interp_masm_sparc.cpp revision 3864:f34d701e952e
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interp_masm_sparc.hpp"
27#include "interpreter/interpreter.hpp"
28#include "interpreter/interpreterRuntime.hpp"
29#include "oops/arrayOop.hpp"
30#include "oops/markOop.hpp"
31#include "oops/methodData.hpp"
32#include "oops/method.hpp"
33#include "prims/jvmtiExport.hpp"
34#include "prims/jvmtiRedefineClassesTrace.hpp"
35#include "prims/jvmtiThreadState.hpp"
36#include "runtime/basicLock.hpp"
37#include "runtime/biasedLocking.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/thread.inline.hpp"
40
41#ifndef CC_INTERP
42#ifndef FAST_DISPATCH
43#define FAST_DISPATCH 1
44#endif
45#undef FAST_DISPATCH
46
47// Implementation of InterpreterMacroAssembler
48
49// This file specializes the assember with interpreter-specific macros
50
51const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
52const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
53
54#else // CC_INTERP
55#ifndef STATE
56#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
57#endif // STATE
58
59#endif // CC_INTERP
60
61void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
62  // Note: this algorithm is also used by C1's OSR entry sequence.
63  // Any changes should also be applied to CodeEmitter::emit_osr_entry().
64  assert_different_registers(args_size, locals_size);
65  // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
66  subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
67  // Use br/mov combination because it works on both V8 and V9 and is
68  // faster.
69  Label skip_move;
70  br(Assembler::negative, true, Assembler::pt, skip_move);
71  delayed()->mov(G0, delta);
72  bind(skip_move);
73  round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
74  sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
75}
76
77#ifndef CC_INTERP
78
79// Dispatch code executed in the prolog of a bytecode which does not do it's
80// own dispatch. The dispatch address is computed and placed in IdispatchAddress
81void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
82  assert_not_delayed();
83#ifdef FAST_DISPATCH
84  // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
85  // they both use I2.
86  assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
87  ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
88  add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
89                                                        // add offset to correct dispatch table
90  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
91  ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
92#else
93  ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
94  // dispatch table to use
95  AddressLiteral tbl(Interpreter::dispatch_table(state));
96  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
97  set(tbl, G3_scratch);                                 // compute addr of table
98  ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
99#endif
100}
101
102
103// Dispatch code executed in the epilog of a bytecode which does not do it's
104// own dispatch. The dispatch address in IdispatchAddress is used for the
105// dispatch.
106void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
107  assert_not_delayed();
108  verify_FPU(1, state);
109  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
110  jmp( IdispatchAddress, 0 );
111  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
112  else                delayed()->nop();
113}
114
115
116void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
117  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
118  assert_not_delayed();
119  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
120  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
121}
122
123
124void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
125  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
126  assert_not_delayed();
127  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
128  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
129}
130
131
132void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
133  // load current bytecode
134  assert_not_delayed();
135  ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
136  dispatch_base(state, table);
137}
138
139
140void InterpreterMacroAssembler::call_VM_leaf_base(
141  Register java_thread,
142  address  entry_point,
143  int      number_of_arguments
144) {
145  if (!java_thread->is_valid())
146    java_thread = L7_thread_cache;
147  // super call
148  MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
149}
150
151
152void InterpreterMacroAssembler::call_VM_base(
153  Register        oop_result,
154  Register        java_thread,
155  Register        last_java_sp,
156  address         entry_point,
157  int             number_of_arguments,
158  bool            check_exception
159) {
160  if (!java_thread->is_valid())
161    java_thread = L7_thread_cache;
162  // See class ThreadInVMfromInterpreter, which assumes that the interpreter
163  // takes responsibility for setting its own thread-state on call-out.
164  // However, ThreadInVMfromInterpreter resets the state to "in_Java".
165
166  //save_bcp();                                  // save bcp
167  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
168  //restore_bcp();                               // restore bcp
169  //restore_locals();                            // restore locals pointer
170}
171
172
173void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
174  if (JvmtiExport::can_pop_frame()) {
175    Label L;
176
177    // Check the "pending popframe condition" flag in the current thread
178    ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
179
180    // Initiate popframe handling only if it is not already being processed.  If the flag
181    // has the popframe_processing bit set, it means that this code is called *during* popframe
182    // handling - we don't want to reenter.
183    btst(JavaThread::popframe_pending_bit, scratch_reg);
184    br(zero, false, pt, L);
185    delayed()->nop();
186    btst(JavaThread::popframe_processing_bit, scratch_reg);
187    br(notZero, false, pt, L);
188    delayed()->nop();
189
190    // Call Interpreter::remove_activation_preserving_args_entry() to get the
191    // address of the same-named entrypoint in the generated interpreter code.
192    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
193
194    // Jump to Interpreter::_remove_activation_preserving_args_entry
195    jmpl(O0, G0, G0);
196    delayed()->nop();
197    bind(L);
198  }
199}
200
201
202void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
203  Register thr_state = G4_scratch;
204  ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
205  const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
206  const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
207  const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
208  switch (state) {
209  case ltos: ld_long(val_addr, Otos_l);                   break;
210  case atos: ld_ptr(oop_addr, Otos_l);
211             st_ptr(G0, oop_addr);                        break;
212  case btos:                                           // fall through
213  case ctos:                                           // fall through
214  case stos:                                           // fall through
215  case itos: ld(val_addr, Otos_l1);                       break;
216  case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
217  case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
218  case vtos: /* nothing to do */                          break;
219  default  : ShouldNotReachHere();
220  }
221  // Clean up tos value in the jvmti thread state
222  or3(G0, ilgl, G3_scratch);
223  stw(G3_scratch, tos_addr);
224  st_long(G0, val_addr);
225  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
226}
227
228
229void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
230  if (JvmtiExport::can_force_early_return()) {
231    Label L;
232    Register thr_state = G3_scratch;
233    ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
234    br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
235
236    // Initiate earlyret handling only if it is not already being processed.
237    // If the flag has the earlyret_processing bit set, it means that this code
238    // is called *during* earlyret handling - we don't want to reenter.
239    ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
240    cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
241
242    // Call Interpreter::remove_activation_early_entry() to get the address of the
243    // same-named entrypoint in the generated interpreter code
244    ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
245    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
246
247    // Jump to Interpreter::_remove_activation_early_entry
248    jmpl(O0, G0, G0);
249    delayed()->nop();
250    bind(L);
251  }
252}
253
254
255void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
256  mov(arg_1, O0);
257  mov(arg_2, O1);
258  MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
259}
260#endif /* CC_INTERP */
261
262
263#ifndef CC_INTERP
264
265void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
266  assert_not_delayed();
267  dispatch_Lbyte_code(state, table);
268}
269
270
271void InterpreterMacroAssembler::dispatch_normal(TosState state) {
272  dispatch_base(state, Interpreter::normal_table(state));
273}
274
275
276void InterpreterMacroAssembler::dispatch_only(TosState state) {
277  dispatch_base(state, Interpreter::dispatch_table(state));
278}
279
280
281// common code to dispatch and dispatch_only
282// dispatch value in Lbyte_code and increment Lbcp
283
284void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
285  verify_FPU(1, state);
286  // %%%%% maybe implement +VerifyActivationFrameSize here
287  //verify_thread(); //too slow; we will just verify on method entry & exit
288  if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
289#ifdef FAST_DISPATCH
290  if (table == Interpreter::dispatch_table(state)) {
291    // use IdispatchTables
292    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
293                                                        // add offset to correct dispatch table
294    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
295    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
296  } else {
297#endif
298    // dispatch table to use
299    AddressLiteral tbl(table);
300    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
301    set(tbl, G3_scratch);                               // compute addr of table
302    ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
303#ifdef FAST_DISPATCH
304  }
305#endif
306  jmp( G3_scratch, 0 );
307  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
308  else                delayed()->nop();
309}
310
311
312// Helpers for expression stack
313
314// Longs and doubles are Category 2 computational types in the
315// JVM specification (section 3.11.1) and take 2 expression stack or
316// local slots.
317// Aligning them on 32 bit with tagged stacks is hard because the code generated
318// for the dup* bytecodes depends on what types are already on the stack.
319// If the types are split into the two stack/local slots, that is much easier
320// (and we can use 0 for non-reference tags).
321
322// Known good alignment in _LP64 but unknown otherwise
323void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
324  assert_not_delayed();
325
326#ifdef _LP64
327  ldf(FloatRegisterImpl::D, r1, offset, d);
328#else
329  ldf(FloatRegisterImpl::S, r1, offset, d);
330  ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
331#endif
332}
333
334// Known good alignment in _LP64 but unknown otherwise
335void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
336  assert_not_delayed();
337
338#ifdef _LP64
339  stf(FloatRegisterImpl::D, d, r1, offset);
340  // store something more useful here
341  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
342#else
343  stf(FloatRegisterImpl::S, d, r1, offset);
344  stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
345#endif
346}
347
348
349// Known good alignment in _LP64 but unknown otherwise
350void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
351  assert_not_delayed();
352#ifdef _LP64
353  ldx(r1, offset, rd);
354#else
355  ld(r1, offset, rd);
356  ld(r1, offset + Interpreter::stackElementSize, rd->successor());
357#endif
358}
359
360// Known good alignment in _LP64 but unknown otherwise
361void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
362  assert_not_delayed();
363
364#ifdef _LP64
365  stx(l, r1, offset);
366  // store something more useful here
367  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
368#else
369  st(l, r1, offset);
370  st(l->successor(), r1, offset + Interpreter::stackElementSize);
371#endif
372}
373
374void InterpreterMacroAssembler::pop_i(Register r) {
375  assert_not_delayed();
376  ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
377  inc(Lesp, Interpreter::stackElementSize);
378  debug_only(verify_esp(Lesp));
379}
380
381void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
382  assert_not_delayed();
383  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
384  inc(Lesp, Interpreter::stackElementSize);
385  debug_only(verify_esp(Lesp));
386}
387
388void InterpreterMacroAssembler::pop_l(Register r) {
389  assert_not_delayed();
390  load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
391  inc(Lesp, 2*Interpreter::stackElementSize);
392  debug_only(verify_esp(Lesp));
393}
394
395
396void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
397  assert_not_delayed();
398  ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
399  inc(Lesp, Interpreter::stackElementSize);
400  debug_only(verify_esp(Lesp));
401}
402
403
404void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
405  assert_not_delayed();
406  load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
407  inc(Lesp, 2*Interpreter::stackElementSize);
408  debug_only(verify_esp(Lesp));
409}
410
411
412void InterpreterMacroAssembler::push_i(Register r) {
413  assert_not_delayed();
414  debug_only(verify_esp(Lesp));
415  st(r, Lesp, 0);
416  dec(Lesp, Interpreter::stackElementSize);
417}
418
419void InterpreterMacroAssembler::push_ptr(Register r) {
420  assert_not_delayed();
421  st_ptr(r, Lesp, 0);
422  dec(Lesp, Interpreter::stackElementSize);
423}
424
425// remember: our convention for longs in SPARC is:
426// O0 (Otos_l1) has high-order part in first word,
427// O1 (Otos_l2) has low-order part in second word
428
429void InterpreterMacroAssembler::push_l(Register r) {
430  assert_not_delayed();
431  debug_only(verify_esp(Lesp));
432  // Longs are stored in memory-correct order, even if unaligned.
433  int offset = -Interpreter::stackElementSize;
434  store_unaligned_long(r, Lesp, offset);
435  dec(Lesp, 2 * Interpreter::stackElementSize);
436}
437
438
439void InterpreterMacroAssembler::push_f(FloatRegister f) {
440  assert_not_delayed();
441  debug_only(verify_esp(Lesp));
442  stf(FloatRegisterImpl::S, f, Lesp, 0);
443  dec(Lesp, Interpreter::stackElementSize);
444}
445
446
447void InterpreterMacroAssembler::push_d(FloatRegister d)   {
448  assert_not_delayed();
449  debug_only(verify_esp(Lesp));
450  // Longs are stored in memory-correct order, even if unaligned.
451  int offset = -Interpreter::stackElementSize;
452  store_unaligned_double(d, Lesp, offset);
453  dec(Lesp, 2 * Interpreter::stackElementSize);
454}
455
456
457void InterpreterMacroAssembler::push(TosState state) {
458  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
459  switch (state) {
460    case atos: push_ptr();            break;
461    case btos: push_i();              break;
462    case ctos:
463    case stos: push_i();              break;
464    case itos: push_i();              break;
465    case ltos: push_l();              break;
466    case ftos: push_f();              break;
467    case dtos: push_d();              break;
468    case vtos: /* nothing to do */    break;
469    default  : ShouldNotReachHere();
470  }
471}
472
473
474void InterpreterMacroAssembler::pop(TosState state) {
475  switch (state) {
476    case atos: pop_ptr();            break;
477    case btos: pop_i();              break;
478    case ctos:
479    case stos: pop_i();              break;
480    case itos: pop_i();              break;
481    case ltos: pop_l();              break;
482    case ftos: pop_f();              break;
483    case dtos: pop_d();              break;
484    case vtos: /* nothing to do */   break;
485    default  : ShouldNotReachHere();
486  }
487  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
488}
489
490
491// Helpers for swap and dup
492void InterpreterMacroAssembler::load_ptr(int n, Register val) {
493  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
494}
495void InterpreterMacroAssembler::store_ptr(int n, Register val) {
496  st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
497}
498
499
500void InterpreterMacroAssembler::load_receiver(Register param_count,
501                                              Register recv) {
502  sll(param_count, Interpreter::logStackElementSize, param_count);
503  ld_ptr(Lesp, param_count, recv);  // gets receiver oop
504}
505
506void InterpreterMacroAssembler::empty_expression_stack() {
507  // Reset Lesp.
508  sub( Lmonitors, wordSize, Lesp );
509
510  // Reset SP by subtracting more space from Lesp.
511  Label done;
512  assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
513
514  // A native does not need to do this, since its callee does not change SP.
515  ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
516  btst(JVM_ACC_NATIVE, Gframe_size);
517  br(Assembler::notZero, false, Assembler::pt, done);
518  delayed()->nop();
519
520  // Compute max expression stack+register save area
521  lduh(Lmethod, in_bytes(Method::max_stack_offset()), Gframe_size);  // Load max stack.
522  add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
523
524  //
525  // now set up a stack frame with the size computed above
526  //
527  //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
528  sll( Gframe_size, LogBytesPerWord, Gframe_size );
529  sub( Lesp, Gframe_size, Gframe_size );
530  and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
531  debug_only(verify_sp(Gframe_size, G4_scratch));
532#ifdef _LP64
533  sub(Gframe_size, STACK_BIAS, Gframe_size );
534#endif
535  mov(Gframe_size, SP);
536
537  bind(done);
538}
539
540
541#ifdef ASSERT
542void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
543  Label Bad, OK;
544
545  // Saved SP must be aligned.
546#ifdef _LP64
547  btst(2*BytesPerWord-1, Rsp);
548#else
549  btst(LongAlignmentMask, Rsp);
550#endif
551  br(Assembler::notZero, false, Assembler::pn, Bad);
552  delayed()->nop();
553
554  // Saved SP, plus register window size, must not be above FP.
555  add(Rsp, frame::register_save_words * wordSize, Rtemp);
556#ifdef _LP64
557  sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
558#endif
559  cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
560
561  // Saved SP must not be ridiculously below current SP.
562  size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
563  set(maxstack, Rtemp);
564  sub(SP, Rtemp, Rtemp);
565#ifdef _LP64
566  add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
567#endif
568  cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
569
570  ba_short(OK);
571
572  bind(Bad);
573  stop("on return to interpreted call, restored SP is corrupted");
574
575  bind(OK);
576}
577
578
579void InterpreterMacroAssembler::verify_esp(Register Resp) {
580  // about to read or write Resp[0]
581  // make sure it is not in the monitors or the register save area
582  Label OK1, OK2;
583
584  cmp(Resp, Lmonitors);
585  brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
586  delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
587  stop("too many pops:  Lesp points into monitor area");
588  bind(OK1);
589#ifdef _LP64
590  sub(Resp, STACK_BIAS, Resp);
591#endif
592  cmp(Resp, SP);
593  brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
594  delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
595  stop("too many pushes:  Lesp points into register window");
596  bind(OK2);
597}
598#endif // ASSERT
599
600// Load compiled (i2c) or interpreter entry when calling from interpreted and
601// do the call. Centralized so that all interpreter calls will do the same actions.
602// If jvmti single stepping is on for a thread we must not call compiled code.
603void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
604
605  // Assume we want to go compiled if available
606
607  ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
608
609  if (JvmtiExport::can_post_interpreter_events()) {
610    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
611    // compiled code in threads for which the event is enabled.  Check here for
612    // interp_only_mode if these events CAN be enabled.
613    verify_thread();
614    Label skip_compiled_code;
615
616    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
617    ld(interp_only, scratch);
618    cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
619    delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
620    bind(skip_compiled_code);
621  }
622
623  // the i2c_adapters need Method* in G5_method (right? %%%)
624  // do the call
625#ifdef ASSERT
626  {
627    Label ok;
628    br_notnull_short(target, Assembler::pt, ok);
629    stop("null entry point");
630    bind(ok);
631  }
632#endif // ASSERT
633
634  // Adjust Rret first so Llast_SP can be same as Rret
635  add(Rret, -frame::pc_return_offset, O7);
636  add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
637  // Record SP so we can remove any stack space allocated by adapter transition
638  jmp(target, 0);
639  delayed()->mov(SP, Llast_SP);
640}
641
642void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
643  assert_not_delayed();
644
645  Label not_taken;
646  if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
647  else             br (cc, false, Assembler::pn, not_taken);
648  delayed()->nop();
649
650  TemplateTable::branch(false,false);
651
652  bind(not_taken);
653
654  profile_not_taken_branch(G3_scratch);
655}
656
657
658void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
659                                  int         bcp_offset,
660                                  Register    Rtmp,
661                                  Register    Rdst,
662                                  signedOrNot is_signed,
663                                  setCCOrNot  should_set_CC ) {
664  assert(Rtmp != Rdst, "need separate temp register");
665  assert_not_delayed();
666  switch (is_signed) {
667   default: ShouldNotReachHere();
668
669   case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
670   case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
671  }
672  ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
673  sll( Rdst, BitsPerByte, Rdst);
674  switch (should_set_CC ) {
675   default: ShouldNotReachHere();
676
677   case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
678   case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
679  }
680}
681
682
683void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
684                                  int        bcp_offset,
685                                  Register   Rtmp,
686                                  Register   Rdst,
687                                  setCCOrNot should_set_CC ) {
688  assert(Rtmp != Rdst, "need separate temp register");
689  assert_not_delayed();
690  add( Lbcp, bcp_offset, Rtmp);
691  andcc( Rtmp, 3, G0);
692  Label aligned;
693  switch (should_set_CC ) {
694   default: ShouldNotReachHere();
695
696   case      set_CC: break;
697   case dont_set_CC: break;
698  }
699
700  br(Assembler::zero, true, Assembler::pn, aligned);
701#ifdef _LP64
702  delayed()->ldsw(Rtmp, 0, Rdst);
703#else
704  delayed()->ld(Rtmp, 0, Rdst);
705#endif
706
707  ldub(Lbcp, bcp_offset + 3, Rdst);
708  ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
709  ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
710#ifdef _LP64
711  ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
712#else
713  // Unsigned load is faster than signed on some implementations
714  ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
715#endif
716  or3(Rtmp, Rdst, Rdst );
717
718  bind(aligned);
719  if (should_set_CC == set_CC) tst(Rdst);
720}
721
722void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
723                                                       int bcp_offset, size_t index_size) {
724  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
725  if (index_size == sizeof(u2)) {
726    get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
727  } else if (index_size == sizeof(u4)) {
728    assert(EnableInvokeDynamic, "giant index used only for JSR 292");
729    get_4_byte_integer_at_bcp(bcp_offset, temp, index);
730    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
731    xor3(index, -1, index);  // convert to plain index
732  } else if (index_size == sizeof(u1)) {
733    ldub(Lbcp, bcp_offset, index);
734  } else {
735    ShouldNotReachHere();
736  }
737}
738
739
740void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
741                                                           int bcp_offset, size_t index_size) {
742  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
743  assert_different_registers(cache, tmp);
744  assert_not_delayed();
745  get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
746  // convert from field index to ConstantPoolCacheEntry index and from
747  // word index to byte offset
748  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
749  add(LcpoolCache, tmp, cache);
750}
751
752
753void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
754                                                                        Register temp,
755                                                                        Register bytecode,
756                                                                        int byte_no,
757                                                                        int bcp_offset,
758                                                                        size_t index_size) {
759  get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
760  ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
761  const int shift_count = (1 + byte_no) * BitsPerByte;
762  assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
763         (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
764         "correct shift count");
765  srl(bytecode, shift_count, bytecode);
766  assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
767  and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
768}
769
770
771void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
772                                                               int bcp_offset, size_t index_size) {
773  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
774  assert_different_registers(cache, tmp);
775  assert_not_delayed();
776  if (index_size == sizeof(u2)) {
777    get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
778  } else {
779    ShouldNotReachHere();  // other sizes not supported here
780  }
781              // convert from field index to ConstantPoolCacheEntry index
782              // and from word index to byte offset
783  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
784              // skip past the header
785  add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
786              // construct pointer to cache entry
787  add(LcpoolCache, tmp, cache);
788}
789
790
791// Load object from cpool->resolved_references(index)
792void InterpreterMacroAssembler::load_resolved_reference_at_index(
793                                           Register result, Register index) {
794  assert_different_registers(result, index);
795  assert_not_delayed();
796  // convert from field index to resolved_references() index and from
797  // word index to byte offset. Since this is a java object, it can be compressed
798  Register tmp = index;  // reuse
799  sll(index, LogBytesPerHeapOop, tmp);
800  get_constant_pool(result);
801  // load pointer for resolved_references[] objArray
802  ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
803  // JNIHandles::resolve(result)
804  ld_ptr(result, 0, result);
805  // Add in the index
806  add(result, tmp, result);
807  load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
808}
809
810
811// Generate a subtype check: branch to ok_is_subtype if sub_klass is
812// a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
813void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
814                                                  Register Rsuper_klass,
815                                                  Register Rtmp1,
816                                                  Register Rtmp2,
817                                                  Register Rtmp3,
818                                                  Label &ok_is_subtype ) {
819  Label not_subtype;
820
821  // Profile the not-null value's klass.
822  profile_typecheck(Rsub_klass, Rtmp1);
823
824  check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
825                                Rtmp1, Rtmp2,
826                                &ok_is_subtype, &not_subtype, NULL);
827
828  check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
829                                Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
830                                &ok_is_subtype, NULL);
831
832  bind(not_subtype);
833  profile_typecheck_failed(Rtmp1);
834}
835
836// Separate these two to allow for delay slot in middle
837// These are used to do a test and full jump to exception-throwing code.
838
839// %%%%% Could possibly reoptimize this by testing to see if could use
840// a single conditional branch (i.e. if span is small enough.
841// If you go that route, than get rid of the split and give up
842// on the delay-slot hack.
843
844void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
845                                                    Label&    ok ) {
846  assert_not_delayed();
847  br(ok_condition, true, pt, ok);
848  // DELAY SLOT
849}
850
851void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
852                                                    Label&    ok ) {
853  assert_not_delayed();
854  bp( ok_condition, true, Assembler::xcc, pt, ok);
855  // DELAY SLOT
856}
857
858void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
859                                                  Label&    ok ) {
860  assert_not_delayed();
861  brx(ok_condition, true, pt, ok);
862  // DELAY SLOT
863}
864
865void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
866                                                Register Rscratch,
867                                                Label&   ok ) {
868  assert(throw_entry_point != NULL, "entry point must be generated by now");
869  AddressLiteral dest(throw_entry_point);
870  jump_to(dest, Rscratch);
871  delayed()->nop();
872  bind(ok);
873}
874
875
876// And if you cannot use the delay slot, here is a shorthand:
877
878void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
879                                                  address   throw_entry_point,
880                                                  Register  Rscratch ) {
881  Label ok;
882  if (ok_condition != never) {
883    throw_if_not_1_icc( ok_condition, ok);
884    delayed()->nop();
885  }
886  throw_if_not_2( throw_entry_point, Rscratch, ok);
887}
888void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
889                                                  address   throw_entry_point,
890                                                  Register  Rscratch ) {
891  Label ok;
892  if (ok_condition != never) {
893    throw_if_not_1_xcc( ok_condition, ok);
894    delayed()->nop();
895  }
896  throw_if_not_2( throw_entry_point, Rscratch, ok);
897}
898void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
899                                                address   throw_entry_point,
900                                                Register  Rscratch ) {
901  Label ok;
902  if (ok_condition != never) {
903    throw_if_not_1_x( ok_condition, ok);
904    delayed()->nop();
905  }
906  throw_if_not_2( throw_entry_point, Rscratch, ok);
907}
908
909// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
910// Note: res is still shy of address by array offset into object.
911
912void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
913  assert_not_delayed();
914
915  verify_oop(array);
916#ifdef _LP64
917  // sign extend since tos (index) can be a 32bit value
918  sra(index, G0, index);
919#endif // _LP64
920
921  // check array
922  Label ptr_ok;
923  tst(array);
924  throw_if_not_1_x( notZero, ptr_ok );
925  delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
926  throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
927
928  Label index_ok;
929  cmp(index, tmp);
930  throw_if_not_1_icc( lessUnsigned, index_ok );
931  if (index_shift > 0)  delayed()->sll(index, index_shift, index);
932  else                  delayed()->add(array, index, res); // addr - const offset in index
933  // convention: move aberrant index into G3_scratch for exception message
934  mov(index, G3_scratch);
935  throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
936
937  // add offset if didn't do it in delay slot
938  if (index_shift > 0)   add(array, index, res); // addr - const offset in index
939}
940
941
942void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
943  assert_not_delayed();
944
945  // pop array
946  pop_ptr(array);
947
948  // check array
949  index_check_without_pop(array, index, index_shift, tmp, res);
950}
951
952
953void InterpreterMacroAssembler::get_const(Register Rdst) {
954  ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
955}
956
957
958void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
959  get_const(Rdst);
960  ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
961}
962
963
964void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
965  get_constant_pool(Rdst);
966  ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
967}
968
969
970void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
971  get_constant_pool(Rcpool);
972  ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
973}
974
975
976// unlock if synchronized method
977//
978// Unlock the receiver if this is a synchronized method.
979// Unlock any Java monitors from syncronized blocks.
980//
981// If there are locked Java monitors
982//    If throw_monitor_exception
983//       throws IllegalMonitorStateException
984//    Else if install_monitor_exception
985//       installs IllegalMonitorStateException
986//    Else
987//       no error processing
988void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
989                                                              bool throw_monitor_exception,
990                                                              bool install_monitor_exception) {
991  Label unlocked, unlock, no_unlock;
992
993  // get the value of _do_not_unlock_if_synchronized into G1_scratch
994  const Address do_not_unlock_if_synchronized(G2_thread,
995    JavaThread::do_not_unlock_if_synchronized_offset());
996  ldbool(do_not_unlock_if_synchronized, G1_scratch);
997  stbool(G0, do_not_unlock_if_synchronized); // reset the flag
998
999  // check if synchronized method
1000  const Address access_flags(Lmethod, Method::access_flags_offset());
1001  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1002  push(state); // save tos
1003  ld(access_flags, G3_scratch); // Load access flags.
1004  btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1005  br(zero, false, pt, unlocked);
1006  delayed()->nop();
1007
1008  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1009  // is set.
1010  cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
1011  delayed()->nop();
1012
1013  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1014  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1015
1016  //Intel: if (throw_monitor_exception) ... else ...
1017  // Entry already unlocked, need to throw exception
1018  //...
1019
1020  // pass top-most monitor elem
1021  add( top_most_monitor(), O1 );
1022
1023  ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1024  br_notnull_short(G3_scratch, pt, unlock);
1025
1026  if (throw_monitor_exception) {
1027    // Entry already unlocked need to throw an exception
1028    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1029    should_not_reach_here();
1030  } else {
1031    // Monitor already unlocked during a stack unroll.
1032    // If requested, install an illegal_monitor_state_exception.
1033    // Continue with stack unrolling.
1034    if (install_monitor_exception) {
1035      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1036    }
1037    ba_short(unlocked);
1038  }
1039
1040  bind(unlock);
1041
1042  unlock_object(O1);
1043
1044  bind(unlocked);
1045
1046  // I0, I1: Might contain return value
1047
1048  // Check that all monitors are unlocked
1049  { Label loop, exception, entry, restart;
1050
1051    Register Rmptr   = O0;
1052    Register Rtemp   = O1;
1053    Register Rlimit  = Lmonitors;
1054    const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1055    assert( (delta & LongAlignmentMask) == 0,
1056            "sizeof BasicObjectLock must be even number of doublewords");
1057
1058    #ifdef ASSERT
1059    add(top_most_monitor(), Rmptr, delta);
1060    { Label L;
1061      // ensure that Rmptr starts out above (or at) Rlimit
1062      cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1063      stop("monitor stack has negative size");
1064      bind(L);
1065    }
1066    #endif
1067    bind(restart);
1068    ba(entry);
1069    delayed()->
1070    add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1071
1072    // Entry is still locked, need to throw exception
1073    bind(exception);
1074    if (throw_monitor_exception) {
1075      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1076      should_not_reach_here();
1077    } else {
1078      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1079      // Unlock does not block, so don't have to worry about the frame
1080      unlock_object(Rmptr);
1081      if (install_monitor_exception) {
1082        MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1083      }
1084      ba_short(restart);
1085    }
1086
1087    bind(loop);
1088    cmp(Rtemp, G0);                             // check if current entry is used
1089    brx(Assembler::notEqual, false, pn, exception);
1090    delayed()->
1091    dec(Rmptr, delta);                          // otherwise advance to next entry
1092    #ifdef ASSERT
1093    { Label L;
1094      // ensure that Rmptr has not somehow stepped below Rlimit
1095      cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1096      stop("ran off the end of the monitor stack");
1097      bind(L);
1098    }
1099    #endif
1100    bind(entry);
1101    cmp(Rmptr, Rlimit);                         // check if bottom reached
1102    brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1103    delayed()->
1104    ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1105  }
1106
1107  bind(no_unlock);
1108  pop(state);
1109  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1110}
1111
1112
1113// remove activation
1114//
1115// Unlock the receiver if this is a synchronized method.
1116// Unlock any Java monitors from syncronized blocks.
1117// Remove the activation from the stack.
1118//
1119// If there are locked Java monitors
1120//    If throw_monitor_exception
1121//       throws IllegalMonitorStateException
1122//    Else if install_monitor_exception
1123//       installs IllegalMonitorStateException
1124//    Else
1125//       no error processing
1126void InterpreterMacroAssembler::remove_activation(TosState state,
1127                                                  bool throw_monitor_exception,
1128                                                  bool install_monitor_exception) {
1129
1130  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1131
1132  // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1133  notify_method_exit(false, state, NotifyJVMTI);
1134
1135  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1136  verify_thread();
1137
1138  // return tos
1139  assert(Otos_l1 == Otos_i, "adjust code below");
1140  switch (state) {
1141#ifdef _LP64
1142  case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1143#else
1144  case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1145#endif
1146  case btos:                                      // fall through
1147  case ctos:
1148  case stos:                                      // fall through
1149  case atos:                                      // fall through
1150  case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1151  case ftos:                                      // fall through
1152  case dtos:                                      // fall through
1153  case vtos: /* nothing to do */                     break;
1154  default  : ShouldNotReachHere();
1155  }
1156
1157#if defined(COMPILER2) && !defined(_LP64)
1158  if (state == ltos) {
1159    // C2 expects long results in G1 we can't tell if we're returning to interpreted
1160    // or compiled so just be safe use G1 and O0/O1
1161
1162    // Shift bits into high (msb) of G1
1163    sllx(Otos_l1->after_save(), 32, G1);
1164    // Zero extend low bits
1165    srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1166    or3 (Otos_l2->after_save(), G1, G1);
1167  }
1168#endif /* COMPILER2 */
1169
1170}
1171#endif /* CC_INTERP */
1172
1173
1174// Lock object
1175//
1176// Argument - lock_reg points to the BasicObjectLock to be used for locking,
1177//            it must be initialized with the object to lock
1178void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1179  if (UseHeavyMonitors) {
1180    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1181  }
1182  else {
1183    Register obj_reg = Object;
1184    Register mark_reg = G4_scratch;
1185    Register temp_reg = G1_scratch;
1186    Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1187    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1188    Label    done;
1189
1190    Label slow_case;
1191
1192    assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1193
1194    // load markOop from object into mark_reg
1195    ld_ptr(mark_addr, mark_reg);
1196
1197    if (UseBiasedLocking) {
1198      biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1199    }
1200
1201    // get the address of basicLock on stack that will be stored in the object
1202    // we need a temporary register here as we do not want to clobber lock_reg
1203    // (cas clobbers the destination register)
1204    mov(lock_reg, temp_reg);
1205    // set mark reg to be (markOop of object | UNLOCK_VALUE)
1206    or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1207    // initialize the box  (Must happen before we update the object mark!)
1208    st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1209    // compare and exchange object_addr, markOop | 1, stack address of basicLock
1210    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1211    casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1212      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1213
1214    // if the compare and exchange succeeded we are done (we saw an unlocked object)
1215    cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1216
1217    // We did not see an unlocked object so try the fast recursive case
1218
1219    // Check if owner is self by comparing the value in the markOop of object
1220    // with the stack pointer
1221    sub(temp_reg, SP, temp_reg);
1222#ifdef _LP64
1223    sub(temp_reg, STACK_BIAS, temp_reg);
1224#endif
1225    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1226
1227    // Composite "andcc" test:
1228    // (a) %sp -vs- markword proximity check, and,
1229    // (b) verify mark word LSBs == 0 (Stack-locked).
1230    //
1231    // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1232    // Note that the page size used for %sp proximity testing is arbitrary and is
1233    // unrelated to the actual MMU page size.  We use a 'logical' page size of
1234    // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1235    // field of the andcc instruction.
1236    andcc (temp_reg, 0xFFFFF003, G0) ;
1237
1238    // if condition is true we are done and hence we can store 0 in the displaced
1239    // header indicating it is a recursive lock and be done
1240    brx(Assembler::zero, true, Assembler::pt, done);
1241    delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1242
1243    // none of the above fast optimizations worked so we have to get into the
1244    // slow case of monitor enter
1245    bind(slow_case);
1246    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1247
1248    bind(done);
1249  }
1250}
1251
1252// Unlocks an object. Used in monitorexit bytecode and remove_activation.
1253//
1254// Argument - lock_reg points to the BasicObjectLock for lock
1255// Throw IllegalMonitorException if object is not locked by current thread
1256void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1257  if (UseHeavyMonitors) {
1258    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1259  } else {
1260    Register obj_reg = G3_scratch;
1261    Register mark_reg = G4_scratch;
1262    Register displaced_header_reg = G1_scratch;
1263    Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1264    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1265    Label    done;
1266
1267    if (UseBiasedLocking) {
1268      // load the object out of the BasicObjectLock
1269      ld_ptr(lockobj_addr, obj_reg);
1270      biased_locking_exit(mark_addr, mark_reg, done, true);
1271      st_ptr(G0, lockobj_addr);  // free entry
1272    }
1273
1274    // Test first if we are in the fast recursive case
1275    Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1276    ld_ptr(lock_addr, displaced_header_reg);
1277    br_null(displaced_header_reg, true, Assembler::pn, done);
1278    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1279
1280    // See if it is still a light weight lock, if so we just unlock
1281    // the object and we are done
1282
1283    if (!UseBiasedLocking) {
1284      // load the object out of the BasicObjectLock
1285      ld_ptr(lockobj_addr, obj_reg);
1286    }
1287
1288    // we have the displaced header in displaced_header_reg
1289    // we expect to see the stack address of the basicLock in case the
1290    // lock is still a light weight lock (lock_reg)
1291    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1292    casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1293      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1294    cmp(lock_reg, displaced_header_reg);
1295    brx(Assembler::equal, true, Assembler::pn, done);
1296    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1297
1298    // The lock has been converted into a heavy lock and hence
1299    // we need to get into the slow case
1300
1301    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1302
1303    bind(done);
1304  }
1305}
1306
1307#ifndef CC_INTERP
1308
1309// Get the method data pointer from the Method* and set the
1310// specified register to its value.
1311
1312void InterpreterMacroAssembler::set_method_data_pointer() {
1313  assert(ProfileInterpreter, "must be profiling interpreter");
1314  Label get_continue;
1315
1316  ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1317  test_method_data_pointer(get_continue);
1318  add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1319  bind(get_continue);
1320}
1321
1322// Set the method data pointer for the current bcp.
1323
1324void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1325  assert(ProfileInterpreter, "must be profiling interpreter");
1326  Label zero_continue;
1327
1328  // Test MDO to avoid the call if it is NULL.
1329  ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1330  test_method_data_pointer(zero_continue);
1331  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1332  add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1333  add(ImethodDataPtr, O0, ImethodDataPtr);
1334  bind(zero_continue);
1335}
1336
1337// Test ImethodDataPtr.  If it is null, continue at the specified label
1338
1339void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1340  assert(ProfileInterpreter, "must be profiling interpreter");
1341  br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1342}
1343
1344void InterpreterMacroAssembler::verify_method_data_pointer() {
1345  assert(ProfileInterpreter, "must be profiling interpreter");
1346#ifdef ASSERT
1347  Label verify_continue;
1348  test_method_data_pointer(verify_continue);
1349
1350  // If the mdp is valid, it will point to a DataLayout header which is
1351  // consistent with the bcp.  The converse is highly probable also.
1352  lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1353  ld_ptr(Lmethod, Method::const_offset(), O5);
1354  add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1355  add(G3_scratch, O5, G3_scratch);
1356  cmp(Lbcp, G3_scratch);
1357  brx(Assembler::equal, false, Assembler::pt, verify_continue);
1358
1359  Register temp_reg = O5;
1360  delayed()->mov(ImethodDataPtr, temp_reg);
1361  // %%% should use call_VM_leaf here?
1362  //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1363  save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1364  Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1365  stf(FloatRegisterImpl::D, Ftos_d, d_save);
1366  mov(temp_reg->after_save(), O2);
1367  save_thread(L7_thread_cache);
1368  call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1369  delayed()->nop();
1370  restore_thread(L7_thread_cache);
1371  ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1372  restore();
1373  bind(verify_continue);
1374#endif // ASSERT
1375}
1376
1377void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1378                                                                Register Rtmp,
1379                                                                Label &profile_continue) {
1380  assert(ProfileInterpreter, "must be profiling interpreter");
1381  // Control will flow to "profile_continue" if the counter is less than the
1382  // limit or if we call profile_method()
1383
1384  Label done;
1385
1386  // if no method data exists, and the counter is high enough, make one
1387  br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1388
1389  // Test to see if we should create a method data oop
1390  AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1391  sethi(profile_limit, Rtmp);
1392  ld(Rtmp, profile_limit.low10(), Rtmp);
1393  cmp(invocation_count, Rtmp);
1394  // Use long branches because call_VM() code and following code generated by
1395  // test_backedge_count_for_osr() is large in debug VM.
1396  br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1397  delayed()->nop();
1398
1399  // Build it now.
1400  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1401  set_method_data_pointer_for_bcp();
1402  ba(profile_continue);
1403  delayed()->nop();
1404  bind(done);
1405}
1406
1407// Store a value at some constant offset from the method data pointer.
1408
1409void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1410  assert(ProfileInterpreter, "must be profiling interpreter");
1411  st_ptr(value, ImethodDataPtr, constant);
1412}
1413
1414void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1415                                                      Register bumped_count,
1416                                                      bool decrement) {
1417  assert(ProfileInterpreter, "must be profiling interpreter");
1418
1419  // Load the counter.
1420  ld_ptr(counter, bumped_count);
1421
1422  if (decrement) {
1423    // Decrement the register.  Set condition codes.
1424    subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1425
1426    // If the decrement causes the counter to overflow, stay negative
1427    Label L;
1428    brx(Assembler::negative, true, Assembler::pn, L);
1429
1430    // Store the decremented counter, if it is still negative.
1431    delayed()->st_ptr(bumped_count, counter);
1432    bind(L);
1433  } else {
1434    // Increment the register.  Set carry flag.
1435    addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1436
1437    // If the increment causes the counter to overflow, pull back by 1.
1438    assert(DataLayout::counter_increment == 1, "subc works");
1439    subc(bumped_count, G0, bumped_count);
1440
1441    // Store the incremented counter.
1442    st_ptr(bumped_count, counter);
1443  }
1444}
1445
1446// Increment the value at some constant offset from the method data pointer.
1447
1448void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1449                                                      Register bumped_count,
1450                                                      bool decrement) {
1451  // Locate the counter at a fixed offset from the mdp:
1452  Address counter(ImethodDataPtr, constant);
1453  increment_mdp_data_at(counter, bumped_count, decrement);
1454}
1455
1456// Increment the value at some non-fixed (reg + constant) offset from
1457// the method data pointer.
1458
1459void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1460                                                      int constant,
1461                                                      Register bumped_count,
1462                                                      Register scratch2,
1463                                                      bool decrement) {
1464  // Add the constant to reg to get the offset.
1465  add(ImethodDataPtr, reg, scratch2);
1466  Address counter(scratch2, constant);
1467  increment_mdp_data_at(counter, bumped_count, decrement);
1468}
1469
1470// Set a flag value at the current method data pointer position.
1471// Updates a single byte of the header, to avoid races with other header bits.
1472
1473void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1474                                                Register scratch) {
1475  assert(ProfileInterpreter, "must be profiling interpreter");
1476  // Load the data header
1477  ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1478
1479  // Set the flag
1480  or3(scratch, flag_constant, scratch);
1481
1482  // Store the modified header.
1483  stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1484}
1485
1486// Test the location at some offset from the method data pointer.
1487// If it is not equal to value, branch to the not_equal_continue Label.
1488// Set condition codes to match the nullness of the loaded value.
1489
1490void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1491                                                 Register value,
1492                                                 Label& not_equal_continue,
1493                                                 Register scratch) {
1494  assert(ProfileInterpreter, "must be profiling interpreter");
1495  ld_ptr(ImethodDataPtr, offset, scratch);
1496  cmp(value, scratch);
1497  brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1498  delayed()->tst(scratch);
1499}
1500
1501// Update the method data pointer by the displacement located at some fixed
1502// offset from the method data pointer.
1503
1504void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1505                                                     Register scratch) {
1506  assert(ProfileInterpreter, "must be profiling interpreter");
1507  ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1508  add(ImethodDataPtr, scratch, ImethodDataPtr);
1509}
1510
1511// Update the method data pointer by the displacement located at the
1512// offset (reg + offset_of_disp).
1513
1514void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1515                                                     int offset_of_disp,
1516                                                     Register scratch) {
1517  assert(ProfileInterpreter, "must be profiling interpreter");
1518  add(reg, offset_of_disp, scratch);
1519  ld_ptr(ImethodDataPtr, scratch, scratch);
1520  add(ImethodDataPtr, scratch, ImethodDataPtr);
1521}
1522
1523// Update the method data pointer by a simple constant displacement.
1524
1525void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1526  assert(ProfileInterpreter, "must be profiling interpreter");
1527  add(ImethodDataPtr, constant, ImethodDataPtr);
1528}
1529
1530// Update the method data pointer for a _ret bytecode whose target
1531// was not among our cached targets.
1532
1533void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1534                                                   Register return_bci) {
1535  assert(ProfileInterpreter, "must be profiling interpreter");
1536  push(state);
1537  st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1538  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1539  ld_ptr(l_tmp, return_bci);
1540  pop(state);
1541}
1542
1543// Count a taken branch in the bytecodes.
1544
1545void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1546  if (ProfileInterpreter) {
1547    Label profile_continue;
1548
1549    // If no method data exists, go to profile_continue.
1550    test_method_data_pointer(profile_continue);
1551
1552    // We are taking a branch.  Increment the taken count.
1553    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1554
1555    // The method data pointer needs to be updated to reflect the new target.
1556    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1557    bind (profile_continue);
1558  }
1559}
1560
1561
1562// Count a not-taken branch in the bytecodes.
1563
1564void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1565  if (ProfileInterpreter) {
1566    Label profile_continue;
1567
1568    // If no method data exists, go to profile_continue.
1569    test_method_data_pointer(profile_continue);
1570
1571    // We are taking a branch.  Increment the not taken count.
1572    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1573
1574    // The method data pointer needs to be updated to correspond to the
1575    // next bytecode.
1576    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1577    bind (profile_continue);
1578  }
1579}
1580
1581
1582// Count a non-virtual call in the bytecodes.
1583
1584void InterpreterMacroAssembler::profile_call(Register scratch) {
1585  if (ProfileInterpreter) {
1586    Label profile_continue;
1587
1588    // If no method data exists, go to profile_continue.
1589    test_method_data_pointer(profile_continue);
1590
1591    // We are making a call.  Increment the count.
1592    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1593
1594    // The method data pointer needs to be updated to reflect the new target.
1595    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1596    bind (profile_continue);
1597  }
1598}
1599
1600
1601// Count a final call in the bytecodes.
1602
1603void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1604  if (ProfileInterpreter) {
1605    Label profile_continue;
1606
1607    // If no method data exists, go to profile_continue.
1608    test_method_data_pointer(profile_continue);
1609
1610    // We are making a call.  Increment the count.
1611    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1612
1613    // The method data pointer needs to be updated to reflect the new target.
1614    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1615    bind (profile_continue);
1616  }
1617}
1618
1619
1620// Count a virtual call in the bytecodes.
1621
1622void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1623                                                     Register scratch,
1624                                                     bool receiver_can_be_null) {
1625  if (ProfileInterpreter) {
1626    Label profile_continue;
1627
1628    // If no method data exists, go to profile_continue.
1629    test_method_data_pointer(profile_continue);
1630
1631
1632    Label skip_receiver_profile;
1633    if (receiver_can_be_null) {
1634      Label not_null;
1635      br_notnull_short(receiver, Assembler::pt, not_null);
1636      // We are making a call.  Increment the count for null receiver.
1637      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1638      ba_short(skip_receiver_profile);
1639      bind(not_null);
1640    }
1641
1642    // Record the receiver type.
1643    record_klass_in_profile(receiver, scratch, true);
1644    bind(skip_receiver_profile);
1645
1646    // The method data pointer needs to be updated to reflect the new target.
1647    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1648    bind (profile_continue);
1649  }
1650}
1651
1652void InterpreterMacroAssembler::record_klass_in_profile_helper(
1653                                        Register receiver, Register scratch,
1654                                        int start_row, Label& done, bool is_virtual_call) {
1655  if (TypeProfileWidth == 0) {
1656    if (is_virtual_call) {
1657      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1658    }
1659    return;
1660  }
1661
1662  int last_row = VirtualCallData::row_limit() - 1;
1663  assert(start_row <= last_row, "must be work left to do");
1664  // Test this row for both the receiver and for null.
1665  // Take any of three different outcomes:
1666  //   1. found receiver => increment count and goto done
1667  //   2. found null => keep looking for case 1, maybe allocate this cell
1668  //   3. found something else => keep looking for cases 1 and 2
1669  // Case 3 is handled by a recursive call.
1670  for (int row = start_row; row <= last_row; row++) {
1671    Label next_test;
1672    bool test_for_null_also = (row == start_row);
1673
1674    // See if the receiver is receiver[n].
1675    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1676    test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1677    // delayed()->tst(scratch);
1678
1679    // The receiver is receiver[n].  Increment count[n].
1680    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1681    increment_mdp_data_at(count_offset, scratch);
1682    ba_short(done);
1683    bind(next_test);
1684
1685    if (test_for_null_also) {
1686      Label found_null;
1687      // Failed the equality check on receiver[n]...  Test for null.
1688      if (start_row == last_row) {
1689        // The only thing left to do is handle the null case.
1690        if (is_virtual_call) {
1691          brx(Assembler::zero, false, Assembler::pn, found_null);
1692          delayed()->nop();
1693          // Receiver did not match any saved receiver and there is no empty row for it.
1694          // Increment total counter to indicate polymorphic case.
1695          increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1696          ba_short(done);
1697          bind(found_null);
1698        } else {
1699          brx(Assembler::notZero, false, Assembler::pt, done);
1700          delayed()->nop();
1701        }
1702        break;
1703      }
1704      // Since null is rare, make it be the branch-taken case.
1705      brx(Assembler::zero, false, Assembler::pn, found_null);
1706      delayed()->nop();
1707
1708      // Put all the "Case 3" tests here.
1709      record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1710
1711      // Found a null.  Keep searching for a matching receiver,
1712      // but remember that this is an empty (unused) slot.
1713      bind(found_null);
1714    }
1715  }
1716
1717  // In the fall-through case, we found no matching receiver, but we
1718  // observed the receiver[start_row] is NULL.
1719
1720  // Fill in the receiver field and increment the count.
1721  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1722  set_mdp_data_at(recvr_offset, receiver);
1723  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1724  mov(DataLayout::counter_increment, scratch);
1725  set_mdp_data_at(count_offset, scratch);
1726  if (start_row > 0) {
1727    ba_short(done);
1728  }
1729}
1730
1731void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1732                                                        Register scratch, bool is_virtual_call) {
1733  assert(ProfileInterpreter, "must be profiling");
1734  Label done;
1735
1736  record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1737
1738  bind (done);
1739}
1740
1741
1742// Count a ret in the bytecodes.
1743
1744void InterpreterMacroAssembler::profile_ret(TosState state,
1745                                            Register return_bci,
1746                                            Register scratch) {
1747  if (ProfileInterpreter) {
1748    Label profile_continue;
1749    uint row;
1750
1751    // If no method data exists, go to profile_continue.
1752    test_method_data_pointer(profile_continue);
1753
1754    // Update the total ret count.
1755    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1756
1757    for (row = 0; row < RetData::row_limit(); row++) {
1758      Label next_test;
1759
1760      // See if return_bci is equal to bci[n]:
1761      test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1762                       return_bci, next_test, scratch);
1763
1764      // return_bci is equal to bci[n].  Increment the count.
1765      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1766
1767      // The method data pointer needs to be updated to reflect the new target.
1768      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1769      ba_short(profile_continue);
1770      bind(next_test);
1771    }
1772
1773    update_mdp_for_ret(state, return_bci);
1774
1775    bind (profile_continue);
1776  }
1777}
1778
1779// Profile an unexpected null in the bytecodes.
1780void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1781  if (ProfileInterpreter) {
1782    Label profile_continue;
1783
1784    // If no method data exists, go to profile_continue.
1785    test_method_data_pointer(profile_continue);
1786
1787    set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1788
1789    // The method data pointer needs to be updated.
1790    int mdp_delta = in_bytes(BitData::bit_data_size());
1791    if (TypeProfileCasts) {
1792      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1793    }
1794    update_mdp_by_constant(mdp_delta);
1795
1796    bind (profile_continue);
1797  }
1798}
1799
1800void InterpreterMacroAssembler::profile_typecheck(Register klass,
1801                                                  Register scratch) {
1802  if (ProfileInterpreter) {
1803    Label profile_continue;
1804
1805    // If no method data exists, go to profile_continue.
1806    test_method_data_pointer(profile_continue);
1807
1808    int mdp_delta = in_bytes(BitData::bit_data_size());
1809    if (TypeProfileCasts) {
1810      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1811
1812      // Record the object type.
1813      record_klass_in_profile(klass, scratch, false);
1814    }
1815
1816    // The method data pointer needs to be updated.
1817    update_mdp_by_constant(mdp_delta);
1818
1819    bind (profile_continue);
1820  }
1821}
1822
1823void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1824  if (ProfileInterpreter && TypeProfileCasts) {
1825    Label profile_continue;
1826
1827    // If no method data exists, go to profile_continue.
1828    test_method_data_pointer(profile_continue);
1829
1830    int count_offset = in_bytes(CounterData::count_offset());
1831    // Back up the address, since we have already bumped the mdp.
1832    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1833
1834    // *Decrement* the counter.  We expect to see zero or small negatives.
1835    increment_mdp_data_at(count_offset, scratch, true);
1836
1837    bind (profile_continue);
1838  }
1839}
1840
1841// Count the default case of a switch construct.
1842
1843void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1844  if (ProfileInterpreter) {
1845    Label profile_continue;
1846
1847    // If no method data exists, go to profile_continue.
1848    test_method_data_pointer(profile_continue);
1849
1850    // Update the default case count
1851    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1852                          scratch);
1853
1854    // The method data pointer needs to be updated.
1855    update_mdp_by_offset(
1856                    in_bytes(MultiBranchData::default_displacement_offset()),
1857                    scratch);
1858
1859    bind (profile_continue);
1860  }
1861}
1862
1863// Count the index'th case of a switch construct.
1864
1865void InterpreterMacroAssembler::profile_switch_case(Register index,
1866                                                    Register scratch,
1867                                                    Register scratch2,
1868                                                    Register scratch3) {
1869  if (ProfileInterpreter) {
1870    Label profile_continue;
1871
1872    // If no method data exists, go to profile_continue.
1873    test_method_data_pointer(profile_continue);
1874
1875    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1876    set(in_bytes(MultiBranchData::per_case_size()), scratch);
1877    smul(index, scratch, scratch);
1878    add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1879
1880    // Update the case count
1881    increment_mdp_data_at(scratch,
1882                          in_bytes(MultiBranchData::relative_count_offset()),
1883                          scratch2,
1884                          scratch3);
1885
1886    // The method data pointer needs to be updated.
1887    update_mdp_by_offset(scratch,
1888                     in_bytes(MultiBranchData::relative_displacement_offset()),
1889                     scratch2);
1890
1891    bind (profile_continue);
1892  }
1893}
1894
1895// add a InterpMonitorElem to stack (see frame_sparc.hpp)
1896
1897void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1898                                                      Register Rtemp,
1899                                                      Register Rtemp2 ) {
1900
1901  Register Rlimit = Lmonitors;
1902  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1903  assert( (delta & LongAlignmentMask) == 0,
1904          "sizeof BasicObjectLock must be even number of doublewords");
1905
1906  sub( SP,        delta, SP);
1907  sub( Lesp,      delta, Lesp);
1908  sub( Lmonitors, delta, Lmonitors);
1909
1910  if (!stack_is_empty) {
1911
1912    // must copy stack contents down
1913
1914    Label start_copying, next;
1915
1916    // untested("monitor stack expansion");
1917    compute_stack_base(Rtemp);
1918    ba(start_copying);
1919    delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
1920
1921    // note: must copy from low memory upwards
1922    // On entry to loop,
1923    // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1924    // Loop mutates Rtemp
1925
1926    bind( next);
1927
1928    st_ptr(Rtemp2, Rtemp, 0);
1929    inc(Rtemp, wordSize);
1930    cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1931
1932    bind( start_copying );
1933
1934    brx( notEqual, true, pn, next );
1935    delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1936
1937    // done copying stack
1938  }
1939}
1940
1941// Locals
1942void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1943  assert_not_delayed();
1944  sll(index, Interpreter::logStackElementSize, index);
1945  sub(Llocals, index, index);
1946  ld_ptr(index, 0, dst);
1947  // Note:  index must hold the effective address--the iinc template uses it
1948}
1949
1950// Just like access_local_ptr but the tag is a returnAddress
1951void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1952                                                           Register dst ) {
1953  assert_not_delayed();
1954  sll(index, Interpreter::logStackElementSize, index);
1955  sub(Llocals, index, index);
1956  ld_ptr(index, 0, dst);
1957}
1958
1959void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1960  assert_not_delayed();
1961  sll(index, Interpreter::logStackElementSize, index);
1962  sub(Llocals, index, index);
1963  ld(index, 0, dst);
1964  // Note:  index must hold the effective address--the iinc template uses it
1965}
1966
1967
1968void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1969  assert_not_delayed();
1970  sll(index, Interpreter::logStackElementSize, index);
1971  sub(Llocals, index, index);
1972  // First half stored at index n+1 (which grows down from Llocals[n])
1973  load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1974}
1975
1976
1977void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1978  assert_not_delayed();
1979  sll(index, Interpreter::logStackElementSize, index);
1980  sub(Llocals, index, index);
1981  ldf(FloatRegisterImpl::S, index, 0, dst);
1982}
1983
1984
1985void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1986  assert_not_delayed();
1987  sll(index, Interpreter::logStackElementSize, index);
1988  sub(Llocals, index, index);
1989  load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
1990}
1991
1992
1993#ifdef ASSERT
1994void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
1995  Label L;
1996
1997  assert(Rindex != Rscratch, "Registers cannot be same");
1998  assert(Rindex != Rscratch1, "Registers cannot be same");
1999  assert(Rlimit != Rscratch, "Registers cannot be same");
2000  assert(Rlimit != Rscratch1, "Registers cannot be same");
2001  assert(Rscratch1 != Rscratch, "Registers cannot be same");
2002
2003  // untested("reg area corruption");
2004  add(Rindex, offset, Rscratch);
2005  add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2006  cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2007  stop("regsave area is being clobbered");
2008  bind(L);
2009}
2010#endif // ASSERT
2011
2012
2013void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2014  assert_not_delayed();
2015  sll(index, Interpreter::logStackElementSize, index);
2016  sub(Llocals, index, index);
2017  debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2018  st(src, index, 0);
2019}
2020
2021void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2022  assert_not_delayed();
2023  sll(index, Interpreter::logStackElementSize, index);
2024  sub(Llocals, index, index);
2025#ifdef ASSERT
2026  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2027#endif
2028  st_ptr(src, index, 0);
2029}
2030
2031
2032
2033void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2034  st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2035}
2036
2037void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2038  assert_not_delayed();
2039  sll(index, Interpreter::logStackElementSize, index);
2040  sub(Llocals, index, index);
2041#ifdef ASSERT
2042  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2043#endif
2044  store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2045}
2046
2047
2048void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2049  assert_not_delayed();
2050  sll(index, Interpreter::logStackElementSize, index);
2051  sub(Llocals, index, index);
2052#ifdef ASSERT
2053  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2054#endif
2055  stf(FloatRegisterImpl::S, src, index, 0);
2056}
2057
2058
2059void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2060  assert_not_delayed();
2061  sll(index, Interpreter::logStackElementSize, index);
2062  sub(Llocals, index, index);
2063#ifdef ASSERT
2064  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2065#endif
2066  store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2067}
2068
2069
2070int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2071  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2072  int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2073  return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2074}
2075
2076
2077Address InterpreterMacroAssembler::top_most_monitor() {
2078  return Address(FP, top_most_monitor_byte_offset());
2079}
2080
2081
2082void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2083  add( Lesp,      wordSize,                                    Rdest );
2084}
2085
2086#endif /* CC_INTERP */
2087
2088void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2089  assert(UseCompiler, "incrementing must be useful");
2090#ifdef CC_INTERP
2091  Address inv_counter(G5_method, Method::invocation_counter_offset() +
2092                                 InvocationCounter::counter_offset());
2093  Address be_counter (G5_method, Method::backedge_counter_offset() +
2094                                 InvocationCounter::counter_offset());
2095#else
2096  Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2097                               InvocationCounter::counter_offset());
2098  Address be_counter (Lmethod, Method::backedge_counter_offset() +
2099                               InvocationCounter::counter_offset());
2100#endif /* CC_INTERP */
2101  int delta = InvocationCounter::count_increment;
2102
2103  // Load each counter in a register
2104  ld( inv_counter, Rtmp );
2105  ld( be_counter, Rtmp2 );
2106
2107  assert( is_simm13( delta ), " delta too large.");
2108
2109  // Add the delta to the invocation counter and store the result
2110  add( Rtmp, delta, Rtmp );
2111
2112  // Mask the backedge counter
2113  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2114
2115  // Store value
2116  st( Rtmp, inv_counter);
2117
2118  // Add invocation counter + backedge counter
2119  add( Rtmp, Rtmp2, Rtmp);
2120
2121  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2122}
2123
2124void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2125  assert(UseCompiler, "incrementing must be useful");
2126#ifdef CC_INTERP
2127  Address be_counter (G5_method, Method::backedge_counter_offset() +
2128                                 InvocationCounter::counter_offset());
2129  Address inv_counter(G5_method, Method::invocation_counter_offset() +
2130                                 InvocationCounter::counter_offset());
2131#else
2132  Address be_counter (Lmethod, Method::backedge_counter_offset() +
2133                               InvocationCounter::counter_offset());
2134  Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2135                               InvocationCounter::counter_offset());
2136#endif /* CC_INTERP */
2137  int delta = InvocationCounter::count_increment;
2138  // Load each counter in a register
2139  ld( be_counter, Rtmp );
2140  ld( inv_counter, Rtmp2 );
2141
2142  // Add the delta to the backedge counter
2143  add( Rtmp, delta, Rtmp );
2144
2145  // Mask the invocation counter, add to backedge counter
2146  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2147
2148  // and store the result to memory
2149  st( Rtmp, be_counter );
2150
2151  // Add backedge + invocation counter
2152  add( Rtmp, Rtmp2, Rtmp );
2153
2154  // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2155}
2156
2157#ifndef CC_INTERP
2158void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2159                                                             Register branch_bcp,
2160                                                             Register Rtmp ) {
2161  Label did_not_overflow;
2162  Label overflow_with_error;
2163  assert_different_registers(backedge_count, Rtmp, branch_bcp);
2164  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2165
2166  AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2167  load_contents(limit, Rtmp);
2168  cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2169
2170  // When ProfileInterpreter is on, the backedge_count comes from the
2171  // MethodData*, which value does not get reset on the call to
2172  // frequency_counter_overflow().  To avoid excessive calls to the overflow
2173  // routine while the method is being compiled, add a second test to make sure
2174  // the overflow function is called only once every overflow_frequency.
2175  if (ProfileInterpreter) {
2176    const int overflow_frequency = 1024;
2177    andcc(backedge_count, overflow_frequency-1, Rtmp);
2178    brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2179    delayed()->nop();
2180  }
2181
2182  // overflow in loop, pass branch bytecode
2183  set(6,Rtmp);
2184  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2185
2186  // Was an OSR adapter generated?
2187  // O0 = osr nmethod
2188  br_null_short(O0, Assembler::pn, overflow_with_error);
2189
2190  // Has the nmethod been invalidated already?
2191  ld(O0, nmethod::entry_bci_offset(), O2);
2192  cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
2193
2194  // migrate the interpreter frame off of the stack
2195
2196  mov(G2_thread, L7);
2197  // save nmethod
2198  mov(O0, L6);
2199  set_last_Java_frame(SP, noreg);
2200  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2201  reset_last_Java_frame();
2202  mov(L7, G2_thread);
2203
2204  // move OSR nmethod to I1
2205  mov(L6, I1);
2206
2207  // OSR buffer to I0
2208  mov(O0, I0);
2209
2210  // remove the interpreter frame
2211  restore(I5_savedSP, 0, SP);
2212
2213  // Jump to the osr code.
2214  ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2215  jmp(O2, G0);
2216  delayed()->nop();
2217
2218  bind(overflow_with_error);
2219
2220  bind(did_not_overflow);
2221}
2222
2223
2224
2225void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2226  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2227}
2228
2229
2230// local helper function for the verify_oop_or_return_address macro
2231static bool verify_return_address(Method* m, int bci) {
2232#ifndef PRODUCT
2233  address pc = (address)(m->constMethod())
2234             + in_bytes(ConstMethod::codes_offset()) + bci;
2235  // assume it is a valid return address if it is inside m and is preceded by a jsr
2236  if (!m->contains(pc))                                          return false;
2237  address jsr_pc;
2238  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2239  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2240  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2241  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2242#endif // PRODUCT
2243  return false;
2244}
2245
2246
2247void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2248  if (!VerifyOops)  return;
2249  // the VM documentation for the astore[_wide] bytecode allows
2250  // the TOS to be not only an oop but also a return address
2251  Label test;
2252  Label skip;
2253  // See if it is an address (in the current method):
2254
2255  mov(reg, Rtmp);
2256  const int log2_bytecode_size_limit = 16;
2257  srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2258  br_notnull_short( Rtmp, pt, test );
2259
2260  // %%% should use call_VM_leaf here?
2261  save_frame_and_mov(0, Lmethod, O0, reg, O1);
2262  save_thread(L7_thread_cache);
2263  call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2264  delayed()->nop();
2265  restore_thread(L7_thread_cache);
2266  br_notnull( O0, false, pt, skip );
2267  delayed()->restore();
2268
2269  // Perform a more elaborate out-of-line call
2270  // Not an address; verify it:
2271  bind(test);
2272  verify_oop(reg);
2273  bind(skip);
2274}
2275
2276
2277void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2278  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2279}
2280#endif /* CC_INTERP */
2281
2282// Inline assembly for:
2283//
2284// if (thread is in interp_only_mode) {
2285//   InterpreterRuntime::post_method_entry();
2286// }
2287// if (DTraceMethodProbes) {
2288//   SharedRuntime::dtrace_method_entry(method, receiver);
2289// }
2290// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2291//   SharedRuntime::rc_trace_method_entry(method, receiver);
2292// }
2293
2294void InterpreterMacroAssembler::notify_method_entry() {
2295
2296  // C++ interpreter only uses this for native methods.
2297
2298  // Whenever JVMTI puts a thread in interp_only_mode, method
2299  // entry/exit events are sent for that thread to track stack
2300  // depth.  If it is possible to enter interp_only_mode we add
2301  // the code to check if the event should be sent.
2302  if (JvmtiExport::can_post_interpreter_events()) {
2303    Label L;
2304    Register temp_reg = O5;
2305    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2306    ld(interp_only, temp_reg);
2307    cmp_and_br_short(temp_reg, 0, equal, pt, L);
2308    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2309    bind(L);
2310  }
2311
2312  {
2313    Register temp_reg = O5;
2314    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2315    call_VM_leaf(noreg,
2316      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2317      G2_thread, Lmethod);
2318  }
2319
2320  // RedefineClasses() tracing support for obsolete method entry
2321  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2322    call_VM_leaf(noreg,
2323      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2324      G2_thread, Lmethod);
2325  }
2326}
2327
2328
2329// Inline assembly for:
2330//
2331// if (thread is in interp_only_mode) {
2332//   // save result
2333//   InterpreterRuntime::post_method_exit();
2334//   // restore result
2335// }
2336// if (DTraceMethodProbes) {
2337//   SharedRuntime::dtrace_method_exit(thread, method);
2338// }
2339//
2340// Native methods have their result stored in d_tmp and l_tmp
2341// Java methods have their result stored in the expression stack
2342
2343void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2344                                                   TosState state,
2345                                                   NotifyMethodExitMode mode) {
2346  // C++ interpreter only uses this for native methods.
2347
2348  // Whenever JVMTI puts a thread in interp_only_mode, method
2349  // entry/exit events are sent for that thread to track stack
2350  // depth.  If it is possible to enter interp_only_mode we add
2351  // the code to check if the event should be sent.
2352  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2353    Label L;
2354    Register temp_reg = O5;
2355    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2356    ld(interp_only, temp_reg);
2357    cmp_and_br_short(temp_reg, 0, equal, pt, L);
2358
2359    // Note: frame::interpreter_frame_result has a dependency on how the
2360    // method result is saved across the call to post_method_exit. For
2361    // native methods it assumes the result registers are saved to
2362    // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2363    // implementation will need to be updated too.
2364
2365    save_return_value(state, is_native_method);
2366    call_VM(noreg,
2367            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2368    restore_return_value(state, is_native_method);
2369    bind(L);
2370  }
2371
2372  {
2373    Register temp_reg = O5;
2374    // Dtrace notification
2375    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2376    save_return_value(state, is_native_method);
2377    call_VM_leaf(
2378      noreg,
2379      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2380      G2_thread, Lmethod);
2381    restore_return_value(state, is_native_method);
2382  }
2383}
2384
2385void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2386#ifdef CC_INTERP
2387  // result potentially in O0/O1: save it across calls
2388  stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2389#ifdef _LP64
2390  stx(O0, STATE(_native_lresult));
2391#else
2392  std(O0, STATE(_native_lresult));
2393#endif
2394#else // CC_INTERP
2395  if (is_native_call) {
2396    stf(FloatRegisterImpl::D, F0, d_tmp);
2397#ifdef _LP64
2398    stx(O0, l_tmp);
2399#else
2400    std(O0, l_tmp);
2401#endif
2402  } else {
2403    push(state);
2404  }
2405#endif // CC_INTERP
2406}
2407
2408void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2409#ifdef CC_INTERP
2410  ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2411#ifdef _LP64
2412  ldx(STATE(_native_lresult), O0);
2413#else
2414  ldd(STATE(_native_lresult), O0);
2415#endif
2416#else // CC_INTERP
2417  if (is_native_call) {
2418    ldf(FloatRegisterImpl::D, d_tmp, F0);
2419#ifdef _LP64
2420    ldx(l_tmp, O0);
2421#else
2422    ldd(l_tmp, O0);
2423#endif
2424  } else {
2425    pop(state);
2426  }
2427#endif // CC_INTERP
2428}
2429
2430// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2431void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2432                                                        int increment, int mask,
2433                                                        Register scratch1, Register scratch2,
2434                                                        Condition cond, Label *where) {
2435  ld(counter_addr, scratch1);
2436  add(scratch1, increment, scratch1);
2437  if (is_simm13(mask)) {
2438    andcc(scratch1, mask, G0);
2439  } else {
2440    set(mask, scratch2);
2441    andcc(scratch1, scratch2,  G0);
2442  }
2443  br(cond, false, Assembler::pn, *where);
2444  delayed()->st(scratch1, counter_addr);
2445}
2446