nativeInst_sparc.hpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_SPARC_VM_NATIVEINST_SPARC_HPP
26#define CPU_SPARC_VM_NATIVEINST_SPARC_HPP
27
28#include "asm/macroAssembler.hpp"
29#include "memory/allocation.hpp"
30#include "runtime/icache.hpp"
31#include "runtime/os.hpp"
32#include "utilities/top.hpp"
33
34// We have interface for the following instructions:
35// - NativeInstruction
36// - - NativeCall
37// - - NativeFarCall
38// - - NativeMovConstReg
39// - - NativeMovConstRegPatching
40// - - NativeMovRegMem
41// - - NativeMovRegMemPatching
42// - - NativeJump
43// - - NativeGeneralJump
44// - - NativeIllegalInstruction
45// The base class for different kinds of native instruction abstractions.
46// Provides the primitive operations to manipulate code relative to this.
47class NativeInstruction VALUE_OBJ_CLASS_SPEC {
48  friend class Relocation;
49
50 public:
51  enum Sparc_specific_constants {
52    nop_instruction_size        =    4
53  };
54
55  bool is_dtrace_trap();
56  bool is_nop()                        { return long_at(0) == nop_instruction(); }
57  bool is_call()                       { return is_op(long_at(0), Assembler::call_op); }
58  bool is_sethi()                      { return (is_op2(long_at(0), Assembler::sethi_op2)
59                                          && inv_rd(long_at(0)) != G0); }
60
61  bool sets_cc() {
62    // conservative (returns true for some instructions that do not set the
63    // the condition code, such as, "save".
64    // Does not return true for the deprecated tagged instructions, such as, TADDcc
65    int x = long_at(0);
66    return (is_op(x, Assembler::arith_op) &&
67            (inv_op3(x) & Assembler::cc_bit_op3) == Assembler::cc_bit_op3);
68  }
69  bool is_illegal();
70  bool is_zombie() {
71    int x = long_at(0);
72    return is_op3(x,
73                  Assembler::ldsw_op3,
74                  Assembler::ldst_op)
75        && Assembler::inv_rs1(x) == G0
76        && Assembler::inv_rd(x) == O7;
77  }
78  bool is_ic_miss_trap();       // Inline-cache uses a trap to detect a miss
79  bool is_return() {
80    // is it the output of MacroAssembler::ret or MacroAssembler::retl?
81    int x = long_at(0);
82    const int pc_return_offset = 8; // see frame_sparc.hpp
83    return is_op3(x, Assembler::jmpl_op3, Assembler::arith_op)
84        && (inv_rs1(x) == I7 || inv_rs1(x) == O7)
85        && inv_immed(x) && inv_simm(x, 13) == pc_return_offset
86        && inv_rd(x) == G0;
87  }
88  bool is_int_jump() {
89    // is it the output of MacroAssembler::b?
90    int x = long_at(0);
91    return is_op2(x, Assembler::bp_op2) || is_op2(x, Assembler::br_op2);
92  }
93  bool is_float_jump() {
94    // is it the output of MacroAssembler::fb?
95    int x = long_at(0);
96    return is_op2(x, Assembler::fbp_op2) || is_op2(x, Assembler::fb_op2);
97  }
98  bool is_jump() {
99    return is_int_jump() || is_float_jump();
100  }
101  bool is_cond_jump() {
102    int x = long_at(0);
103    return (is_int_jump() && Assembler::inv_cond(x) != Assembler::always) ||
104           (is_float_jump() && Assembler::inv_cond(x) != Assembler::f_always);
105  }
106
107  bool is_stack_bang() {
108    int x = long_at(0);
109    return is_op3(x, Assembler::stw_op3, Assembler::ldst_op) &&
110      (inv_rd(x) == G0) && (inv_rs1(x) == SP) && (inv_rs2(x) == G3_scratch);
111  }
112
113  bool is_prefetch() {
114    int x = long_at(0);
115    return is_op3(x, Assembler::prefetch_op3, Assembler::ldst_op);
116  }
117
118  bool is_membar() {
119    int x = long_at(0);
120    return is_op3(x, Assembler::membar_op3, Assembler::arith_op) &&
121      (inv_rd(x) == G0) && (inv_rs1(x) == O7);
122  }
123
124  bool is_safepoint_poll() {
125    int x = long_at(0);
126#ifdef _LP64
127    return is_op3(x, Assembler::ldx_op3,  Assembler::ldst_op) &&
128#else
129    return is_op3(x, Assembler::lduw_op3, Assembler::ldst_op) &&
130#endif
131      (inv_rd(x) == G0) && (inv_immed(x) ? Assembler::inv_simm13(x) == 0 : inv_rs2(x) == G0);
132  }
133
134  bool is_zero_test(Register &reg);
135  bool is_load_store_with_small_offset(Register reg);
136
137 public:
138#ifdef ASSERT
139  static int rdpc_instruction()        { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) | Assembler::u_field(5, 18, 14) | Assembler::rd(O7); }
140#else
141  // Temporary fix: in optimized mode, u_field is a macro for efficiency reasons (see Assembler::u_field) - needs to be fixed
142  static int rdpc_instruction()        { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) |            u_field(5, 18, 14) | Assembler::rd(O7); }
143#endif
144  static int nop_instruction()         { return Assembler::op(Assembler::branch_op) | Assembler::op2(Assembler::sethi_op2); }
145  static int illegal_instruction();    // the output of __ breakpoint_trap()
146  static int call_instruction(address destination, address pc) { return Assembler::op(Assembler::call_op) | Assembler::wdisp((intptr_t)destination, (intptr_t)pc, 30); }
147
148  static int branch_instruction(Assembler::op2s op2val, Assembler::Condition c, bool a) {
149    return Assembler::op(Assembler::branch_op) | Assembler::op2(op2val) | Assembler::annul(a) | Assembler::cond(c);
150  }
151
152  static int op3_instruction(Assembler::ops opval, Register rd, Assembler::op3s op3val, Register rs1, int simm13a) {
153    return Assembler::op(opval) | Assembler::rd(rd) | Assembler::op3(op3val) | Assembler::rs1(rs1) | Assembler::immed(true) | Assembler::simm(simm13a, 13);
154  }
155
156  static int sethi_instruction(Register rd, int imm22a) {
157    return Assembler::op(Assembler::branch_op) | Assembler::rd(rd) | Assembler::op2(Assembler::sethi_op2) | Assembler::hi22(imm22a);
158  }
159
160 protected:
161  address  addr_at(int offset) const    { return address(this) + offset; }
162  int      long_at(int offset) const    { return *(int*)addr_at(offset); }
163  void set_long_at(int offset, int i);      /* deals with I-cache */
164  void set_jlong_at(int offset, jlong i);   /* deals with I-cache */
165  void set_addr_at(int offset, address x);  /* deals with I-cache */
166
167  address instruction_address() const       { return addr_at(0); }
168  address next_instruction_address() const  { return addr_at(BytesPerInstWord); }
169
170  static bool is_op( int x, Assembler::ops opval)  {
171    return Assembler::inv_op(x) == opval;
172  }
173  static bool is_op2(int x, Assembler::op2s op2val) {
174    return Assembler::inv_op(x) == Assembler::branch_op && Assembler::inv_op2(x) == op2val;
175  }
176  static bool is_op3(int x, Assembler::op3s op3val, Assembler::ops opval) {
177    return Assembler::inv_op(x) == opval && Assembler::inv_op3(x) == op3val;
178  }
179
180  // utilities to help subclasses decode:
181  static Register inv_rd(  int x ) { return Assembler::inv_rd( x); }
182  static Register inv_rs1( int x ) { return Assembler::inv_rs1(x); }
183  static Register inv_rs2( int x ) { return Assembler::inv_rs2(x); }
184
185  static bool inv_immed( int x ) { return Assembler::inv_immed(x); }
186  static bool inv_annul( int x ) { return (Assembler::annul(true) & x) != 0; }
187  static int  inv_cond(  int x ) { return Assembler::inv_cond(x); }
188
189  static int inv_op(  int x ) { return Assembler::inv_op( x); }
190  static int inv_op2( int x ) { return Assembler::inv_op2(x); }
191  static int inv_op3( int x ) { return Assembler::inv_op3(x); }
192
193  static int inv_simm(    int x, int nbits ) { return Assembler::inv_simm(x, nbits); }
194  static intptr_t inv_wdisp(   int x, int nbits ) { return Assembler::inv_wdisp(  x, 0, nbits); }
195  static intptr_t inv_wdisp16( int x )            { return Assembler::inv_wdisp16(x, 0); }
196  static int branch_destination_offset(int x) { return MacroAssembler::branch_destination(x, 0); }
197  static int patch_branch_destination_offset(int dest_offset, int x) {
198    return MacroAssembler::patched_branch(dest_offset, x, 0);
199  }
200
201  // utility for checking if x is either of 2 small constants
202  static bool is_either(int x, int k1, int k2) {
203    // return x == k1 || x == k2;
204    return (1 << x) & (1 << k1 | 1 << k2);
205  }
206
207  // utility for checking overflow of signed instruction fields
208  static bool fits_in_simm(int x, int nbits) {
209    // cf. Assembler::assert_signed_range()
210    // return -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
211    return (unsigned)(x + (1 << nbits-1)) < (unsigned)(1 << nbits);
212  }
213
214  // set a signed immediate field
215  static int set_simm(int insn, int imm, int nbits) {
216    return (insn &~ Assembler::simm(-1, nbits)) | Assembler::simm(imm, nbits);
217  }
218
219  // set a wdisp field (disp should be the difference of two addresses)
220  static int set_wdisp(int insn, intptr_t disp, int nbits) {
221    return (insn &~ Assembler::wdisp((intptr_t)-4, (intptr_t)0, nbits)) | Assembler::wdisp(disp, 0, nbits);
222  }
223
224  static int set_wdisp16(int insn, intptr_t disp) {
225    return (insn &~ Assembler::wdisp16((intptr_t)-4, 0)) | Assembler::wdisp16(disp, 0);
226  }
227
228  // get a simm13 field from an arithmetic or memory instruction
229  static int get_simm13(int insn) {
230    assert(is_either(Assembler::inv_op(insn),
231                     Assembler::arith_op, Assembler::ldst_op) &&
232            (insn & Assembler::immed(true)), "must have a simm13 field");
233    return Assembler::inv_simm(insn, 13);
234  }
235
236  // set the simm13 field of an arithmetic or memory instruction
237  static bool set_simm13(int insn, int imm) {
238    get_simm13(insn);           // tickle the assertion check
239    return set_simm(insn, imm, 13);
240  }
241
242  // combine the fields of a sethi stream (7 instructions ) and an add, jmp or ld/st
243  static intptr_t data64( address pc, int arith_insn ) {
244    assert(is_op2(*(unsigned int *)pc, Assembler::sethi_op2), "must be sethi");
245    intptr_t hi = (intptr_t)gethi( (unsigned int *)pc );
246    intptr_t lo = (intptr_t)get_simm13(arith_insn);
247    assert((unsigned)lo < (1 << 10), "offset field of set_metadata must be 10 bits");
248    return hi | lo;
249  }
250
251  // Regenerate the instruction sequence that performs the 64 bit
252  // sethi.  This only does the sethi.  The disp field (bottom 10 bits)
253  // must be handled separately.
254  static void set_data64_sethi(address instaddr, intptr_t x);
255  static void verify_data64_sethi(address instaddr, intptr_t x);
256
257  // combine the fields of a sethi/simm13 pair (simm13 = or, add, jmpl, ld/st)
258  static int data32(int sethi_insn, int arith_insn) {
259    assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
260    int hi = Assembler::inv_hi22(sethi_insn);
261    int lo = get_simm13(arith_insn);
262    assert((unsigned)lo < (1 << 10), "offset field of set_metadata must be 10 bits");
263    return hi | lo;
264  }
265
266  static int set_data32_sethi(int sethi_insn, int imm) {
267    // note that Assembler::hi22 clips the low 10 bits for us
268    assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
269    return (sethi_insn &~ Assembler::hi22(-1)) | Assembler::hi22(imm);
270  }
271
272  static int set_data32_simm13(int arith_insn, int imm) {
273    get_simm13(arith_insn);             // tickle the assertion check
274    int imm10 = Assembler::low10(imm);
275    return (arith_insn &~ Assembler::simm(-1, 13)) | Assembler::simm(imm10, 13);
276  }
277
278  static int low10(int imm) {
279    return Assembler::low10(imm);
280  }
281
282  // Perform the inverse of the LP64 Macroassembler::sethi
283  // routine.  Extracts the 54 bits of address from the instruction
284  // stream. This routine must agree with the sethi routine in
285  // assembler_inline_sparc.hpp
286  static address gethi( unsigned int *pc ) {
287    int i = 0;
288    uintptr_t adr;
289    // We first start out with the real sethi instruction
290    assert(is_op2(*pc, Assembler::sethi_op2), "in gethi - must be sethi");
291    adr = (unsigned int)Assembler::inv_hi22( *(pc++) );
292    i++;
293    while ( i < 7 ) {
294       // We're done if we hit a nop
295       if ( (int)*pc == nop_instruction() ) break;
296       assert ( Assembler::inv_op(*pc) == Assembler::arith_op, "in gethi - must be arith_op" );
297       switch  ( Assembler::inv_op3(*pc) ) {
298         case Assembler::xor_op3:
299           adr ^= (intptr_t)get_simm13( *pc );
300           return ( (address)adr );
301           break;
302         case Assembler::sll_op3:
303           adr <<= ( *pc & 0x3f );
304           break;
305         case Assembler::or_op3:
306           adr |= (intptr_t)get_simm13( *pc );
307           break;
308         default:
309           assert ( 0, "in gethi - Should not reach here" );
310           break;
311       }
312       pc++;
313       i++;
314    }
315    return ( (address)adr );
316  }
317
318 public:
319  void  verify();
320  void  print();
321
322  // unit test stuff
323  static void test() {}                 // override for testing
324
325  inline friend NativeInstruction* nativeInstruction_at(address address);
326};
327
328inline NativeInstruction* nativeInstruction_at(address address) {
329    NativeInstruction* inst = (NativeInstruction*)address;
330#ifdef ASSERT
331      inst->verify();
332#endif
333    return inst;
334}
335
336
337
338//-----------------------------------------------------------------------------
339
340// The NativeCall is an abstraction for accessing/manipulating native call imm32 instructions.
341// (used to manipulate inline caches, primitive & dll calls, etc.)
342inline NativeCall* nativeCall_at(address instr);
343inline NativeCall* nativeCall_overwriting_at(address instr,
344                                             address destination);
345inline NativeCall* nativeCall_before(address return_address);
346class NativeCall: public NativeInstruction {
347 public:
348  enum Sparc_specific_constants {
349    instruction_size                   = 8,
350    return_address_offset              = 8,
351    call_displacement_width            = 30,
352    displacement_offset                = 0,
353    instruction_offset                 = 0
354  };
355  address instruction_address() const       { return addr_at(0); }
356  address next_instruction_address() const  { return addr_at(instruction_size); }
357  address return_address() const            { return addr_at(return_address_offset); }
358
359  address destination() const               { return inv_wdisp(long_at(0), call_displacement_width) + instruction_address(); }
360  address displacement_address() const      { return addr_at(displacement_offset); }
361  void  set_destination(address dest)       { set_long_at(0, set_wdisp(long_at(0), dest - instruction_address(), call_displacement_width)); }
362  void  set_destination_mt_safe(address dest);
363
364  void  verify_alignment() {} // do nothing on sparc
365  void  verify();
366  void  print();
367
368  // unit test stuff
369  static void  test();
370
371  // Creation
372  friend inline NativeCall* nativeCall_at(address instr);
373  friend NativeCall* nativeCall_overwriting_at(address instr, address destination = NULL) {
374    // insert a "blank" call:
375    NativeCall* call = (NativeCall*)instr;
376    call->set_long_at(0 * BytesPerInstWord, call_instruction(destination, instr));
377    call->set_long_at(1 * BytesPerInstWord, nop_instruction());
378    assert(call->addr_at(2 * BytesPerInstWord) - instr == instruction_size, "instruction size");
379    // check its structure now:
380    assert(nativeCall_at(instr)->destination() == destination, "correct call destination");
381    return call;
382  }
383
384  friend inline NativeCall* nativeCall_before(address return_address) {
385    NativeCall* call = (NativeCall*)(return_address - return_address_offset);
386    #ifdef ASSERT
387      call->verify();
388    #endif
389    return call;
390  }
391
392  static bool is_call_at(address instr) {
393    return nativeInstruction_at(instr)->is_call();
394  }
395
396  static bool is_call_before(address instr) {
397    return nativeInstruction_at(instr - return_address_offset)->is_call();
398  }
399
400  static bool is_call_to(address instr, address target) {
401    return nativeInstruction_at(instr)->is_call() &&
402      nativeCall_at(instr)->destination() == target;
403  }
404
405  // MT-safe patching of a call instruction.
406  static void insert(address code_pos, address entry) {
407    (void)nativeCall_overwriting_at(code_pos, entry);
408  }
409
410  static void replace_mt_safe(address instr_addr, address code_buffer);
411};
412inline NativeCall* nativeCall_at(address instr) {
413  NativeCall* call = (NativeCall*)instr;
414#ifdef ASSERT
415  call->verify();
416#endif
417  return call;
418}
419
420// The NativeFarCall is an abstraction for accessing/manipulating native call-anywhere
421// instructions in the sparcv9 vm.  Used to call native methods which may be loaded
422// anywhere in the address space, possibly out of reach of a call instruction.
423
424#ifndef _LP64
425
426// On 32-bit systems, a far call is the same as a near one.
427class NativeFarCall;
428inline NativeFarCall* nativeFarCall_at(address instr);
429class NativeFarCall : public NativeCall {
430public:
431  friend inline NativeFarCall* nativeFarCall_at(address instr) { return (NativeFarCall*)nativeCall_at(instr); }
432  friend NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL)
433                                                        { return (NativeFarCall*)nativeCall_overwriting_at(instr, destination); }
434  friend NativeFarCall* nativeFarCall_before(address return_address)
435                                                        { return (NativeFarCall*)nativeCall_before(return_address); }
436};
437
438#else
439
440// The format of this extended-range call is:
441//      jumpl_to addr, lreg
442//      == sethi %hi54(addr), O7 ;  jumpl O7, %lo10(addr), O7 ;  <delay>
443// That is, it is essentially the same as a NativeJump.
444class NativeFarCall;
445inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination);
446inline NativeFarCall* nativeFarCall_at(address instr);
447class NativeFarCall: public NativeInstruction {
448 public:
449  enum Sparc_specific_constants {
450    // instruction_size includes the delay slot instruction.
451    instruction_size                   = 9 * BytesPerInstWord,
452    return_address_offset              = 9 * BytesPerInstWord,
453    jmpl_offset                        = 7 * BytesPerInstWord,
454    displacement_offset                = 0,
455    instruction_offset                 = 0
456  };
457  address instruction_address() const       { return addr_at(0); }
458  address next_instruction_address() const  { return addr_at(instruction_size); }
459  address return_address() const            { return addr_at(return_address_offset); }
460
461  address destination() const {
462    return (address) data64(addr_at(0), long_at(jmpl_offset));
463  }
464  address displacement_address() const      { return addr_at(displacement_offset); }
465  void set_destination(address dest);
466
467  bool destination_is_compiled_verified_entry_point();
468
469  void  verify();
470  void  print();
471
472  // unit test stuff
473  static void  test();
474
475  // Creation
476  friend inline NativeFarCall* nativeFarCall_at(address instr) {
477    NativeFarCall* call = (NativeFarCall*)instr;
478    #ifdef ASSERT
479      call->verify();
480    #endif
481    return call;
482  }
483
484  friend inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL) {
485    Unimplemented();
486    NativeFarCall* call = (NativeFarCall*)instr;
487    return call;
488  }
489
490  friend NativeFarCall* nativeFarCall_before(address return_address) {
491    NativeFarCall* call = (NativeFarCall*)(return_address - return_address_offset);
492    #ifdef ASSERT
493      call->verify();
494    #endif
495    return call;
496  }
497
498  static bool is_call_at(address instr);
499
500  // MT-safe patching of a call instruction.
501  static void insert(address code_pos, address entry) {
502    (void)nativeFarCall_overwriting_at(code_pos, entry);
503  }
504  static void replace_mt_safe(address instr_addr, address code_buffer);
505};
506
507#endif // _LP64
508
509// An interface for accessing/manipulating native set_metadata imm, reg instructions.
510// (used to manipulate inlined data references, etc.)
511//      set_metadata imm, reg
512//      == sethi %hi22(imm), reg ;  add reg, %lo10(imm), reg
513class NativeMovConstReg;
514inline NativeMovConstReg* nativeMovConstReg_at(address address);
515class NativeMovConstReg: public NativeInstruction {
516 public:
517  enum Sparc_specific_constants {
518    sethi_offset           = 0,
519#ifdef _LP64
520    add_offset             = 7 * BytesPerInstWord,
521    instruction_size       = 8 * BytesPerInstWord
522#else
523    add_offset             = 4,
524    instruction_size       = 8
525#endif
526  };
527
528  address instruction_address() const       { return addr_at(0); }
529  address next_instruction_address() const  { return addr_at(instruction_size); }
530
531  // (The [set_]data accessor respects oop_type relocs also.)
532  intptr_t data() const;
533  void set_data(intptr_t x);
534
535  // report the destination register
536  Register destination() { return inv_rd(long_at(sethi_offset)); }
537
538  void  verify();
539  void  print();
540
541  // unit test stuff
542  static void test();
543
544  // Creation
545  friend inline NativeMovConstReg* nativeMovConstReg_at(address address) {
546    NativeMovConstReg* test = (NativeMovConstReg*)address;
547    #ifdef ASSERT
548      test->verify();
549    #endif
550    return test;
551  }
552
553
554  friend NativeMovConstReg* nativeMovConstReg_before(address address) {
555    NativeMovConstReg* test = (NativeMovConstReg*)(address - instruction_size);
556    #ifdef ASSERT
557      test->verify();
558    #endif
559    return test;
560  }
561
562};
563
564
565// An interface for accessing/manipulating native set_metadata imm, reg instructions.
566// (used to manipulate inlined data references, etc.)
567//      set_metadata imm, reg
568//      == sethi %hi22(imm), reg; nop; add reg, %lo10(imm), reg
569//
570// Note that it is identical to NativeMovConstReg with the exception of a nop between the
571// sethi and the add.  The nop is required to be in the delay slot of the call instruction
572// which overwrites the sethi during patching.
573class NativeMovConstRegPatching;
574inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address);class NativeMovConstRegPatching: public NativeInstruction {
575 public:
576  enum Sparc_specific_constants {
577    sethi_offset           = 0,
578#ifdef _LP64
579    nop_offset             = 7 * BytesPerInstWord,
580#else
581    nop_offset             = sethi_offset + BytesPerInstWord,
582#endif
583    add_offset             = nop_offset   + BytesPerInstWord,
584    instruction_size       = add_offset   + BytesPerInstWord
585  };
586
587  address instruction_address() const       { return addr_at(0); }
588  address next_instruction_address() const  { return addr_at(instruction_size); }
589
590  // (The [set_]data accessor respects oop_type relocs also.)
591  int data() const;
592  void  set_data(int x);
593
594  // report the destination register
595  Register destination() { return inv_rd(long_at(sethi_offset)); }
596
597  void  verify();
598  void  print();
599
600  // unit test stuff
601  static void test();
602
603  // Creation
604  friend inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
605    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)address;
606    #ifdef ASSERT
607      test->verify();
608    #endif
609    return test;
610  }
611
612
613  friend NativeMovConstRegPatching* nativeMovConstRegPatching_before(address address) {
614    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_size);
615    #ifdef ASSERT
616      test->verify();
617    #endif
618    return test;
619  }
620
621};
622
623
624// An interface for accessing/manipulating native memory ops
625//      ld* [reg + offset], reg
626//      st* reg, [reg + offset]
627//      sethi %hi(imm), reg; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
628//      sethi %hi(imm), reg; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
629// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
630//
631class NativeMovRegMem;
632inline NativeMovRegMem* nativeMovRegMem_at (address address);
633class NativeMovRegMem: public NativeInstruction {
634 public:
635  enum Sparc_specific_constants {
636    op3_mask_ld = 1 << Assembler::lduw_op3 |
637                  1 << Assembler::ldub_op3 |
638                  1 << Assembler::lduh_op3 |
639                  1 << Assembler::ldd_op3 |
640                  1 << Assembler::ldsw_op3 |
641                  1 << Assembler::ldsb_op3 |
642                  1 << Assembler::ldsh_op3 |
643                  1 << Assembler::ldx_op3,
644    op3_mask_st = 1 << Assembler::stw_op3 |
645                  1 << Assembler::stb_op3 |
646                  1 << Assembler::sth_op3 |
647                  1 << Assembler::std_op3 |
648                  1 << Assembler::stx_op3,
649    op3_ldst_int_limit = Assembler::ldf_op3,
650    op3_mask_ldf = 1 << (Assembler::ldf_op3  - op3_ldst_int_limit) |
651                   1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
652    op3_mask_stf = 1 << (Assembler::stf_op3  - op3_ldst_int_limit) |
653                   1 << (Assembler::stdf_op3 - op3_ldst_int_limit),
654
655    offset_width    = 13,
656    sethi_offset    = 0,
657#ifdef _LP64
658    add_offset      = 7 * BytesPerInstWord,
659#else
660    add_offset      = 4,
661#endif
662    ldst_offset     = add_offset + BytesPerInstWord
663  };
664  bool is_immediate() const {
665    // check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
666    int i0 = long_at(0);
667    return (is_op(i0, Assembler::ldst_op));
668  }
669
670  address instruction_address() const           { return addr_at(0); }
671  address next_instruction_address() const      {
672#ifdef _LP64
673    return addr_at(is_immediate() ? 4 : (7 * BytesPerInstWord));
674#else
675    return addr_at(is_immediate() ? 4 : 12);
676#endif
677  }
678  intptr_t   offset() const                             {
679     return is_immediate()? inv_simm(long_at(0), offset_width) :
680                            nativeMovConstReg_at(addr_at(0))->data();
681  }
682  void  set_offset(intptr_t x) {
683    if (is_immediate()) {
684      guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
685      set_long_at(0, set_simm(long_at(0), x, offset_width));
686    } else
687      nativeMovConstReg_at(addr_at(0))->set_data(x);
688  }
689
690  void  add_offset_in_bytes(intptr_t radd_offset)     {
691      set_offset (offset() + radd_offset);
692  }
693
694  void  copy_instruction_to(address new_instruction_address);
695
696  void verify();
697  void print ();
698
699  // unit test stuff
700  static void test();
701
702 private:
703  friend inline NativeMovRegMem* nativeMovRegMem_at (address address) {
704    NativeMovRegMem* test = (NativeMovRegMem*)address;
705    #ifdef ASSERT
706      test->verify();
707    #endif
708    return test;
709  }
710};
711
712
713// An interface for accessing/manipulating native memory ops
714//      ld* [reg + offset], reg
715//      st* reg, [reg + offset]
716//      sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
717//      sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
718// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
719//
720// Note that it is identical to NativeMovRegMem with the exception of a nop between the
721// sethi and the add.  The nop is required to be in the delay slot of the call instruction
722// which overwrites the sethi during patching.
723class NativeMovRegMemPatching;
724inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address);
725class NativeMovRegMemPatching: public NativeInstruction {
726 public:
727  enum Sparc_specific_constants {
728    op3_mask_ld = 1 << Assembler::lduw_op3 |
729                  1 << Assembler::ldub_op3 |
730                  1 << Assembler::lduh_op3 |
731                  1 << Assembler::ldd_op3 |
732                  1 << Assembler::ldsw_op3 |
733                  1 << Assembler::ldsb_op3 |
734                  1 << Assembler::ldsh_op3 |
735                  1 << Assembler::ldx_op3,
736    op3_mask_st = 1 << Assembler::stw_op3 |
737                  1 << Assembler::stb_op3 |
738                  1 << Assembler::sth_op3 |
739                  1 << Assembler::std_op3 |
740                  1 << Assembler::stx_op3,
741    op3_ldst_int_limit = Assembler::ldf_op3,
742    op3_mask_ldf = 1 << (Assembler::ldf_op3  - op3_ldst_int_limit) |
743                   1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
744    op3_mask_stf = 1 << (Assembler::stf_op3  - op3_ldst_int_limit) |
745                   1 << (Assembler::stdf_op3 - op3_ldst_int_limit),
746
747    offset_width    = 13,
748    sethi_offset    = 0,
749#ifdef _LP64
750    nop_offset      = 7 * BytesPerInstWord,
751#else
752    nop_offset      = 4,
753#endif
754    add_offset      = nop_offset + BytesPerInstWord,
755    ldst_offset     = add_offset + BytesPerInstWord
756  };
757  bool is_immediate() const {
758    // check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
759    int i0 = long_at(0);
760    return (is_op(i0, Assembler::ldst_op));
761  }
762
763  address instruction_address() const           { return addr_at(0); }
764  address next_instruction_address() const      {
765    return addr_at(is_immediate()? 4 : 16);
766  }
767  int   offset() const                          {
768     return is_immediate()? inv_simm(long_at(0), offset_width) :
769                            nativeMovConstRegPatching_at(addr_at(0))->data();
770  }
771  void  set_offset(int x) {
772    if (is_immediate()) {
773      guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
774      set_long_at(0, set_simm(long_at(0), x, offset_width));
775    }
776    else
777      nativeMovConstRegPatching_at(addr_at(0))->set_data(x);
778  }
779
780  void  add_offset_in_bytes(intptr_t radd_offset)     {
781      set_offset (offset() + radd_offset);
782  }
783
784  void  copy_instruction_to(address new_instruction_address);
785
786  void verify();
787  void print ();
788
789  // unit test stuff
790  static void test();
791
792 private:
793  friend inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
794    NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)address;
795    #ifdef ASSERT
796      test->verify();
797    #endif
798    return test;
799  }
800};
801
802
803// An interface for accessing/manipulating native jumps
804//      jump_to addr
805//      == sethi %hi22(addr), temp ;  jumpl reg, %lo10(addr), G0 ;  <delay>
806//      jumpl_to addr, lreg
807//      == sethi %hi22(addr), temp ;  jumpl reg, %lo10(addr), lreg ;  <delay>
808class NativeJump;
809inline NativeJump* nativeJump_at(address address);
810class NativeJump: public NativeInstruction {
811 private:
812  void guarantee_displacement(int disp, int width) {
813    guarantee(fits_in_simm(disp, width + 2), "branch displacement overflow");
814  }
815
816 public:
817  enum Sparc_specific_constants {
818    sethi_offset           = 0,
819#ifdef _LP64
820    jmpl_offset            = 7 * BytesPerInstWord,
821    instruction_size       = 9 * BytesPerInstWord  // includes delay slot
822#else
823    jmpl_offset            = 1 * BytesPerInstWord,
824    instruction_size       = 3 * BytesPerInstWord  // includes delay slot
825#endif
826  };
827
828  address instruction_address() const       { return addr_at(0); }
829  address next_instruction_address() const  { return addr_at(instruction_size); }
830
831#ifdef _LP64
832  address jump_destination() const {
833    return (address) data64(instruction_address(), long_at(jmpl_offset));
834  }
835  void set_jump_destination(address dest) {
836    set_data64_sethi( instruction_address(), (intptr_t)dest);
837    set_long_at(jmpl_offset,  set_data32_simm13( long_at(jmpl_offset),  (intptr_t)dest));
838  }
839#else
840  address jump_destination() const {
841    return (address) data32(long_at(sethi_offset), long_at(jmpl_offset));
842  }
843  void set_jump_destination(address dest) {
844    set_long_at(sethi_offset, set_data32_sethi(  long_at(sethi_offset), (intptr_t)dest));
845    set_long_at(jmpl_offset,  set_data32_simm13( long_at(jmpl_offset),  (intptr_t)dest));
846  }
847#endif
848
849  // Creation
850  friend inline NativeJump* nativeJump_at(address address) {
851    NativeJump* jump = (NativeJump*)address;
852    #ifdef ASSERT
853      jump->verify();
854    #endif
855    return jump;
856  }
857
858  void verify();
859  void print();
860
861  // Unit testing stuff
862  static void test();
863
864  // Insertion of native jump instruction
865  static void insert(address code_pos, address entry);
866  // MT-safe insertion of native jump at verified method entry
867  static void check_verified_entry_alignment(address entry, address verified_entry) {
868    // nothing to do for sparc.
869  }
870  static void patch_verified_entry(address entry, address verified_entry, address dest);
871};
872
873
874
875// Despite the name, handles only simple branches.
876class NativeGeneralJump;
877inline NativeGeneralJump* nativeGeneralJump_at(address address);
878class NativeGeneralJump: public NativeInstruction {
879 public:
880  enum Sparc_specific_constants {
881    instruction_size                   = 8
882  };
883
884  address instruction_address() const       { return addr_at(0); }
885  address jump_destination()    const       { return addr_at(0) + branch_destination_offset(long_at(0)); }
886  void set_jump_destination(address dest) {
887    int patched_instr = patch_branch_destination_offset(dest - addr_at(0), long_at(0));
888    set_long_at(0, patched_instr);
889  }
890  NativeInstruction *delay_slot_instr() { return nativeInstruction_at(addr_at(4));}
891  void fill_delay_slot(int instr) { set_long_at(4, instr);}
892  Assembler::Condition condition() {
893    int x = long_at(0);
894    return (Assembler::Condition) Assembler::inv_cond(x);
895  }
896
897  // Creation
898  friend inline NativeGeneralJump* nativeGeneralJump_at(address address) {
899    NativeGeneralJump* jump = (NativeGeneralJump*)(address);
900#ifdef ASSERT
901      jump->verify();
902#endif
903    return jump;
904  }
905
906  // Insertion of native general jump instruction
907  static void insert_unconditional(address code_pos, address entry);
908  static void replace_mt_safe(address instr_addr, address code_buffer);
909
910  void verify();
911};
912
913
914class NativeIllegalInstruction: public NativeInstruction {
915 public:
916  enum Sparc_specific_constants {
917    instruction_size            =    4
918  };
919
920  // Insert illegal opcode as specific address
921  static void insert(address code_pos);
922};
923
924#endif // CPU_SPARC_VM_NATIVEINST_SPARC_HPP
925