macroAssembler_sparc.hpp revision 13184:7903df1b0c4f
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
26#define CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
27
28#include "asm/assembler.hpp"
29#include "utilities/macros.hpp"
30
31// <sys/trap.h> promises that the system will not use traps 16-31
32#define ST_RESERVED_FOR_USER_0 0x10
33
34class BiasedLockingCounters;
35
36
37// Register aliases for parts of the system:
38
39// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
40// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
41// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
42
43// g2-g4 are scratch registers called "application globals".  Their
44// meaning is reserved to the "compilation system"--which means us!
45// They are are not supposed to be touched by ordinary C code, although
46// highly-optimized C code might steal them for temps.  They are safe
47// across thread switches, and the ABI requires that they be safe
48// across function calls.
49//
50// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
51// across func calls, and V8+ also allows g5 to be clobbered across
52// func calls.  Also, g1 and g5 can get touched while doing shared
53// library loading.
54//
55// We must not touch g7 (it is the thread-self register) and g6 is
56// reserved for certain tools.  g0, of course, is always zero.
57//
58// (Sources:  SunSoft Compilers Group, thread library engineers.)
59
60// %%%% The interpreter should be revisited to reduce global scratch regs.
61
62// This global always holds the current JavaThread pointer:
63
64REGISTER_DECLARATION(Register, G2_thread , G2);
65REGISTER_DECLARATION(Register, G6_heapbase , G6);
66
67// The following globals are part of the Java calling convention:
68
69REGISTER_DECLARATION(Register, G5_method             , G5);
70REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
71REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
72
73// The following globals are used for the new C1 & interpreter calling convention:
74REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
75
76// This local is used to preserve G2_thread in the interpreter and in stubs:
77REGISTER_DECLARATION(Register, L7_thread_cache , L7);
78
79// These globals are used as scratch registers in the interpreter:
80
81REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
82REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
83REGISTER_DECLARATION(Register, G3_scratch    , G3);
84REGISTER_DECLARATION(Register, G4_scratch    , G4);
85
86// These globals are used as short-lived scratch registers in the compiler:
87
88REGISTER_DECLARATION(Register, Gtemp  , G5);
89
90// JSR 292 fixed register usages:
91REGISTER_DECLARATION(Register, G5_method_type        , G5);
92REGISTER_DECLARATION(Register, G3_method_handle      , G3);
93REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
94
95// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
96// because a single patchable "set" instruction (NativeMovConstReg,
97// or NativeMovConstPatching for compiler1) instruction
98// serves to set up either quantity, depending on whether the compiled
99// call site is an inline cache or is megamorphic.  See the function
100// CompiledIC::set_to_megamorphic.
101//
102// If a inline cache targets an interpreted method, then the
103// G5 register will be used twice during the call.  First,
104// the call site will be patched to load a compiledICHolder
105// into G5. (This is an ordered pair of ic_klass, method.)
106// The c2i adapter will first check the ic_klass, then load
107// G5_method with the method part of the pair just before
108// jumping into the interpreter.
109//
110// Note that G5_method is only the method-self for the interpreter,
111// and is logically unrelated to G5_megamorphic_method.
112//
113// Invariants on G2_thread (the JavaThread pointer):
114//  - it should not be used for any other purpose anywhere
115//  - it must be re-initialized by StubRoutines::call_stub()
116//  - it must be preserved around every use of call_VM
117
118// We can consider using g2/g3/g4 to cache more values than the
119// JavaThread, such as the card-marking base or perhaps pointers into
120// Eden.  It's something of a waste to use them as scratch temporaries,
121// since they are not supposed to be volatile.  (Of course, if we find
122// that Java doesn't benefit from application globals, then we can just
123// use them as ordinary temporaries.)
124//
125// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
126// it makes sense to use them routinely for procedure linkage,
127// whenever the On registers are not applicable.  Examples:  G5_method,
128// G5_inline_cache_klass, and a double handful of miscellaneous compiler
129// stubs.  This means that compiler stubs, etc., should be kept to a
130// maximum of two or three G-register arguments.
131
132
133// stub frames
134
135REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
136
137// Interpreter frames
138
139REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
140REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
141REGISTER_DECLARATION(Register, Lmethod          , L2);
142REGISTER_DECLARATION(Register, Llocals          , L3);
143REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
144                                                       // must match Llocals in asm interpreter
145REGISTER_DECLARATION(Register, Lmonitors        , L4);
146REGISTER_DECLARATION(Register, Lbyte_code       , L5);
147// When calling out from the interpreter we record SP so that we can remove any extra stack
148// space allocated during adapter transitions. This register is only live from the point
149// of the call until we return.
150REGISTER_DECLARATION(Register, Llast_SP         , L5);
151REGISTER_DECLARATION(Register, Lscratch         , L5);
152REGISTER_DECLARATION(Register, Lscratch2        , L6);
153REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
154
155REGISTER_DECLARATION(Register, O5_savedSP       , O5);
156REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
157                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
158                                                       // is added and removed as needed in the frame code.
159REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
160REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
161
162// NOTE: Lscratch2 and LcpoolCache point to the same registers in
163//       the interpreter code. If Lscratch2 needs to be used for some
164//       purpose than LcpoolCache should be restore after that for
165//       the interpreter to work right
166// (These assignments must be compatible with L7_thread_cache; see above.)
167
168// Lbcp points into the middle of the method object.
169
170// Exception processing
171// These registers are passed into exception handlers.
172// All exception handlers require the exception object being thrown.
173// In addition, an nmethod's exception handler must be passed
174// the address of the call site within the nmethod, to allow
175// proper selection of the applicable catch block.
176// (Interpreter frames use their own bcp() for this purpose.)
177//
178// The Oissuing_pc value is not always needed.  When jumping to a
179// handler that is known to be interpreted, the Oissuing_pc value can be
180// omitted.  An actual catch block in compiled code receives (from its
181// nmethod's exception handler) the thrown exception in the Oexception,
182// but it doesn't need the Oissuing_pc.
183//
184// If an exception handler (either interpreted or compiled)
185// discovers there is no applicable catch block, it updates
186// the Oissuing_pc to the continuation PC of its own caller,
187// pops back to that caller's stack frame, and executes that
188// caller's exception handler.  Obviously, this process will
189// iterate until the control stack is popped back to a method
190// containing an applicable catch block.  A key invariant is
191// that the Oissuing_pc value is always a value local to
192// the method whose exception handler is currently executing.
193//
194// Note:  The issuing PC value is __not__ a raw return address (I7 value).
195// It is a "return pc", the address __following__ the call.
196// Raw return addresses are converted to issuing PCs by frame::pc(),
197// or by stubs.  Issuing PCs can be used directly with PC range tables.
198//
199REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
200REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
201
202
203// These must occur after the declarations above
204#ifndef DONT_USE_REGISTER_DEFINES
205
206#define Gthread             AS_REGISTER(Register, Gthread)
207#define Gmethod             AS_REGISTER(Register, Gmethod)
208#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
209#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
210#define Gargs               AS_REGISTER(Register, Gargs)
211#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
212#define Gframe_size         AS_REGISTER(Register, Gframe_size)
213#define Gtemp               AS_REGISTER(Register, Gtemp)
214
215#define Lesp                AS_REGISTER(Register, Lesp)
216#define Lbcp                AS_REGISTER(Register, Lbcp)
217#define Lmethod             AS_REGISTER(Register, Lmethod)
218#define Llocals             AS_REGISTER(Register, Llocals)
219#define Lmonitors           AS_REGISTER(Register, Lmonitors)
220#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
221#define Lscratch            AS_REGISTER(Register, Lscratch)
222#define Lscratch2           AS_REGISTER(Register, Lscratch2)
223#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
224
225#define Lentry_args         AS_REGISTER(Register, Lentry_args)
226#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
227#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
228#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
229#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
230
231#define Oexception          AS_REGISTER(Register, Oexception)
232#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
233
234#endif
235
236
237// Address is an abstraction used to represent a memory location.
238//
239// Note: A register location is represented via a Register, not
240//       via an address for efficiency & simplicity reasons.
241
242class Address VALUE_OBJ_CLASS_SPEC {
243 private:
244  Register           _base;           // Base register.
245  RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
246  RelocationHolder   _rspec;
247
248 public:
249  Address() : _base(noreg), _index_or_disp(noreg) {}
250
251  Address(Register base, RegisterOrConstant index_or_disp)
252    : _base(base),
253      _index_or_disp(index_or_disp) {
254  }
255
256  Address(Register base, Register index)
257    : _base(base),
258      _index_or_disp(index) {
259  }
260
261  Address(Register base, int disp)
262    : _base(base),
263      _index_or_disp(disp) {
264  }
265
266#ifdef ASSERT
267  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
268  Address(Register base, ByteSize disp)
269    : _base(base),
270      _index_or_disp(in_bytes(disp)) {
271  }
272#endif
273
274  // accessors
275  Register base()             const { return _base; }
276  Register index()            const { return _index_or_disp.as_register(); }
277  int      disp()             const { return _index_or_disp.as_constant(); }
278
279  bool     has_index()        const { return _index_or_disp.is_register(); }
280  bool     has_disp()         const { return _index_or_disp.is_constant(); }
281
282  bool     uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
283
284  const relocInfo::relocType rtype() { return _rspec.type(); }
285  const RelocationHolder&    rspec() { return _rspec; }
286
287  RelocationHolder rspec(int offset) const {
288    return offset == 0 ? _rspec : _rspec.plus(offset);
289  }
290
291  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
292
293  Address plus_disp(int plusdisp) const {     // bump disp by a small amount
294    assert(_index_or_disp.is_constant(), "must have a displacement");
295    Address a(base(), disp() + plusdisp);
296    return a;
297  }
298  bool is_same_address(Address a) const {
299    // disregard _rspec
300    return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
301  }
302
303  Address after_save() const {
304    Address a = (*this);
305    a._base = a._base->after_save();
306    return a;
307  }
308
309  Address after_restore() const {
310    Address a = (*this);
311    a._base = a._base->after_restore();
312    return a;
313  }
314
315  // Convert the raw encoding form into the form expected by the
316  // constructor for Address.
317  static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
318
319  friend class Assembler;
320};
321
322
323class AddressLiteral VALUE_OBJ_CLASS_SPEC {
324 private:
325  address          _address;
326  RelocationHolder _rspec;
327
328  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
329    switch (rtype) {
330    case relocInfo::external_word_type:
331      return external_word_Relocation::spec(addr);
332    case relocInfo::internal_word_type:
333      return internal_word_Relocation::spec(addr);
334    case relocInfo::opt_virtual_call_type:
335      return opt_virtual_call_Relocation::spec();
336    case relocInfo::static_call_type:
337      return static_call_Relocation::spec();
338    case relocInfo::runtime_call_type:
339      return runtime_call_Relocation::spec();
340    case relocInfo::none:
341      return RelocationHolder();
342    default:
343      ShouldNotReachHere();
344      return RelocationHolder();
345    }
346  }
347
348 protected:
349  // creation
350  AddressLiteral() : _address(NULL), _rspec(NULL) {}
351
352 public:
353  AddressLiteral(address addr, RelocationHolder const& rspec)
354    : _address(addr),
355      _rspec(rspec) {}
356
357  // Some constructors to avoid casting at the call site.
358  AddressLiteral(jobject obj, RelocationHolder const& rspec)
359    : _address((address) obj),
360      _rspec(rspec) {}
361
362  AddressLiteral(intptr_t value, RelocationHolder const& rspec)
363    : _address((address) value),
364      _rspec(rspec) {}
365
366  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
367    : _address((address) addr),
368    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
369
370  // Some constructors to avoid casting at the call site.
371  AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
372    : _address((address) addr),
373    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
374
375  AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
376    : _address((address) addr),
377      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
378
379  AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
380    : _address((address) addr),
381      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
382
383  AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
384    : _address((address) addr),
385      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
386
387  AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
388    : _address((address) addr),
389      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
390
391  AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
392    : _address((address) addr),
393      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
394
395  // 32-bit complains about a multiple declaration for int*.
396  AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
397    : _address((address) addr),
398      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
399
400  AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
401    : _address((address) addr),
402      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
403
404  AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
405    : _address((address) addr),
406      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
407
408  AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
409    : _address((address) addr),
410      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
411
412  AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
413    : _address((address) addr),
414      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
415
416  intptr_t value() const { return (intptr_t) _address; }
417  int      low10() const;
418
419  const relocInfo::relocType rtype() const { return _rspec.type(); }
420  const RelocationHolder&    rspec() const { return _rspec; }
421
422  RelocationHolder rspec(int offset) const {
423    return offset == 0 ? _rspec : _rspec.plus(offset);
424  }
425};
426
427// Convenience classes
428class ExternalAddress: public AddressLiteral {
429 private:
430  static relocInfo::relocType reloc_for_target(address target) {
431    // Sometimes ExternalAddress is used for values which aren't
432    // exactly addresses, like the card table base.
433    // external_word_type can't be used for values in the first page
434    // so just skip the reloc in that case.
435    return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
436  }
437
438 public:
439  ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
440  ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
441};
442
443inline Address RegisterImpl::address_in_saved_window() const {
444   return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
445}
446
447
448
449// Argument is an abstraction used to represent an outgoing
450// actual argument or an incoming formal parameter, whether
451// it resides in memory or in a register, in a manner consistent
452// with the SPARC Application Binary Interface, or ABI.  This is
453// often referred to as the native or C calling convention.
454
455class Argument VALUE_OBJ_CLASS_SPEC {
456 private:
457  int _number;
458  bool _is_in;
459
460 public:
461  enum {
462    n_register_parameters = 6,          // only 6 registers may contain integer parameters
463    n_float_register_parameters = 16    // Can have up to 16 floating registers
464  };
465
466  // creation
467  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
468
469  int  number() const  { return _number;  }
470  bool is_in()  const  { return _is_in;   }
471  bool is_out() const  { return !is_in(); }
472
473  Argument successor() const  { return Argument(number() + 1, is_in()); }
474  Argument as_in()     const  { return Argument(number(), true ); }
475  Argument as_out()    const  { return Argument(number(), false); }
476
477  // locating register-based arguments:
478  bool is_register() const { return _number < n_register_parameters; }
479
480  // locating Floating Point register-based arguments:
481  bool is_float_register() const { return _number < n_float_register_parameters; }
482
483  FloatRegister as_float_register() const {
484    assert(is_float_register(), "must be a register argument");
485    return as_FloatRegister(( number() *2 ) + 1);
486  }
487  FloatRegister as_double_register() const {
488    assert(is_float_register(), "must be a register argument");
489    return as_FloatRegister(( number() *2 ));
490  }
491
492  Register as_register() const {
493    assert(is_register(), "must be a register argument");
494    return is_in() ? as_iRegister(number()) : as_oRegister(number());
495  }
496
497  // locating memory-based arguments
498  Address as_address() const {
499    assert(!is_register(), "must be a memory argument");
500    return address_in_frame();
501  }
502
503  // When applied to a register-based argument, give the corresponding address
504  // into the 6-word area "into which callee may store register arguments"
505  // (This is a different place than the corresponding register-save area location.)
506  Address address_in_frame() const;
507
508  // debugging
509  const char* name() const;
510
511  friend class Assembler;
512};
513
514
515class RegistersForDebugging : public StackObj {
516 public:
517  intptr_t i[8], l[8], o[8], g[8];
518  float    f[32];
519  double   d[32];
520
521  void print(outputStream* s);
522
523  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
524  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
525  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
526  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
527  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
528  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
529
530  // gen asm code to save regs
531  static void save_registers(MacroAssembler* a);
532
533  // restore global registers in case C code disturbed them
534  static void restore_registers(MacroAssembler* a, Register r);
535};
536
537
538// MacroAssembler extends Assembler by a few frequently used macros.
539//
540// Most of the standard SPARC synthetic ops are defined here.
541// Instructions for which a 'better' code sequence exists depending
542// on arguments should also go in here.
543
544#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
545#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
546#define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
547#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
548
549
550class MacroAssembler : public Assembler {
551  // code patchers need various routines like inv_wdisp()
552  friend class NativeInstruction;
553  friend class NativeGeneralJump;
554  friend class Relocation;
555  friend class Label;
556
557 protected:
558  static int  patched_branch(int dest_pos, int inst, int inst_pos);
559  static int  branch_destination(int inst, int pos);
560
561  // Support for VM calls
562  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
563  // may customize this version by overriding it for its purposes (e.g., to save/restore
564  // additional registers when doing a VM call).
565  virtual void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
566
567  //
568  // It is imperative that all calls into the VM are handled via the call_VM macros.
569  // They make sure that the stack linkage is setup correctly. call_VM's correspond
570  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
571  //
572  // This is the base routine called by the different versions of call_VM. The interpreter
573  // may customize this version by overriding it for its purposes (e.g., to save/restore
574  // additional registers when doing a VM call).
575  //
576  // A non-volatile java_thread_cache register should be specified so
577  // that the G2_thread value can be preserved across the call.
578  // (If java_thread_cache is noreg, then a slow get_thread call
579  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
580  // thread.
581  //
582  // If no last_java_sp is specified (noreg) than SP will be used instead.
583
584  virtual void call_VM_base(
585    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
586    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
587    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
588    address         entry_point,            // the entry point
589    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
590    bool            check_exception=true    // flag which indicates if exception should be checked
591  );
592
593 public:
594  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
595
596  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
597  // The implementation is only non-empty for the InterpreterMacroAssembler,
598  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
599  virtual void check_and_handle_popframe(Register scratch_reg);
600  virtual void check_and_handle_earlyret(Register scratch_reg);
601
602  // Support for NULL-checks
603  //
604  // Generates code that causes a NULL OS exception if the content of reg is NULL.
605  // If the accessed location is M[reg + offset] and the offset is known, provide the
606  // offset.  No explicit code generation is needed if the offset is within a certain
607  // range (0 <= offset <= page_size).
608  //
609  // %%%%%% Currently not done for SPARC
610
611  void null_check(Register reg, int offset = -1);
612  static bool needs_explicit_null_check(intptr_t offset);
613
614  // support for delayed instructions
615  MacroAssembler* delayed() { Assembler::delayed();  return this; }
616
617  // branches that use right instruction for v8 vs. v9
618  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
619  inline void br( Condition c, bool a, Predict p, Label& L );
620
621  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
622  inline void fb( Condition c, bool a, Predict p, Label& L );
623
624  // compares register with zero (32 bit) and branches (V9 and V8 instructions)
625  void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
626  // Compares a pointer register with zero and branches on (not)null.
627  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
628  void br_null   ( Register s1, bool a, Predict p, Label& L );
629  void br_notnull( Register s1, bool a, Predict p, Label& L );
630
631  //
632  // Compare registers and branch with nop in delay slot or cbcond without delay slot.
633  //
634  // ATTENTION: use these instructions with caution because cbcond instruction
635  //            has very short distance: 512 instructions (2Kbyte).
636
637  // Compare integer (32 bit) values (icc only).
638  void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
639  void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
640  // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
641  void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
642  void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
643
644  // Short branch version for compares a pointer pwith zero.
645  void br_null_short   ( Register s1, Predict p, Label& L );
646  void br_notnull_short( Register s1, Predict p, Label& L );
647
648  // unconditional short branch
649  void ba_short(Label& L);
650
651  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
652  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
653
654  // Branch that tests xcc in LP64 and icc in !LP64
655  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
656  inline void brx( Condition c, bool a, Predict p, Label& L );
657
658  // unconditional branch
659  inline void ba( Label& L );
660
661  // Branch that tests fp condition codes
662  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
663  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
664
665  // get PC the best way
666  inline int get_pc( Register d );
667
668  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
669  inline void cmp(  Register s1, Register s2 );
670  inline void cmp(  Register s1, int simm13a );
671
672  inline void jmp( Register s1, Register s2 );
673  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
674
675  // Check if the call target is out of wdisp30 range (relative to the code cache)
676  static inline bool is_far_target(address d);
677  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
678  inline void call( address d,  RelocationHolder const& rspec);
679
680  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
681  inline void call( Label& L,  RelocationHolder const& rspec);
682
683  inline void callr( Register s1, Register s2 );
684  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
685
686  // Emits nothing on V8
687  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
688  inline void iprefetch( Label& L);
689
690  inline void tst( Register s );
691
692  inline void ret(  bool trace = false );
693  inline void retl( bool trace = false );
694
695  // Required platform-specific helpers for Label::patch_instructions.
696  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
697  void pd_patch_instruction(address branch, address target);
698
699  // sethi Macro handles optimizations and relocations
700private:
701  void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
702public:
703  void sethi(const AddressLiteral& addrlit, Register d);
704  void patchable_sethi(const AddressLiteral& addrlit, Register d);
705
706  // compute the number of instructions for a sethi/set
707  static int  insts_for_sethi( address a, bool worst_case = false );
708  static int  worst_case_insts_for_set();
709
710  // set may be either setsw or setuw (high 32 bits may be zero or sign)
711private:
712  void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
713  static int insts_for_internal_set(intptr_t value);
714public:
715  void set(const AddressLiteral& addrlit, Register d);
716  void set(intptr_t value, Register d);
717  void set(address addr, Register d, RelocationHolder const& rspec);
718  static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
719
720  void patchable_set(const AddressLiteral& addrlit, Register d);
721  void patchable_set(intptr_t value, Register d);
722  void set64(jlong value, Register d, Register tmp);
723  static int insts_for_set64(jlong value);
724
725  // sign-extend 32 to 64
726  inline void signx( Register s, Register d );
727  inline void signx( Register d );
728
729  inline void not1( Register s, Register d );
730  inline void not1( Register d );
731
732  inline void neg( Register s, Register d );
733  inline void neg( Register d );
734
735  inline void cas(  Register s1, Register s2, Register d);
736  inline void casx( Register s1, Register s2, Register d);
737  // Functions for isolating 64 bit atomic swaps for LP64
738  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
739  inline void cas_ptr(  Register s1, Register s2, Register d);
740
741  // Functions for isolating 64 bit shifts for LP64
742  inline void sll_ptr( Register s1, Register s2, Register d );
743  inline void sll_ptr( Register s1, int imm6a,   Register d );
744  inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
745  inline void srl_ptr( Register s1, Register s2, Register d );
746  inline void srl_ptr( Register s1, int imm6a,   Register d );
747
748  // little-endian
749  inline void casl(  Register s1, Register s2, Register d);
750  inline void casxl( Register s1, Register s2, Register d);
751
752  inline void inc(   Register d,  int const13 = 1 );
753  inline void inccc( Register d,  int const13 = 1 );
754
755  inline void dec(   Register d,  int const13 = 1 );
756  inline void deccc( Register d,  int const13 = 1 );
757
758  using Assembler::add;
759  inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype);
760  inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
761  inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
762  inline void add(const Address& a, Register d, int offset = 0);
763
764  using Assembler::andn;
765  inline void andn(  Register s1, RegisterOrConstant s2, Register d);
766
767  inline void btst( Register s1,  Register s2 );
768  inline void btst( int simm13a,  Register s );
769
770  inline void bset( Register s1,  Register s2 );
771  inline void bset( int simm13a,  Register s );
772
773  inline void bclr( Register s1,  Register s2 );
774  inline void bclr( int simm13a,  Register s );
775
776  inline void btog( Register s1,  Register s2 );
777  inline void btog( int simm13a,  Register s );
778
779  inline void clr( Register d );
780
781  inline void clrb( Register s1, Register s2);
782  inline void clrh( Register s1, Register s2);
783  inline void clr(  Register s1, Register s2);
784  inline void clrx( Register s1, Register s2);
785
786  inline void clrb( Register s1, int simm13a);
787  inline void clrh( Register s1, int simm13a);
788  inline void clr(  Register s1, int simm13a);
789  inline void clrx( Register s1, int simm13a);
790
791  // copy & clear upper word
792  inline void clruw( Register s, Register d );
793  // clear upper word
794  inline void clruwu( Register d );
795
796  using Assembler::ldsb;
797  using Assembler::ldsh;
798  using Assembler::ldsw;
799  using Assembler::ldub;
800  using Assembler::lduh;
801  using Assembler::lduw;
802  using Assembler::ldx;
803  using Assembler::ldd;
804
805#ifdef ASSERT
806  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
807  inline void ld(Register s1, ByteSize simm13a, Register d);
808#endif
809
810  inline void ld(Register s1, Register s2, Register d);
811  inline void ld(Register s1, int simm13a, Register d);
812
813  inline void ldsb(const Address& a, Register d, int offset = 0);
814  inline void ldsh(const Address& a, Register d, int offset = 0);
815  inline void ldsw(const Address& a, Register d, int offset = 0);
816  inline void ldub(const Address& a, Register d, int offset = 0);
817  inline void lduh(const Address& a, Register d, int offset = 0);
818  inline void lduw(const Address& a, Register d, int offset = 0);
819  inline void ldx( const Address& a, Register d, int offset = 0);
820  inline void ld(  const Address& a, Register d, int offset = 0);
821  inline void ldd( const Address& a, Register d, int offset = 0);
822
823  inline void ldub(Register s1, RegisterOrConstant s2, Register d );
824  inline void ldsb(Register s1, RegisterOrConstant s2, Register d );
825  inline void lduh(Register s1, RegisterOrConstant s2, Register d );
826  inline void ldsh(Register s1, RegisterOrConstant s2, Register d );
827  inline void lduw(Register s1, RegisterOrConstant s2, Register d );
828  inline void ldsw(Register s1, RegisterOrConstant s2, Register d );
829  inline void ldx( Register s1, RegisterOrConstant s2, Register d );
830  inline void ld(  Register s1, RegisterOrConstant s2, Register d );
831  inline void ldd( Register s1, RegisterOrConstant s2, Register d );
832
833  using Assembler::ldf;
834  inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
835  inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
836
837  // little-endian
838  inline void lduwl(Register s1, Register s2, Register d);
839  inline void ldswl(Register s1, Register s2, Register d);
840  inline void ldxl( Register s1, Register s2, Register d);
841  inline void ldfl(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
842
843  // membar psuedo instruction.  takes into account target memory model.
844  inline void membar( Assembler::Membar_mask_bits const7a );
845
846  // returns if membar generates anything.
847  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
848
849  // mov pseudo instructions
850  inline void mov( Register s,  Register d);
851
852  inline void mov_or_nop( Register s,  Register d);
853
854  inline void mov( int simm13a, Register d);
855
856  using Assembler::prefetch;
857  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
858
859  using Assembler::stb;
860  using Assembler::sth;
861  using Assembler::stw;
862  using Assembler::stx;
863  using Assembler::std;
864
865#ifdef ASSERT
866  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
867  inline void st(Register d, Register s1, ByteSize simm13a);
868#endif
869
870  inline void st(Register d, Register s1, Register s2);
871  inline void st(Register d, Register s1, int simm13a);
872
873  inline void stb(Register d, const Address& a, int offset = 0 );
874  inline void sth(Register d, const Address& a, int offset = 0 );
875  inline void stw(Register d, const Address& a, int offset = 0 );
876  inline void stx(Register d, const Address& a, int offset = 0 );
877  inline void st( Register d, const Address& a, int offset = 0 );
878  inline void std(Register d, const Address& a, int offset = 0 );
879
880  inline void stb(Register d, Register s1, RegisterOrConstant s2 );
881  inline void sth(Register d, Register s1, RegisterOrConstant s2 );
882  inline void stw(Register d, Register s1, RegisterOrConstant s2 );
883  inline void stx(Register d, Register s1, RegisterOrConstant s2 );
884  inline void std(Register d, Register s1, RegisterOrConstant s2 );
885  inline void st( Register d, Register s1, RegisterOrConstant s2 );
886
887  using Assembler::stf;
888  inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
889  inline void stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
890
891  // Note: offset is added to s2.
892  using Assembler::sub;
893  inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
894
895  using Assembler::swap;
896  inline void swap(const Address& a, Register d, int offset = 0);
897
898  // address pseudos: make these names unlike instruction names to avoid confusion
899  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
900  inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
901  inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
902  inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
903  inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
904  inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
905  inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
906  inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
907  inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
908
909  // ring buffer traceable jumps
910
911  void jmp2( Register r1, Register r2, const char* file, int line );
912  void jmp ( Register r1, int offset,  const char* file, int line );
913
914  void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
915  void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
916
917
918  // argument pseudos:
919
920  inline void load_argument( Argument& a, Register  d );
921  inline void store_argument( Register s, Argument& a );
922  inline void store_ptr_argument( Register s, Argument& a );
923  inline void store_float_argument( FloatRegister s, Argument& a );
924  inline void store_double_argument( FloatRegister s, Argument& a );
925  inline void store_long_argument( Register s, Argument& a );
926
927  // handy macros:
928
929  inline void round_to( Register r, int modulus );
930
931  // --------------------------------------------------
932
933  // Functions for isolating 64 bit loads for LP64
934  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
935  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
936  inline void ld_ptr(Register s1, Register s2, Register d);
937  inline void ld_ptr(Register s1, int simm13a, Register d);
938  inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
939  inline void ld_ptr(const Address& a, Register d, int offset = 0);
940  inline void st_ptr(Register d, Register s1, Register s2);
941  inline void st_ptr(Register d, Register s1, int simm13a);
942  inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
943  inline void st_ptr(Register d, const Address& a, int offset = 0);
944
945#ifdef ASSERT
946  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
947  inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
948  inline void st_ptr(Register d, Register s1, ByteSize simm13a);
949#endif
950
951  // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
952  // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
953  inline void ld_long(Register s1, Register s2, Register d);
954  inline void ld_long(Register s1, int simm13a, Register d);
955  inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
956  inline void ld_long(const Address& a, Register d, int offset = 0);
957  inline void st_long(Register d, Register s1, Register s2);
958  inline void st_long(Register d, Register s1, int simm13a);
959  inline void st_long(Register d, Register s1, RegisterOrConstant s2);
960  inline void st_long(Register d, const Address& a, int offset = 0);
961
962  // Helpers for address formation.
963  // - They emit only a move if s2 is a constant zero.
964  // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
965  // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
966  RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
967  RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
968  RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
969
970  RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
971    if (is_simm13(src.constant_or_zero()))
972      return src;               // register or short constant
973    guarantee(temp != noreg, "constant offset overflow");
974    set(src.as_constant(), temp);
975    return temp;
976  }
977
978  // --------------------------------------------------
979
980 public:
981  // traps as per trap.h (SPARC ABI?)
982
983  void breakpoint_trap();
984  void breakpoint_trap(Condition c, CC cc);
985
986  // Support for serializing memory accesses between threads
987  void serialize_memory(Register thread, Register tmp1, Register tmp2);
988
989  // Stack frame creation/removal
990  void enter();
991  void leave();
992
993  // Manipulation of C++ bools
994  // These are idioms to flag the need for care with accessing bools but on
995  // this platform we assume byte size
996
997  inline void stbool(Register d, const Address& a);
998  inline void ldbool(const Address& a, Register d);
999  inline void movbool( bool boolconst, Register d);
1000
1001  void load_mirror(Register mirror, Register method);
1002
1003  // klass oop manipulations if compressed
1004  void load_klass(Register src_oop, Register klass);
1005  void store_klass(Register klass, Register dst_oop);
1006  void store_klass_gap(Register s, Register dst_oop);
1007
1008   // oop manipulations
1009  void load_heap_oop(const Address& s, Register d);
1010  void load_heap_oop(Register s1, Register s2, Register d);
1011  void load_heap_oop(Register s1, int simm13a, Register d);
1012  void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
1013  void store_heap_oop(Register d, Register s1, Register s2);
1014  void store_heap_oop(Register d, Register s1, int simm13a);
1015  void store_heap_oop(Register d, const Address& a, int offset = 0);
1016
1017  void encode_heap_oop(Register src, Register dst);
1018  void encode_heap_oop(Register r) {
1019    encode_heap_oop(r, r);
1020  }
1021  void decode_heap_oop(Register src, Register dst);
1022  void decode_heap_oop(Register r) {
1023    decode_heap_oop(r, r);
1024  }
1025  void encode_heap_oop_not_null(Register r);
1026  void decode_heap_oop_not_null(Register r);
1027  void encode_heap_oop_not_null(Register src, Register dst);
1028  void decode_heap_oop_not_null(Register src, Register dst);
1029
1030  void encode_klass_not_null(Register r);
1031  void decode_klass_not_null(Register r);
1032  void encode_klass_not_null(Register src, Register dst);
1033  void decode_klass_not_null(Register src, Register dst);
1034
1035  // Support for managing the JavaThread pointer (i.e.; the reference to
1036  // thread-local information).
1037  void get_thread();                                // load G2_thread
1038  void verify_thread();                             // verify G2_thread contents
1039  void save_thread   (const Register threache); // save to cache
1040  void restore_thread(const Register thread_cache); // restore from cache
1041
1042  // Support for last Java frame (but use call_VM instead where possible)
1043  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
1044  void reset_last_Java_frame(void);
1045
1046  // Call into the VM.
1047  // Passes the thread pointer (in O0) as a prepended argument.
1048  // Makes sure oop return values are visible to the GC.
1049  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1050  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
1051  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1052  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1053
1054  // these overloadings are not presently used on SPARC:
1055  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1056  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
1057  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1058  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1059
1060  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
1061  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
1062  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
1063  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
1064
1065  void get_vm_result  (Register oop_result);
1066  void get_vm_result_2(Register metadata_result);
1067
1068  // vm result is currently getting hijacked to for oop preservation
1069  void set_vm_result(Register oop_result);
1070
1071  // Emit the CompiledIC call idiom
1072  void ic_call(address entry, bool emit_delay = true, jint method_index = 0);
1073
1074  // if call_VM_base was called with check_exceptions=false, then call
1075  // check_and_forward_exception to handle exceptions when it is safe
1076  void check_and_forward_exception(Register scratch_reg);
1077
1078  // Write to card table for - register is destroyed afterwards.
1079  void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
1080
1081  void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
1082
1083#if INCLUDE_ALL_GCS
1084  // General G1 pre-barrier generator.
1085  void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
1086
1087  // General G1 post-barrier generator
1088  void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
1089#endif // INCLUDE_ALL_GCS
1090
1091  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1092  void push_fTOS();
1093
1094  // pops double TOS element from CPU stack and pushes on FPU stack
1095  void pop_fTOS();
1096
1097  void empty_FPU_stack();
1098
1099  void push_IU_state();
1100  void pop_IU_state();
1101
1102  void push_FPU_state();
1103  void pop_FPU_state();
1104
1105  void push_CPU_state();
1106  void pop_CPU_state();
1107
1108  // Returns the byte size of the instructions generated by decode_klass_not_null().
1109  static int instr_size_for_decode_klass_not_null();
1110
1111  // if heap base register is used - reinit it with the correct value
1112  void reinit_heapbase();
1113
1114  // Debugging
1115  void _verify_oop(Register reg, const char * msg, const char * file, int line);
1116  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
1117
1118  // TODO: verify_method and klass metadata (compare against vptr?)
1119  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1120  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1121
1122#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
1123#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
1124#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1125#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1126
1127        // only if +VerifyOops
1128  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1129        // only if +VerifyFPU
1130  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
1131  void warn(const char* msg);                          // prints msg, but don't stop
1132  void untested(const char* what = "");
1133  void unimplemented(const char* what = "");
1134  void should_not_reach_here()                   { stop("should not reach here"); }
1135  void print_CPU_state();
1136
1137  // oops in code
1138  AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
1139  AddressLiteral constant_oop_address(jobject obj);                          // find_index
1140  inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
1141  inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
1142  inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
1143
1144  // metadata in code that we have to keep track of
1145  AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
1146  AddressLiteral constant_metadata_address(Metadata* obj); // find_index
1147  inline void    set_metadata             (Metadata* obj, Register d);              // uses allocate_metadata_address
1148  inline void    set_metadata_constant    (Metadata* obj, Register d);              // uses constant_metadata_address
1149  inline void    set_metadata             (const AddressLiteral& obj_addr, Register d); // same as load_address
1150
1151  void set_narrow_oop( jobject obj, Register d );
1152  void set_narrow_klass( Klass* k, Register d );
1153
1154  // nop padding
1155  void align(int modulus);
1156
1157  // declare a safepoint
1158  void safepoint();
1159
1160  // factor out part of stop into subroutine to save space
1161  void stop_subroutine();
1162  // factor out part of verify_oop into subroutine to save space
1163  void verify_oop_subroutine();
1164
1165  // side-door communication with signalHandler in os_solaris.cpp
1166  static address _verify_oop_implicit_branch[3];
1167
1168  int total_frame_size_in_bytes(int extraWords);
1169
1170  // used when extraWords known statically
1171  void save_frame(int extraWords = 0);
1172  void save_frame_c1(int size_in_bytes);
1173  // make a frame, and simultaneously pass up one or two register value
1174  // into the new register window
1175  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
1176
1177  // give no. (outgoing) params, calc # of words will need on frame
1178  void calc_mem_param_words(Register Rparam_words, Register Rresult);
1179
1180  // used to calculate frame size dynamically
1181  // result is in bytes and must be negated for save inst
1182  void calc_frame_size(Register extraWords, Register resultReg);
1183
1184  // calc and also save
1185  void calc_frame_size_and_save(Register extraWords, Register resultReg);
1186
1187  static void debug(char* msg, RegistersForDebugging* outWindow);
1188
1189  // implementations of bytecodes used by both interpreter and compiler
1190
1191  void lcmp( Register Ra_hi, Register Ra_low,
1192             Register Rb_hi, Register Rb_low,
1193             Register Rresult);
1194
1195  void lneg( Register Rhi, Register Rlow );
1196
1197  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
1198              Register Rout_high, Register Rout_low, Register Rtemp );
1199
1200  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
1201              Register Rout_high, Register Rout_low, Register Rtemp );
1202
1203  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
1204              Register Rout_high, Register Rout_low, Register Rtemp );
1205
1206  void lcmp( Register Ra, Register Rb, Register Rresult);
1207
1208  // Load and store values by size and signed-ness
1209  void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
1210  void store_sized_value(Register src, Address dst, size_t size_in_bytes);
1211
1212  void float_cmp( bool is_float, int unordered_result,
1213                  FloatRegister Fa, FloatRegister Fb,
1214                  Register Rresult);
1215
1216  void save_all_globals_into_locals();
1217  void restore_globals_from_locals();
1218
1219  // These set the icc condition code to equal if the lock succeeded
1220  // and notEqual if it failed and requires a slow case
1221  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
1222                            Register Rscratch,
1223                            BiasedLockingCounters* counters = NULL,
1224                            bool try_bias = UseBiasedLocking);
1225  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
1226                              Register Rscratch,
1227                              bool try_bias = UseBiasedLocking);
1228
1229  // Biased locking support
1230  // Upon entry, lock_reg must point to the lock record on the stack,
1231  // obj_reg must contain the target object, and mark_reg must contain
1232  // the target object's header.
1233  // Destroys mark_reg if an attempt is made to bias an anonymously
1234  // biased lock. In this case a failure will go either to the slow
1235  // case or fall through with the notEqual condition code set with
1236  // the expectation that the slow case in the runtime will be called.
1237  // In the fall-through case where the CAS-based lock is done,
1238  // mark_reg is not destroyed.
1239  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
1240                            Label& done, Label* slow_case = NULL,
1241                            BiasedLockingCounters* counters = NULL);
1242  // Upon entry, the base register of mark_addr must contain the oop.
1243  // Destroys temp_reg.
1244
1245  // If allow_delay_slot_filling is set to true, the next instruction
1246  // emitted after this one will go in an annulled delay slot if the
1247  // biased locking exit case failed.
1248  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
1249
1250  // allocation
1251  void eden_allocate(
1252    Register obj,                      // result: pointer to object after successful allocation
1253    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1254    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1255    Register t1,                       // temp register
1256    Register t2,                       // temp register
1257    Label&   slow_case                 // continuation point if fast allocation fails
1258  );
1259  void tlab_allocate(
1260    Register obj,                      // result: pointer to object after successful allocation
1261    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1262    int      con_size_in_bytes,        // object size in bytes if   known at compile time
1263    Register t1,                       // temp register
1264    Label&   slow_case                 // continuation point if fast allocation fails
1265  );
1266  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
1267  void zero_memory(Register base, Register index);
1268  void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
1269                            Register t1, Register t2);
1270
1271  // interface method calling
1272  void lookup_interface_method(Register recv_klass,
1273                               Register intf_klass,
1274                               RegisterOrConstant itable_index,
1275                               Register method_result,
1276                               Register temp_reg, Register temp2_reg,
1277                               Label& no_such_interface);
1278
1279  // virtual method calling
1280  void lookup_virtual_method(Register recv_klass,
1281                             RegisterOrConstant vtable_index,
1282                             Register method_result);
1283
1284  // Test sub_klass against super_klass, with fast and slow paths.
1285
1286  // The fast path produces a tri-state answer: yes / no / maybe-slow.
1287  // One of the three labels can be NULL, meaning take the fall-through.
1288  // If super_check_offset is -1, the value is loaded up from super_klass.
1289  // No registers are killed, except temp_reg and temp2_reg.
1290  // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
1291  void check_klass_subtype_fast_path(Register sub_klass,
1292                                     Register super_klass,
1293                                     Register temp_reg,
1294                                     Register temp2_reg,
1295                                     Label* L_success,
1296                                     Label* L_failure,
1297                                     Label* L_slow_path,
1298                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1299
1300  // The rest of the type check; must be wired to a corresponding fast path.
1301  // It does not repeat the fast path logic, so don't use it standalone.
1302  // The temp_reg can be noreg, if no temps are available.
1303  // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
1304  // Updates the sub's secondary super cache as necessary.
1305  void check_klass_subtype_slow_path(Register sub_klass,
1306                                     Register super_klass,
1307                                     Register temp_reg,
1308                                     Register temp2_reg,
1309                                     Register temp3_reg,
1310                                     Register temp4_reg,
1311                                     Label* L_success,
1312                                     Label* L_failure);
1313
1314  // Simplified, combined version, good for typical uses.
1315  // Falls through on failure.
1316  void check_klass_subtype(Register sub_klass,
1317                           Register super_klass,
1318                           Register temp_reg,
1319                           Register temp2_reg,
1320                           Label& L_success);
1321
1322  // method handles (JSR 292)
1323  // offset relative to Gargs of argument at tos[arg_slot].
1324  // (arg_slot == 0 means the last argument, not the first).
1325  RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
1326                                     Register temp_reg,
1327                                     int extra_slot_offset = 0);
1328  // Address of Gargs and argument_offset.
1329  Address            argument_address(RegisterOrConstant arg_slot,
1330                                      Register temp_reg = noreg,
1331                                      int extra_slot_offset = 0);
1332
1333  // Stack overflow checking
1334
1335  // Note: this clobbers G3_scratch
1336  inline void bang_stack_with_offset(int offset);
1337
1338  // Writes to stack successive pages until offset reached to check for
1339  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
1340  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
1341
1342  // Check for reserved stack access in method being exited (for JIT)
1343  void reserved_stack_check();
1344
1345  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
1346
1347  void verify_tlab();
1348
1349  Condition negate_condition(Condition cond);
1350
1351  // Helper functions for statistics gathering.
1352  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
1353  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
1354  // Unconditional increment.
1355  void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
1356  void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
1357
1358#ifdef COMPILER2
1359  // Compress char[] to byte[] by compressing 16 bytes at once. Return 0 on failure.
1360  void string_compress_16(Register src, Register dst, Register cnt, Register result,
1361                          Register tmp1, Register tmp2, Register tmp3, Register tmp4,
1362                          FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, Label& Ldone);
1363
1364  // Compress char[] to byte[]. Return 0 on failure.
1365  void string_compress(Register src, Register dst, Register cnt, Register tmp, Register result, Label& Ldone);
1366
1367  // Inflate byte[] to char[] by inflating 16 bytes at once.
1368  void string_inflate_16(Register src, Register dst, Register cnt, Register tmp,
1369                         FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, FloatRegister ftmp4, Label& Ldone);
1370
1371  // Inflate byte[] to char[].
1372  void string_inflate(Register src, Register dst, Register cnt, Register tmp, Label& Ldone);
1373
1374  void string_compare(Register str1, Register str2,
1375                      Register cnt1, Register cnt2,
1376                      Register tmp1, Register tmp2,
1377                      Register result, int ae);
1378
1379  void array_equals(bool is_array_equ, Register ary1, Register ary2,
1380                    Register limit, Register tmp, Register result, bool is_byte);
1381  // test for negative bytes in input string of a given size, result 0 if none
1382  void has_negatives(Register inp, Register size, Register result,
1383                     Register t2, Register t3, Register t4,
1384                     Register t5);
1385
1386#endif
1387
1388  // Use BIS for zeroing
1389  void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
1390
1391  // Update CRC-32[C] with a byte value according to constants in table
1392  void update_byte_crc32(Register crc, Register val, Register table);
1393
1394  // Reverse byte order of lower 32 bits, assuming upper 32 bits all zeros
1395  void reverse_bytes_32(Register src, Register dst, Register tmp);
1396  void movitof_revbytes(Register src, FloatRegister dst, Register tmp1, Register tmp2);
1397  void movftoi_revbytes(FloatRegister src, Register dst, Register tmp1, Register tmp2);
1398
1399  // CRC32 code for java.util.zip.CRC32::updateBytes0() instrinsic.
1400  void kernel_crc32(Register crc, Register buf, Register len, Register table);
1401  // Fold 128-bit data chunk
1402  void fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register buf, int offset);
1403  void fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register xbuf_hi, Register xbuf_lo);
1404  // Fold 8-bit data
1405  void fold_8bit_crc32(Register xcrc, Register table, Register xtmp, Register tmp);
1406  void fold_8bit_crc32(Register crc, Register table, Register tmp);
1407  // CRC32C code for java.util.zip.CRC32C::updateBytes/updateDirectByteBuffer instrinsic.
1408  void kernel_crc32c(Register crc, Register buf, Register len, Register table);
1409
1410};
1411
1412/**
1413 * class SkipIfEqual:
1414 *
1415 * Instantiating this class will result in assembly code being output that will
1416 * jump around any code emitted between the creation of the instance and it's
1417 * automatic destruction at the end of a scope block, depending on the value of
1418 * the flag passed to the constructor, which will be checked at run-time.
1419 */
1420class SkipIfEqual : public StackObj {
1421 private:
1422  MacroAssembler* _masm;
1423  Label _label;
1424
1425 public:
1426   // 'temp' is a temp register that this object can use (and trash)
1427   SkipIfEqual(MacroAssembler*, Register temp,
1428               const bool* flag_addr, Assembler::Condition condition);
1429   ~SkipIfEqual();
1430};
1431
1432#endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
1433