
2129  // RedefineClasses() tracing support for obsolete method entry
2130  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2131    // create inner frame
2132    __ save_frame(0);
2133    __ mov(G2_thread, L7_thread_cache);
2134    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2135    __ call_VM_leaf(L7_thread_cache,
2136         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2137         G2_thread, O1);
2138    __ restore();
2139  }
2140
2141  // We are in the jni frame unless saved_frame is true in which case
2142  // we are in one frame deeper (the "inner" frame). If we are in the
2143  // "inner" frames the args are in the Iregs and if the jni frame then
2144  // they are in the Oregs.
2145  // If we ever need to go to the VM (for locking, jvmti) then
2146  // we will always be in the "inner" frame.
2147
2148  // Lock a synchronized method
2149  int lock_offset = -1;         // Set if locked
2150  if (method->is_synchronized()) {
2151    Register Roop = O1;
2152    const Register L3_box = L3;
2153
2154    create_inner_frame(masm, &inner_frame_created);
2155
2156    __ ld_ptr(I1, 0, O1);
2157    Label done;
2158
2159    lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2160    __ add(FP, lock_offset+STACK_BIAS, L3_box);
2161#ifdef ASSERT
2162    if (UseBiasedLocking) {
2163      // making the box point to itself will make it clear it went unused
2164      // but also be obviously invalid
2165      __ st_ptr(L3_box, L3_box, 0);
2166    }
2167#endif // ASSERT
2168    //
2169    // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2170    //
2171    __ compiler_lock_object(Roop, L1,    L3_box, L2);
2172    __ br(Assembler::equal, false, Assembler::pt, done);
2173    __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2174
2175
2176    // None of the above fast optimizations worked so we have to get into the
2177    // slow case of monitor enter.  Inline a special case of call_VM that
2178    // disallows any pending_exception.
2179    __ mov(Roop, O0);            // Need oop in O0
2180    __ mov(L3_box, O1);
2181
2182    // Record last_Java_sp, in case the VM code releases the JVM lock.
2183
2184    __ set_last_Java_frame(FP, I7);
2185
2186    // do the call
2187    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2188    __ delayed()->mov(L7_thread_cache, O2);
2189
2190    __ restore_thread(L7_thread_cache); // restore G2_thread
2191    __ reset_last_Java_frame();
2192
2193#ifdef ASSERT
2194    { Label L;
2195    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2196    __ br_null(O0, false, Assembler::pt, L);
2197    __ delayed()->nop();
2198    __ stop("no pending exception allowed on exit from IR::monitorenter");
2199    __ bind(L);
2200    }
2201#endif
2202    __ bind(done);
2203  }
2204
2205
2206  // Finally just about ready to make the JNI call
2207
2208  __ flush_windows();
2209  if (inner_frame_created) {
2210    __ restore();
2211  } else {
2212    // Store only what we need from this frame
2213    // QQQ I think that non-v9 (like we care) we don't need these saves
2214    // either as the flush traps and the current window goes too.
2215    __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2216    __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2217  }
2218
2219  // get JNIEnv* which is first argument to native
2220
2221  __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2222
2223  // Use that pc we placed in O7 a while back as the current frame anchor
2224
2225  __ set_last_Java_frame(SP, O7);
2226
2227  // Transition from _thread_in_Java to _thread_in_native.
2228  __ set(_thread_in_native, G3_scratch);
2229  __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2230
2231  // We flushed the windows ages ago now mark them as flushed
2232
2233  // mark windows as flushed
2234  __ set(JavaFrameAnchor::flushed, G3_scratch);
2235
2236  Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2237
2238#ifdef _LP64
2239  AddressLiteral dest(method->native_function());
2240  __ relocate(relocInfo::runtime_call_type);
2241  __ jumpl_to(dest, O7, O7);
2242#else
2243  __ call(method->native_function(), relocInfo::runtime_call_type);
2244#endif
2245  __ delayed()->st(G3_scratch, flags);
2246
2247  __ restore_thread(L7_thread_cache); // restore G2_thread
2248
2249  // Unpack native results.  For int-types, we do any needed sign-extension
2250  // and move things into I0.  The return value there will survive any VM
2251  // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2252  // specially in the slow-path code.
2253  switch (ret_type) {
2254  case T_VOID:    break;        // Nothing to do!
2255  case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2256  case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2257  // In 64 bits build result is in O0, in O0, O1 in 32bit build
2258  case T_LONG:
2259#ifndef _LP64
2260                  __ mov(O1, I1);
2261#endif
2262                  // Fall thru
2263  case T_OBJECT:                // Really a handle
2264  case T_ARRAY:
2265  case T_INT:
2266                  __ mov(O0, I0);
2267                  break;
2268  case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2269  case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2270  case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2271  case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2272    break;                      // Cannot de-handlize until after reclaiming jvm_lock
2273  default:
2274    ShouldNotReachHere();
2275  }
2276
2277  // must we block?
2278
2279  // Block, if necessary, before resuming in _thread_in_Java state.
2280  // In order for GC to work, don't clear the last_Java_sp until after blocking.
2281  { Label no_block;
2282    AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2283
2284    // Switch thread to "native transition" state before reading the synchronization state.
2285    // This additional state is necessary because reading and testing the synchronization
2286    // state is not atomic w.r.t. GC, as this scenario demonstrates:
2287    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2288    //     VM thread changes sync state to synchronizing and suspends threads for GC.
2289    //     Thread A is resumed to finish this native method, but doesn't block here since it
2290    //     didn't see any synchronization is progress, and escapes.
2291    __ set(_thread_in_native_trans, G3_scratch);
2292    __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2293    if(os::is_MP()) {
2294      if (UseMembar) {
2295        // Force this write out before the read below
2296        __ membar(Assembler::StoreLoad);
2297      } else {
2298        // Write serialization page so VM thread can do a pseudo remote membar.
2299        // We use the current thread pointer to calculate a thread specific
2300        // offset to write to within the page. This minimizes bus traffic
2301        // due to cache line collision.
2302        __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2303      }
2304    }
2305    __ load_contents(sync_state, G3_scratch);
2306    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2307
2308    Label L;
2309    Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2310    __ br(Assembler::notEqual, false, Assembler::pn, L);
2311    __ delayed()->ld(suspend_state, G3_scratch);
2312    __ cmp(G3_scratch, 0);
2313    __ br(Assembler::equal, false, Assembler::pt, no_block);
2314    __ delayed()->nop();
2315    __ bind(L);
2316
2317    // Block.  Save any potential method result value before the operation and
2318    // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2319    // lets us share the oopMap we used when we went native rather the create
2320    // a distinct one for this pc
2321    //
2322    save_native_result(masm, ret_type, stack_slots);
2323    __ call_VM_leaf(L7_thread_cache,
2324                    CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2325                    G2_thread);
2326
2327    // Restore any method result value
2328    restore_native_result(masm, ret_type, stack_slots);
2329    __ bind(no_block);
2330  }
2331
2332  // thread state is thread_in_native_trans. Any safepoint blocking has already
2333  // happened so we can now change state to _thread_in_Java.
2334
2335
2336  __ set(_thread_in_Java, G3_scratch);
2337  __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2338
2339
2340  Label no_reguard;
2341  __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2342  __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
2343  __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
2344  __ delayed()->nop();
2345
2346    save_native_result(masm, ret_type, stack_slots);
2347  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2348  __ delayed()->nop();
2349
2350  __ restore_thread(L7_thread_cache); // restore G2_thread
2351    restore_native_result(masm, ret_type, stack_slots);
2352
2353  __ bind(no_reguard);
2354
2355  // Handle possible exception (will unlock if necessary)
2356
2357  // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2358
2359  // Unlock
2360  if (method->is_synchronized()) {
2361    Label done;
2362    Register I2_ex_oop = I2;
2363    const Register L3_box = L3;
2364    // Get locked oop from the handle we passed to jni
2365    __ ld_ptr(L6_handle, 0, L4);
2366    __ add(SP, lock_offset+STACK_BIAS, L3_box);
2367    // Must save pending exception around the slow-path VM call.  Since it's a
2368    // leaf call, the pending exception (if any) can be kept in a register.
2369    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2370    // Now unlock
2371    //                       (Roop, Rmark, Rbox,   Rscratch)
2372    __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2373    __ br(Assembler::equal, false, Assembler::pt, done);
2374    __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2375
2376    // save and restore any potential method result value around the unlocking
2377    // operation.  Will save in I0 (or stack for FP returns).
2378    save_native_result(masm, ret_type, stack_slots);
2379
2380    // Must clear pending-exception before re-entering the VM.  Since this is
2381    // a leaf call, pending-exception-oop can be safely kept in a register.
2382    __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2383
2384    // slow case of monitor enter.  Inline a special case of call_VM that
2385    // disallows any pending_exception.
2386    __ mov(L3_box, O1);
2387
2388    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2389    __ delayed()->mov(L4, O0);              // Need oop in O0
2390
2391    __ restore_thread(L7_thread_cache); // restore G2_thread
2392
2393#ifdef ASSERT
2394    { Label L;
2395    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2396    __ br_null(O0, false, Assembler::pt, L);
2397    __ delayed()->nop();
2398    __ stop("no pending exception allowed on exit from IR::monitorexit");
2399    __ bind(L);
2400    }
2401#endif
2402    restore_native_result(masm, ret_type, stack_slots);
2403    // check_forward_pending_exception jump to forward_exception if any pending
2404    // exception is set.  The forward_exception routine expects to see the
2405    // exception in pending_exception and not in a register.  Kind of clumsy,
2406    // since all folks who branch to forward_exception must have tested
2407    // pending_exception first and hence have it in a register already.
2408    __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2409    __ bind(done);
2410  }
2411
2412  // Tell dtrace about this method exit
2413  {
2414    SkipIfEqual skip_if(
2415      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2416    save_native_result(masm, ret_type, stack_slots);
2417    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2418    __ call_VM_leaf(L7_thread_cache,
2419       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2420       G2_thread, O1);
2421    restore_native_result(masm, ret_type, stack_slots);
2422  }
2423
2424  // Clear "last Java frame" SP and PC.
2425  __ verify_thread(); // G2_thread must be correct
2426  __ reset_last_Java_frame();
2427
2428  // Unpack oop result
2429  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2430      Label L;
2431      __ addcc(G0, I0, G0);
2432      __ brx(Assembler::notZero, true, Assembler::pt, L);
2433      __ delayed()->ld_ptr(I0, 0, I0);
2434      __ mov(G0, I0);
2435      __ bind(L);
2436      __ verify_oop(I0);
2437  }
2438
2439  // reset handle block
2440  __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2441  __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2442
2443  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2444  check_forward_pending_exception(masm, G3_scratch);
2445
2446
2447  // Return
2448
2449#ifndef _LP64
2450  if (ret_type == T_LONG) {
2451
2452    // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2453    __ sllx(I0, 32, G1);          // Shift bits into high G1
2454    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2455    __ or3 (I1, G1, G1);          // OR 64 bits into G1
2456  }
2457#endif
2458
2459  __ ret();
2460  __ delayed()->restore();
2461
2462  __ flush();
2463
2464  nmethod *nm = nmethod::new_native_nmethod(method,
2465                                            masm->code(),
2466                                            vep_offset,
2467                                            frame_complete,
2468                                            stack_slots / VMRegImpl::slots_per_word,
2469                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2470                                            in_ByteSize(lock_offset),
2471                                            oop_maps);
2472  return nm;
2473
2474}
2475
2476#ifdef HAVE_DTRACE_H
2477// ---------------------------------------------------------------------------
2478// Generate a dtrace nmethod for a given signature.  The method takes arguments
2479// in the Java compiled code convention, marshals them to the native
2480// abi and then leaves nops at the position you would expect to call a native
2481// function. When the probe is enabled the nops are replaced with a trap
2482// instruction that dtrace inserts and the trace will cause a notification
2483// to dtrace.
2484//
2485// The probes are only able to take primitive types and java/lang/String as
2486// arguments.  No other java types are allowed. Strings are converted to utf8
2487// strings so that from dtrace point of view java strings are converted to C
2488// strings. There is an arbitrary fixed limit on the total space that a method
2489// can use for converting the strings. (256 chars per string in the signature).
2490// So any java string larger then this is truncated.
2491
2492static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2493static bool offsets_initialized = false;
2494
2495static VMRegPair reg64_to_VMRegPair(Register r) {
2496  VMRegPair ret;
2497  if (wordSize == 8) {
2498    ret.set2(r->as_VMReg());
2499  } else {
2500    ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
2501  }
2502  return ret;
2503}
2504
2505
2506nmethod *SharedRuntime::generate_dtrace_nmethod(
2507    MacroAssembler *masm, methodHandle method) {
2508
2509
2510  // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2511  // be single threaded in this method.
2512  assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2513
2514  // Fill in the signature array, for the calling-convention call.
2515  int total_args_passed = method->size_of_parameters();
2516
2517  BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2518  VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2519
2520  // The signature we are going to use for the trap that dtrace will see
2521  // java/lang/String is converted. We drop "this" and any other object
2522  // is converted to NULL.  (A one-slot java/lang/Long object reference
2523  // is converted to a two-slot long, which is why we double the allocation).
2524  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2525  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2526
2527  int i=0;
2528  int total_strings = 0;
2529  int first_arg_to_pass = 0;
2530  int total_c_args = 0;
2531
2532  // Skip the receiver as dtrace doesn't want to see it
2533  if( !method->is_static() ) {
2534    in_sig_bt[i++] = T_OBJECT;
2535    first_arg_to_pass = 1;
2536  }
2537
2538  SignatureStream ss(method->signature());
2539  for ( ; !ss.at_return_type(); ss.next()) {
2540    BasicType bt = ss.type();
2541    in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2542    out_sig_bt[total_c_args++] = bt;
2543    if( bt == T_OBJECT) {
2544      symbolOop s = ss.as_symbol_or_null();
2545      if (s == vmSymbols::java_lang_String()) {
2546        total_strings++;
2547        out_sig_bt[total_c_args-1] = T_ADDRESS;
2548      } else if (s == vmSymbols::java_lang_Boolean() ||
2549                 s == vmSymbols::java_lang_Byte()) {
2550        out_sig_bt[total_c_args-1] = T_BYTE;
2551      } else if (s == vmSymbols::java_lang_Character() ||
2552                 s == vmSymbols::java_lang_Short()) {
2553        out_sig_bt[total_c_args-1] = T_SHORT;
2554      } else if (s == vmSymbols::java_lang_Integer() ||
2555                 s == vmSymbols::java_lang_Float()) {
2556        out_sig_bt[total_c_args-1] = T_INT;
2557      } else if (s == vmSymbols::java_lang_Long() ||
2558                 s == vmSymbols::java_lang_Double()) {
2559        out_sig_bt[total_c_args-1] = T_LONG;
2560        out_sig_bt[total_c_args++] = T_VOID;
2561      }
2562    } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2563      in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2564      // We convert double to long
2565      out_sig_bt[total_c_args-1] = T_LONG;
2566      out_sig_bt[total_c_args++] = T_VOID;
2567    } else if ( bt == T_FLOAT) {
2568      // We convert float to int
2569      out_sig_bt[total_c_args-1] = T_INT;
2570    }
2571  }
2572
2573  assert(i==total_args_passed, "validly parsed signature");
2574
2575  // Now get the compiled-Java layout as input arguments
2576  int comp_args_on_stack;
2577  comp_args_on_stack = SharedRuntime::java_calling_convention(
2578      in_sig_bt, in_regs, total_args_passed, false);
2579
2580  // We have received a description of where all the java arg are located
2581  // on entry to the wrapper. We need to convert these args to where
2582  // the a  native (non-jni) function would expect them. To figure out
2583  // where they go we convert the java signature to a C signature and remove
2584  // T_VOID for any long/double we might have received.
2585
2586
2587  // Now figure out where the args must be stored and how much stack space
2588  // they require (neglecting out_preserve_stack_slots but space for storing
2589  // the 1st six register arguments). It's weird see int_stk_helper.
2590  //
2591  int out_arg_slots;
2592  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2593
2594  // Calculate the total number of stack slots we will need.
2595
2596  // First count the abi requirement plus all of the outgoing args
2597  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2598
2599  // Plus a temp for possible converion of float/double/long register args
2600
2601  int conversion_temp = stack_slots;
2602  stack_slots += 2;
2603
2604
2605  // Now space for the string(s) we must convert
2606
2607  int string_locs = stack_slots;
2608  stack_slots += total_strings *
2609                   (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2610
2611  // Ok The space we have allocated will look like:
2612  //
2613  //
2614  // FP-> |                     |
2615  //      |---------------------|
2616  //      | string[n]           |
2617  //      |---------------------| <- string_locs[n]
2618  //      | string[n-1]         |
2619  //      |---------------------| <- string_locs[n-1]
2620  //      | ...                 |
2621  //      | ...                 |
2622  //      |---------------------| <- string_locs[1]
2623  //      | string[0]           |
2624  //      |---------------------| <- string_locs[0]
2625  //      | temp                |
2626  //      |---------------------| <- conversion_temp
2627  //      | outbound memory     |
2628  //      | based arguments     |
2629  //      |                     |
2630  //      |---------------------|
2631  //      |                     |
2632  // SP-> | out_preserved_slots |
2633  //
2634  //
2635
2636  // Now compute actual number of stack words we need rounding to make
2637  // stack properly aligned.
2638  stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2639
2640  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2641
2642  intptr_t start = (intptr_t)__ pc();
2643
2644  // First thing make an ic check to see if we should even be here
2645
2646  {
2647    Label L;
2648    const Register temp_reg = G3_scratch;
2649    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2650    __ verify_oop(O0);
2651    __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2652    __ cmp(temp_reg, G5_inline_cache_reg);
2653    __ brx(Assembler::equal, true, Assembler::pt, L);
2654    __ delayed()->nop();
2655
2656    __ jump_to(ic_miss, temp_reg);
2657    __ delayed()->nop();
2658    __ align(CodeEntryAlignment);
2659    __ bind(L);
2660  }
2661
2662  int vep_offset = ((intptr_t)__ pc()) - start;
2663
2664
2665  // The instruction at the verified entry point must be 5 bytes or longer
2666  // because it can be patched on the fly by make_non_entrant. The stack bang
2667  // instruction fits that requirement.
2668
2669  // Generate stack overflow check before creating frame
2670  __ generate_stack_overflow_check(stack_size);
2671
2672  assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2673         "valid size for make_non_entrant");
2674
2675  // Generate a new frame for the wrapper.
2676  __ save(SP, -stack_size, SP);
2677
2678  // Frame is now completed as far a size and linkage.
2679
2680  int frame_complete = ((intptr_t)__ pc()) - start;
2681
2682#ifdef ASSERT
2683  bool reg_destroyed[RegisterImpl::number_of_registers];
2684  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2685  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2686    reg_destroyed[r] = false;
2687  }
2688  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2689    freg_destroyed[f] = false;
2690  }
2691
2692#endif /* ASSERT */
2693
2694  VMRegPair zero;
2695  const Register g0 = G0; // without this we get a compiler warning (why??)
2696  zero.set2(g0->as_VMReg());
2697
2698  int c_arg, j_arg;
2699
2700  Register conversion_off = noreg;
2701
2702  for (j_arg = first_arg_to_pass, c_arg = 0 ;
2703       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2704
2705    VMRegPair src = in_regs[j_arg];
2706    VMRegPair dst = out_regs[c_arg];
2707
2708#ifdef ASSERT
2709    if (src.first()->is_Register()) {
2710      assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2711    } else if (src.first()->is_FloatRegister()) {
2712      assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2713                                               FloatRegisterImpl::S)], "ack!");
2714    }
2715    if (dst.first()->is_Register()) {
2716      reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2717    } else if (dst.first()->is_FloatRegister()) {
2718      freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2719                                                 FloatRegisterImpl::S)] = true;
2720    }
2721#endif /* ASSERT */
2722
2723    switch (in_sig_bt[j_arg]) {
2724      case T_ARRAY:
2725      case T_OBJECT:
2726        {
2727          if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2728              out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2729            // need to unbox a one-slot value
2730            Register in_reg = L0;
2731            Register tmp = L2;
2732            if ( src.first()->is_reg() ) {
2733              in_reg = src.first()->as_Register();
2734            } else {
2735              assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2736                     "must be");
2737              __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2738            }
2739            // If the final destination is an acceptable register
2740            if ( dst.first()->is_reg() ) {
2741              if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2742                tmp = dst.first()->as_Register();
2743              }
2744            }
2745
2746            Label skipUnbox;
2747            if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2748              __ mov(G0, tmp->successor());
2749            }
2750            __ br_null(in_reg, true, Assembler::pn, skipUnbox);
2751            __ delayed()->mov(G0, tmp);
2752
2753            BasicType bt = out_sig_bt[c_arg];
2754            int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2755            switch (bt) {
2756                case T_BYTE:
2757                  __ ldub(in_reg, box_offset, tmp); break;
2758                case T_SHORT:
2759                  __ lduh(in_reg, box_offset, tmp); break;
2760                case T_INT:
2761                  __ ld(in_reg, box_offset, tmp); break;
2762                case T_LONG:
2763                  __ ld_long(in_reg, box_offset, tmp); break;
2764                default: ShouldNotReachHere();
2765            }
2766
2767            __ bind(skipUnbox);
2768            // If tmp wasn't final destination copy to final destination
2769            if (tmp == L2) {
2770              VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
2771              if (out_sig_bt[c_arg] == T_LONG) {
2772                long_move(masm, tmp_as_VM, dst);
2773              } else {
2774                move32_64(masm, tmp_as_VM, out_regs[c_arg]);
2775              }
2776            }
2777            if (out_sig_bt[c_arg] == T_LONG) {
2778              assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2779              ++c_arg; // move over the T_VOID to keep the loop indices in sync
2780            }
2781          } else if (out_sig_bt[c_arg] == T_ADDRESS) {
2782            Register s =
2783                src.first()->is_reg() ? src.first()->as_Register() : L2;
2784            Register d =
2785                dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2786
2787            // We store the oop now so that the conversion pass can reach
2788            // while in the inner frame. This will be the only store if
2789            // the oop is NULL.
2790            if (s != L2) {
2791              // src is register
2792              if (d != L2) {
2793                // dst is register
2794                __ mov(s, d);
2795              } else {
2796                assert(Assembler::is_simm13(reg2offset(dst.first()) +
2797                          STACK_BIAS), "must be");
2798                __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
2799              }
2800            } else {
2801                // src not a register
2802                assert(Assembler::is_simm13(reg2offset(src.first()) +
2803                           STACK_BIAS), "must be");
2804                __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
2805                if (d == L2) {
2806                  assert(Assembler::is_simm13(reg2offset(dst.first()) +
2807                             STACK_BIAS), "must be");
2808                  __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
2809                }
2810            }
2811          } else if (out_sig_bt[c_arg] != T_VOID) {
2812            // Convert the arg to NULL
2813            if (dst.first()->is_reg()) {
2814              __ mov(G0, dst.first()->as_Register());
2815            } else {
2816              assert(Assembler::is_simm13(reg2offset(dst.first()) +
2817                         STACK_BIAS), "must be");
2818              __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
2819            }
2820          }
2821        }
2822        break;
2823      case T_VOID:
2824        break;
2825
2826      case T_FLOAT:
2827        if (src.first()->is_stack()) {
2828          // Stack to stack/reg is simple
2829          move32_64(masm, src, dst);
2830        } else {
2831          if (dst.first()->is_reg()) {
2832            // freg -> reg
2833            int off =
2834              STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2835            Register d = dst.first()->as_Register();
2836            if (Assembler::is_simm13(off)) {
2837              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2838                     SP, off);
2839              __ ld(SP, off, d);
2840            } else {
2841              if (conversion_off == noreg) {
2842                __ set(off, L6);
2843                conversion_off = L6;
2844              }
2845              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2846                     SP, conversion_off);
2847              __ ld(SP, conversion_off , d);
2848            }
2849          } else {
2850            // freg -> mem
2851            int off = STACK_BIAS + reg2offset(dst.first());
2852            if (Assembler::is_simm13(off)) {
2853              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2854                     SP, off);
2855            } else {
2856              if (conversion_off == noreg) {
2857                __ set(off, L6);
2858                conversion_off = L6;
2859              }
2860              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2861                     SP, conversion_off);
2862            }
2863          }
2864        }
2865        break;
2866
2867      case T_DOUBLE:
2868        assert( j_arg + 1 < total_args_passed &&
2869                in_sig_bt[j_arg + 1] == T_VOID &&
2870                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2871        if (src.first()->is_stack()) {
2872          // Stack to stack/reg is simple
2873          long_move(masm, src, dst);
2874        } else {
2875          Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2876
2877          // Destination could be an odd reg on 32bit in which case
2878          // we can't load direct to the destination.
2879
2880          if (!d->is_even() && wordSize == 4) {
2881            d = L2;
2882          }
2883          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2884          if (Assembler::is_simm13(off)) {
2885            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2886                   SP, off);
2887            __ ld_long(SP, off, d);
2888          } else {
2889            if (conversion_off == noreg) {
2890              __ set(off, L6);
2891              conversion_off = L6;
2892            }
2893            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2894                   SP, conversion_off);
2895            __ ld_long(SP, conversion_off, d);
2896          }
2897          if (d == L2) {
2898            long_move(masm, reg64_to_VMRegPair(L2), dst);
2899          }
2900        }
2901        break;
2902
2903      case T_LONG :
2904        // 32bit can't do a split move of something like g1 -> O0, O1
2905        // so use a memory temp
2906        if (src.is_single_phys_reg() && wordSize == 4) {
2907          Register tmp = L2;
2908          if (dst.first()->is_reg() &&
2909              (wordSize == 8 || dst.first()->as_Register()->is_even())) {
2910            tmp = dst.first()->as_Register();
2911          }
2912
2913          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2914          if (Assembler::is_simm13(off)) {
2915            __ stx(src.first()->as_Register(), SP, off);
2916            __ ld_long(SP, off, tmp);
2917          } else {
2918            if (conversion_off == noreg) {
2919              __ set(off, L6);
2920              conversion_off = L6;
2921            }
2922            __ stx(src.first()->as_Register(), SP, conversion_off);
2923            __ ld_long(SP, conversion_off, tmp);
2924          }
2925
2926          if (tmp == L2) {
2927            long_move(masm, reg64_to_VMRegPair(L2), dst);
2928          }
2929        } else {
2930          long_move(masm, src, dst);
2931        }
2932        break;
2933
2934      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2935
2936      default:
2937        move32_64(masm, src, dst);
2938    }
2939  }
2940
2941
2942  // If we have any strings we must store any register based arg to the stack
2943  // This includes any still live xmm registers too.
2944
2945  if (total_strings > 0 ) {
2946
2947    // protect all the arg registers
2948    __ save_frame(0);
2949    __ mov(G2_thread, L7_thread_cache);
2950    const Register L2_string_off = L2;
2951
2952    // Get first string offset
2953    __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
2954
2955    for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
2956      if (out_sig_bt[c_arg] == T_ADDRESS) {
2957
2958        VMRegPair dst = out_regs[c_arg];
2959        const Register d = dst.first()->is_reg() ?
2960            dst.first()->as_Register()->after_save() : noreg;
2961
2962        // It's a string the oop and it was already copied to the out arg
2963        // position
2964        if (d != noreg) {
2965          __ mov(d, O0);
2966        } else {
2967          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2968                 "must be");
2969          __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
2970        }
2971        Label skip;
2972
2973        __ br_null(O0, false, Assembler::pn, skip);
2974        __ delayed()->add(FP, L2_string_off, O1);
2975
2976        if (d != noreg) {
2977          __ mov(O1, d);
2978        } else {
2979          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2980                 "must be");
2981          __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
2982        }
2983
2984        __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
2985                relocInfo::runtime_call_type);
2986        __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
2987
2988        __ bind(skip);
2989
2990      }
2991
2992    }
2993    __ mov(L7_thread_cache, G2_thread);
2994    __ restore();
2995
2996  }
2997
2998
2999  // Ok now we are done. Need to place the nop that dtrace wants in order to
3000  // patch in the trap
3001
3002  int patch_offset = ((intptr_t)__ pc()) - start;
3003
3004  __ nop();
3005
3006
3007  // Return
3008
3009  __ ret();
3010  __ delayed()->restore();
3011
3012  __ flush();
3013
3014  nmethod *nm = nmethod::new_dtrace_nmethod(
3015      method, masm->code(), vep_offset, patch_offset, frame_complete,
3016      stack_slots / VMRegImpl::slots_per_word);
3017  return nm;
3018
3019}
3020
3021#endif // HAVE_DTRACE_H
3022
3023// this function returns the adjust size (in number of words) to a c2i adapter
3024// activation for use during deoptimization
3025int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3026  assert(callee_locals >= callee_parameters,
3027          "test and remove; got more parms than locals");
3028  if (callee_locals < callee_parameters)
3029    return 0;                   // No adjustment for negative locals
3030  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3031  return round_to(diff, WordsPerLong);
3032}
3033
3034// "Top of Stack" slots that may be unused by the calling convention but must
3035// otherwise be preserved.
3036// On Intel these are not necessary and the value can be zero.
3037// On Sparc this describes the words reserved for storing a register window
3038// when an interrupt occurs.
3039uint SharedRuntime::out_preserve_stack_slots() {
3040  return frame::register_save_words * VMRegImpl::slots_per_word;
3041}
3042
3043static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3044//
3045// Common out the new frame generation for deopt and uncommon trap
3046//
3047  Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3048  Register        Oreturn0           = O0;
3049  Register        Oreturn1           = O1;
3050  Register        O2UnrollBlock      = O2;
3051  Register        O3array            = O3;         // Array of frame sizes (input)
3052  Register        O4array_size       = O4;         // number of frames (input)
3053  Register        O7frame_size       = O7;         // number of frames (input)
3054
3055  __ ld_ptr(O3array, 0, O7frame_size);
3056  __ sub(G0, O7frame_size, O7frame_size);
3057  __ save(SP, O7frame_size, SP);
3058  __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3059
3060  #ifdef ASSERT
3061  // make sure that the frames are aligned properly
3062#ifndef _LP64
3063  __ btst(wordSize*2-1, SP);
3064  __ breakpoint_trap(Assembler::notZero);
3065#endif
3066  #endif
3067
3068  // Deopt needs to pass some extra live values from frame to frame
3069
3070  if (deopt) {
3071    __ mov(Oreturn0->after_save(), Oreturn0);
3072    __ mov(Oreturn1->after_save(), Oreturn1);
3073  }
3074
3075  __ mov(O4array_size->after_save(), O4array_size);
3076  __ sub(O4array_size, 1, O4array_size);
3077  __ mov(O3array->after_save(), O3array);
3078  __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3079  __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3080
3081  #ifdef ASSERT
3082  // trash registers to show a clear pattern in backtraces
3083  __ set(0xDEAD0000, I0);
3084  __ add(I0,  2, I1);
3085  __ add(I0,  4, I2);
3086  __ add(I0,  6, I3);
3087  __ add(I0,  8, I4);
3088  // Don't touch I5 could have valuable savedSP
3089  __ set(0xDEADBEEF, L0);
3090  __ mov(L0, L1);
3091  __ mov(L0, L2);
3092  __ mov(L0, L3);
3093  __ mov(L0, L4);
3094  __ mov(L0, L5);
3095
3096  // trash the return value as there is nothing to return yet
3097  __ set(0xDEAD0001, O7);
3098  #endif
3099
3100  __ mov(SP, O5_savedSP);
3101}
3102
3103
3104static void make_new_frames(MacroAssembler* masm, bool deopt) {
3105  //
3106  // loop through the UnrollBlock info and create new frames
3107  //
3108  Register        G3pcs              = G3_scratch;
3109  Register        Oreturn0           = O0;
3110  Register        Oreturn1           = O1;
3111  Register        O2UnrollBlock      = O2;
3112  Register        O3array            = O3;
3113  Register        O4array_size       = O4;
3114  Label           loop;
3115
3116  // Before we make new frames, check to see if stack is available.
3117  // Do this after the caller's return address is on top of stack
3118  if (UseStackBanging) {
3119    // Get total frame size for interpreted frames
3120    __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3121    __ bang_stack_size(O4, O3, G3_scratch);
3122  }
3123
3124  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3125  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3126  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3127
3128  // Adjust old interpreter frame to make space for new frame's extra java locals
3129  //
3130  // We capture the original sp for the transition frame only because it is needed in
3131  // order to properly calculate interpreter_sp_adjustment. Even though in real life
3132  // every interpreter frame captures a savedSP it is only needed at the transition
3133  // (fortunately). If we had to have it correct everywhere then we would need to
3134  // be told the sp_adjustment for each frame we create. If the frame size array
3135  // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3136  // for each frame we create and keep up the illusion every where.
3137  //
3138
3139  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3140  __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3141  __ sub(SP, O7, SP);
3142
3143#ifdef ASSERT
3144  // make sure that there is at least one entry in the array
3145  __ tst(O4array_size);
3146  __ breakpoint_trap(Assembler::zero);
3147#endif
3148
3149  // Now push the new interpreter frames
3150  __ bind(loop);
3151
3152  // allocate a new frame, filling the registers
3153
3154  gen_new_frame(masm, deopt);        // allocate an interpreter frame
3155
3156  __ tst(O4array_size);
3157  __ br(Assembler::notZero, false, Assembler::pn, loop);
3158  __ delayed()->add(O3array, wordSize, O3array);
3159  __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3160
3161}
3162
3163//------------------------------generate_deopt_blob----------------------------
3164// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3165// instead.
3166void SharedRuntime::generate_deopt_blob() {
3167  // allocate space for the code
3168  ResourceMark rm;
3169  // setup code generation tools
3170  int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3171#ifdef _LP64
3172  CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3173#else
3174  // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3175  // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3176  CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3177#endif /* _LP64 */
3178  MacroAssembler* masm               = new MacroAssembler(&buffer);
3179  FloatRegister   Freturn0           = F0;
3180  Register        Greturn1           = G1;
3181  Register        Oreturn0           = O0;
3182  Register        Oreturn1           = O1;
3183  Register        O2UnrollBlock      = O2;
3184  Register        L0deopt_mode       = L0;
3185  Register        G4deopt_mode       = G4_scratch;
3186  int             frame_size_words;
3187  Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3188#if !defined(_LP64) && defined(COMPILER2)
3189  Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3190#endif
3191  Label           cont;
3192
3193  OopMapSet *oop_maps = new OopMapSet();
3194
3195  //
3196  // This is the entry point for code which is returning to a de-optimized
3197  // frame.
3198  // The steps taken by this frame are as follows:
3199  //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3200  //     and all potentially live registers (at a pollpoint many registers can be live).
3201  //
3202  //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3203  //     returns information about the number and size of interpreter frames
3204  //     which are equivalent to the frame which is being deoptimized)
3205  //   - deallocate the unpack frame, restoring only results values. Other
3206  //     volatile registers will now be captured in the vframeArray as needed.
3207  //   - deallocate the deoptimization frame
3208  //   - in a loop using the information returned in the previous step
3209  //     push new interpreter frames (take care to propagate the return
3210  //     values through each new frame pushed)
3211  //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3212  //   - call the C routine: Deoptimization::unpack_frames (this function
3213  //     lays out values on the interpreter frame which was just created)
3214  //   - deallocate the dummy unpack_frame
3215  //   - ensure that all the return values are correctly set and then do
3216  //     a return to the interpreter entry point
3217  //
3218  // Refer to the following methods for more information:
3219  //   - Deoptimization::fetch_unroll_info
3220  //   - Deoptimization::unpack_frames
3221
3222  OopMap* map = NULL;
3223
3224  int start = __ offset();
3225
3226  // restore G2, the trampoline destroyed it
3227  __ get_thread();
3228
3229  // On entry we have been called by the deoptimized nmethod with a call that
3230  // replaced the original call (or safepoint polling location) so the deoptimizing
3231  // pc is now in O7. Return values are still in the expected places
3232
3233  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3234  __ ba(false, cont);
3235  __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3236
3237  int exception_offset = __ offset() - start;
3238
3239  // restore G2, the trampoline destroyed it
3240  __ get_thread();
3241
3242  // On entry we have been jumped to by the exception handler (or exception_blob
3243  // for server).  O0 contains the exception oop and O7 contains the original
3244  // exception pc.  So if we push a frame here it will look to the
3245  // stack walking code (fetch_unroll_info) just like a normal call so
3246  // state will be extracted normally.
3247
3248  // save exception oop in JavaThread and fall through into the
3249  // exception_in_tls case since they are handled in same way except
3250  // for where the pending exception is kept.
3251  __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3252
3253  //
3254  // Vanilla deoptimization with an exception pending in exception_oop
3255  //
3256  int exception_in_tls_offset = __ offset() - start;
3257
3258  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3259  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3260
3261  // Restore G2_thread
3262  __ get_thread();
3263
3264#ifdef ASSERT
3265  {
3266    // verify that there is really an exception oop in exception_oop
3267    Label has_exception;
3268    __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3269    __ br_notnull(Oexception, false, Assembler::pt, has_exception);
3270    __ delayed()-> nop();
3271    __ stop("no exception in thread");
3272    __ bind(has_exception);
3273
3274    // verify that there is no pending exception
3275    Label no_pending_exception;
3276    Address exception_addr(G2_thread, Thread::pending_exception_offset());
3277    __ ld_ptr(exception_addr, Oexception);
3278    __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
3279    __ delayed()->nop();
3280    __ stop("must not have pending exception here");
3281    __ bind(no_pending_exception);
3282  }
3283#endif
3284
3285  __ ba(false, cont);
3286  __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3287
3288  //
3289  // Reexecute entry, similar to c2 uncommon trap
3290  //
3291  int reexecute_offset = __ offset() - start;
3292
3293  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3294  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3295
3296  __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3297
3298  __ bind(cont);
3299
3300  __ set_last_Java_frame(SP, noreg);
3301
3302  // do the call by hand so we can get the oopmap
3303
3304  __ mov(G2_thread, L7_thread_cache);
3305  __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3306  __ delayed()->mov(G2_thread, O0);
3307
3308  // Set an oopmap for the call site this describes all our saved volatile registers
3309
3310  oop_maps->add_gc_map( __ offset()-start, map);
3311
3312  __ mov(L7_thread_cache, G2_thread);
3313
3314  __ reset_last_Java_frame();
3315
3316  // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3317  // so this move will survive
3318
3319  __ mov(L0deopt_mode, G4deopt_mode);
3320
3321  __ mov(O0, O2UnrollBlock->after_save());
3322
3323  RegisterSaver::restore_result_registers(masm);
3324
3325  Label noException;
3326  __ cmp(G4deopt_mode, Deoptimization::Unpack_exception);   // Was exception pending?
3327  __ br(Assembler::notEqual, false, Assembler::pt, noException);
3328  __ delayed()->nop();
3329
3330  // Move the pending exception from exception_oop to Oexception so
3331  // the pending exception will be picked up the interpreter.
3332  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3333  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3334  __ bind(noException);
3335
3336  // deallocate the deoptimization frame taking care to preserve the return values
3337  __ mov(Oreturn0,     Oreturn0->after_save());
3338  __ mov(Oreturn1,     Oreturn1->after_save());
3339  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3340  __ restore();
3341
3342  // Allocate new interpreter frame(s) and possible c2i adapter frame
3343
3344  make_new_frames(masm, true);
3345
3346  // push a dummy "unpack_frame" taking care of float return values and
3347  // call Deoptimization::unpack_frames to have the unpacker layout
3348  // information in the interpreter frames just created and then return
3349  // to the interpreter entry point
3350  __ save(SP, -frame_size_words*wordSize, SP);
3351  __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3352#if !defined(_LP64)
3353#if defined(COMPILER2)
3354  // 32-bit 1-register longs return longs in G1
3355  __ stx(Greturn1, saved_Greturn1_addr);
3356#endif
3357  __ set_last_Java_frame(SP, noreg);
3358  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3359#else
3360  // LP64 uses g4 in set_last_Java_frame
3361  __ mov(G4deopt_mode, O1);
3362  __ set_last_Java_frame(SP, G0);
3363  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3364#endif
3365  __ reset_last_Java_frame();
3366  __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3367
3368#if !defined(_LP64) && defined(COMPILER2)
3369  // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3370  // I0/I1 if the return value is long.
3371  Label not_long;
3372  __ cmp(O0,T_LONG);
3373  __ br(Assembler::notEqual, false, Assembler::pt, not_long);
3374  __ delayed()->nop();
3375  __ ldd(saved_Greturn1_addr,I0);
3376  __ bind(not_long);
3377#endif
3378  __ ret();
3379  __ delayed()->restore();
3380
3381  masm->flush();
3382  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3383  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3384}
3385
3386#ifdef COMPILER2
3387
3388//------------------------------generate_uncommon_trap_blob--------------------
3389// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3390// instead.
3391void SharedRuntime::generate_uncommon_trap_blob() {
3392  // allocate space for the code
3393  ResourceMark rm;
3394  // setup code generation tools
3395  int pad = VerifyThread ? 512 : 0;
3396#ifdef _LP64
3397  CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3398#else
3399  // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3400  // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3401  CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3402#endif
3403  MacroAssembler* masm               = new MacroAssembler(&buffer);
3404  Register        O2UnrollBlock      = O2;
3405  Register        O2klass_index      = O2;
3406
3407  //
3408  // This is the entry point for all traps the compiler takes when it thinks
3409  // it cannot handle further execution of compilation code. The frame is
3410  // deoptimized in these cases and converted into interpreter frames for
3411  // execution
3412  // The steps taken by this frame are as follows:
3413  //   - push a fake "unpack_frame"
3414  //   - call the C routine Deoptimization::uncommon_trap (this function
3415  //     packs the current compiled frame into vframe arrays and returns
3416  //     information about the number and size of interpreter frames which
3417  //     are equivalent to the frame which is being deoptimized)
3418  //   - deallocate the "unpack_frame"
3419  //   - deallocate the deoptimization frame
3420  //   - in a loop using the information returned in the previous step
3421  //     push interpreter frames;
3422  //   - create a dummy "unpack_frame"
3423  //   - call the C routine: Deoptimization::unpack_frames (this function
3424  //     lays out values on the interpreter frame which was just created)
3425  //   - deallocate the dummy unpack_frame
3426  //   - return to the interpreter entry point
3427  //
3428  //  Refer to the following methods for more information:
3429  //   - Deoptimization::uncommon_trap
3430  //   - Deoptimization::unpack_frame
3431
3432  // the unloaded class index is in O0 (first parameter to this blob)
3433
3434  // push a dummy "unpack_frame"
3435  // and call Deoptimization::uncommon_trap to pack the compiled frame into
3436  // vframe array and return the UnrollBlock information
3437  __ save_frame(0);
3438  __ set_last_Java_frame(SP, noreg);
3439  __ mov(I0, O2klass_index);
3440  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3441  __ reset_last_Java_frame();
3442  __ mov(O0, O2UnrollBlock->after_save());
3443  __ restore();
3444
3445  // deallocate the deoptimized frame taking care to preserve the return values
3446  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3447  __ restore();
3448
3449  // Allocate new interpreter frame(s) and possible c2i adapter frame
3450
3451  make_new_frames(masm, false);
3452
3453  // push a dummy "unpack_frame" taking care of float return values and
3454  // call Deoptimization::unpack_frames to have the unpacker layout
3455  // information in the interpreter frames just created and then return
3456  // to the interpreter entry point
3457  __ save_frame(0);
3458  __ set_last_Java_frame(SP, noreg);
3459  __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3460  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3461  __ reset_last_Java_frame();
3462  __ ret();
3463  __ delayed()->restore();
3464
3465  masm->flush();
3466  _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3467}
3468
3469#endif // COMPILER2
3470
3471//------------------------------generate_handler_blob-------------------
3472//
3473// Generate a special Compile2Runtime blob that saves all registers, and sets
3474// up an OopMap.
3475//
3476// This blob is jumped to (via a breakpoint and the signal handler) from a
3477// safepoint in compiled code.  On entry to this blob, O7 contains the
3478// address in the original nmethod at which we should resume normal execution.
3479// Thus, this blob looks like a subroutine which must preserve lots of
3480// registers and return normally.  Note that O7 is never register-allocated,
3481// so it is guaranteed to be free here.
3482//
3483
3484// The hardest part of what this blob must do is to save the 64-bit %o
3485// registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3486// an interrupt will chop off their heads.  Making space in the caller's frame
3487// first will let us save the 64-bit %o's before save'ing, but we cannot hand
3488// the adjusted FP off to the GC stack-crawler: this will modify the caller's
3489// SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3490// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3491// Tricky, tricky, tricky...
3492
3493static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3494  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3495
3496  // allocate space for the code
3497  ResourceMark rm;
3498  // setup code generation tools
3499  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3500  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3501  // even larger with TraceJumps
3502  int pad = TraceJumps ? 512 : 0;
3503  CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3504  MacroAssembler* masm                = new MacroAssembler(&buffer);
3505  int             frame_size_words;
3506  OopMapSet *oop_maps = new OopMapSet();
3507  OopMap* map = NULL;
3508
3509  int start = __ offset();
3510
3511  // If this causes a return before the processing, then do a "restore"
3512  if (cause_return) {
3513    __ restore();
3514  } else {
3515    // Make it look like we were called via the poll
3516    // so that frame constructor always sees a valid return address
3517    __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3518    __ sub(O7, frame::pc_return_offset, O7);
3519  }
3520
3521  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3522
3523  // setup last_Java_sp (blows G4)
3524  __ set_last_Java_frame(SP, noreg);
3525
3526  // call into the runtime to handle illegal instructions exception
3527  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3528  __ mov(G2_thread, O0);
3529  __ save_thread(L7_thread_cache);
3530  __ call(call_ptr);
3531  __ delayed()->nop();
3532
3533  // Set an oopmap for the call site.
3534  // We need this not only for callee-saved registers, but also for volatile
3535  // registers that the compiler might be keeping live across a safepoint.
3536
3537  oop_maps->add_gc_map( __ offset() - start, map);
3538
3539  __ restore_thread(L7_thread_cache);
3540  // clear last_Java_sp
3541  __ reset_last_Java_frame();
3542
3543  // Check for exceptions
3544  Label pending;
3545
3546  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3547  __ tst(O1);
3548  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3549  __ delayed()->nop();
3550
3551  RegisterSaver::restore_live_registers(masm);
3552
3553  // We are back the the original state on entry and ready to go.
3554
3555  __ retl();
3556  __ delayed()->nop();
3557
3558  // Pending exception after the safepoint
3559
3560  __ bind(pending);
3561
3562  RegisterSaver::restore_live_registers(masm);
3563
3564  // We are back the the original state on entry.
3565
3566  // Tail-call forward_exception_entry, with the issuing PC in O7,
3567  // so it looks like the original nmethod called forward_exception_entry.
3568  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3569  __ JMP(O0, 0);
3570  __ delayed()->nop();
3571
3572  // -------------
3573  // make sure all code is generated
3574  masm->flush();
3575
3576  // return exception blob
3577  return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3578}
3579
3580//
3581// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3582//
3583// Generate a stub that calls into vm to find out the proper destination
3584// of a java call. All the argument registers are live at this point
3585// but since this is generic code we don't know what they are and the caller
3586// must do any gc of the args.
3587//
3588static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3589  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3590
3591  // allocate space for the code
3592  ResourceMark rm;
3593  // setup code generation tools
3594  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3595  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3596  // even larger with TraceJumps
3597  int pad = TraceJumps ? 512 : 0;
3598  CodeBuffer buffer(name, 1600 + pad, 512);
3599  MacroAssembler* masm                = new MacroAssembler(&buffer);
3600  int             frame_size_words;
3601  OopMapSet *oop_maps = new OopMapSet();
3602  OopMap* map = NULL;
3603
3604  int start = __ offset();
3605
3606  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3607
3608  int frame_complete = __ offset();
3609
3610  // setup last_Java_sp (blows G4)
3611  __ set_last_Java_frame(SP, noreg);
3612
3613  // call into the runtime to handle illegal instructions exception
3614  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3615  __ mov(G2_thread, O0);
3616  __ save_thread(L7_thread_cache);
3617  __ call(destination, relocInfo::runtime_call_type);
3618  __ delayed()->nop();
3619
3620  // O0 contains the address we are going to jump to assuming no exception got installed
3621
3622  // Set an oopmap for the call site.
3623  // We need this not only for callee-saved registers, but also for volatile
3624  // registers that the compiler might be keeping live across a safepoint.
3625
3626  oop_maps->add_gc_map( __ offset() - start, map);
3627
3628  __ restore_thread(L7_thread_cache);
3629  // clear last_Java_sp
3630  __ reset_last_Java_frame();
3631
3632  // Check for exceptions
3633  Label pending;
3634
3635  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3636  __ tst(O1);
3637  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3638  __ delayed()->nop();
3639
3640  // get the returned methodOop
3641
3642  __ get_vm_result(G5_method);
3643  __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3644
3645  // O0 is where we want to jump, overwrite G3 which is saved and scratch
3646
3647  __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3648
3649  RegisterSaver::restore_live_registers(masm);
3650
3651  // We are back the the original state on entry and ready to go.
3652
3653  __ JMP(G3, 0);
3654  __ delayed()->nop();
3655
3656  // Pending exception after the safepoint
3657
3658  __ bind(pending);
3659
3660  RegisterSaver::restore_live_registers(masm);
3661
3662  // We are back the the original state on entry.
3663
3664  // Tail-call forward_exception_entry, with the issuing PC in O7,
3665  // so it looks like the original nmethod called forward_exception_entry.
3666  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3667  __ JMP(O0, 0);
3668  __ delayed()->nop();
3669
3670  // -------------
3671  // make sure all code is generated
3672  masm->flush();
3673
3674  // return the  blob
3675  // frame_size_words or bytes??
3676  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3677}
3678
3679void SharedRuntime::generate_stubs() {
3680
3681  _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3682                                             "wrong_method_stub");
3683
3684  _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3685                                        "ic_miss_stub");
3686
3687  _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3688                                        "resolve_opt_virtual_call");
3689
3690  _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3691                                        "resolve_virtual_call");
3692
3693  _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3694                                        "resolve_static_call");
3695
3696  _polling_page_safepoint_handler_blob =
3697    generate_handler_blob(CAST_FROM_FN_PTR(address,
3698                   SafepointSynchronize::handle_polling_page_exception), false);
3699
3700  _polling_page_return_handler_blob =
3701    generate_handler_blob(CAST_FROM_FN_PTR(address,
3702                   SafepointSynchronize::handle_polling_page_exception), true);
3703
3704  generate_deopt_blob();
3705
3706#ifdef COMPILER2
3707  generate_uncommon_trap_blob();
3708#endif // COMPILER2
3709}
3710