interp_masm_sparc.cpp revision 1499:e9ff18c4ace7
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_interp_masm_sparc.cpp.incl"
27
28#ifndef CC_INTERP
29#ifndef FAST_DISPATCH
30#define FAST_DISPATCH 1
31#endif
32#undef FAST_DISPATCH
33
34// Implementation of InterpreterMacroAssembler
35
36// This file specializes the assember with interpreter-specific macros
37
38const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
39const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
40
41#else // CC_INTERP
42#ifndef STATE
43#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
44#endif // STATE
45
46#endif // CC_INTERP
47
48void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
49  // Note: this algorithm is also used by C1's OSR entry sequence.
50  // Any changes should also be applied to CodeEmitter::emit_osr_entry().
51  assert_different_registers(args_size, locals_size);
52  // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
53  subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
54  // Use br/mov combination because it works on both V8 and V9 and is
55  // faster.
56  Label skip_move;
57  br(Assembler::negative, true, Assembler::pt, skip_move);
58  delayed()->mov(G0, delta);
59  bind(skip_move);
60  round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
61  sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
62}
63
64#ifndef CC_INTERP
65
66// Dispatch code executed in the prolog of a bytecode which does not do it's
67// own dispatch. The dispatch address is computed and placed in IdispatchAddress
68void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
69  assert_not_delayed();
70#ifdef FAST_DISPATCH
71  // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
72  // they both use I2.
73  assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
74  ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
75  add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
76                                                        // add offset to correct dispatch table
77  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
78  ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
79#else
80  ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
81  // dispatch table to use
82  AddressLiteral tbl(Interpreter::dispatch_table(state));
83  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
84  set(tbl, G3_scratch);                                 // compute addr of table
85  ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
86#endif
87}
88
89
90// Dispatch code executed in the epilog of a bytecode which does not do it's
91// own dispatch. The dispatch address in IdispatchAddress is used for the
92// dispatch.
93void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
94  assert_not_delayed();
95  verify_FPU(1, state);
96  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
97  jmp( IdispatchAddress, 0 );
98  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
99  else                delayed()->nop();
100}
101
102
103void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
104  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
105  assert_not_delayed();
106  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
107  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
108}
109
110
111void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
112  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
113  assert_not_delayed();
114  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
115  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
116}
117
118
119void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
120  // load current bytecode
121  assert_not_delayed();
122  ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
123  dispatch_base(state, table);
124}
125
126
127void InterpreterMacroAssembler::call_VM_leaf_base(
128  Register java_thread,
129  address  entry_point,
130  int      number_of_arguments
131) {
132  if (!java_thread->is_valid())
133    java_thread = L7_thread_cache;
134  // super call
135  MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
136}
137
138
139void InterpreterMacroAssembler::call_VM_base(
140  Register        oop_result,
141  Register        java_thread,
142  Register        last_java_sp,
143  address         entry_point,
144  int             number_of_arguments,
145  bool            check_exception
146) {
147  if (!java_thread->is_valid())
148    java_thread = L7_thread_cache;
149  // See class ThreadInVMfromInterpreter, which assumes that the interpreter
150  // takes responsibility for setting its own thread-state on call-out.
151  // However, ThreadInVMfromInterpreter resets the state to "in_Java".
152
153  //save_bcp();                                  // save bcp
154  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
155  //restore_bcp();                               // restore bcp
156  //restore_locals();                            // restore locals pointer
157}
158
159
160void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
161  if (JvmtiExport::can_pop_frame()) {
162    Label L;
163
164    // Check the "pending popframe condition" flag in the current thread
165    ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
166
167    // Initiate popframe handling only if it is not already being processed.  If the flag
168    // has the popframe_processing bit set, it means that this code is called *during* popframe
169    // handling - we don't want to reenter.
170    btst(JavaThread::popframe_pending_bit, scratch_reg);
171    br(zero, false, pt, L);
172    delayed()->nop();
173    btst(JavaThread::popframe_processing_bit, scratch_reg);
174    br(notZero, false, pt, L);
175    delayed()->nop();
176
177    // Call Interpreter::remove_activation_preserving_args_entry() to get the
178    // address of the same-named entrypoint in the generated interpreter code.
179    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
180
181    // Jump to Interpreter::_remove_activation_preserving_args_entry
182    jmpl(O0, G0, G0);
183    delayed()->nop();
184    bind(L);
185  }
186}
187
188
189void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
190  Register thr_state = G4_scratch;
191  ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
192  const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
193  const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
194  const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
195  switch (state) {
196  case ltos: ld_long(val_addr, Otos_l);                   break;
197  case atos: ld_ptr(oop_addr, Otos_l);
198             st_ptr(G0, oop_addr);                        break;
199  case btos:                                           // fall through
200  case ctos:                                           // fall through
201  case stos:                                           // fall through
202  case itos: ld(val_addr, Otos_l1);                       break;
203  case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
204  case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
205  case vtos: /* nothing to do */                          break;
206  default  : ShouldNotReachHere();
207  }
208  // Clean up tos value in the jvmti thread state
209  or3(G0, ilgl, G3_scratch);
210  stw(G3_scratch, tos_addr);
211  st_long(G0, val_addr);
212  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
213}
214
215
216void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
217  if (JvmtiExport::can_force_early_return()) {
218    Label L;
219    Register thr_state = G3_scratch;
220    ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
221    tst(thr_state);
222    br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
223    delayed()->nop();
224
225    // Initiate earlyret handling only if it is not already being processed.
226    // If the flag has the earlyret_processing bit set, it means that this code
227    // is called *during* earlyret handling - we don't want to reenter.
228    ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
229    cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
230    br(Assembler::notEqual, false, pt, L);
231    delayed()->nop();
232
233    // Call Interpreter::remove_activation_early_entry() to get the address of the
234    // same-named entrypoint in the generated interpreter code
235    ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
236    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
237
238    // Jump to Interpreter::_remove_activation_early_entry
239    jmpl(O0, G0, G0);
240    delayed()->nop();
241    bind(L);
242  }
243}
244
245
246void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
247  mov(arg_1, O0);
248  mov(arg_2, O1);
249  MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
250}
251#endif /* CC_INTERP */
252
253
254#ifndef CC_INTERP
255
256void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
257  assert_not_delayed();
258  dispatch_Lbyte_code(state, table);
259}
260
261
262void InterpreterMacroAssembler::dispatch_normal(TosState state) {
263  dispatch_base(state, Interpreter::normal_table(state));
264}
265
266
267void InterpreterMacroAssembler::dispatch_only(TosState state) {
268  dispatch_base(state, Interpreter::dispatch_table(state));
269}
270
271
272// common code to dispatch and dispatch_only
273// dispatch value in Lbyte_code and increment Lbcp
274
275void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
276  verify_FPU(1, state);
277  // %%%%% maybe implement +VerifyActivationFrameSize here
278  //verify_thread(); //too slow; we will just verify on method entry & exit
279  if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
280#ifdef FAST_DISPATCH
281  if (table == Interpreter::dispatch_table(state)) {
282    // use IdispatchTables
283    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
284                                                        // add offset to correct dispatch table
285    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
286    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
287  } else {
288#endif
289    // dispatch table to use
290    AddressLiteral tbl(table);
291    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
292    set(tbl, G3_scratch);                               // compute addr of table
293    ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
294#ifdef FAST_DISPATCH
295  }
296#endif
297  jmp( G3_scratch, 0 );
298  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
299  else                delayed()->nop();
300}
301
302
303// Helpers for expression stack
304
305// Longs and doubles are Category 2 computational types in the
306// JVM specification (section 3.11.1) and take 2 expression stack or
307// local slots.
308// Aligning them on 32 bit with tagged stacks is hard because the code generated
309// for the dup* bytecodes depends on what types are already on the stack.
310// If the types are split into the two stack/local slots, that is much easier
311// (and we can use 0 for non-reference tags).
312
313// Known good alignment in _LP64 but unknown otherwise
314void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
315  assert_not_delayed();
316
317#ifdef _LP64
318  ldf(FloatRegisterImpl::D, r1, offset, d);
319#else
320  ldf(FloatRegisterImpl::S, r1, offset, d);
321  ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
322#endif
323}
324
325// Known good alignment in _LP64 but unknown otherwise
326void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
327  assert_not_delayed();
328
329#ifdef _LP64
330  stf(FloatRegisterImpl::D, d, r1, offset);
331  // store something more useful here
332  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
333#else
334  stf(FloatRegisterImpl::S, d, r1, offset);
335  stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
336#endif
337}
338
339
340// Known good alignment in _LP64 but unknown otherwise
341void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
342  assert_not_delayed();
343#ifdef _LP64
344  ldx(r1, offset, rd);
345#else
346  ld(r1, offset, rd);
347  ld(r1, offset + Interpreter::stackElementSize, rd->successor());
348#endif
349}
350
351// Known good alignment in _LP64 but unknown otherwise
352void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
353  assert_not_delayed();
354
355#ifdef _LP64
356  stx(l, r1, offset);
357  // store something more useful here
358  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
359#else
360  st(l, r1, offset);
361  st(l->successor(), r1, offset + Interpreter::stackElementSize);
362#endif
363}
364
365void InterpreterMacroAssembler::pop_i(Register r) {
366  assert_not_delayed();
367  ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
368  inc(Lesp, Interpreter::stackElementSize);
369  debug_only(verify_esp(Lesp));
370}
371
372void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
373  assert_not_delayed();
374  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
375  inc(Lesp, Interpreter::stackElementSize);
376  debug_only(verify_esp(Lesp));
377}
378
379void InterpreterMacroAssembler::pop_l(Register r) {
380  assert_not_delayed();
381  load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
382  inc(Lesp, 2*Interpreter::stackElementSize);
383  debug_only(verify_esp(Lesp));
384}
385
386
387void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
388  assert_not_delayed();
389  ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
390  inc(Lesp, Interpreter::stackElementSize);
391  debug_only(verify_esp(Lesp));
392}
393
394
395void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
396  assert_not_delayed();
397  load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
398  inc(Lesp, 2*Interpreter::stackElementSize);
399  debug_only(verify_esp(Lesp));
400}
401
402
403void InterpreterMacroAssembler::push_i(Register r) {
404  assert_not_delayed();
405  debug_only(verify_esp(Lesp));
406  st(r, Lesp, 0);
407  dec(Lesp, Interpreter::stackElementSize);
408}
409
410void InterpreterMacroAssembler::push_ptr(Register r) {
411  assert_not_delayed();
412  st_ptr(r, Lesp, 0);
413  dec(Lesp, Interpreter::stackElementSize);
414}
415
416// remember: our convention for longs in SPARC is:
417// O0 (Otos_l1) has high-order part in first word,
418// O1 (Otos_l2) has low-order part in second word
419
420void InterpreterMacroAssembler::push_l(Register r) {
421  assert_not_delayed();
422  debug_only(verify_esp(Lesp));
423  // Longs are stored in memory-correct order, even if unaligned.
424  int offset = -Interpreter::stackElementSize;
425  store_unaligned_long(r, Lesp, offset);
426  dec(Lesp, 2 * Interpreter::stackElementSize);
427}
428
429
430void InterpreterMacroAssembler::push_f(FloatRegister f) {
431  assert_not_delayed();
432  debug_only(verify_esp(Lesp));
433  stf(FloatRegisterImpl::S, f, Lesp, 0);
434  dec(Lesp, Interpreter::stackElementSize);
435}
436
437
438void InterpreterMacroAssembler::push_d(FloatRegister d)   {
439  assert_not_delayed();
440  debug_only(verify_esp(Lesp));
441  // Longs are stored in memory-correct order, even if unaligned.
442  int offset = -Interpreter::stackElementSize;
443  store_unaligned_double(d, Lesp, offset);
444  dec(Lesp, 2 * Interpreter::stackElementSize);
445}
446
447
448void InterpreterMacroAssembler::push(TosState state) {
449  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
450  switch (state) {
451    case atos: push_ptr();            break;
452    case btos: push_i();              break;
453    case ctos:
454    case stos: push_i();              break;
455    case itos: push_i();              break;
456    case ltos: push_l();              break;
457    case ftos: push_f();              break;
458    case dtos: push_d();              break;
459    case vtos: /* nothing to do */    break;
460    default  : ShouldNotReachHere();
461  }
462}
463
464
465void InterpreterMacroAssembler::pop(TosState state) {
466  switch (state) {
467    case atos: pop_ptr();            break;
468    case btos: pop_i();              break;
469    case ctos:
470    case stos: pop_i();              break;
471    case itos: pop_i();              break;
472    case ltos: pop_l();              break;
473    case ftos: pop_f();              break;
474    case dtos: pop_d();              break;
475    case vtos: /* nothing to do */   break;
476    default  : ShouldNotReachHere();
477  }
478  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
479}
480
481
482// Helpers for swap and dup
483void InterpreterMacroAssembler::load_ptr(int n, Register val) {
484  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
485}
486void InterpreterMacroAssembler::store_ptr(int n, Register val) {
487  st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
488}
489
490
491void InterpreterMacroAssembler::load_receiver(Register param_count,
492                                              Register recv) {
493  sll(param_count, Interpreter::logStackElementSize, param_count);
494  ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
495}
496
497void InterpreterMacroAssembler::empty_expression_stack() {
498  // Reset Lesp.
499  sub( Lmonitors, wordSize, Lesp );
500
501  // Reset SP by subtracting more space from Lesp.
502  Label done;
503  verify_oop(Lmethod);
504  assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
505
506  // A native does not need to do this, since its callee does not change SP.
507  ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
508  btst(JVM_ACC_NATIVE, Gframe_size);
509  br(Assembler::notZero, false, Assembler::pt, done);
510  delayed()->nop();
511
512  // Compute max expression stack+register save area
513  lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
514  add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
515
516  //
517  // now set up a stack frame with the size computed above
518  //
519  //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
520  sll( Gframe_size, LogBytesPerWord, Gframe_size );
521  sub( Lesp, Gframe_size, Gframe_size );
522  and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
523  debug_only(verify_sp(Gframe_size, G4_scratch));
524#ifdef _LP64
525  sub(Gframe_size, STACK_BIAS, Gframe_size );
526#endif
527  mov(Gframe_size, SP);
528
529  bind(done);
530}
531
532
533#ifdef ASSERT
534void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
535  Label Bad, OK;
536
537  // Saved SP must be aligned.
538#ifdef _LP64
539  btst(2*BytesPerWord-1, Rsp);
540#else
541  btst(LongAlignmentMask, Rsp);
542#endif
543  br(Assembler::notZero, false, Assembler::pn, Bad);
544  delayed()->nop();
545
546  // Saved SP, plus register window size, must not be above FP.
547  add(Rsp, frame::register_save_words * wordSize, Rtemp);
548#ifdef _LP64
549  sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
550#endif
551  cmp(Rtemp, FP);
552  brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
553  delayed()->nop();
554
555  // Saved SP must not be ridiculously below current SP.
556  size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
557  set(maxstack, Rtemp);
558  sub(SP, Rtemp, Rtemp);
559#ifdef _LP64
560  add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
561#endif
562  cmp(Rsp, Rtemp);
563  brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
564  delayed()->nop();
565
566  br(Assembler::always, false, Assembler::pn, OK);
567  delayed()->nop();
568
569  bind(Bad);
570  stop("on return to interpreted call, restored SP is corrupted");
571
572  bind(OK);
573}
574
575
576void InterpreterMacroAssembler::verify_esp(Register Resp) {
577  // about to read or write Resp[0]
578  // make sure it is not in the monitors or the register save area
579  Label OK1, OK2;
580
581  cmp(Resp, Lmonitors);
582  brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
583  delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
584  stop("too many pops:  Lesp points into monitor area");
585  bind(OK1);
586#ifdef _LP64
587  sub(Resp, STACK_BIAS, Resp);
588#endif
589  cmp(Resp, SP);
590  brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
591  delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
592  stop("too many pushes:  Lesp points into register window");
593  bind(OK2);
594}
595#endif // ASSERT
596
597// Load compiled (i2c) or interpreter entry when calling from interpreted and
598// do the call. Centralized so that all interpreter calls will do the same actions.
599// If jvmti single stepping is on for a thread we must not call compiled code.
600void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
601
602  // Assume we want to go compiled if available
603
604  ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
605
606  if (JvmtiExport::can_post_interpreter_events()) {
607    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
608    // compiled code in threads for which the event is enabled.  Check here for
609    // interp_only_mode if these events CAN be enabled.
610    verify_thread();
611    Label skip_compiled_code;
612
613    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
614    ld(interp_only, scratch);
615    tst(scratch);
616    br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
617    delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
618    bind(skip_compiled_code);
619  }
620
621  // the i2c_adapters need methodOop in G5_method (right? %%%)
622  // do the call
623#ifdef ASSERT
624  {
625    Label ok;
626    br_notnull(target, false, Assembler::pt, ok);
627    delayed()->nop();
628    stop("null entry point");
629    bind(ok);
630  }
631#endif // ASSERT
632
633  // Adjust Rret first so Llast_SP can be same as Rret
634  add(Rret, -frame::pc_return_offset, O7);
635  add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
636  // Record SP so we can remove any stack space allocated by adapter transition
637  jmp(target, 0);
638  delayed()->mov(SP, Llast_SP);
639}
640
641void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
642  assert_not_delayed();
643
644  Label not_taken;
645  if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
646  else             br (cc, false, Assembler::pn, not_taken);
647  delayed()->nop();
648
649  TemplateTable::branch(false,false);
650
651  bind(not_taken);
652
653  profile_not_taken_branch(G3_scratch);
654}
655
656
657void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
658                                  int         bcp_offset,
659                                  Register    Rtmp,
660                                  Register    Rdst,
661                                  signedOrNot is_signed,
662                                  setCCOrNot  should_set_CC ) {
663  assert(Rtmp != Rdst, "need separate temp register");
664  assert_not_delayed();
665  switch (is_signed) {
666   default: ShouldNotReachHere();
667
668   case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
669   case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
670  }
671  ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
672  sll( Rdst, BitsPerByte, Rdst);
673  switch (should_set_CC ) {
674   default: ShouldNotReachHere();
675
676   case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
677   case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
678  }
679}
680
681
682void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
683                                  int        bcp_offset,
684                                  Register   Rtmp,
685                                  Register   Rdst,
686                                  setCCOrNot should_set_CC ) {
687  assert(Rtmp != Rdst, "need separate temp register");
688  assert_not_delayed();
689  add( Lbcp, bcp_offset, Rtmp);
690  andcc( Rtmp, 3, G0);
691  Label aligned;
692  switch (should_set_CC ) {
693   default: ShouldNotReachHere();
694
695   case      set_CC: break;
696   case dont_set_CC: break;
697  }
698
699  br(Assembler::zero, true, Assembler::pn, aligned);
700#ifdef _LP64
701  delayed()->ldsw(Rtmp, 0, Rdst);
702#else
703  delayed()->ld(Rtmp, 0, Rdst);
704#endif
705
706  ldub(Lbcp, bcp_offset + 3, Rdst);
707  ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
708  ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
709#ifdef _LP64
710  ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
711#else
712  // Unsigned load is faster than signed on some implementations
713  ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
714#endif
715  or3(Rtmp, Rdst, Rdst );
716
717  bind(aligned);
718  if (should_set_CC == set_CC) tst(Rdst);
719}
720
721
722void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
723                                                       int bcp_offset, size_t index_size) {
724  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
725  if (index_size == sizeof(u2)) {
726    get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
727  } else if (index_size == sizeof(u4)) {
728    assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
729    get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
730    assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
731    xor3(tmp, -1, tmp);  // convert to plain index
732  } else if (index_size == sizeof(u1)) {
733    assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
734    ldub(Lbcp, bcp_offset, tmp);
735  } else {
736    ShouldNotReachHere();
737  }
738}
739
740
741void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
742                                                           int bcp_offset, size_t index_size) {
743  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
744  assert_different_registers(cache, tmp);
745  assert_not_delayed();
746  get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
747  // convert from field index to ConstantPoolCacheEntry index and from
748  // word index to byte offset
749  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
750  add(LcpoolCache, tmp, cache);
751}
752
753
754void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
755                                                               int bcp_offset, size_t index_size) {
756  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
757  assert_different_registers(cache, tmp);
758  assert_not_delayed();
759  if (index_size == sizeof(u2)) {
760    get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
761  } else {
762    ShouldNotReachHere();  // other sizes not supported here
763  }
764              // convert from field index to ConstantPoolCacheEntry index
765              // and from word index to byte offset
766  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
767              // skip past the header
768  add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
769              // construct pointer to cache entry
770  add(LcpoolCache, tmp, cache);
771}
772
773
774// Generate a subtype check: branch to ok_is_subtype if sub_klass is
775// a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
776void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
777                                                  Register Rsuper_klass,
778                                                  Register Rtmp1,
779                                                  Register Rtmp2,
780                                                  Register Rtmp3,
781                                                  Label &ok_is_subtype ) {
782  Label not_subtype;
783
784  // Profile the not-null value's klass.
785  profile_typecheck(Rsub_klass, Rtmp1);
786
787  check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
788                                Rtmp1, Rtmp2,
789                                &ok_is_subtype, &not_subtype, NULL);
790
791  check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
792                                Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
793                                &ok_is_subtype, NULL);
794
795  bind(not_subtype);
796  profile_typecheck_failed(Rtmp1);
797}
798
799// Separate these two to allow for delay slot in middle
800// These are used to do a test and full jump to exception-throwing code.
801
802// %%%%% Could possibly reoptimize this by testing to see if could use
803// a single conditional branch (i.e. if span is small enough.
804// If you go that route, than get rid of the split and give up
805// on the delay-slot hack.
806
807void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
808                                                    Label&    ok ) {
809  assert_not_delayed();
810  br(ok_condition, true, pt, ok);
811  // DELAY SLOT
812}
813
814void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
815                                                    Label&    ok ) {
816  assert_not_delayed();
817  bp( ok_condition, true, Assembler::xcc, pt, ok);
818  // DELAY SLOT
819}
820
821void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
822                                                  Label&    ok ) {
823  assert_not_delayed();
824  brx(ok_condition, true, pt, ok);
825  // DELAY SLOT
826}
827
828void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
829                                                Register Rscratch,
830                                                Label&   ok ) {
831  assert(throw_entry_point != NULL, "entry point must be generated by now");
832  AddressLiteral dest(throw_entry_point);
833  jump_to(dest, Rscratch);
834  delayed()->nop();
835  bind(ok);
836}
837
838
839// And if you cannot use the delay slot, here is a shorthand:
840
841void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
842                                                  address   throw_entry_point,
843                                                  Register  Rscratch ) {
844  Label ok;
845  if (ok_condition != never) {
846    throw_if_not_1_icc( ok_condition, ok);
847    delayed()->nop();
848  }
849  throw_if_not_2( throw_entry_point, Rscratch, ok);
850}
851void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
852                                                  address   throw_entry_point,
853                                                  Register  Rscratch ) {
854  Label ok;
855  if (ok_condition != never) {
856    throw_if_not_1_xcc( ok_condition, ok);
857    delayed()->nop();
858  }
859  throw_if_not_2( throw_entry_point, Rscratch, ok);
860}
861void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
862                                                address   throw_entry_point,
863                                                Register  Rscratch ) {
864  Label ok;
865  if (ok_condition != never) {
866    throw_if_not_1_x( ok_condition, ok);
867    delayed()->nop();
868  }
869  throw_if_not_2( throw_entry_point, Rscratch, ok);
870}
871
872// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
873// Note: res is still shy of address by array offset into object.
874
875void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
876  assert_not_delayed();
877
878  verify_oop(array);
879#ifdef _LP64
880  // sign extend since tos (index) can be a 32bit value
881  sra(index, G0, index);
882#endif // _LP64
883
884  // check array
885  Label ptr_ok;
886  tst(array);
887  throw_if_not_1_x( notZero, ptr_ok );
888  delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
889  throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
890
891  Label index_ok;
892  cmp(index, tmp);
893  throw_if_not_1_icc( lessUnsigned, index_ok );
894  if (index_shift > 0)  delayed()->sll(index, index_shift, index);
895  else                  delayed()->add(array, index, res); // addr - const offset in index
896  // convention: move aberrant index into G3_scratch for exception message
897  mov(index, G3_scratch);
898  throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
899
900  // add offset if didn't do it in delay slot
901  if (index_shift > 0)   add(array, index, res); // addr - const offset in index
902}
903
904
905void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
906  assert_not_delayed();
907
908  // pop array
909  pop_ptr(array);
910
911  // check array
912  index_check_without_pop(array, index, index_shift, tmp, res);
913}
914
915
916void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
917  ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
918}
919
920
921void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
922  get_constant_pool(Rdst);
923  ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
924}
925
926
927void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
928  get_constant_pool(Rcpool);
929  ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
930}
931
932
933// unlock if synchronized method
934//
935// Unlock the receiver if this is a synchronized method.
936// Unlock any Java monitors from syncronized blocks.
937//
938// If there are locked Java monitors
939//    If throw_monitor_exception
940//       throws IllegalMonitorStateException
941//    Else if install_monitor_exception
942//       installs IllegalMonitorStateException
943//    Else
944//       no error processing
945void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
946                                                              bool throw_monitor_exception,
947                                                              bool install_monitor_exception) {
948  Label unlocked, unlock, no_unlock;
949
950  // get the value of _do_not_unlock_if_synchronized into G1_scratch
951  const Address do_not_unlock_if_synchronized(G2_thread,
952    JavaThread::do_not_unlock_if_synchronized_offset());
953  ldbool(do_not_unlock_if_synchronized, G1_scratch);
954  stbool(G0, do_not_unlock_if_synchronized); // reset the flag
955
956  // check if synchronized method
957  const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
958  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
959  push(state); // save tos
960  ld(access_flags, G3_scratch); // Load access flags.
961  btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
962  br(zero, false, pt, unlocked);
963  delayed()->nop();
964
965  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
966  // is set.
967  tstbool(G1_scratch);
968  br(Assembler::notZero, false, pn, no_unlock);
969  delayed()->nop();
970
971  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
972  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
973
974  //Intel: if (throw_monitor_exception) ... else ...
975  // Entry already unlocked, need to throw exception
976  //...
977
978  // pass top-most monitor elem
979  add( top_most_monitor(), O1 );
980
981  ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
982  br_notnull(G3_scratch, false, pt, unlock);
983  delayed()->nop();
984
985  if (throw_monitor_exception) {
986    // Entry already unlocked need to throw an exception
987    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
988    should_not_reach_here();
989  } else {
990    // Monitor already unlocked during a stack unroll.
991    // If requested, install an illegal_monitor_state_exception.
992    // Continue with stack unrolling.
993    if (install_monitor_exception) {
994      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
995    }
996    ba(false, unlocked);
997    delayed()->nop();
998  }
999
1000  bind(unlock);
1001
1002  unlock_object(O1);
1003
1004  bind(unlocked);
1005
1006  // I0, I1: Might contain return value
1007
1008  // Check that all monitors are unlocked
1009  { Label loop, exception, entry, restart;
1010
1011    Register Rmptr   = O0;
1012    Register Rtemp   = O1;
1013    Register Rlimit  = Lmonitors;
1014    const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1015    assert( (delta & LongAlignmentMask) == 0,
1016            "sizeof BasicObjectLock must be even number of doublewords");
1017
1018    #ifdef ASSERT
1019    add(top_most_monitor(), Rmptr, delta);
1020    { Label L;
1021      // ensure that Rmptr starts out above (or at) Rlimit
1022      cmp(Rmptr, Rlimit);
1023      brx(Assembler::greaterEqualUnsigned, false, pn, L);
1024      delayed()->nop();
1025      stop("monitor stack has negative size");
1026      bind(L);
1027    }
1028    #endif
1029    bind(restart);
1030    ba(false, entry);
1031    delayed()->
1032    add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1033
1034    // Entry is still locked, need to throw exception
1035    bind(exception);
1036    if (throw_monitor_exception) {
1037      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1038      should_not_reach_here();
1039    } else {
1040      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1041      // Unlock does not block, so don't have to worry about the frame
1042      unlock_object(Rmptr);
1043      if (install_monitor_exception) {
1044        MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1045      }
1046      ba(false, restart);
1047      delayed()->nop();
1048    }
1049
1050    bind(loop);
1051    cmp(Rtemp, G0);                             // check if current entry is used
1052    brx(Assembler::notEqual, false, pn, exception);
1053    delayed()->
1054    dec(Rmptr, delta);                          // otherwise advance to next entry
1055    #ifdef ASSERT
1056    { Label L;
1057      // ensure that Rmptr has not somehow stepped below Rlimit
1058      cmp(Rmptr, Rlimit);
1059      brx(Assembler::greaterEqualUnsigned, false, pn, L);
1060      delayed()->nop();
1061      stop("ran off the end of the monitor stack");
1062      bind(L);
1063    }
1064    #endif
1065    bind(entry);
1066    cmp(Rmptr, Rlimit);                         // check if bottom reached
1067    brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1068    delayed()->
1069    ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1070  }
1071
1072  bind(no_unlock);
1073  pop(state);
1074  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1075}
1076
1077
1078// remove activation
1079//
1080// Unlock the receiver if this is a synchronized method.
1081// Unlock any Java monitors from syncronized blocks.
1082// Remove the activation from the stack.
1083//
1084// If there are locked Java monitors
1085//    If throw_monitor_exception
1086//       throws IllegalMonitorStateException
1087//    Else if install_monitor_exception
1088//       installs IllegalMonitorStateException
1089//    Else
1090//       no error processing
1091void InterpreterMacroAssembler::remove_activation(TosState state,
1092                                                  bool throw_monitor_exception,
1093                                                  bool install_monitor_exception) {
1094
1095  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1096
1097  // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1098  notify_method_exit(false, state, NotifyJVMTI);
1099
1100  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1101  verify_oop(Lmethod);
1102  verify_thread();
1103
1104  // return tos
1105  assert(Otos_l1 == Otos_i, "adjust code below");
1106  switch (state) {
1107#ifdef _LP64
1108  case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1109#else
1110  case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1111#endif
1112  case btos:                                      // fall through
1113  case ctos:
1114  case stos:                                      // fall through
1115  case atos:                                      // fall through
1116  case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1117  case ftos:                                      // fall through
1118  case dtos:                                      // fall through
1119  case vtos: /* nothing to do */                     break;
1120  default  : ShouldNotReachHere();
1121  }
1122
1123#if defined(COMPILER2) && !defined(_LP64)
1124  if (state == ltos) {
1125    // C2 expects long results in G1 we can't tell if we're returning to interpreted
1126    // or compiled so just be safe use G1 and O0/O1
1127
1128    // Shift bits into high (msb) of G1
1129    sllx(Otos_l1->after_save(), 32, G1);
1130    // Zero extend low bits
1131    srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1132    or3 (Otos_l2->after_save(), G1, G1);
1133  }
1134#endif /* COMPILER2 */
1135
1136}
1137#endif /* CC_INTERP */
1138
1139
1140// Lock object
1141//
1142// Argument - lock_reg points to the BasicObjectLock to be used for locking,
1143//            it must be initialized with the object to lock
1144void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1145  if (UseHeavyMonitors) {
1146    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1147  }
1148  else {
1149    Register obj_reg = Object;
1150    Register mark_reg = G4_scratch;
1151    Register temp_reg = G1_scratch;
1152    Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1153    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1154    Label    done;
1155
1156    Label slow_case;
1157
1158    assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1159
1160    // load markOop from object into mark_reg
1161    ld_ptr(mark_addr, mark_reg);
1162
1163    if (UseBiasedLocking) {
1164      biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1165    }
1166
1167    // get the address of basicLock on stack that will be stored in the object
1168    // we need a temporary register here as we do not want to clobber lock_reg
1169    // (cas clobbers the destination register)
1170    mov(lock_reg, temp_reg);
1171    // set mark reg to be (markOop of object | UNLOCK_VALUE)
1172    or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1173    // initialize the box  (Must happen before we update the object mark!)
1174    st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1175    // compare and exchange object_addr, markOop | 1, stack address of basicLock
1176    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1177    casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1178      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1179
1180    // if the compare and exchange succeeded we are done (we saw an unlocked object)
1181    cmp(mark_reg, temp_reg);
1182    brx(Assembler::equal, true, Assembler::pt, done);
1183    delayed()->nop();
1184
1185    // We did not see an unlocked object so try the fast recursive case
1186
1187    // Check if owner is self by comparing the value in the markOop of object
1188    // with the stack pointer
1189    sub(temp_reg, SP, temp_reg);
1190#ifdef _LP64
1191    sub(temp_reg, STACK_BIAS, temp_reg);
1192#endif
1193    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1194
1195    // Composite "andcc" test:
1196    // (a) %sp -vs- markword proximity check, and,
1197    // (b) verify mark word LSBs == 0 (Stack-locked).
1198    //
1199    // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1200    // Note that the page size used for %sp proximity testing is arbitrary and is
1201    // unrelated to the actual MMU page size.  We use a 'logical' page size of
1202    // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1203    // field of the andcc instruction.
1204    andcc (temp_reg, 0xFFFFF003, G0) ;
1205
1206    // if condition is true we are done and hence we can store 0 in the displaced
1207    // header indicating it is a recursive lock and be done
1208    brx(Assembler::zero, true, Assembler::pt, done);
1209    delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1210
1211    // none of the above fast optimizations worked so we have to get into the
1212    // slow case of monitor enter
1213    bind(slow_case);
1214    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1215
1216    bind(done);
1217  }
1218}
1219
1220// Unlocks an object. Used in monitorexit bytecode and remove_activation.
1221//
1222// Argument - lock_reg points to the BasicObjectLock for lock
1223// Throw IllegalMonitorException if object is not locked by current thread
1224void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1225  if (UseHeavyMonitors) {
1226    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1227  } else {
1228    Register obj_reg = G3_scratch;
1229    Register mark_reg = G4_scratch;
1230    Register displaced_header_reg = G1_scratch;
1231    Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1232    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1233    Label    done;
1234
1235    if (UseBiasedLocking) {
1236      // load the object out of the BasicObjectLock
1237      ld_ptr(lockobj_addr, obj_reg);
1238      biased_locking_exit(mark_addr, mark_reg, done, true);
1239      st_ptr(G0, lockobj_addr);  // free entry
1240    }
1241
1242    // Test first if we are in the fast recursive case
1243    Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1244    ld_ptr(lock_addr, displaced_header_reg);
1245    br_null(displaced_header_reg, true, Assembler::pn, done);
1246    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1247
1248    // See if it is still a light weight lock, if so we just unlock
1249    // the object and we are done
1250
1251    if (!UseBiasedLocking) {
1252      // load the object out of the BasicObjectLock
1253      ld_ptr(lockobj_addr, obj_reg);
1254    }
1255
1256    // we have the displaced header in displaced_header_reg
1257    // we expect to see the stack address of the basicLock in case the
1258    // lock is still a light weight lock (lock_reg)
1259    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1260    casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1261      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1262    cmp(lock_reg, displaced_header_reg);
1263    brx(Assembler::equal, true, Assembler::pn, done);
1264    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1265
1266    // The lock has been converted into a heavy lock and hence
1267    // we need to get into the slow case
1268
1269    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1270
1271    bind(done);
1272  }
1273}
1274
1275#ifndef CC_INTERP
1276
1277// Get the method data pointer from the methodOop and set the
1278// specified register to its value.
1279
1280void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1281  assert(ProfileInterpreter, "must be profiling interpreter");
1282  Label get_continue;
1283
1284  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1285  test_method_data_pointer(get_continue);
1286  add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1287  if (Roff != noreg)
1288    // Roff contains a method data index ("mdi").  It defaults to zero.
1289    add(ImethodDataPtr, Roff, ImethodDataPtr);
1290  bind(get_continue);
1291}
1292
1293// Set the method data pointer for the current bcp.
1294
1295void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1296  assert(ProfileInterpreter, "must be profiling interpreter");
1297  Label zero_continue;
1298
1299  // Test MDO to avoid the call if it is NULL.
1300  ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
1301  test_method_data_pointer(zero_continue);
1302  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1303  set_method_data_pointer_offset(O0);
1304  bind(zero_continue);
1305}
1306
1307// Test ImethodDataPtr.  If it is null, continue at the specified label
1308
1309void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1310  assert(ProfileInterpreter, "must be profiling interpreter");
1311#ifdef _LP64
1312  bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1313#else
1314  tst(ImethodDataPtr);
1315  br(Assembler::zero, false, Assembler::pn, zero_continue);
1316#endif
1317  delayed()->nop();
1318}
1319
1320void InterpreterMacroAssembler::verify_method_data_pointer() {
1321  assert(ProfileInterpreter, "must be profiling interpreter");
1322#ifdef ASSERT
1323  Label verify_continue;
1324  test_method_data_pointer(verify_continue);
1325
1326  // If the mdp is valid, it will point to a DataLayout header which is
1327  // consistent with the bcp.  The converse is highly probable also.
1328  lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1329  ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
1330  add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1331  add(G3_scratch, O5, G3_scratch);
1332  cmp(Lbcp, G3_scratch);
1333  brx(Assembler::equal, false, Assembler::pt, verify_continue);
1334
1335  Register temp_reg = O5;
1336  delayed()->mov(ImethodDataPtr, temp_reg);
1337  // %%% should use call_VM_leaf here?
1338  //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1339  save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1340  Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1341  stf(FloatRegisterImpl::D, Ftos_d, d_save);
1342  mov(temp_reg->after_save(), O2);
1343  save_thread(L7_thread_cache);
1344  call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1345  delayed()->nop();
1346  restore_thread(L7_thread_cache);
1347  ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1348  restore();
1349  bind(verify_continue);
1350#endif // ASSERT
1351}
1352
1353void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1354                                                                Register cur_bcp,
1355                                                                Register Rtmp,
1356                                                                Label &profile_continue) {
1357  assert(ProfileInterpreter, "must be profiling interpreter");
1358  // Control will flow to "profile_continue" if the counter is less than the
1359  // limit or if we call profile_method()
1360
1361  Label done;
1362
1363  // if no method data exists, and the counter is high enough, make one
1364#ifdef _LP64
1365  bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1366#else
1367  tst(ImethodDataPtr);
1368  br(Assembler::notZero, false, Assembler::pn, done);
1369#endif
1370
1371  // Test to see if we should create a method data oop
1372  AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1373#ifdef _LP64
1374  delayed()->nop();
1375  sethi(profile_limit, Rtmp);
1376#else
1377  delayed()->sethi(profile_limit, Rtmp);
1378#endif
1379  ld(Rtmp, profile_limit.low10(), Rtmp);
1380  cmp(invocation_count, Rtmp);
1381  br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1382  delayed()->nop();
1383
1384  // Build it now.
1385  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1386  set_method_data_pointer_offset(O0);
1387  ba(false, profile_continue);
1388  delayed()->nop();
1389  bind(done);
1390}
1391
1392// Store a value at some constant offset from the method data pointer.
1393
1394void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1395  assert(ProfileInterpreter, "must be profiling interpreter");
1396  st_ptr(value, ImethodDataPtr, constant);
1397}
1398
1399void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1400                                                      Register bumped_count,
1401                                                      bool decrement) {
1402  assert(ProfileInterpreter, "must be profiling interpreter");
1403
1404  // Load the counter.
1405  ld_ptr(counter, bumped_count);
1406
1407  if (decrement) {
1408    // Decrement the register.  Set condition codes.
1409    subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1410
1411    // If the decrement causes the counter to overflow, stay negative
1412    Label L;
1413    brx(Assembler::negative, true, Assembler::pn, L);
1414
1415    // Store the decremented counter, if it is still negative.
1416    delayed()->st_ptr(bumped_count, counter);
1417    bind(L);
1418  } else {
1419    // Increment the register.  Set carry flag.
1420    addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1421
1422    // If the increment causes the counter to overflow, pull back by 1.
1423    assert(DataLayout::counter_increment == 1, "subc works");
1424    subc(bumped_count, G0, bumped_count);
1425
1426    // Store the incremented counter.
1427    st_ptr(bumped_count, counter);
1428  }
1429}
1430
1431// Increment the value at some constant offset from the method data pointer.
1432
1433void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1434                                                      Register bumped_count,
1435                                                      bool decrement) {
1436  // Locate the counter at a fixed offset from the mdp:
1437  Address counter(ImethodDataPtr, constant);
1438  increment_mdp_data_at(counter, bumped_count, decrement);
1439}
1440
1441// Increment the value at some non-fixed (reg + constant) offset from
1442// the method data pointer.
1443
1444void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1445                                                      int constant,
1446                                                      Register bumped_count,
1447                                                      Register scratch2,
1448                                                      bool decrement) {
1449  // Add the constant to reg to get the offset.
1450  add(ImethodDataPtr, reg, scratch2);
1451  Address counter(scratch2, constant);
1452  increment_mdp_data_at(counter, bumped_count, decrement);
1453}
1454
1455// Set a flag value at the current method data pointer position.
1456// Updates a single byte of the header, to avoid races with other header bits.
1457
1458void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1459                                                Register scratch) {
1460  assert(ProfileInterpreter, "must be profiling interpreter");
1461  // Load the data header
1462  ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1463
1464  // Set the flag
1465  or3(scratch, flag_constant, scratch);
1466
1467  // Store the modified header.
1468  stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1469}
1470
1471// Test the location at some offset from the method data pointer.
1472// If it is not equal to value, branch to the not_equal_continue Label.
1473// Set condition codes to match the nullness of the loaded value.
1474
1475void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1476                                                 Register value,
1477                                                 Label& not_equal_continue,
1478                                                 Register scratch) {
1479  assert(ProfileInterpreter, "must be profiling interpreter");
1480  ld_ptr(ImethodDataPtr, offset, scratch);
1481  cmp(value, scratch);
1482  brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1483  delayed()->tst(scratch);
1484}
1485
1486// Update the method data pointer by the displacement located at some fixed
1487// offset from the method data pointer.
1488
1489void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1490                                                     Register scratch) {
1491  assert(ProfileInterpreter, "must be profiling interpreter");
1492  ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1493  add(ImethodDataPtr, scratch, ImethodDataPtr);
1494}
1495
1496// Update the method data pointer by the displacement located at the
1497// offset (reg + offset_of_disp).
1498
1499void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1500                                                     int offset_of_disp,
1501                                                     Register scratch) {
1502  assert(ProfileInterpreter, "must be profiling interpreter");
1503  add(reg, offset_of_disp, scratch);
1504  ld_ptr(ImethodDataPtr, scratch, scratch);
1505  add(ImethodDataPtr, scratch, ImethodDataPtr);
1506}
1507
1508// Update the method data pointer by a simple constant displacement.
1509
1510void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1511  assert(ProfileInterpreter, "must be profiling interpreter");
1512  add(ImethodDataPtr, constant, ImethodDataPtr);
1513}
1514
1515// Update the method data pointer for a _ret bytecode whose target
1516// was not among our cached targets.
1517
1518void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1519                                                   Register return_bci) {
1520  assert(ProfileInterpreter, "must be profiling interpreter");
1521  push(state);
1522  st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1523  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1524  ld_ptr(l_tmp, return_bci);
1525  pop(state);
1526}
1527
1528// Count a taken branch in the bytecodes.
1529
1530void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1531  if (ProfileInterpreter) {
1532    Label profile_continue;
1533
1534    // If no method data exists, go to profile_continue.
1535    test_method_data_pointer(profile_continue);
1536
1537    // We are taking a branch.  Increment the taken count.
1538    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1539
1540    // The method data pointer needs to be updated to reflect the new target.
1541    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1542    bind (profile_continue);
1543  }
1544}
1545
1546
1547// Count a not-taken branch in the bytecodes.
1548
1549void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1550  if (ProfileInterpreter) {
1551    Label profile_continue;
1552
1553    // If no method data exists, go to profile_continue.
1554    test_method_data_pointer(profile_continue);
1555
1556    // We are taking a branch.  Increment the not taken count.
1557    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1558
1559    // The method data pointer needs to be updated to correspond to the
1560    // next bytecode.
1561    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1562    bind (profile_continue);
1563  }
1564}
1565
1566
1567// Count a non-virtual call in the bytecodes.
1568
1569void InterpreterMacroAssembler::profile_call(Register scratch) {
1570  if (ProfileInterpreter) {
1571    Label profile_continue;
1572
1573    // If no method data exists, go to profile_continue.
1574    test_method_data_pointer(profile_continue);
1575
1576    // We are making a call.  Increment the count.
1577    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1578
1579    // The method data pointer needs to be updated to reflect the new target.
1580    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1581    bind (profile_continue);
1582  }
1583}
1584
1585
1586// Count a final call in the bytecodes.
1587
1588void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1589  if (ProfileInterpreter) {
1590    Label profile_continue;
1591
1592    // If no method data exists, go to profile_continue.
1593    test_method_data_pointer(profile_continue);
1594
1595    // We are making a call.  Increment the count.
1596    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1597
1598    // The method data pointer needs to be updated to reflect the new target.
1599    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1600    bind (profile_continue);
1601  }
1602}
1603
1604
1605// Count a virtual call in the bytecodes.
1606
1607void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1608                                                     Register scratch,
1609                                                     bool receiver_can_be_null) {
1610  if (ProfileInterpreter) {
1611    Label profile_continue;
1612
1613    // If no method data exists, go to profile_continue.
1614    test_method_data_pointer(profile_continue);
1615
1616
1617    Label skip_receiver_profile;
1618    if (receiver_can_be_null) {
1619      Label not_null;
1620      tst(receiver);
1621      brx(Assembler::notZero, false, Assembler::pt, not_null);
1622      delayed()->nop();
1623      // We are making a call.  Increment the count for null receiver.
1624      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1625      ba(false, skip_receiver_profile);
1626      delayed()->nop();
1627      bind(not_null);
1628    }
1629
1630    // Record the receiver type.
1631    record_klass_in_profile(receiver, scratch, true);
1632    bind(skip_receiver_profile);
1633
1634    // The method data pointer needs to be updated to reflect the new target.
1635    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1636    bind (profile_continue);
1637  }
1638}
1639
1640void InterpreterMacroAssembler::record_klass_in_profile_helper(
1641                                        Register receiver, Register scratch,
1642                                        int start_row, Label& done, bool is_virtual_call) {
1643  if (TypeProfileWidth == 0) {
1644    if (is_virtual_call) {
1645      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1646    }
1647    return;
1648  }
1649
1650  int last_row = VirtualCallData::row_limit() - 1;
1651  assert(start_row <= last_row, "must be work left to do");
1652  // Test this row for both the receiver and for null.
1653  // Take any of three different outcomes:
1654  //   1. found receiver => increment count and goto done
1655  //   2. found null => keep looking for case 1, maybe allocate this cell
1656  //   3. found something else => keep looking for cases 1 and 2
1657  // Case 3 is handled by a recursive call.
1658  for (int row = start_row; row <= last_row; row++) {
1659    Label next_test;
1660    bool test_for_null_also = (row == start_row);
1661
1662    // See if the receiver is receiver[n].
1663    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1664    test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1665    // delayed()->tst(scratch);
1666
1667    // The receiver is receiver[n].  Increment count[n].
1668    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1669    increment_mdp_data_at(count_offset, scratch);
1670    ba(false, done);
1671    delayed()->nop();
1672    bind(next_test);
1673
1674    if (test_for_null_also) {
1675      Label found_null;
1676      // Failed the equality check on receiver[n]...  Test for null.
1677      if (start_row == last_row) {
1678        // The only thing left to do is handle the null case.
1679        if (is_virtual_call) {
1680          brx(Assembler::zero, false, Assembler::pn, found_null);
1681          delayed()->nop();
1682          // Receiver did not match any saved receiver and there is no empty row for it.
1683          // Increment total counter to indicate polymorphic case.
1684          increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1685          ba(false, done);
1686          delayed()->nop();
1687          bind(found_null);
1688        } else {
1689          brx(Assembler::notZero, false, Assembler::pt, done);
1690          delayed()->nop();
1691        }
1692        break;
1693      }
1694      // Since null is rare, make it be the branch-taken case.
1695      brx(Assembler::zero, false, Assembler::pn, found_null);
1696      delayed()->nop();
1697
1698      // Put all the "Case 3" tests here.
1699      record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1700
1701      // Found a null.  Keep searching for a matching receiver,
1702      // but remember that this is an empty (unused) slot.
1703      bind(found_null);
1704    }
1705  }
1706
1707  // In the fall-through case, we found no matching receiver, but we
1708  // observed the receiver[start_row] is NULL.
1709
1710  // Fill in the receiver field and increment the count.
1711  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1712  set_mdp_data_at(recvr_offset, receiver);
1713  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1714  mov(DataLayout::counter_increment, scratch);
1715  set_mdp_data_at(count_offset, scratch);
1716  if (start_row > 0) {
1717    ba(false, done);
1718    delayed()->nop();
1719  }
1720}
1721
1722void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1723                                                        Register scratch, bool is_virtual_call) {
1724  assert(ProfileInterpreter, "must be profiling");
1725  Label done;
1726
1727  record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1728
1729  bind (done);
1730}
1731
1732
1733// Count a ret in the bytecodes.
1734
1735void InterpreterMacroAssembler::profile_ret(TosState state,
1736                                            Register return_bci,
1737                                            Register scratch) {
1738  if (ProfileInterpreter) {
1739    Label profile_continue;
1740    uint row;
1741
1742    // If no method data exists, go to profile_continue.
1743    test_method_data_pointer(profile_continue);
1744
1745    // Update the total ret count.
1746    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1747
1748    for (row = 0; row < RetData::row_limit(); row++) {
1749      Label next_test;
1750
1751      // See if return_bci is equal to bci[n]:
1752      test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1753                       return_bci, next_test, scratch);
1754
1755      // return_bci is equal to bci[n].  Increment the count.
1756      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1757
1758      // The method data pointer needs to be updated to reflect the new target.
1759      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1760      ba(false, profile_continue);
1761      delayed()->nop();
1762      bind(next_test);
1763    }
1764
1765    update_mdp_for_ret(state, return_bci);
1766
1767    bind (profile_continue);
1768  }
1769}
1770
1771// Profile an unexpected null in the bytecodes.
1772void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1773  if (ProfileInterpreter) {
1774    Label profile_continue;
1775
1776    // If no method data exists, go to profile_continue.
1777    test_method_data_pointer(profile_continue);
1778
1779    set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1780
1781    // The method data pointer needs to be updated.
1782    int mdp_delta = in_bytes(BitData::bit_data_size());
1783    if (TypeProfileCasts) {
1784      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1785    }
1786    update_mdp_by_constant(mdp_delta);
1787
1788    bind (profile_continue);
1789  }
1790}
1791
1792void InterpreterMacroAssembler::profile_typecheck(Register klass,
1793                                                  Register scratch) {
1794  if (ProfileInterpreter) {
1795    Label profile_continue;
1796
1797    // If no method data exists, go to profile_continue.
1798    test_method_data_pointer(profile_continue);
1799
1800    int mdp_delta = in_bytes(BitData::bit_data_size());
1801    if (TypeProfileCasts) {
1802      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1803
1804      // Record the object type.
1805      record_klass_in_profile(klass, scratch, false);
1806    }
1807
1808    // The method data pointer needs to be updated.
1809    update_mdp_by_constant(mdp_delta);
1810
1811    bind (profile_continue);
1812  }
1813}
1814
1815void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1816  if (ProfileInterpreter && TypeProfileCasts) {
1817    Label profile_continue;
1818
1819    // If no method data exists, go to profile_continue.
1820    test_method_data_pointer(profile_continue);
1821
1822    int count_offset = in_bytes(CounterData::count_offset());
1823    // Back up the address, since we have already bumped the mdp.
1824    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1825
1826    // *Decrement* the counter.  We expect to see zero or small negatives.
1827    increment_mdp_data_at(count_offset, scratch, true);
1828
1829    bind (profile_continue);
1830  }
1831}
1832
1833// Count the default case of a switch construct.
1834
1835void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1836  if (ProfileInterpreter) {
1837    Label profile_continue;
1838
1839    // If no method data exists, go to profile_continue.
1840    test_method_data_pointer(profile_continue);
1841
1842    // Update the default case count
1843    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1844                          scratch);
1845
1846    // The method data pointer needs to be updated.
1847    update_mdp_by_offset(
1848                    in_bytes(MultiBranchData::default_displacement_offset()),
1849                    scratch);
1850
1851    bind (profile_continue);
1852  }
1853}
1854
1855// Count the index'th case of a switch construct.
1856
1857void InterpreterMacroAssembler::profile_switch_case(Register index,
1858                                                    Register scratch,
1859                                                    Register scratch2,
1860                                                    Register scratch3) {
1861  if (ProfileInterpreter) {
1862    Label profile_continue;
1863
1864    // If no method data exists, go to profile_continue.
1865    test_method_data_pointer(profile_continue);
1866
1867    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1868    set(in_bytes(MultiBranchData::per_case_size()), scratch);
1869    smul(index, scratch, scratch);
1870    add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1871
1872    // Update the case count
1873    increment_mdp_data_at(scratch,
1874                          in_bytes(MultiBranchData::relative_count_offset()),
1875                          scratch2,
1876                          scratch3);
1877
1878    // The method data pointer needs to be updated.
1879    update_mdp_by_offset(scratch,
1880                     in_bytes(MultiBranchData::relative_displacement_offset()),
1881                     scratch2);
1882
1883    bind (profile_continue);
1884  }
1885}
1886
1887// add a InterpMonitorElem to stack (see frame_sparc.hpp)
1888
1889void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1890                                                      Register Rtemp,
1891                                                      Register Rtemp2 ) {
1892
1893  Register Rlimit = Lmonitors;
1894  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1895  assert( (delta & LongAlignmentMask) == 0,
1896          "sizeof BasicObjectLock must be even number of doublewords");
1897
1898  sub( SP,        delta, SP);
1899  sub( Lesp,      delta, Lesp);
1900  sub( Lmonitors, delta, Lmonitors);
1901
1902  if (!stack_is_empty) {
1903
1904    // must copy stack contents down
1905
1906    Label start_copying, next;
1907
1908    // untested("monitor stack expansion");
1909    compute_stack_base(Rtemp);
1910    ba( false, start_copying );
1911    delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
1912
1913    // note: must copy from low memory upwards
1914    // On entry to loop,
1915    // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1916    // Loop mutates Rtemp
1917
1918    bind( next);
1919
1920    st_ptr(Rtemp2, Rtemp, 0);
1921    inc(Rtemp, wordSize);
1922    cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1923
1924    bind( start_copying );
1925
1926    brx( notEqual, true, pn, next );
1927    delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1928
1929    // done copying stack
1930  }
1931}
1932
1933// Locals
1934void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1935  assert_not_delayed();
1936  sll(index, Interpreter::logStackElementSize, index);
1937  sub(Llocals, index, index);
1938  ld_ptr(index, 0, dst);
1939  // Note:  index must hold the effective address--the iinc template uses it
1940}
1941
1942// Just like access_local_ptr but the tag is a returnAddress
1943void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1944                                                           Register dst ) {
1945  assert_not_delayed();
1946  sll(index, Interpreter::logStackElementSize, index);
1947  sub(Llocals, index, index);
1948  ld_ptr(index, 0, dst);
1949}
1950
1951void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1952  assert_not_delayed();
1953  sll(index, Interpreter::logStackElementSize, index);
1954  sub(Llocals, index, index);
1955  ld(index, 0, dst);
1956  // Note:  index must hold the effective address--the iinc template uses it
1957}
1958
1959
1960void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1961  assert_not_delayed();
1962  sll(index, Interpreter::logStackElementSize, index);
1963  sub(Llocals, index, index);
1964  // First half stored at index n+1 (which grows down from Llocals[n])
1965  load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1966}
1967
1968
1969void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1970  assert_not_delayed();
1971  sll(index, Interpreter::logStackElementSize, index);
1972  sub(Llocals, index, index);
1973  ldf(FloatRegisterImpl::S, index, 0, dst);
1974}
1975
1976
1977void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1978  assert_not_delayed();
1979  sll(index, Interpreter::logStackElementSize, index);
1980  sub(Llocals, index, index);
1981  load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
1982}
1983
1984
1985#ifdef ASSERT
1986void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
1987  Label L;
1988
1989  assert(Rindex != Rscratch, "Registers cannot be same");
1990  assert(Rindex != Rscratch1, "Registers cannot be same");
1991  assert(Rlimit != Rscratch, "Registers cannot be same");
1992  assert(Rlimit != Rscratch1, "Registers cannot be same");
1993  assert(Rscratch1 != Rscratch, "Registers cannot be same");
1994
1995  // untested("reg area corruption");
1996  add(Rindex, offset, Rscratch);
1997  add(Rlimit, 64 + STACK_BIAS, Rscratch1);
1998  cmp(Rscratch, Rscratch1);
1999  brx(Assembler::greaterEqualUnsigned, false, pn, L);
2000  delayed()->nop();
2001  stop("regsave area is being clobbered");
2002  bind(L);
2003}
2004#endif // ASSERT
2005
2006
2007void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2008  assert_not_delayed();
2009  sll(index, Interpreter::logStackElementSize, index);
2010  sub(Llocals, index, index);
2011  debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2012  st(src, index, 0);
2013}
2014
2015void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2016  assert_not_delayed();
2017  sll(index, Interpreter::logStackElementSize, index);
2018  sub(Llocals, index, index);
2019#ifdef ASSERT
2020  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2021#endif
2022  st_ptr(src, index, 0);
2023}
2024
2025
2026
2027void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2028  st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2029}
2030
2031void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2032  assert_not_delayed();
2033  sll(index, Interpreter::logStackElementSize, index);
2034  sub(Llocals, index, index);
2035#ifdef ASSERT
2036  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2037#endif
2038  store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2039}
2040
2041
2042void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2043  assert_not_delayed();
2044  sll(index, Interpreter::logStackElementSize, index);
2045  sub(Llocals, index, index);
2046#ifdef ASSERT
2047  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2048#endif
2049  stf(FloatRegisterImpl::S, src, index, 0);
2050}
2051
2052
2053void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2054  assert_not_delayed();
2055  sll(index, Interpreter::logStackElementSize, index);
2056  sub(Llocals, index, index);
2057#ifdef ASSERT
2058  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2059#endif
2060  store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2061}
2062
2063
2064int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2065  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2066  int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2067  return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2068}
2069
2070
2071Address InterpreterMacroAssembler::top_most_monitor() {
2072  return Address(FP, top_most_monitor_byte_offset());
2073}
2074
2075
2076void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2077  add( Lesp,      wordSize,                                    Rdest );
2078}
2079
2080#endif /* CC_INTERP */
2081
2082void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2083  assert(UseCompiler, "incrementing must be useful");
2084#ifdef CC_INTERP
2085  Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2086                                 InvocationCounter::counter_offset());
2087  Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2088                                 InvocationCounter::counter_offset());
2089#else
2090  Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2091                               InvocationCounter::counter_offset());
2092  Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2093                               InvocationCounter::counter_offset());
2094#endif /* CC_INTERP */
2095  int delta = InvocationCounter::count_increment;
2096
2097  // Load each counter in a register
2098  ld( inv_counter, Rtmp );
2099  ld( be_counter, Rtmp2 );
2100
2101  assert( is_simm13( delta ), " delta too large.");
2102
2103  // Add the delta to the invocation counter and store the result
2104  add( Rtmp, delta, Rtmp );
2105
2106  // Mask the backedge counter
2107  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2108
2109  // Store value
2110  st( Rtmp, inv_counter);
2111
2112  // Add invocation counter + backedge counter
2113  add( Rtmp, Rtmp2, Rtmp);
2114
2115  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2116}
2117
2118void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2119  assert(UseCompiler, "incrementing must be useful");
2120#ifdef CC_INTERP
2121  Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2122                                 InvocationCounter::counter_offset());
2123  Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2124                                 InvocationCounter::counter_offset());
2125#else
2126  Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2127                               InvocationCounter::counter_offset());
2128  Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2129                               InvocationCounter::counter_offset());
2130#endif /* CC_INTERP */
2131  int delta = InvocationCounter::count_increment;
2132  // Load each counter in a register
2133  ld( be_counter, Rtmp );
2134  ld( inv_counter, Rtmp2 );
2135
2136  // Add the delta to the backedge counter
2137  add( Rtmp, delta, Rtmp );
2138
2139  // Mask the invocation counter, add to backedge counter
2140  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2141
2142  // and store the result to memory
2143  st( Rtmp, be_counter );
2144
2145  // Add backedge + invocation counter
2146  add( Rtmp, Rtmp2, Rtmp );
2147
2148  // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2149}
2150
2151#ifndef CC_INTERP
2152void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2153                                                             Register branch_bcp,
2154                                                             Register Rtmp ) {
2155  Label did_not_overflow;
2156  Label overflow_with_error;
2157  assert_different_registers(backedge_count, Rtmp, branch_bcp);
2158  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2159
2160  AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2161  load_contents(limit, Rtmp);
2162  cmp(backedge_count, Rtmp);
2163  br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2164  delayed()->nop();
2165
2166  // When ProfileInterpreter is on, the backedge_count comes from the
2167  // methodDataOop, which value does not get reset on the call to
2168  // frequency_counter_overflow().  To avoid excessive calls to the overflow
2169  // routine while the method is being compiled, add a second test to make sure
2170  // the overflow function is called only once every overflow_frequency.
2171  if (ProfileInterpreter) {
2172    const int overflow_frequency = 1024;
2173    andcc(backedge_count, overflow_frequency-1, Rtmp);
2174    brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2175    delayed()->nop();
2176  }
2177
2178  // overflow in loop, pass branch bytecode
2179  set(6,Rtmp);
2180  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2181
2182  // Was an OSR adapter generated?
2183  // O0 = osr nmethod
2184  tst(O0);
2185  brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2186  delayed()->nop();
2187
2188  // Has the nmethod been invalidated already?
2189  ld(O0, nmethod::entry_bci_offset(), O2);
2190  cmp(O2, InvalidOSREntryBci);
2191  br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2192  delayed()->nop();
2193
2194  // migrate the interpreter frame off of the stack
2195
2196  mov(G2_thread, L7);
2197  // save nmethod
2198  mov(O0, L6);
2199  set_last_Java_frame(SP, noreg);
2200  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2201  reset_last_Java_frame();
2202  mov(L7, G2_thread);
2203
2204  // move OSR nmethod to I1
2205  mov(L6, I1);
2206
2207  // OSR buffer to I0
2208  mov(O0, I0);
2209
2210  // remove the interpreter frame
2211  restore(I5_savedSP, 0, SP);
2212
2213  // Jump to the osr code.
2214  ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2215  jmp(O2, G0);
2216  delayed()->nop();
2217
2218  bind(overflow_with_error);
2219
2220  bind(did_not_overflow);
2221}
2222
2223
2224
2225void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2226  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2227}
2228
2229
2230// local helper function for the verify_oop_or_return_address macro
2231static bool verify_return_address(methodOopDesc* m, int bci) {
2232#ifndef PRODUCT
2233  address pc = (address)(m->constMethod())
2234             + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2235  // assume it is a valid return address if it is inside m and is preceded by a jsr
2236  if (!m->contains(pc))                                          return false;
2237  address jsr_pc;
2238  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2239  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2240  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2241  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2242#endif // PRODUCT
2243  return false;
2244}
2245
2246
2247void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2248  if (!VerifyOops)  return;
2249  // the VM documentation for the astore[_wide] bytecode allows
2250  // the TOS to be not only an oop but also a return address
2251  Label test;
2252  Label skip;
2253  // See if it is an address (in the current method):
2254
2255  mov(reg, Rtmp);
2256  const int log2_bytecode_size_limit = 16;
2257  srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2258  br_notnull( Rtmp, false, pt, test );
2259  delayed()->nop();
2260
2261  // %%% should use call_VM_leaf here?
2262  save_frame_and_mov(0, Lmethod, O0, reg, O1);
2263  save_thread(L7_thread_cache);
2264  call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2265  delayed()->nop();
2266  restore_thread(L7_thread_cache);
2267  br_notnull( O0, false, pt, skip );
2268  delayed()->restore();
2269
2270  // Perform a more elaborate out-of-line call
2271  // Not an address; verify it:
2272  bind(test);
2273  verify_oop(reg);
2274  bind(skip);
2275}
2276
2277
2278void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2279  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2280}
2281#endif /* CC_INTERP */
2282
2283// Inline assembly for:
2284//
2285// if (thread is in interp_only_mode) {
2286//   InterpreterRuntime::post_method_entry();
2287// }
2288// if (DTraceMethodProbes) {
2289//   SharedRuntime::dtrace_method_entry(method, receiver);
2290// }
2291// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2292//   SharedRuntime::rc_trace_method_entry(method, receiver);
2293// }
2294
2295void InterpreterMacroAssembler::notify_method_entry() {
2296
2297  // C++ interpreter only uses this for native methods.
2298
2299  // Whenever JVMTI puts a thread in interp_only_mode, method
2300  // entry/exit events are sent for that thread to track stack
2301  // depth.  If it is possible to enter interp_only_mode we add
2302  // the code to check if the event should be sent.
2303  if (JvmtiExport::can_post_interpreter_events()) {
2304    Label L;
2305    Register temp_reg = O5;
2306    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2307    ld(interp_only, temp_reg);
2308    tst(temp_reg);
2309    br(zero, false, pt, L);
2310    delayed()->nop();
2311    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2312    bind(L);
2313  }
2314
2315  {
2316    Register temp_reg = O5;
2317    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2318    call_VM_leaf(noreg,
2319      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2320      G2_thread, Lmethod);
2321  }
2322
2323  // RedefineClasses() tracing support for obsolete method entry
2324  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2325    call_VM_leaf(noreg,
2326      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2327      G2_thread, Lmethod);
2328  }
2329}
2330
2331
2332// Inline assembly for:
2333//
2334// if (thread is in interp_only_mode) {
2335//   // save result
2336//   InterpreterRuntime::post_method_exit();
2337//   // restore result
2338// }
2339// if (DTraceMethodProbes) {
2340//   SharedRuntime::dtrace_method_exit(thread, method);
2341// }
2342//
2343// Native methods have their result stored in d_tmp and l_tmp
2344// Java methods have their result stored in the expression stack
2345
2346void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2347                                                   TosState state,
2348                                                   NotifyMethodExitMode mode) {
2349  // C++ interpreter only uses this for native methods.
2350
2351  // Whenever JVMTI puts a thread in interp_only_mode, method
2352  // entry/exit events are sent for that thread to track stack
2353  // depth.  If it is possible to enter interp_only_mode we add
2354  // the code to check if the event should be sent.
2355  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2356    Label L;
2357    Register temp_reg = O5;
2358    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2359    ld(interp_only, temp_reg);
2360    tst(temp_reg);
2361    br(zero, false, pt, L);
2362    delayed()->nop();
2363
2364    // Note: frame::interpreter_frame_result has a dependency on how the
2365    // method result is saved across the call to post_method_exit. For
2366    // native methods it assumes the result registers are saved to
2367    // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2368    // implementation will need to be updated too.
2369
2370    save_return_value(state, is_native_method);
2371    call_VM(noreg,
2372            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2373    restore_return_value(state, is_native_method);
2374    bind(L);
2375  }
2376
2377  {
2378    Register temp_reg = O5;
2379    // Dtrace notification
2380    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2381    save_return_value(state, is_native_method);
2382    call_VM_leaf(
2383      noreg,
2384      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2385      G2_thread, Lmethod);
2386    restore_return_value(state, is_native_method);
2387  }
2388}
2389
2390void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2391#ifdef CC_INTERP
2392  // result potentially in O0/O1: save it across calls
2393  stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2394#ifdef _LP64
2395  stx(O0, STATE(_native_lresult));
2396#else
2397  std(O0, STATE(_native_lresult));
2398#endif
2399#else // CC_INTERP
2400  if (is_native_call) {
2401    stf(FloatRegisterImpl::D, F0, d_tmp);
2402#ifdef _LP64
2403    stx(O0, l_tmp);
2404#else
2405    std(O0, l_tmp);
2406#endif
2407  } else {
2408    push(state);
2409  }
2410#endif // CC_INTERP
2411}
2412
2413void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2414#ifdef CC_INTERP
2415  ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2416#ifdef _LP64
2417  ldx(STATE(_native_lresult), O0);
2418#else
2419  ldd(STATE(_native_lresult), O0);
2420#endif
2421#else // CC_INTERP
2422  if (is_native_call) {
2423    ldf(FloatRegisterImpl::D, d_tmp, F0);
2424#ifdef _LP64
2425    ldx(l_tmp, O0);
2426#else
2427    ldd(l_tmp, O0);
2428#endif
2429  } else {
2430    pop(state);
2431  }
2432#endif // CC_INTERP
2433}
2434