interp_masm_sparc.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interp_masm_sparc.hpp"
27#include "interpreter/interpreter.hpp"
28#include "interpreter/interpreterRuntime.hpp"
29#include "oops/arrayOop.hpp"
30#include "oops/markOop.hpp"
31#include "oops/methodData.hpp"
32#include "oops/method.hpp"
33#include "prims/jvmtiExport.hpp"
34#include "prims/jvmtiRedefineClassesTrace.hpp"
35#include "prims/jvmtiThreadState.hpp"
36#include "runtime/basicLock.hpp"
37#include "runtime/biasedLocking.hpp"
38#include "runtime/sharedRuntime.hpp"
39#ifdef TARGET_OS_FAMILY_linux
40# include "thread_linux.inline.hpp"
41#endif
42#ifdef TARGET_OS_FAMILY_solaris
43# include "thread_solaris.inline.hpp"
44#endif
45
46#ifndef CC_INTERP
47#ifndef FAST_DISPATCH
48#define FAST_DISPATCH 1
49#endif
50#undef FAST_DISPATCH
51
52// Implementation of InterpreterMacroAssembler
53
54// This file specializes the assember with interpreter-specific macros
55
56const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
57const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
58
59#else // CC_INTERP
60#ifndef STATE
61#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
62#endif // STATE
63
64#endif // CC_INTERP
65
66void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
67  // Note: this algorithm is also used by C1's OSR entry sequence.
68  // Any changes should also be applied to CodeEmitter::emit_osr_entry().
69  assert_different_registers(args_size, locals_size);
70  // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
71  subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
72  // Use br/mov combination because it works on both V8 and V9 and is
73  // faster.
74  Label skip_move;
75  br(Assembler::negative, true, Assembler::pt, skip_move);
76  delayed()->mov(G0, delta);
77  bind(skip_move);
78  round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
79  sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
80}
81
82#ifndef CC_INTERP
83
84// Dispatch code executed in the prolog of a bytecode which does not do it's
85// own dispatch. The dispatch address is computed and placed in IdispatchAddress
86void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
87  assert_not_delayed();
88#ifdef FAST_DISPATCH
89  // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
90  // they both use I2.
91  assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
92  ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
93  add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
94                                                        // add offset to correct dispatch table
95  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
96  ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
97#else
98  ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
99  // dispatch table to use
100  AddressLiteral tbl(Interpreter::dispatch_table(state));
101  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
102  set(tbl, G3_scratch);                                 // compute addr of table
103  ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
104#endif
105}
106
107
108// Dispatch code executed in the epilog of a bytecode which does not do it's
109// own dispatch. The dispatch address in IdispatchAddress is used for the
110// dispatch.
111void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
112  assert_not_delayed();
113  verify_FPU(1, state);
114  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
115  jmp( IdispatchAddress, 0 );
116  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
117  else                delayed()->nop();
118}
119
120
121void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
122  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
123  assert_not_delayed();
124  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
125  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
126}
127
128
129void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
130  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
131  assert_not_delayed();
132  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
133  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
134}
135
136
137void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
138  // load current bytecode
139  assert_not_delayed();
140  ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
141  dispatch_base(state, table);
142}
143
144
145void InterpreterMacroAssembler::call_VM_leaf_base(
146  Register java_thread,
147  address  entry_point,
148  int      number_of_arguments
149) {
150  if (!java_thread->is_valid())
151    java_thread = L7_thread_cache;
152  // super call
153  MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
154}
155
156
157void InterpreterMacroAssembler::call_VM_base(
158  Register        oop_result,
159  Register        java_thread,
160  Register        last_java_sp,
161  address         entry_point,
162  int             number_of_arguments,
163  bool            check_exception
164) {
165  if (!java_thread->is_valid())
166    java_thread = L7_thread_cache;
167  // See class ThreadInVMfromInterpreter, which assumes that the interpreter
168  // takes responsibility for setting its own thread-state on call-out.
169  // However, ThreadInVMfromInterpreter resets the state to "in_Java".
170
171  //save_bcp();                                  // save bcp
172  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
173  //restore_bcp();                               // restore bcp
174  //restore_locals();                            // restore locals pointer
175}
176
177
178void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
179  if (JvmtiExport::can_pop_frame()) {
180    Label L;
181
182    // Check the "pending popframe condition" flag in the current thread
183    ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
184
185    // Initiate popframe handling only if it is not already being processed.  If the flag
186    // has the popframe_processing bit set, it means that this code is called *during* popframe
187    // handling - we don't want to reenter.
188    btst(JavaThread::popframe_pending_bit, scratch_reg);
189    br(zero, false, pt, L);
190    delayed()->nop();
191    btst(JavaThread::popframe_processing_bit, scratch_reg);
192    br(notZero, false, pt, L);
193    delayed()->nop();
194
195    // Call Interpreter::remove_activation_preserving_args_entry() to get the
196    // address of the same-named entrypoint in the generated interpreter code.
197    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
198
199    // Jump to Interpreter::_remove_activation_preserving_args_entry
200    jmpl(O0, G0, G0);
201    delayed()->nop();
202    bind(L);
203  }
204}
205
206
207void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
208  Register thr_state = G4_scratch;
209  ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
210  const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
211  const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
212  const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
213  switch (state) {
214  case ltos: ld_long(val_addr, Otos_l);                   break;
215  case atos: ld_ptr(oop_addr, Otos_l);
216             st_ptr(G0, oop_addr);                        break;
217  case btos:                                           // fall through
218  case ctos:                                           // fall through
219  case stos:                                           // fall through
220  case itos: ld(val_addr, Otos_l1);                       break;
221  case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
222  case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
223  case vtos: /* nothing to do */                          break;
224  default  : ShouldNotReachHere();
225  }
226  // Clean up tos value in the jvmti thread state
227  or3(G0, ilgl, G3_scratch);
228  stw(G3_scratch, tos_addr);
229  st_long(G0, val_addr);
230  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
231}
232
233
234void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
235  if (JvmtiExport::can_force_early_return()) {
236    Label L;
237    Register thr_state = G3_scratch;
238    ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
239    br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
240
241    // Initiate earlyret handling only if it is not already being processed.
242    // If the flag has the earlyret_processing bit set, it means that this code
243    // is called *during* earlyret handling - we don't want to reenter.
244    ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
245    cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
246
247    // Call Interpreter::remove_activation_early_entry() to get the address of the
248    // same-named entrypoint in the generated interpreter code
249    ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
250    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
251
252    // Jump to Interpreter::_remove_activation_early_entry
253    jmpl(O0, G0, G0);
254    delayed()->nop();
255    bind(L);
256  }
257}
258
259
260void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
261  mov(arg_1, O0);
262  mov(arg_2, O1);
263  MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
264}
265#endif /* CC_INTERP */
266
267
268#ifndef CC_INTERP
269
270void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
271  assert_not_delayed();
272  dispatch_Lbyte_code(state, table);
273}
274
275
276void InterpreterMacroAssembler::dispatch_normal(TosState state) {
277  dispatch_base(state, Interpreter::normal_table(state));
278}
279
280
281void InterpreterMacroAssembler::dispatch_only(TosState state) {
282  dispatch_base(state, Interpreter::dispatch_table(state));
283}
284
285
286// common code to dispatch and dispatch_only
287// dispatch value in Lbyte_code and increment Lbcp
288
289void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
290  verify_FPU(1, state);
291  // %%%%% maybe implement +VerifyActivationFrameSize here
292  //verify_thread(); //too slow; we will just verify on method entry & exit
293  if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
294#ifdef FAST_DISPATCH
295  if (table == Interpreter::dispatch_table(state)) {
296    // use IdispatchTables
297    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
298                                                        // add offset to correct dispatch table
299    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
300    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
301  } else {
302#endif
303    // dispatch table to use
304    AddressLiteral tbl(table);
305    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
306    set(tbl, G3_scratch);                               // compute addr of table
307    ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
308#ifdef FAST_DISPATCH
309  }
310#endif
311  jmp( G3_scratch, 0 );
312  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
313  else                delayed()->nop();
314}
315
316
317// Helpers for expression stack
318
319// Longs and doubles are Category 2 computational types in the
320// JVM specification (section 3.11.1) and take 2 expression stack or
321// local slots.
322// Aligning them on 32 bit with tagged stacks is hard because the code generated
323// for the dup* bytecodes depends on what types are already on the stack.
324// If the types are split into the two stack/local slots, that is much easier
325// (and we can use 0 for non-reference tags).
326
327// Known good alignment in _LP64 but unknown otherwise
328void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
329  assert_not_delayed();
330
331#ifdef _LP64
332  ldf(FloatRegisterImpl::D, r1, offset, d);
333#else
334  ldf(FloatRegisterImpl::S, r1, offset, d);
335  ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
336#endif
337}
338
339// Known good alignment in _LP64 but unknown otherwise
340void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
341  assert_not_delayed();
342
343#ifdef _LP64
344  stf(FloatRegisterImpl::D, d, r1, offset);
345  // store something more useful here
346  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
347#else
348  stf(FloatRegisterImpl::S, d, r1, offset);
349  stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
350#endif
351}
352
353
354// Known good alignment in _LP64 but unknown otherwise
355void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
356  assert_not_delayed();
357#ifdef _LP64
358  ldx(r1, offset, rd);
359#else
360  ld(r1, offset, rd);
361  ld(r1, offset + Interpreter::stackElementSize, rd->successor());
362#endif
363}
364
365// Known good alignment in _LP64 but unknown otherwise
366void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
367  assert_not_delayed();
368
369#ifdef _LP64
370  stx(l, r1, offset);
371  // store something more useful here
372  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
373#else
374  st(l, r1, offset);
375  st(l->successor(), r1, offset + Interpreter::stackElementSize);
376#endif
377}
378
379void InterpreterMacroAssembler::pop_i(Register r) {
380  assert_not_delayed();
381  ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
382  inc(Lesp, Interpreter::stackElementSize);
383  debug_only(verify_esp(Lesp));
384}
385
386void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
387  assert_not_delayed();
388  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
389  inc(Lesp, Interpreter::stackElementSize);
390  debug_only(verify_esp(Lesp));
391}
392
393void InterpreterMacroAssembler::pop_l(Register r) {
394  assert_not_delayed();
395  load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
396  inc(Lesp, 2*Interpreter::stackElementSize);
397  debug_only(verify_esp(Lesp));
398}
399
400
401void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
402  assert_not_delayed();
403  ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
404  inc(Lesp, Interpreter::stackElementSize);
405  debug_only(verify_esp(Lesp));
406}
407
408
409void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
410  assert_not_delayed();
411  load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
412  inc(Lesp, 2*Interpreter::stackElementSize);
413  debug_only(verify_esp(Lesp));
414}
415
416
417void InterpreterMacroAssembler::push_i(Register r) {
418  assert_not_delayed();
419  debug_only(verify_esp(Lesp));
420  st(r, Lesp, 0);
421  dec(Lesp, Interpreter::stackElementSize);
422}
423
424void InterpreterMacroAssembler::push_ptr(Register r) {
425  assert_not_delayed();
426  st_ptr(r, Lesp, 0);
427  dec(Lesp, Interpreter::stackElementSize);
428}
429
430// remember: our convention for longs in SPARC is:
431// O0 (Otos_l1) has high-order part in first word,
432// O1 (Otos_l2) has low-order part in second word
433
434void InterpreterMacroAssembler::push_l(Register r) {
435  assert_not_delayed();
436  debug_only(verify_esp(Lesp));
437  // Longs are stored in memory-correct order, even if unaligned.
438  int offset = -Interpreter::stackElementSize;
439  store_unaligned_long(r, Lesp, offset);
440  dec(Lesp, 2 * Interpreter::stackElementSize);
441}
442
443
444void InterpreterMacroAssembler::push_f(FloatRegister f) {
445  assert_not_delayed();
446  debug_only(verify_esp(Lesp));
447  stf(FloatRegisterImpl::S, f, Lesp, 0);
448  dec(Lesp, Interpreter::stackElementSize);
449}
450
451
452void InterpreterMacroAssembler::push_d(FloatRegister d)   {
453  assert_not_delayed();
454  debug_only(verify_esp(Lesp));
455  // Longs are stored in memory-correct order, even if unaligned.
456  int offset = -Interpreter::stackElementSize;
457  store_unaligned_double(d, Lesp, offset);
458  dec(Lesp, 2 * Interpreter::stackElementSize);
459}
460
461
462void InterpreterMacroAssembler::push(TosState state) {
463  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
464  switch (state) {
465    case atos: push_ptr();            break;
466    case btos: push_i();              break;
467    case ctos:
468    case stos: push_i();              break;
469    case itos: push_i();              break;
470    case ltos: push_l();              break;
471    case ftos: push_f();              break;
472    case dtos: push_d();              break;
473    case vtos: /* nothing to do */    break;
474    default  : ShouldNotReachHere();
475  }
476}
477
478
479void InterpreterMacroAssembler::pop(TosState state) {
480  switch (state) {
481    case atos: pop_ptr();            break;
482    case btos: pop_i();              break;
483    case ctos:
484    case stos: pop_i();              break;
485    case itos: pop_i();              break;
486    case ltos: pop_l();              break;
487    case ftos: pop_f();              break;
488    case dtos: pop_d();              break;
489    case vtos: /* nothing to do */   break;
490    default  : ShouldNotReachHere();
491  }
492  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
493}
494
495
496// Helpers for swap and dup
497void InterpreterMacroAssembler::load_ptr(int n, Register val) {
498  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
499}
500void InterpreterMacroAssembler::store_ptr(int n, Register val) {
501  st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
502}
503
504
505void InterpreterMacroAssembler::load_receiver(Register param_count,
506                                              Register recv) {
507  sll(param_count, Interpreter::logStackElementSize, param_count);
508  ld_ptr(Lesp, param_count, recv);  // gets receiver oop
509}
510
511void InterpreterMacroAssembler::empty_expression_stack() {
512  // Reset Lesp.
513  sub( Lmonitors, wordSize, Lesp );
514
515  // Reset SP by subtracting more space from Lesp.
516  Label done;
517  assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
518
519  // A native does not need to do this, since its callee does not change SP.
520  ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
521  btst(JVM_ACC_NATIVE, Gframe_size);
522  br(Assembler::notZero, false, Assembler::pt, done);
523  delayed()->nop();
524
525  // Compute max expression stack+register save area
526  lduh(Lmethod, in_bytes(Method::max_stack_offset()), Gframe_size);  // Load max stack.
527  add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
528
529  //
530  // now set up a stack frame with the size computed above
531  //
532  //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
533  sll( Gframe_size, LogBytesPerWord, Gframe_size );
534  sub( Lesp, Gframe_size, Gframe_size );
535  and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
536  debug_only(verify_sp(Gframe_size, G4_scratch));
537#ifdef _LP64
538  sub(Gframe_size, STACK_BIAS, Gframe_size );
539#endif
540  mov(Gframe_size, SP);
541
542  bind(done);
543}
544
545
546#ifdef ASSERT
547void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
548  Label Bad, OK;
549
550  // Saved SP must be aligned.
551#ifdef _LP64
552  btst(2*BytesPerWord-1, Rsp);
553#else
554  btst(LongAlignmentMask, Rsp);
555#endif
556  br(Assembler::notZero, false, Assembler::pn, Bad);
557  delayed()->nop();
558
559  // Saved SP, plus register window size, must not be above FP.
560  add(Rsp, frame::register_save_words * wordSize, Rtemp);
561#ifdef _LP64
562  sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
563#endif
564  cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
565
566  // Saved SP must not be ridiculously below current SP.
567  size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
568  set(maxstack, Rtemp);
569  sub(SP, Rtemp, Rtemp);
570#ifdef _LP64
571  add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
572#endif
573  cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
574
575  ba_short(OK);
576
577  bind(Bad);
578  stop("on return to interpreted call, restored SP is corrupted");
579
580  bind(OK);
581}
582
583
584void InterpreterMacroAssembler::verify_esp(Register Resp) {
585  // about to read or write Resp[0]
586  // make sure it is not in the monitors or the register save area
587  Label OK1, OK2;
588
589  cmp(Resp, Lmonitors);
590  brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
591  delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
592  stop("too many pops:  Lesp points into monitor area");
593  bind(OK1);
594#ifdef _LP64
595  sub(Resp, STACK_BIAS, Resp);
596#endif
597  cmp(Resp, SP);
598  brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
599  delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
600  stop("too many pushes:  Lesp points into register window");
601  bind(OK2);
602}
603#endif // ASSERT
604
605// Load compiled (i2c) or interpreter entry when calling from interpreted and
606// do the call. Centralized so that all interpreter calls will do the same actions.
607// If jvmti single stepping is on for a thread we must not call compiled code.
608void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
609
610  // Assume we want to go compiled if available
611
612  ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
613
614  if (JvmtiExport::can_post_interpreter_events()) {
615    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
616    // compiled code in threads for which the event is enabled.  Check here for
617    // interp_only_mode if these events CAN be enabled.
618    verify_thread();
619    Label skip_compiled_code;
620
621    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
622    ld(interp_only, scratch);
623    cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
624    delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
625    bind(skip_compiled_code);
626  }
627
628  // the i2c_adapters need Method* in G5_method (right? %%%)
629  // do the call
630#ifdef ASSERT
631  {
632    Label ok;
633    br_notnull_short(target, Assembler::pt, ok);
634    stop("null entry point");
635    bind(ok);
636  }
637#endif // ASSERT
638
639  // Adjust Rret first so Llast_SP can be same as Rret
640  add(Rret, -frame::pc_return_offset, O7);
641  add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
642  // Record SP so we can remove any stack space allocated by adapter transition
643  jmp(target, 0);
644  delayed()->mov(SP, Llast_SP);
645}
646
647void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
648  assert_not_delayed();
649
650  Label not_taken;
651  if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
652  else             br (cc, false, Assembler::pn, not_taken);
653  delayed()->nop();
654
655  TemplateTable::branch(false,false);
656
657  bind(not_taken);
658
659  profile_not_taken_branch(G3_scratch);
660}
661
662
663void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
664                                  int         bcp_offset,
665                                  Register    Rtmp,
666                                  Register    Rdst,
667                                  signedOrNot is_signed,
668                                  setCCOrNot  should_set_CC ) {
669  assert(Rtmp != Rdst, "need separate temp register");
670  assert_not_delayed();
671  switch (is_signed) {
672   default: ShouldNotReachHere();
673
674   case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
675   case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
676  }
677  ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
678  sll( Rdst, BitsPerByte, Rdst);
679  switch (should_set_CC ) {
680   default: ShouldNotReachHere();
681
682   case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
683   case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
684  }
685}
686
687
688void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
689                                  int        bcp_offset,
690                                  Register   Rtmp,
691                                  Register   Rdst,
692                                  setCCOrNot should_set_CC ) {
693  assert(Rtmp != Rdst, "need separate temp register");
694  assert_not_delayed();
695  add( Lbcp, bcp_offset, Rtmp);
696  andcc( Rtmp, 3, G0);
697  Label aligned;
698  switch (should_set_CC ) {
699   default: ShouldNotReachHere();
700
701   case      set_CC: break;
702   case dont_set_CC: break;
703  }
704
705  br(Assembler::zero, true, Assembler::pn, aligned);
706#ifdef _LP64
707  delayed()->ldsw(Rtmp, 0, Rdst);
708#else
709  delayed()->ld(Rtmp, 0, Rdst);
710#endif
711
712  ldub(Lbcp, bcp_offset + 3, Rdst);
713  ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
714  ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
715#ifdef _LP64
716  ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
717#else
718  // Unsigned load is faster than signed on some implementations
719  ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
720#endif
721  or3(Rtmp, Rdst, Rdst );
722
723  bind(aligned);
724  if (should_set_CC == set_CC) tst(Rdst);
725}
726
727void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
728                                                       int bcp_offset, size_t index_size) {
729  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
730  if (index_size == sizeof(u2)) {
731    get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
732  } else if (index_size == sizeof(u4)) {
733    assert(EnableInvokeDynamic, "giant index used only for JSR 292");
734    get_4_byte_integer_at_bcp(bcp_offset, temp, index);
735    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
736    xor3(index, -1, index);  // convert to plain index
737  } else if (index_size == sizeof(u1)) {
738    ldub(Lbcp, bcp_offset, index);
739  } else {
740    ShouldNotReachHere();
741  }
742}
743
744
745void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
746                                                           int bcp_offset, size_t index_size) {
747  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
748  assert_different_registers(cache, tmp);
749  assert_not_delayed();
750  get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
751  // convert from field index to ConstantPoolCacheEntry index and from
752  // word index to byte offset
753  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
754  add(LcpoolCache, tmp, cache);
755}
756
757
758void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
759                                                                        Register temp,
760                                                                        Register bytecode,
761                                                                        int byte_no,
762                                                                        int bcp_offset,
763                                                                        size_t index_size) {
764  get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
765  ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
766  const int shift_count = (1 + byte_no) * BitsPerByte;
767  assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
768         (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
769         "correct shift count");
770  srl(bytecode, shift_count, bytecode);
771  assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
772  and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
773}
774
775
776void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
777                                                               int bcp_offset, size_t index_size) {
778  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
779  assert_different_registers(cache, tmp);
780  assert_not_delayed();
781  if (index_size == sizeof(u2)) {
782    get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
783  } else {
784    ShouldNotReachHere();  // other sizes not supported here
785  }
786              // convert from field index to ConstantPoolCacheEntry index
787              // and from word index to byte offset
788  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
789              // skip past the header
790  add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
791              // construct pointer to cache entry
792  add(LcpoolCache, tmp, cache);
793}
794
795
796// Load object from cpool->resolved_references(index)
797void InterpreterMacroAssembler::load_resolved_reference_at_index(
798                                           Register result, Register index) {
799  assert_different_registers(result, index);
800  assert_not_delayed();
801  // convert from field index to resolved_references() index and from
802  // word index to byte offset. Since this is a java object, it can be compressed
803  Register tmp = index;  // reuse
804  sll(index, LogBytesPerHeapOop, tmp);
805  get_constant_pool(result);
806  // load pointer for resolved_references[] objArray
807  ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
808  // JNIHandles::resolve(result)
809  ld_ptr(result, 0, result);
810  // Add in the index
811  add(result, tmp, result);
812  load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
813}
814
815
816// Generate a subtype check: branch to ok_is_subtype if sub_klass is
817// a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
818void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
819                                                  Register Rsuper_klass,
820                                                  Register Rtmp1,
821                                                  Register Rtmp2,
822                                                  Register Rtmp3,
823                                                  Label &ok_is_subtype ) {
824  Label not_subtype;
825
826  // Profile the not-null value's klass.
827  profile_typecheck(Rsub_klass, Rtmp1);
828
829  check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
830                                Rtmp1, Rtmp2,
831                                &ok_is_subtype, &not_subtype, NULL);
832
833  check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
834                                Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
835                                &ok_is_subtype, NULL);
836
837  bind(not_subtype);
838  profile_typecheck_failed(Rtmp1);
839}
840
841// Separate these two to allow for delay slot in middle
842// These are used to do a test and full jump to exception-throwing code.
843
844// %%%%% Could possibly reoptimize this by testing to see if could use
845// a single conditional branch (i.e. if span is small enough.
846// If you go that route, than get rid of the split and give up
847// on the delay-slot hack.
848
849void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
850                                                    Label&    ok ) {
851  assert_not_delayed();
852  br(ok_condition, true, pt, ok);
853  // DELAY SLOT
854}
855
856void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
857                                                    Label&    ok ) {
858  assert_not_delayed();
859  bp( ok_condition, true, Assembler::xcc, pt, ok);
860  // DELAY SLOT
861}
862
863void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
864                                                  Label&    ok ) {
865  assert_not_delayed();
866  brx(ok_condition, true, pt, ok);
867  // DELAY SLOT
868}
869
870void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
871                                                Register Rscratch,
872                                                Label&   ok ) {
873  assert(throw_entry_point != NULL, "entry point must be generated by now");
874  AddressLiteral dest(throw_entry_point);
875  jump_to(dest, Rscratch);
876  delayed()->nop();
877  bind(ok);
878}
879
880
881// And if you cannot use the delay slot, here is a shorthand:
882
883void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
884                                                  address   throw_entry_point,
885                                                  Register  Rscratch ) {
886  Label ok;
887  if (ok_condition != never) {
888    throw_if_not_1_icc( ok_condition, ok);
889    delayed()->nop();
890  }
891  throw_if_not_2( throw_entry_point, Rscratch, ok);
892}
893void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
894                                                  address   throw_entry_point,
895                                                  Register  Rscratch ) {
896  Label ok;
897  if (ok_condition != never) {
898    throw_if_not_1_xcc( ok_condition, ok);
899    delayed()->nop();
900  }
901  throw_if_not_2( throw_entry_point, Rscratch, ok);
902}
903void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
904                                                address   throw_entry_point,
905                                                Register  Rscratch ) {
906  Label ok;
907  if (ok_condition != never) {
908    throw_if_not_1_x( ok_condition, ok);
909    delayed()->nop();
910  }
911  throw_if_not_2( throw_entry_point, Rscratch, ok);
912}
913
914// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
915// Note: res is still shy of address by array offset into object.
916
917void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
918  assert_not_delayed();
919
920  verify_oop(array);
921#ifdef _LP64
922  // sign extend since tos (index) can be a 32bit value
923  sra(index, G0, index);
924#endif // _LP64
925
926  // check array
927  Label ptr_ok;
928  tst(array);
929  throw_if_not_1_x( notZero, ptr_ok );
930  delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
931  throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
932
933  Label index_ok;
934  cmp(index, tmp);
935  throw_if_not_1_icc( lessUnsigned, index_ok );
936  if (index_shift > 0)  delayed()->sll(index, index_shift, index);
937  else                  delayed()->add(array, index, res); // addr - const offset in index
938  // convention: move aberrant index into G3_scratch for exception message
939  mov(index, G3_scratch);
940  throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
941
942  // add offset if didn't do it in delay slot
943  if (index_shift > 0)   add(array, index, res); // addr - const offset in index
944}
945
946
947void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
948  assert_not_delayed();
949
950  // pop array
951  pop_ptr(array);
952
953  // check array
954  index_check_without_pop(array, index, index_shift, tmp, res);
955}
956
957
958void InterpreterMacroAssembler::get_const(Register Rdst) {
959  ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
960}
961
962
963void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
964  get_const(Rdst);
965  ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
966}
967
968
969void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
970  get_constant_pool(Rdst);
971  ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
972}
973
974
975void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
976  get_constant_pool(Rcpool);
977  ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
978}
979
980
981// unlock if synchronized method
982//
983// Unlock the receiver if this is a synchronized method.
984// Unlock any Java monitors from syncronized blocks.
985//
986// If there are locked Java monitors
987//    If throw_monitor_exception
988//       throws IllegalMonitorStateException
989//    Else if install_monitor_exception
990//       installs IllegalMonitorStateException
991//    Else
992//       no error processing
993void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
994                                                              bool throw_monitor_exception,
995                                                              bool install_monitor_exception) {
996  Label unlocked, unlock, no_unlock;
997
998  // get the value of _do_not_unlock_if_synchronized into G1_scratch
999  const Address do_not_unlock_if_synchronized(G2_thread,
1000    JavaThread::do_not_unlock_if_synchronized_offset());
1001  ldbool(do_not_unlock_if_synchronized, G1_scratch);
1002  stbool(G0, do_not_unlock_if_synchronized); // reset the flag
1003
1004  // check if synchronized method
1005  const Address access_flags(Lmethod, Method::access_flags_offset());
1006  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1007  push(state); // save tos
1008  ld(access_flags, G3_scratch); // Load access flags.
1009  btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1010  br(zero, false, pt, unlocked);
1011  delayed()->nop();
1012
1013  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1014  // is set.
1015  cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
1016  delayed()->nop();
1017
1018  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1019  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1020
1021  //Intel: if (throw_monitor_exception) ... else ...
1022  // Entry already unlocked, need to throw exception
1023  //...
1024
1025  // pass top-most monitor elem
1026  add( top_most_monitor(), O1 );
1027
1028  ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1029  br_notnull_short(G3_scratch, pt, unlock);
1030
1031  if (throw_monitor_exception) {
1032    // Entry already unlocked need to throw an exception
1033    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1034    should_not_reach_here();
1035  } else {
1036    // Monitor already unlocked during a stack unroll.
1037    // If requested, install an illegal_monitor_state_exception.
1038    // Continue with stack unrolling.
1039    if (install_monitor_exception) {
1040      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1041    }
1042    ba_short(unlocked);
1043  }
1044
1045  bind(unlock);
1046
1047  unlock_object(O1);
1048
1049  bind(unlocked);
1050
1051  // I0, I1: Might contain return value
1052
1053  // Check that all monitors are unlocked
1054  { Label loop, exception, entry, restart;
1055
1056    Register Rmptr   = O0;
1057    Register Rtemp   = O1;
1058    Register Rlimit  = Lmonitors;
1059    const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1060    assert( (delta & LongAlignmentMask) == 0,
1061            "sizeof BasicObjectLock must be even number of doublewords");
1062
1063    #ifdef ASSERT
1064    add(top_most_monitor(), Rmptr, delta);
1065    { Label L;
1066      // ensure that Rmptr starts out above (or at) Rlimit
1067      cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1068      stop("monitor stack has negative size");
1069      bind(L);
1070    }
1071    #endif
1072    bind(restart);
1073    ba(entry);
1074    delayed()->
1075    add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1076
1077    // Entry is still locked, need to throw exception
1078    bind(exception);
1079    if (throw_monitor_exception) {
1080      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1081      should_not_reach_here();
1082    } else {
1083      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1084      // Unlock does not block, so don't have to worry about the frame
1085      unlock_object(Rmptr);
1086      if (install_monitor_exception) {
1087        MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1088      }
1089      ba_short(restart);
1090    }
1091
1092    bind(loop);
1093    cmp(Rtemp, G0);                             // check if current entry is used
1094    brx(Assembler::notEqual, false, pn, exception);
1095    delayed()->
1096    dec(Rmptr, delta);                          // otherwise advance to next entry
1097    #ifdef ASSERT
1098    { Label L;
1099      // ensure that Rmptr has not somehow stepped below Rlimit
1100      cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1101      stop("ran off the end of the monitor stack");
1102      bind(L);
1103    }
1104    #endif
1105    bind(entry);
1106    cmp(Rmptr, Rlimit);                         // check if bottom reached
1107    brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1108    delayed()->
1109    ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1110  }
1111
1112  bind(no_unlock);
1113  pop(state);
1114  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1115}
1116
1117
1118// remove activation
1119//
1120// Unlock the receiver if this is a synchronized method.
1121// Unlock any Java monitors from syncronized blocks.
1122// Remove the activation from the stack.
1123//
1124// If there are locked Java monitors
1125//    If throw_monitor_exception
1126//       throws IllegalMonitorStateException
1127//    Else if install_monitor_exception
1128//       installs IllegalMonitorStateException
1129//    Else
1130//       no error processing
1131void InterpreterMacroAssembler::remove_activation(TosState state,
1132                                                  bool throw_monitor_exception,
1133                                                  bool install_monitor_exception) {
1134
1135  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1136
1137  // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1138  notify_method_exit(false, state, NotifyJVMTI);
1139
1140  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1141  verify_thread();
1142
1143  // return tos
1144  assert(Otos_l1 == Otos_i, "adjust code below");
1145  switch (state) {
1146#ifdef _LP64
1147  case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1148#else
1149  case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1150#endif
1151  case btos:                                      // fall through
1152  case ctos:
1153  case stos:                                      // fall through
1154  case atos:                                      // fall through
1155  case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1156  case ftos:                                      // fall through
1157  case dtos:                                      // fall through
1158  case vtos: /* nothing to do */                     break;
1159  default  : ShouldNotReachHere();
1160  }
1161
1162#if defined(COMPILER2) && !defined(_LP64)
1163  if (state == ltos) {
1164    // C2 expects long results in G1 we can't tell if we're returning to interpreted
1165    // or compiled so just be safe use G1 and O0/O1
1166
1167    // Shift bits into high (msb) of G1
1168    sllx(Otos_l1->after_save(), 32, G1);
1169    // Zero extend low bits
1170    srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1171    or3 (Otos_l2->after_save(), G1, G1);
1172  }
1173#endif /* COMPILER2 */
1174
1175}
1176#endif /* CC_INTERP */
1177
1178
1179// Lock object
1180//
1181// Argument - lock_reg points to the BasicObjectLock to be used for locking,
1182//            it must be initialized with the object to lock
1183void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1184  if (UseHeavyMonitors) {
1185    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1186  }
1187  else {
1188    Register obj_reg = Object;
1189    Register mark_reg = G4_scratch;
1190    Register temp_reg = G1_scratch;
1191    Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1192    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1193    Label    done;
1194
1195    Label slow_case;
1196
1197    assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1198
1199    // load markOop from object into mark_reg
1200    ld_ptr(mark_addr, mark_reg);
1201
1202    if (UseBiasedLocking) {
1203      biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1204    }
1205
1206    // get the address of basicLock on stack that will be stored in the object
1207    // we need a temporary register here as we do not want to clobber lock_reg
1208    // (cas clobbers the destination register)
1209    mov(lock_reg, temp_reg);
1210    // set mark reg to be (markOop of object | UNLOCK_VALUE)
1211    or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1212    // initialize the box  (Must happen before we update the object mark!)
1213    st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1214    // compare and exchange object_addr, markOop | 1, stack address of basicLock
1215    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1216    casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1217      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1218
1219    // if the compare and exchange succeeded we are done (we saw an unlocked object)
1220    cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1221
1222    // We did not see an unlocked object so try the fast recursive case
1223
1224    // Check if owner is self by comparing the value in the markOop of object
1225    // with the stack pointer
1226    sub(temp_reg, SP, temp_reg);
1227#ifdef _LP64
1228    sub(temp_reg, STACK_BIAS, temp_reg);
1229#endif
1230    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1231
1232    // Composite "andcc" test:
1233    // (a) %sp -vs- markword proximity check, and,
1234    // (b) verify mark word LSBs == 0 (Stack-locked).
1235    //
1236    // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1237    // Note that the page size used for %sp proximity testing is arbitrary and is
1238    // unrelated to the actual MMU page size.  We use a 'logical' page size of
1239    // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1240    // field of the andcc instruction.
1241    andcc (temp_reg, 0xFFFFF003, G0) ;
1242
1243    // if condition is true we are done and hence we can store 0 in the displaced
1244    // header indicating it is a recursive lock and be done
1245    brx(Assembler::zero, true, Assembler::pt, done);
1246    delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1247
1248    // none of the above fast optimizations worked so we have to get into the
1249    // slow case of monitor enter
1250    bind(slow_case);
1251    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1252
1253    bind(done);
1254  }
1255}
1256
1257// Unlocks an object. Used in monitorexit bytecode and remove_activation.
1258//
1259// Argument - lock_reg points to the BasicObjectLock for lock
1260// Throw IllegalMonitorException if object is not locked by current thread
1261void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1262  if (UseHeavyMonitors) {
1263    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1264  } else {
1265    Register obj_reg = G3_scratch;
1266    Register mark_reg = G4_scratch;
1267    Register displaced_header_reg = G1_scratch;
1268    Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1269    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1270    Label    done;
1271
1272    if (UseBiasedLocking) {
1273      // load the object out of the BasicObjectLock
1274      ld_ptr(lockobj_addr, obj_reg);
1275      biased_locking_exit(mark_addr, mark_reg, done, true);
1276      st_ptr(G0, lockobj_addr);  // free entry
1277    }
1278
1279    // Test first if we are in the fast recursive case
1280    Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1281    ld_ptr(lock_addr, displaced_header_reg);
1282    br_null(displaced_header_reg, true, Assembler::pn, done);
1283    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1284
1285    // See if it is still a light weight lock, if so we just unlock
1286    // the object and we are done
1287
1288    if (!UseBiasedLocking) {
1289      // load the object out of the BasicObjectLock
1290      ld_ptr(lockobj_addr, obj_reg);
1291    }
1292
1293    // we have the displaced header in displaced_header_reg
1294    // we expect to see the stack address of the basicLock in case the
1295    // lock is still a light weight lock (lock_reg)
1296    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1297    casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1298      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1299    cmp(lock_reg, displaced_header_reg);
1300    brx(Assembler::equal, true, Assembler::pn, done);
1301    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1302
1303    // The lock has been converted into a heavy lock and hence
1304    // we need to get into the slow case
1305
1306    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1307
1308    bind(done);
1309  }
1310}
1311
1312#ifndef CC_INTERP
1313
1314// Get the method data pointer from the Method* and set the
1315// specified register to its value.
1316
1317void InterpreterMacroAssembler::set_method_data_pointer() {
1318  assert(ProfileInterpreter, "must be profiling interpreter");
1319  Label get_continue;
1320
1321  ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1322  test_method_data_pointer(get_continue);
1323  add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1324  bind(get_continue);
1325}
1326
1327// Set the method data pointer for the current bcp.
1328
1329void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1330  assert(ProfileInterpreter, "must be profiling interpreter");
1331  Label zero_continue;
1332
1333  // Test MDO to avoid the call if it is NULL.
1334  ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1335  test_method_data_pointer(zero_continue);
1336  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1337  add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1338  add(ImethodDataPtr, O0, ImethodDataPtr);
1339  bind(zero_continue);
1340}
1341
1342// Test ImethodDataPtr.  If it is null, continue at the specified label
1343
1344void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1345  assert(ProfileInterpreter, "must be profiling interpreter");
1346  br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1347}
1348
1349void InterpreterMacroAssembler::verify_method_data_pointer() {
1350  assert(ProfileInterpreter, "must be profiling interpreter");
1351#ifdef ASSERT
1352  Label verify_continue;
1353  test_method_data_pointer(verify_continue);
1354
1355  // If the mdp is valid, it will point to a DataLayout header which is
1356  // consistent with the bcp.  The converse is highly probable also.
1357  lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1358  ld_ptr(Lmethod, Method::const_offset(), O5);
1359  add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1360  add(G3_scratch, O5, G3_scratch);
1361  cmp(Lbcp, G3_scratch);
1362  brx(Assembler::equal, false, Assembler::pt, verify_continue);
1363
1364  Register temp_reg = O5;
1365  delayed()->mov(ImethodDataPtr, temp_reg);
1366  // %%% should use call_VM_leaf here?
1367  //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1368  save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1369  Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1370  stf(FloatRegisterImpl::D, Ftos_d, d_save);
1371  mov(temp_reg->after_save(), O2);
1372  save_thread(L7_thread_cache);
1373  call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1374  delayed()->nop();
1375  restore_thread(L7_thread_cache);
1376  ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1377  restore();
1378  bind(verify_continue);
1379#endif // ASSERT
1380}
1381
1382void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1383                                                                Register Rtmp,
1384                                                                Label &profile_continue) {
1385  assert(ProfileInterpreter, "must be profiling interpreter");
1386  // Control will flow to "profile_continue" if the counter is less than the
1387  // limit or if we call profile_method()
1388
1389  Label done;
1390
1391  // if no method data exists, and the counter is high enough, make one
1392  br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1393
1394  // Test to see if we should create a method data oop
1395  AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1396  sethi(profile_limit, Rtmp);
1397  ld(Rtmp, profile_limit.low10(), Rtmp);
1398  cmp_and_br_short(invocation_count, Rtmp, Assembler::lessUnsigned, Assembler::pn, profile_continue);
1399
1400  // Build it now.
1401  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1402  set_method_data_pointer_for_bcp();
1403  ba_short(profile_continue);
1404  bind(done);
1405}
1406
1407// Store a value at some constant offset from the method data pointer.
1408
1409void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1410  assert(ProfileInterpreter, "must be profiling interpreter");
1411  st_ptr(value, ImethodDataPtr, constant);
1412}
1413
1414void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1415                                                      Register bumped_count,
1416                                                      bool decrement) {
1417  assert(ProfileInterpreter, "must be profiling interpreter");
1418
1419  // Load the counter.
1420  ld_ptr(counter, bumped_count);
1421
1422  if (decrement) {
1423    // Decrement the register.  Set condition codes.
1424    subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1425
1426    // If the decrement causes the counter to overflow, stay negative
1427    Label L;
1428    brx(Assembler::negative, true, Assembler::pn, L);
1429
1430    // Store the decremented counter, if it is still negative.
1431    delayed()->st_ptr(bumped_count, counter);
1432    bind(L);
1433  } else {
1434    // Increment the register.  Set carry flag.
1435    addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1436
1437    // If the increment causes the counter to overflow, pull back by 1.
1438    assert(DataLayout::counter_increment == 1, "subc works");
1439    subc(bumped_count, G0, bumped_count);
1440
1441    // Store the incremented counter.
1442    st_ptr(bumped_count, counter);
1443  }
1444}
1445
1446// Increment the value at some constant offset from the method data pointer.
1447
1448void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1449                                                      Register bumped_count,
1450                                                      bool decrement) {
1451  // Locate the counter at a fixed offset from the mdp:
1452  Address counter(ImethodDataPtr, constant);
1453  increment_mdp_data_at(counter, bumped_count, decrement);
1454}
1455
1456// Increment the value at some non-fixed (reg + constant) offset from
1457// the method data pointer.
1458
1459void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1460                                                      int constant,
1461                                                      Register bumped_count,
1462                                                      Register scratch2,
1463                                                      bool decrement) {
1464  // Add the constant to reg to get the offset.
1465  add(ImethodDataPtr, reg, scratch2);
1466  Address counter(scratch2, constant);
1467  increment_mdp_data_at(counter, bumped_count, decrement);
1468}
1469
1470// Set a flag value at the current method data pointer position.
1471// Updates a single byte of the header, to avoid races with other header bits.
1472
1473void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1474                                                Register scratch) {
1475  assert(ProfileInterpreter, "must be profiling interpreter");
1476  // Load the data header
1477  ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1478
1479  // Set the flag
1480  or3(scratch, flag_constant, scratch);
1481
1482  // Store the modified header.
1483  stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1484}
1485
1486// Test the location at some offset from the method data pointer.
1487// If it is not equal to value, branch to the not_equal_continue Label.
1488// Set condition codes to match the nullness of the loaded value.
1489
1490void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1491                                                 Register value,
1492                                                 Label& not_equal_continue,
1493                                                 Register scratch) {
1494  assert(ProfileInterpreter, "must be profiling interpreter");
1495  ld_ptr(ImethodDataPtr, offset, scratch);
1496  cmp(value, scratch);
1497  brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1498  delayed()->tst(scratch);
1499}
1500
1501// Update the method data pointer by the displacement located at some fixed
1502// offset from the method data pointer.
1503
1504void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1505                                                     Register scratch) {
1506  assert(ProfileInterpreter, "must be profiling interpreter");
1507  ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1508  add(ImethodDataPtr, scratch, ImethodDataPtr);
1509}
1510
1511// Update the method data pointer by the displacement located at the
1512// offset (reg + offset_of_disp).
1513
1514void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1515                                                     int offset_of_disp,
1516                                                     Register scratch) {
1517  assert(ProfileInterpreter, "must be profiling interpreter");
1518  add(reg, offset_of_disp, scratch);
1519  ld_ptr(ImethodDataPtr, scratch, scratch);
1520  add(ImethodDataPtr, scratch, ImethodDataPtr);
1521}
1522
1523// Update the method data pointer by a simple constant displacement.
1524
1525void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1526  assert(ProfileInterpreter, "must be profiling interpreter");
1527  add(ImethodDataPtr, constant, ImethodDataPtr);
1528}
1529
1530// Update the method data pointer for a _ret bytecode whose target
1531// was not among our cached targets.
1532
1533void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1534                                                   Register return_bci) {
1535  assert(ProfileInterpreter, "must be profiling interpreter");
1536  push(state);
1537  st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1538  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1539  ld_ptr(l_tmp, return_bci);
1540  pop(state);
1541}
1542
1543// Count a taken branch in the bytecodes.
1544
1545void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1546  if (ProfileInterpreter) {
1547    Label profile_continue;
1548
1549    // If no method data exists, go to profile_continue.
1550    test_method_data_pointer(profile_continue);
1551
1552    // We are taking a branch.  Increment the taken count.
1553    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1554
1555    // The method data pointer needs to be updated to reflect the new target.
1556    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1557    bind (profile_continue);
1558  }
1559}
1560
1561
1562// Count a not-taken branch in the bytecodes.
1563
1564void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1565  if (ProfileInterpreter) {
1566    Label profile_continue;
1567
1568    // If no method data exists, go to profile_continue.
1569    test_method_data_pointer(profile_continue);
1570
1571    // We are taking a branch.  Increment the not taken count.
1572    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1573
1574    // The method data pointer needs to be updated to correspond to the
1575    // next bytecode.
1576    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1577    bind (profile_continue);
1578  }
1579}
1580
1581
1582// Count a non-virtual call in the bytecodes.
1583
1584void InterpreterMacroAssembler::profile_call(Register scratch) {
1585  if (ProfileInterpreter) {
1586    Label profile_continue;
1587
1588    // If no method data exists, go to profile_continue.
1589    test_method_data_pointer(profile_continue);
1590
1591    // We are making a call.  Increment the count.
1592    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1593
1594    // The method data pointer needs to be updated to reflect the new target.
1595    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1596    bind (profile_continue);
1597  }
1598}
1599
1600
1601// Count a final call in the bytecodes.
1602
1603void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1604  if (ProfileInterpreter) {
1605    Label profile_continue;
1606
1607    // If no method data exists, go to profile_continue.
1608    test_method_data_pointer(profile_continue);
1609
1610    // We are making a call.  Increment the count.
1611    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1612
1613    // The method data pointer needs to be updated to reflect the new target.
1614    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1615    bind (profile_continue);
1616  }
1617}
1618
1619
1620// Count a virtual call in the bytecodes.
1621
1622void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1623                                                     Register scratch,
1624                                                     bool receiver_can_be_null) {
1625  if (ProfileInterpreter) {
1626    Label profile_continue;
1627
1628    // If no method data exists, go to profile_continue.
1629    test_method_data_pointer(profile_continue);
1630
1631
1632    Label skip_receiver_profile;
1633    if (receiver_can_be_null) {
1634      Label not_null;
1635      br_notnull_short(receiver, Assembler::pt, not_null);
1636      // We are making a call.  Increment the count for null receiver.
1637      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1638      ba_short(skip_receiver_profile);
1639      bind(not_null);
1640    }
1641
1642    // Record the receiver type.
1643    record_klass_in_profile(receiver, scratch, true);
1644    bind(skip_receiver_profile);
1645
1646    // The method data pointer needs to be updated to reflect the new target.
1647    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1648    bind (profile_continue);
1649  }
1650}
1651
1652void InterpreterMacroAssembler::record_klass_in_profile_helper(
1653                                        Register receiver, Register scratch,
1654                                        int start_row, Label& done, bool is_virtual_call) {
1655  if (TypeProfileWidth == 0) {
1656    if (is_virtual_call) {
1657      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1658    }
1659    return;
1660  }
1661
1662  int last_row = VirtualCallData::row_limit() - 1;
1663  assert(start_row <= last_row, "must be work left to do");
1664  // Test this row for both the receiver and for null.
1665  // Take any of three different outcomes:
1666  //   1. found receiver => increment count and goto done
1667  //   2. found null => keep looking for case 1, maybe allocate this cell
1668  //   3. found something else => keep looking for cases 1 and 2
1669  // Case 3 is handled by a recursive call.
1670  for (int row = start_row; row <= last_row; row++) {
1671    Label next_test;
1672    bool test_for_null_also = (row == start_row);
1673
1674    // See if the receiver is receiver[n].
1675    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1676    test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1677    // delayed()->tst(scratch);
1678
1679    // The receiver is receiver[n].  Increment count[n].
1680    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1681    increment_mdp_data_at(count_offset, scratch);
1682    ba_short(done);
1683    bind(next_test);
1684
1685    if (test_for_null_also) {
1686      Label found_null;
1687      // Failed the equality check on receiver[n]...  Test for null.
1688      if (start_row == last_row) {
1689        // The only thing left to do is handle the null case.
1690        if (is_virtual_call) {
1691          brx(Assembler::zero, false, Assembler::pn, found_null);
1692          delayed()->nop();
1693          // Receiver did not match any saved receiver and there is no empty row for it.
1694          // Increment total counter to indicate polymorphic case.
1695          increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1696          ba_short(done);
1697          bind(found_null);
1698        } else {
1699          brx(Assembler::notZero, false, Assembler::pt, done);
1700          delayed()->nop();
1701        }
1702        break;
1703      }
1704      // Since null is rare, make it be the branch-taken case.
1705      brx(Assembler::zero, false, Assembler::pn, found_null);
1706      delayed()->nop();
1707
1708      // Put all the "Case 3" tests here.
1709      record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1710
1711      // Found a null.  Keep searching for a matching receiver,
1712      // but remember that this is an empty (unused) slot.
1713      bind(found_null);
1714    }
1715  }
1716
1717  // In the fall-through case, we found no matching receiver, but we
1718  // observed the receiver[start_row] is NULL.
1719
1720  // Fill in the receiver field and increment the count.
1721  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1722  set_mdp_data_at(recvr_offset, receiver);
1723  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1724  mov(DataLayout::counter_increment, scratch);
1725  set_mdp_data_at(count_offset, scratch);
1726  if (start_row > 0) {
1727    ba_short(done);
1728  }
1729}
1730
1731void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1732                                                        Register scratch, bool is_virtual_call) {
1733  assert(ProfileInterpreter, "must be profiling");
1734  Label done;
1735
1736  record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1737
1738  bind (done);
1739}
1740
1741
1742// Count a ret in the bytecodes.
1743
1744void InterpreterMacroAssembler::profile_ret(TosState state,
1745                                            Register return_bci,
1746                                            Register scratch) {
1747  if (ProfileInterpreter) {
1748    Label profile_continue;
1749    uint row;
1750
1751    // If no method data exists, go to profile_continue.
1752    test_method_data_pointer(profile_continue);
1753
1754    // Update the total ret count.
1755    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1756
1757    for (row = 0; row < RetData::row_limit(); row++) {
1758      Label next_test;
1759
1760      // See if return_bci is equal to bci[n]:
1761      test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1762                       return_bci, next_test, scratch);
1763
1764      // return_bci is equal to bci[n].  Increment the count.
1765      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1766
1767      // The method data pointer needs to be updated to reflect the new target.
1768      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1769      ba_short(profile_continue);
1770      bind(next_test);
1771    }
1772
1773    update_mdp_for_ret(state, return_bci);
1774
1775    bind (profile_continue);
1776  }
1777}
1778
1779// Profile an unexpected null in the bytecodes.
1780void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1781  if (ProfileInterpreter) {
1782    Label profile_continue;
1783
1784    // If no method data exists, go to profile_continue.
1785    test_method_data_pointer(profile_continue);
1786
1787    set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1788
1789    // The method data pointer needs to be updated.
1790    int mdp_delta = in_bytes(BitData::bit_data_size());
1791    if (TypeProfileCasts) {
1792      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1793    }
1794    update_mdp_by_constant(mdp_delta);
1795
1796    bind (profile_continue);
1797  }
1798}
1799
1800void InterpreterMacroAssembler::profile_typecheck(Register klass,
1801                                                  Register scratch) {
1802  if (ProfileInterpreter) {
1803    Label profile_continue;
1804
1805    // If no method data exists, go to profile_continue.
1806    test_method_data_pointer(profile_continue);
1807
1808    int mdp_delta = in_bytes(BitData::bit_data_size());
1809    if (TypeProfileCasts) {
1810      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1811
1812      // Record the object type.
1813      record_klass_in_profile(klass, scratch, false);
1814    }
1815
1816    // The method data pointer needs to be updated.
1817    update_mdp_by_constant(mdp_delta);
1818
1819    bind (profile_continue);
1820  }
1821}
1822
1823void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1824  if (ProfileInterpreter && TypeProfileCasts) {
1825    Label profile_continue;
1826
1827    // If no method data exists, go to profile_continue.
1828    test_method_data_pointer(profile_continue);
1829
1830    int count_offset = in_bytes(CounterData::count_offset());
1831    // Back up the address, since we have already bumped the mdp.
1832    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1833
1834    // *Decrement* the counter.  We expect to see zero or small negatives.
1835    increment_mdp_data_at(count_offset, scratch, true);
1836
1837    bind (profile_continue);
1838  }
1839}
1840
1841// Count the default case of a switch construct.
1842
1843void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1844  if (ProfileInterpreter) {
1845    Label profile_continue;
1846
1847    // If no method data exists, go to profile_continue.
1848    test_method_data_pointer(profile_continue);
1849
1850    // Update the default case count
1851    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1852                          scratch);
1853
1854    // The method data pointer needs to be updated.
1855    update_mdp_by_offset(
1856                    in_bytes(MultiBranchData::default_displacement_offset()),
1857                    scratch);
1858
1859    bind (profile_continue);
1860  }
1861}
1862
1863// Count the index'th case of a switch construct.
1864
1865void InterpreterMacroAssembler::profile_switch_case(Register index,
1866                                                    Register scratch,
1867                                                    Register scratch2,
1868                                                    Register scratch3) {
1869  if (ProfileInterpreter) {
1870    Label profile_continue;
1871
1872    // If no method data exists, go to profile_continue.
1873    test_method_data_pointer(profile_continue);
1874
1875    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1876    set(in_bytes(MultiBranchData::per_case_size()), scratch);
1877    smul(index, scratch, scratch);
1878    add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1879
1880    // Update the case count
1881    increment_mdp_data_at(scratch,
1882                          in_bytes(MultiBranchData::relative_count_offset()),
1883                          scratch2,
1884                          scratch3);
1885
1886    // The method data pointer needs to be updated.
1887    update_mdp_by_offset(scratch,
1888                     in_bytes(MultiBranchData::relative_displacement_offset()),
1889                     scratch2);
1890
1891    bind (profile_continue);
1892  }
1893}
1894
1895// add a InterpMonitorElem to stack (see frame_sparc.hpp)
1896
1897void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1898                                                      Register Rtemp,
1899                                                      Register Rtemp2 ) {
1900
1901  Register Rlimit = Lmonitors;
1902  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1903  assert( (delta & LongAlignmentMask) == 0,
1904          "sizeof BasicObjectLock must be even number of doublewords");
1905
1906  sub( SP,        delta, SP);
1907  sub( Lesp,      delta, Lesp);
1908  sub( Lmonitors, delta, Lmonitors);
1909
1910  if (!stack_is_empty) {
1911
1912    // must copy stack contents down
1913
1914    Label start_copying, next;
1915
1916    // untested("monitor stack expansion");
1917    compute_stack_base(Rtemp);
1918    ba(start_copying);
1919    delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
1920
1921    // note: must copy from low memory upwards
1922    // On entry to loop,
1923    // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1924    // Loop mutates Rtemp
1925
1926    bind( next);
1927
1928    st_ptr(Rtemp2, Rtemp, 0);
1929    inc(Rtemp, wordSize);
1930    cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1931
1932    bind( start_copying );
1933
1934    brx( notEqual, true, pn, next );
1935    delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1936
1937    // done copying stack
1938  }
1939}
1940
1941// Locals
1942void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1943  assert_not_delayed();
1944  sll(index, Interpreter::logStackElementSize, index);
1945  sub(Llocals, index, index);
1946  ld_ptr(index, 0, dst);
1947  // Note:  index must hold the effective address--the iinc template uses it
1948}
1949
1950// Just like access_local_ptr but the tag is a returnAddress
1951void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1952                                                           Register dst ) {
1953  assert_not_delayed();
1954  sll(index, Interpreter::logStackElementSize, index);
1955  sub(Llocals, index, index);
1956  ld_ptr(index, 0, dst);
1957}
1958
1959void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1960  assert_not_delayed();
1961  sll(index, Interpreter::logStackElementSize, index);
1962  sub(Llocals, index, index);
1963  ld(index, 0, dst);
1964  // Note:  index must hold the effective address--the iinc template uses it
1965}
1966
1967
1968void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1969  assert_not_delayed();
1970  sll(index, Interpreter::logStackElementSize, index);
1971  sub(Llocals, index, index);
1972  // First half stored at index n+1 (which grows down from Llocals[n])
1973  load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1974}
1975
1976
1977void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1978  assert_not_delayed();
1979  sll(index, Interpreter::logStackElementSize, index);
1980  sub(Llocals, index, index);
1981  ldf(FloatRegisterImpl::S, index, 0, dst);
1982}
1983
1984
1985void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1986  assert_not_delayed();
1987  sll(index, Interpreter::logStackElementSize, index);
1988  sub(Llocals, index, index);
1989  load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
1990}
1991
1992
1993#ifdef ASSERT
1994void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
1995  Label L;
1996
1997  assert(Rindex != Rscratch, "Registers cannot be same");
1998  assert(Rindex != Rscratch1, "Registers cannot be same");
1999  assert(Rlimit != Rscratch, "Registers cannot be same");
2000  assert(Rlimit != Rscratch1, "Registers cannot be same");
2001  assert(Rscratch1 != Rscratch, "Registers cannot be same");
2002
2003  // untested("reg area corruption");
2004  add(Rindex, offset, Rscratch);
2005  add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2006  cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2007  stop("regsave area is being clobbered");
2008  bind(L);
2009}
2010#endif // ASSERT
2011
2012
2013void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2014  assert_not_delayed();
2015  sll(index, Interpreter::logStackElementSize, index);
2016  sub(Llocals, index, index);
2017  debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2018  st(src, index, 0);
2019}
2020
2021void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2022  assert_not_delayed();
2023  sll(index, Interpreter::logStackElementSize, index);
2024  sub(Llocals, index, index);
2025#ifdef ASSERT
2026  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2027#endif
2028  st_ptr(src, index, 0);
2029}
2030
2031
2032
2033void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2034  st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2035}
2036
2037void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2038  assert_not_delayed();
2039  sll(index, Interpreter::logStackElementSize, index);
2040  sub(Llocals, index, index);
2041#ifdef ASSERT
2042  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2043#endif
2044  store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2045}
2046
2047
2048void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2049  assert_not_delayed();
2050  sll(index, Interpreter::logStackElementSize, index);
2051  sub(Llocals, index, index);
2052#ifdef ASSERT
2053  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2054#endif
2055  stf(FloatRegisterImpl::S, src, index, 0);
2056}
2057
2058
2059void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2060  assert_not_delayed();
2061  sll(index, Interpreter::logStackElementSize, index);
2062  sub(Llocals, index, index);
2063#ifdef ASSERT
2064  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2065#endif
2066  store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2067}
2068
2069
2070int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2071  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2072  int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2073  return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2074}
2075
2076
2077Address InterpreterMacroAssembler::top_most_monitor() {
2078  return Address(FP, top_most_monitor_byte_offset());
2079}
2080
2081
2082void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2083  add( Lesp,      wordSize,                                    Rdest );
2084}
2085
2086#endif /* CC_INTERP */
2087
2088void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2089  assert(UseCompiler, "incrementing must be useful");
2090#ifdef CC_INTERP
2091  Address inv_counter(G5_method, Method::invocation_counter_offset() +
2092                                 InvocationCounter::counter_offset());
2093  Address be_counter (G5_method, Method::backedge_counter_offset() +
2094                                 InvocationCounter::counter_offset());
2095#else
2096  Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2097                               InvocationCounter::counter_offset());
2098  Address be_counter (Lmethod, Method::backedge_counter_offset() +
2099                               InvocationCounter::counter_offset());
2100#endif /* CC_INTERP */
2101  int delta = InvocationCounter::count_increment;
2102
2103  // Load each counter in a register
2104  ld( inv_counter, Rtmp );
2105  ld( be_counter, Rtmp2 );
2106
2107  assert( is_simm13( delta ), " delta too large.");
2108
2109  // Add the delta to the invocation counter and store the result
2110  add( Rtmp, delta, Rtmp );
2111
2112  // Mask the backedge counter
2113  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2114
2115  // Store value
2116  st( Rtmp, inv_counter);
2117
2118  // Add invocation counter + backedge counter
2119  add( Rtmp, Rtmp2, Rtmp);
2120
2121  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2122}
2123
2124void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2125  assert(UseCompiler, "incrementing must be useful");
2126#ifdef CC_INTERP
2127  Address be_counter (G5_method, Method::backedge_counter_offset() +
2128                                 InvocationCounter::counter_offset());
2129  Address inv_counter(G5_method, Method::invocation_counter_offset() +
2130                                 InvocationCounter::counter_offset());
2131#else
2132  Address be_counter (Lmethod, Method::backedge_counter_offset() +
2133                               InvocationCounter::counter_offset());
2134  Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2135                               InvocationCounter::counter_offset());
2136#endif /* CC_INTERP */
2137  int delta = InvocationCounter::count_increment;
2138  // Load each counter in a register
2139  ld( be_counter, Rtmp );
2140  ld( inv_counter, Rtmp2 );
2141
2142  // Add the delta to the backedge counter
2143  add( Rtmp, delta, Rtmp );
2144
2145  // Mask the invocation counter, add to backedge counter
2146  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2147
2148  // and store the result to memory
2149  st( Rtmp, be_counter );
2150
2151  // Add backedge + invocation counter
2152  add( Rtmp, Rtmp2, Rtmp );
2153
2154  // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2155}
2156
2157#ifndef CC_INTERP
2158void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2159                                                             Register branch_bcp,
2160                                                             Register Rtmp ) {
2161  Label did_not_overflow;
2162  Label overflow_with_error;
2163  assert_different_registers(backedge_count, Rtmp, branch_bcp);
2164  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2165
2166  AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2167  load_contents(limit, Rtmp);
2168  cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2169
2170  // When ProfileInterpreter is on, the backedge_count comes from the
2171  // MethodData*, which value does not get reset on the call to
2172  // frequency_counter_overflow().  To avoid excessive calls to the overflow
2173  // routine while the method is being compiled, add a second test to make sure
2174  // the overflow function is called only once every overflow_frequency.
2175  if (ProfileInterpreter) {
2176    const int overflow_frequency = 1024;
2177    andcc(backedge_count, overflow_frequency-1, Rtmp);
2178    brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2179    delayed()->nop();
2180  }
2181
2182  // overflow in loop, pass branch bytecode
2183  set(6,Rtmp);
2184  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2185
2186  // Was an OSR adapter generated?
2187  // O0 = osr nmethod
2188  br_null_short(O0, Assembler::pn, overflow_with_error);
2189
2190  // Has the nmethod been invalidated already?
2191  ld(O0, nmethod::entry_bci_offset(), O2);
2192  cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
2193
2194  // migrate the interpreter frame off of the stack
2195
2196  mov(G2_thread, L7);
2197  // save nmethod
2198  mov(O0, L6);
2199  set_last_Java_frame(SP, noreg);
2200  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2201  reset_last_Java_frame();
2202  mov(L7, G2_thread);
2203
2204  // move OSR nmethod to I1
2205  mov(L6, I1);
2206
2207  // OSR buffer to I0
2208  mov(O0, I0);
2209
2210  // remove the interpreter frame
2211  restore(I5_savedSP, 0, SP);
2212
2213  // Jump to the osr code.
2214  ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2215  jmp(O2, G0);
2216  delayed()->nop();
2217
2218  bind(overflow_with_error);
2219
2220  bind(did_not_overflow);
2221}
2222
2223
2224
2225void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2226  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2227}
2228
2229
2230// local helper function for the verify_oop_or_return_address macro
2231static bool verify_return_address(Method* m, int bci) {
2232#ifndef PRODUCT
2233  address pc = (address)(m->constMethod())
2234             + in_bytes(ConstMethod::codes_offset()) + bci;
2235  // assume it is a valid return address if it is inside m and is preceded by a jsr
2236  if (!m->contains(pc))                                          return false;
2237  address jsr_pc;
2238  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2239  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2240  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2241  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2242#endif // PRODUCT
2243  return false;
2244}
2245
2246
2247void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2248  if (!VerifyOops)  return;
2249  // the VM documentation for the astore[_wide] bytecode allows
2250  // the TOS to be not only an oop but also a return address
2251  Label test;
2252  Label skip;
2253  // See if it is an address (in the current method):
2254
2255  mov(reg, Rtmp);
2256  const int log2_bytecode_size_limit = 16;
2257  srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2258  br_notnull_short( Rtmp, pt, test );
2259
2260  // %%% should use call_VM_leaf here?
2261  save_frame_and_mov(0, Lmethod, O0, reg, O1);
2262  save_thread(L7_thread_cache);
2263  call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2264  delayed()->nop();
2265  restore_thread(L7_thread_cache);
2266  br_notnull( O0, false, pt, skip );
2267  delayed()->restore();
2268
2269  // Perform a more elaborate out-of-line call
2270  // Not an address; verify it:
2271  bind(test);
2272  verify_oop(reg);
2273  bind(skip);
2274}
2275
2276
2277void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2278  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2279}
2280#endif /* CC_INTERP */
2281
2282// Inline assembly for:
2283//
2284// if (thread is in interp_only_mode) {
2285//   InterpreterRuntime::post_method_entry();
2286// }
2287// if (DTraceMethodProbes) {
2288//   SharedRuntime::dtrace_method_entry(method, receiver);
2289// }
2290// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2291//   SharedRuntime::rc_trace_method_entry(method, receiver);
2292// }
2293
2294void InterpreterMacroAssembler::notify_method_entry() {
2295
2296  // C++ interpreter only uses this for native methods.
2297
2298  // Whenever JVMTI puts a thread in interp_only_mode, method
2299  // entry/exit events are sent for that thread to track stack
2300  // depth.  If it is possible to enter interp_only_mode we add
2301  // the code to check if the event should be sent.
2302  if (JvmtiExport::can_post_interpreter_events()) {
2303    Label L;
2304    Register temp_reg = O5;
2305    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2306    ld(interp_only, temp_reg);
2307    cmp_and_br_short(temp_reg, 0, equal, pt, L);
2308    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2309    bind(L);
2310  }
2311
2312  {
2313    Register temp_reg = O5;
2314    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2315    call_VM_leaf(noreg,
2316      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2317      G2_thread, Lmethod);
2318  }
2319
2320  // RedefineClasses() tracing support for obsolete method entry
2321  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2322    call_VM_leaf(noreg,
2323      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2324      G2_thread, Lmethod);
2325  }
2326}
2327
2328
2329// Inline assembly for:
2330//
2331// if (thread is in interp_only_mode) {
2332//   // save result
2333//   InterpreterRuntime::post_method_exit();
2334//   // restore result
2335// }
2336// if (DTraceMethodProbes) {
2337//   SharedRuntime::dtrace_method_exit(thread, method);
2338// }
2339//
2340// Native methods have their result stored in d_tmp and l_tmp
2341// Java methods have their result stored in the expression stack
2342
2343void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2344                                                   TosState state,
2345                                                   NotifyMethodExitMode mode) {
2346  // C++ interpreter only uses this for native methods.
2347
2348  // Whenever JVMTI puts a thread in interp_only_mode, method
2349  // entry/exit events are sent for that thread to track stack
2350  // depth.  If it is possible to enter interp_only_mode we add
2351  // the code to check if the event should be sent.
2352  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2353    Label L;
2354    Register temp_reg = O5;
2355    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2356    ld(interp_only, temp_reg);
2357    cmp_and_br_short(temp_reg, 0, equal, pt, L);
2358
2359    // Note: frame::interpreter_frame_result has a dependency on how the
2360    // method result is saved across the call to post_method_exit. For
2361    // native methods it assumes the result registers are saved to
2362    // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2363    // implementation will need to be updated too.
2364
2365    save_return_value(state, is_native_method);
2366    call_VM(noreg,
2367            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2368    restore_return_value(state, is_native_method);
2369    bind(L);
2370  }
2371
2372  {
2373    Register temp_reg = O5;
2374    // Dtrace notification
2375    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2376    save_return_value(state, is_native_method);
2377    call_VM_leaf(
2378      noreg,
2379      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2380      G2_thread, Lmethod);
2381    restore_return_value(state, is_native_method);
2382  }
2383}
2384
2385void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2386#ifdef CC_INTERP
2387  // result potentially in O0/O1: save it across calls
2388  stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2389#ifdef _LP64
2390  stx(O0, STATE(_native_lresult));
2391#else
2392  std(O0, STATE(_native_lresult));
2393#endif
2394#else // CC_INTERP
2395  if (is_native_call) {
2396    stf(FloatRegisterImpl::D, F0, d_tmp);
2397#ifdef _LP64
2398    stx(O0, l_tmp);
2399#else
2400    std(O0, l_tmp);
2401#endif
2402  } else {
2403    push(state);
2404  }
2405#endif // CC_INTERP
2406}
2407
2408void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2409#ifdef CC_INTERP
2410  ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2411#ifdef _LP64
2412  ldx(STATE(_native_lresult), O0);
2413#else
2414  ldd(STATE(_native_lresult), O0);
2415#endif
2416#else // CC_INTERP
2417  if (is_native_call) {
2418    ldf(FloatRegisterImpl::D, d_tmp, F0);
2419#ifdef _LP64
2420    ldx(l_tmp, O0);
2421#else
2422    ldd(l_tmp, O0);
2423#endif
2424  } else {
2425    pop(state);
2426  }
2427#endif // CC_INTERP
2428}
2429
2430// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2431void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2432                                                        int increment, int mask,
2433                                                        Register scratch1, Register scratch2,
2434                                                        Condition cond, Label *where) {
2435  ld(counter_addr, scratch1);
2436  add(scratch1, increment, scratch1);
2437  if (is_simm13(mask)) {
2438    andcc(scratch1, mask, G0);
2439  } else {
2440    set(mask, scratch2);
2441    andcc(scratch1, scratch2,  G0);
2442  }
2443  br(cond, false, Assembler::pn, *where);
2444  delayed()->st(scratch1, counter_addr);
2445}
2446