interp_masm_sparc.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_interp_masm_sparc.cpp.incl"
27
28#ifndef CC_INTERP
29#ifndef FAST_DISPATCH
30#define FAST_DISPATCH 1
31#endif
32#undef FAST_DISPATCH
33
34// Implementation of InterpreterMacroAssembler
35
36// This file specializes the assember with interpreter-specific macros
37
38const Address InterpreterMacroAssembler::l_tmp( FP, 0,  (frame::interpreter_frame_l_scratch_fp_offset    * wordSize ) + STACK_BIAS);
39const Address InterpreterMacroAssembler::d_tmp( FP, 0,  (frame::interpreter_frame_d_scratch_fp_offset    * wordSize) + STACK_BIAS);
40
41#else // CC_INTERP
42#ifndef STATE
43#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
44#endif // STATE
45
46#endif // CC_INTERP
47
48void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
49  // Note: this algorithm is also used by C1's OSR entry sequence.
50  // Any changes should also be applied to CodeEmitter::emit_osr_entry().
51  assert_different_registers(args_size, locals_size);
52  // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
53  if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
54  subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
55  // Use br/mov combination because it works on both V8 and V9 and is
56  // faster.
57  Label skip_move;
58  br(Assembler::negative, true, Assembler::pt, skip_move);
59  delayed()->mov(G0, delta);
60  bind(skip_move);
61  round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
62  sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
63}
64
65#ifndef CC_INTERP
66
67// Dispatch code executed in the prolog of a bytecode which does not do it's
68// own dispatch. The dispatch address is computed and placed in IdispatchAddress
69void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
70  assert_not_delayed();
71#ifdef FAST_DISPATCH
72  // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
73  // they both use I2.
74  assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
75  ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
76  add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
77                                                        // add offset to correct dispatch table
78  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
79  ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
80#else
81  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
82  // dispatch table to use
83  Address tbl(G3_scratch, (address)Interpreter::dispatch_table(state));
84
85  sethi(tbl);
86  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);    // multiply by wordSize
87  add(tbl, tbl.base(), 0);
88  ld_ptr( G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
89#endif
90}
91
92
93// Dispatch code executed in the epilog of a bytecode which does not do it's
94// own dispatch. The dispatch address in IdispatchAddress is used for the
95// dispatch.
96void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
97  assert_not_delayed();
98  verify_FPU(1, state);
99  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
100  jmp( IdispatchAddress, 0 );
101  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
102  else                delayed()->nop();
103}
104
105
106void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
107  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
108  assert_not_delayed();
109  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
110  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
111}
112
113
114void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
115  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
116  assert_not_delayed();
117  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
118  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
119}
120
121
122void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
123  // load current bytecode
124  assert_not_delayed();
125  ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
126  dispatch_base(state, table);
127}
128
129
130void InterpreterMacroAssembler::call_VM_leaf_base(
131  Register java_thread,
132  address  entry_point,
133  int      number_of_arguments
134) {
135  if (!java_thread->is_valid())
136    java_thread = L7_thread_cache;
137  // super call
138  MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
139}
140
141
142void InterpreterMacroAssembler::call_VM_base(
143  Register        oop_result,
144  Register        java_thread,
145  Register        last_java_sp,
146  address         entry_point,
147  int             number_of_arguments,
148  bool            check_exception
149) {
150  if (!java_thread->is_valid())
151    java_thread = L7_thread_cache;
152  // See class ThreadInVMfromInterpreter, which assumes that the interpreter
153  // takes responsibility for setting its own thread-state on call-out.
154  // However, ThreadInVMfromInterpreter resets the state to "in_Java".
155
156  //save_bcp();                                  // save bcp
157  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
158  //restore_bcp();                               // restore bcp
159  //restore_locals();                            // restore locals pointer
160}
161
162
163void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
164  if (JvmtiExport::can_pop_frame()) {
165    Label L;
166
167    // Check the "pending popframe condition" flag in the current thread
168    Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
169    ld(popframe_condition_addr, scratch_reg);
170
171    // Initiate popframe handling only if it is not already being processed.  If the flag
172    // has the popframe_processing bit set, it means that this code is called *during* popframe
173    // handling - we don't want to reenter.
174    btst(JavaThread::popframe_pending_bit, scratch_reg);
175    br(zero, false, pt, L);
176    delayed()->nop();
177    btst(JavaThread::popframe_processing_bit, scratch_reg);
178    br(notZero, false, pt, L);
179    delayed()->nop();
180
181    // Call Interpreter::remove_activation_preserving_args_entry() to get the
182    // address of the same-named entrypoint in the generated interpreter code.
183    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
184
185    // Jump to Interpreter::_remove_activation_preserving_args_entry
186    jmpl(O0, G0, G0);
187    delayed()->nop();
188    bind(L);
189  }
190}
191
192
193void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
194  Register thr_state = G4_scratch;
195  ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
196         thr_state);
197  const Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
198  const Address oop_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_oop_offset()));
199  const Address val_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_value_offset()));
200  switch (state) {
201  case ltos: ld_long(val_addr, Otos_l);                   break;
202  case atos: ld_ptr(oop_addr, Otos_l);
203             st_ptr(G0, oop_addr);                        break;
204  case btos:                                           // fall through
205  case ctos:                                           // fall through
206  case stos:                                           // fall through
207  case itos: ld(val_addr, Otos_l1);                       break;
208  case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
209  case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
210  case vtos: /* nothing to do */                          break;
211  default  : ShouldNotReachHere();
212  }
213  // Clean up tos value in the jvmti thread state
214  or3(G0, ilgl, G3_scratch);
215  stw(G3_scratch, tos_addr);
216  st_long(G0, val_addr);
217  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
218}
219
220
221void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
222  if (JvmtiExport::can_force_early_return()) {
223    Label L;
224    Register thr_state = G3_scratch;
225    ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
226           thr_state);
227    tst(thr_state);
228    br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
229    delayed()->nop();
230
231    // Initiate earlyret handling only if it is not already being processed.
232    // If the flag has the earlyret_processing bit set, it means that this code
233    // is called *during* earlyret handling - we don't want to reenter.
234    ld(Address(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_state_offset())),
235       G4_scratch);
236    cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
237    br(Assembler::notEqual, false, pt, L);
238    delayed()->nop();
239
240    // Call Interpreter::remove_activation_early_entry() to get the address of the
241    // same-named entrypoint in the generated interpreter code
242    Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
243    ld(tos_addr, Otos_l1);
244    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
245
246    // Jump to Interpreter::_remove_activation_early_entry
247    jmpl(O0, G0, G0);
248    delayed()->nop();
249    bind(L);
250  }
251}
252
253
254void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
255  mov(arg_1, O0);
256  MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
257}
258#endif /* CC_INTERP */
259
260
261#ifndef CC_INTERP
262
263void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
264  assert_not_delayed();
265  dispatch_Lbyte_code(state, table);
266}
267
268
269void InterpreterMacroAssembler::dispatch_normal(TosState state) {
270  dispatch_base(state, Interpreter::normal_table(state));
271}
272
273
274void InterpreterMacroAssembler::dispatch_only(TosState state) {
275  dispatch_base(state, Interpreter::dispatch_table(state));
276}
277
278
279// common code to dispatch and dispatch_only
280// dispatch value in Lbyte_code and increment Lbcp
281
282void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
283  verify_FPU(1, state);
284  // %%%%% maybe implement +VerifyActivationFrameSize here
285  //verify_thread(); //too slow; we will just verify on method entry & exit
286  if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
287#ifdef FAST_DISPATCH
288  if (table == Interpreter::dispatch_table(state)) {
289    // use IdispatchTables
290    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
291                                                        // add offset to correct dispatch table
292    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
293    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
294  } else {
295#endif
296    // dispatch table to use
297    Address tbl(G3_scratch, (address)table);
298
299    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
300    load_address(tbl);                                  // compute addr of table
301    ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
302#ifdef FAST_DISPATCH
303  }
304#endif
305  jmp( G3_scratch, 0 );
306  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
307  else                delayed()->nop();
308}
309
310
311// Helpers for expression stack
312
313// Longs and doubles are Category 2 computational types in the
314// JVM specification (section 3.11.1) and take 2 expression stack or
315// local slots.
316// Aligning them on 32 bit with tagged stacks is hard because the code generated
317// for the dup* bytecodes depends on what types are already on the stack.
318// If the types are split into the two stack/local slots, that is much easier
319// (and we can use 0 for non-reference tags).
320
321// Known good alignment in _LP64 but unknown otherwise
322void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
323  assert_not_delayed();
324
325#ifdef _LP64
326  ldf(FloatRegisterImpl::D, r1, offset, d);
327#else
328  ldf(FloatRegisterImpl::S, r1, offset, d);
329  ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
330#endif
331}
332
333// Known good alignment in _LP64 but unknown otherwise
334void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
335  assert_not_delayed();
336
337#ifdef _LP64
338  stf(FloatRegisterImpl::D, d, r1, offset);
339  // store something more useful here
340  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
341#else
342  stf(FloatRegisterImpl::S, d, r1, offset);
343  stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
344#endif
345}
346
347
348// Known good alignment in _LP64 but unknown otherwise
349void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
350  assert_not_delayed();
351#ifdef _LP64
352  ldx(r1, offset, rd);
353#else
354  ld(r1, offset, rd);
355  ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
356#endif
357}
358
359// Known good alignment in _LP64 but unknown otherwise
360void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
361  assert_not_delayed();
362
363#ifdef _LP64
364  stx(l, r1, offset);
365  // store something more useful here
366  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
367#else
368  st(l, r1, offset);
369  st(l->successor(), r1, offset + Interpreter::stackElementSize());
370#endif
371}
372
373#ifdef ASSERT
374void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
375                                                 Register r,
376                                                 Register scratch) {
377  if (TaggedStackInterpreter) {
378    Label ok, long_ok;
379    ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
380    if (t == frame::TagCategory2) {
381      cmp(r, G0);
382      brx(Assembler::equal, false, Assembler::pt, long_ok);
383      delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
384      stop("stack long/double tag value bad");
385      bind(long_ok);
386      cmp(r, G0);
387    } else if (t == frame::TagValue) {
388      cmp(r, G0);
389    } else {
390      assert_different_registers(r, scratch);
391      mov(t, scratch);
392      cmp(r, scratch);
393    }
394    brx(Assembler::equal, false, Assembler::pt, ok);
395    delayed()->nop();
396    // Also compare if the stack value is zero, then the tag might
397    // not have been set coming from deopt.
398    ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
399    cmp(r, G0);
400    brx(Assembler::equal, false, Assembler::pt, ok);
401    delayed()->nop();
402    stop("Stack tag value is bad");
403    bind(ok);
404  }
405}
406#endif // ASSERT
407
408void InterpreterMacroAssembler::pop_i(Register r) {
409  assert_not_delayed();
410  // Uses destination register r for scratch
411  debug_only(verify_stack_tag(frame::TagValue, r));
412  ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
413  inc(Lesp, Interpreter::stackElementSize());
414  debug_only(verify_esp(Lesp));
415}
416
417void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
418  assert_not_delayed();
419  // Uses destination register r for scratch
420  debug_only(verify_stack_tag(frame::TagReference, r, scratch));
421  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
422  inc(Lesp, Interpreter::stackElementSize());
423  debug_only(verify_esp(Lesp));
424}
425
426void InterpreterMacroAssembler::pop_l(Register r) {
427  assert_not_delayed();
428  // Uses destination register r for scratch
429  debug_only(verify_stack_tag(frame::TagCategory2, r));
430  load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
431  inc(Lesp, 2*Interpreter::stackElementSize());
432  debug_only(verify_esp(Lesp));
433}
434
435
436void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
437  assert_not_delayed();
438  debug_only(verify_stack_tag(frame::TagValue, scratch));
439  ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
440  inc(Lesp, Interpreter::stackElementSize());
441  debug_only(verify_esp(Lesp));
442}
443
444
445void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
446  assert_not_delayed();
447  debug_only(verify_stack_tag(frame::TagCategory2, scratch));
448  load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
449  inc(Lesp, 2*Interpreter::stackElementSize());
450  debug_only(verify_esp(Lesp));
451}
452
453
454// (Note use register first, then decrement so dec can be done during store stall)
455void InterpreterMacroAssembler::tag_stack(Register r) {
456  if (TaggedStackInterpreter) {
457    st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
458  }
459}
460
461void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
462  if (TaggedStackInterpreter) {
463    assert (frame::TagValue == 0, "TagValue must be zero");
464    if (t == frame::TagValue) {
465      st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
466    } else if (t == frame::TagCategory2) {
467      st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
468      // Tag next slot down too
469      st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
470    } else {
471      assert_different_registers(r, O3);
472      mov(t, O3);
473      st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
474    }
475  }
476}
477
478void InterpreterMacroAssembler::push_i(Register r) {
479  assert_not_delayed();
480  debug_only(verify_esp(Lesp));
481  tag_stack(frame::TagValue, r);
482  st(  r,    Lesp, Interpreter::value_offset_in_bytes());
483  dec( Lesp, Interpreter::stackElementSize());
484}
485
486void InterpreterMacroAssembler::push_ptr(Register r) {
487  assert_not_delayed();
488  tag_stack(frame::TagReference, r);
489  st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
490  dec( Lesp, Interpreter::stackElementSize());
491}
492
493void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
494  assert_not_delayed();
495  tag_stack(tag);
496  st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
497  dec( Lesp, Interpreter::stackElementSize());
498}
499
500// remember: our convention for longs in SPARC is:
501// O0 (Otos_l1) has high-order part in first word,
502// O1 (Otos_l2) has low-order part in second word
503
504void InterpreterMacroAssembler::push_l(Register r) {
505  assert_not_delayed();
506  debug_only(verify_esp(Lesp));
507  tag_stack(frame::TagCategory2, r);
508  // Longs are in stored in memory-correct order, even if unaligned.
509  // and may be separated by stack tags.
510  int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
511  store_unaligned_long(r, Lesp, offset);
512  dec(Lesp, 2 * Interpreter::stackElementSize());
513}
514
515
516void InterpreterMacroAssembler::push_f(FloatRegister f) {
517  assert_not_delayed();
518  debug_only(verify_esp(Lesp));
519  tag_stack(frame::TagValue, Otos_i);
520  stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
521  dec(Lesp, Interpreter::stackElementSize());
522}
523
524
525void InterpreterMacroAssembler::push_d(FloatRegister d)   {
526  assert_not_delayed();
527  debug_only(verify_esp(Lesp));
528  tag_stack(frame::TagCategory2, Otos_i);
529  // Longs are in stored in memory-correct order, even if unaligned.
530  // and may be separated by stack tags.
531  int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
532  store_unaligned_double(d, Lesp, offset);
533  dec(Lesp, 2 * Interpreter::stackElementSize());
534}
535
536
537void InterpreterMacroAssembler::push(TosState state) {
538  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
539  switch (state) {
540    case atos: push_ptr();            break;
541    case btos: push_i();              break;
542    case ctos:
543    case stos: push_i();              break;
544    case itos: push_i();              break;
545    case ltos: push_l();              break;
546    case ftos: push_f();              break;
547    case dtos: push_d();              break;
548    case vtos: /* nothing to do */    break;
549    default  : ShouldNotReachHere();
550  }
551}
552
553
554void InterpreterMacroAssembler::pop(TosState state) {
555  switch (state) {
556    case atos: pop_ptr();            break;
557    case btos: pop_i();              break;
558    case ctos:
559    case stos: pop_i();              break;
560    case itos: pop_i();              break;
561    case ltos: pop_l();              break;
562    case ftos: pop_f();              break;
563    case dtos: pop_d();              break;
564    case vtos: /* nothing to do */   break;
565    default  : ShouldNotReachHere();
566  }
567  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
568}
569
570
571// Tagged stack helpers for swap and dup
572void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
573                                                 Register tag) {
574  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
575  if (TaggedStackInterpreter) {
576    ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
577  }
578}
579void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
580                                                  Register tag) {
581  st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
582  if (TaggedStackInterpreter) {
583    st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
584  }
585}
586
587
588void InterpreterMacroAssembler::load_receiver(Register param_count,
589                                              Register recv) {
590
591  sll(param_count, Interpreter::logStackElementSize(), param_count);
592  if (TaggedStackInterpreter) {
593    add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
594  }
595  ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
596}
597
598void InterpreterMacroAssembler::empty_expression_stack() {
599  // Reset Lesp.
600  sub( Lmonitors, wordSize, Lesp );
601
602  // Reset SP by subtracting more space from Lesp.
603  Label done;
604
605  const Address max_stack   (Lmethod, 0, in_bytes(methodOopDesc::max_stack_offset()));
606  const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
607
608  verify_oop(Lmethod);
609
610
611  assert( G4_scratch    != Gframe_size,
612          "Only you can prevent register aliasing!");
613
614  // A native does not need to do this, since its callee does not change SP.
615  ld(access_flags, Gframe_size);
616  btst(JVM_ACC_NATIVE, Gframe_size);
617  br(Assembler::notZero, false, Assembler::pt, done);
618  delayed()->nop();
619
620  //
621  // Compute max expression stack+register save area
622  //
623  lduh( max_stack, Gframe_size );
624  if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
625  add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
626
627  //
628  // now set up a stack frame with the size computed above
629  //
630  //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
631  sll( Gframe_size, LogBytesPerWord, Gframe_size );
632  sub( Lesp, Gframe_size, Gframe_size );
633  and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
634  debug_only(verify_sp(Gframe_size, G4_scratch));
635#ifdef _LP64
636  sub(Gframe_size, STACK_BIAS, Gframe_size );
637#endif
638  mov(Gframe_size, SP);
639
640  bind(done);
641}
642
643
644#ifdef ASSERT
645void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
646  Label Bad, OK;
647
648  // Saved SP must be aligned.
649#ifdef _LP64
650  btst(2*BytesPerWord-1, Rsp);
651#else
652  btst(LongAlignmentMask, Rsp);
653#endif
654  br(Assembler::notZero, false, Assembler::pn, Bad);
655  delayed()->nop();
656
657  // Saved SP, plus register window size, must not be above FP.
658  add(Rsp, frame::register_save_words * wordSize, Rtemp);
659#ifdef _LP64
660  sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
661#endif
662  cmp(Rtemp, FP);
663  brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
664  delayed()->nop();
665
666  // Saved SP must not be ridiculously below current SP.
667  size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
668  set(maxstack, Rtemp);
669  sub(SP, Rtemp, Rtemp);
670#ifdef _LP64
671  add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
672#endif
673  cmp(Rsp, Rtemp);
674  brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
675  delayed()->nop();
676
677  br(Assembler::always, false, Assembler::pn, OK);
678  delayed()->nop();
679
680  bind(Bad);
681  stop("on return to interpreted call, restored SP is corrupted");
682
683  bind(OK);
684}
685
686
687void InterpreterMacroAssembler::verify_esp(Register Resp) {
688  // about to read or write Resp[0]
689  // make sure it is not in the monitors or the register save area
690  Label OK1, OK2;
691
692  cmp(Resp, Lmonitors);
693  brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
694  delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
695  stop("too many pops:  Lesp points into monitor area");
696  bind(OK1);
697#ifdef _LP64
698  sub(Resp, STACK_BIAS, Resp);
699#endif
700  cmp(Resp, SP);
701  brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
702  delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
703  stop("too many pushes:  Lesp points into register window");
704  bind(OK2);
705}
706#endif // ASSERT
707
708// Load compiled (i2c) or interpreter entry when calling from interpreted and
709// do the call. Centralized so that all interpreter calls will do the same actions.
710// If jvmti single stepping is on for a thread we must not call compiled code.
711void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
712
713  // Assume we want to go compiled if available
714
715  ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
716
717  if (JvmtiExport::can_post_interpreter_events()) {
718    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
719    // compiled code in threads for which the event is enabled.  Check here for
720    // interp_only_mode if these events CAN be enabled.
721    verify_thread();
722    Label skip_compiled_code;
723
724    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
725
726    ld(interp_only, scratch);
727    tst(scratch);
728    br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
729    delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
730    bind(skip_compiled_code);
731  }
732
733  // the i2c_adapters need methodOop in G5_method (right? %%%)
734  // do the call
735#ifdef ASSERT
736  {
737    Label ok;
738    br_notnull(target, false, Assembler::pt, ok);
739    delayed()->nop();
740    stop("null entry point");
741    bind(ok);
742  }
743#endif // ASSERT
744
745  // Adjust Rret first so Llast_SP can be same as Rret
746  add(Rret, -frame::pc_return_offset, O7);
747  add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
748  // Record SP so we can remove any stack space allocated by adapter transition
749  jmp(target, 0);
750  delayed()->mov(SP, Llast_SP);
751}
752
753void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
754  assert_not_delayed();
755
756  Label not_taken;
757  if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
758  else             br (cc, false, Assembler::pn, not_taken);
759  delayed()->nop();
760
761  TemplateTable::branch(false,false);
762
763  bind(not_taken);
764
765  profile_not_taken_branch(G3_scratch);
766}
767
768
769void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
770                                  int         bcp_offset,
771                                  Register    Rtmp,
772                                  Register    Rdst,
773                                  signedOrNot is_signed,
774                                  setCCOrNot  should_set_CC ) {
775  assert(Rtmp != Rdst, "need separate temp register");
776  assert_not_delayed();
777  switch (is_signed) {
778   default: ShouldNotReachHere();
779
780   case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
781   case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
782  }
783  ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
784  sll( Rdst, BitsPerByte, Rdst);
785  switch (should_set_CC ) {
786   default: ShouldNotReachHere();
787
788   case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
789   case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
790  }
791}
792
793
794void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
795                                  int        bcp_offset,
796                                  Register   Rtmp,
797                                  Register   Rdst,
798                                  setCCOrNot should_set_CC ) {
799  assert(Rtmp != Rdst, "need separate temp register");
800  assert_not_delayed();
801  add( Lbcp, bcp_offset, Rtmp);
802  andcc( Rtmp, 3, G0);
803  Label aligned;
804  switch (should_set_CC ) {
805   default: ShouldNotReachHere();
806
807   case      set_CC: break;
808   case dont_set_CC: break;
809  }
810
811  br(Assembler::zero, true, Assembler::pn, aligned);
812#ifdef _LP64
813  delayed()->ldsw(Rtmp, 0, Rdst);
814#else
815  delayed()->ld(Rtmp, 0, Rdst);
816#endif
817
818  ldub(Lbcp, bcp_offset + 3, Rdst);
819  ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
820  ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
821#ifdef _LP64
822  ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
823#else
824  // Unsigned load is faster than signed on some implementations
825  ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
826#endif
827  or3(Rtmp, Rdst, Rdst );
828
829  bind(aligned);
830  if (should_set_CC == set_CC) tst(Rdst);
831}
832
833
834void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
835  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
836  assert_different_registers(cache, tmp);
837  assert_not_delayed();
838  get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
839              // convert from field index to ConstantPoolCacheEntry index
840              // and from word index to byte offset
841  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
842  add(LcpoolCache, tmp, cache);
843}
844
845
846void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
847  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
848  assert_different_registers(cache, tmp);
849  assert_not_delayed();
850  get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
851              // convert from field index to ConstantPoolCacheEntry index
852              // and from word index to byte offset
853  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
854              // skip past the header
855  add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
856              // construct pointer to cache entry
857  add(LcpoolCache, tmp, cache);
858}
859
860
861// Generate a subtype check: branch to ok_is_subtype if sub_klass is
862// a subtype of super_klass.  Blows registers Rsub_klass, tmp1, tmp2.
863void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
864                                                  Register Rsuper_klass,
865                                                  Register Rtmp1,
866                                                  Register Rtmp2,
867                                                  Register Rtmp3,
868                                                  Label &ok_is_subtype ) {
869  Label not_subtype, loop;
870
871  // Profile the not-null value's klass.
872  profile_typecheck(Rsub_klass, Rtmp1);
873
874  // Load the super-klass's check offset into Rtmp1
875  ld( Rsuper_klass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1 );
876  // Load from the sub-klass's super-class display list, or a 1-word cache of
877  // the secondary superclass list, or a failing value with a sentinel offset
878  // if the super-klass is an interface or exceptionally deep in the Java
879  // hierarchy and we have to scan the secondary superclass list the hard way.
880  ld_ptr( Rsub_klass, Rtmp1, Rtmp2 );
881  // See if we get an immediate positive hit
882  cmp( Rtmp2, Rsuper_klass );
883  brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
884  // In the delay slot, check for immediate negative hit
885  delayed()->cmp( Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
886  br( Assembler::notEqual, false, Assembler::pt, not_subtype );
887  // In the delay slot, check for self
888  delayed()->cmp( Rsub_klass, Rsuper_klass );
889  brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
890
891  // Now do a linear scan of the secondary super-klass chain.
892  delayed()->ld_ptr( Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), Rtmp2 );
893
894  // Rtmp2 holds the objArrayOop of secondary supers.
895  ld( Rtmp2, arrayOopDesc::length_offset_in_bytes(), Rtmp1 );// Load the array length
896  // Check for empty secondary super list
897  tst(Rtmp1);
898
899  // Top of search loop
900  bind( loop );
901  br( Assembler::equal, false, Assembler::pn, not_subtype );
902  delayed()->nop();
903  // load next super to check
904  ld_ptr( Rtmp2, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rtmp3 );
905
906  // Bump array pointer forward one oop
907  add( Rtmp2, wordSize, Rtmp2 );
908  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
909  cmp( Rtmp3, Rsuper_klass );
910  // A miss means we are NOT a subtype and need to keep looping
911  brx( Assembler::notEqual, false, Assembler::pt, loop );
912  delayed()->deccc( Rtmp1 );    // dec trip counter in delay slot
913  // Falling out the bottom means we found a hit; we ARE a subtype
914  br( Assembler::always, false, Assembler::pt, ok_is_subtype );
915  // Update the cache
916  delayed()->st_ptr( Rsuper_klass, Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
917
918  bind(not_subtype);
919  profile_typecheck_failed(Rtmp1);
920}
921
922// Separate these two to allow for delay slot in middle
923// These are used to do a test and full jump to exception-throwing code.
924
925// %%%%% Could possibly reoptimize this by testing to see if could use
926// a single conditional branch (i.e. if span is small enough.
927// If you go that route, than get rid of the split and give up
928// on the delay-slot hack.
929
930void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
931                                                    Label&    ok ) {
932  assert_not_delayed();
933  br(ok_condition, true, pt, ok);
934  // DELAY SLOT
935}
936
937void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
938                                                    Label&    ok ) {
939  assert_not_delayed();
940  bp( ok_condition, true, Assembler::xcc, pt, ok);
941  // DELAY SLOT
942}
943
944void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
945                                                  Label&    ok ) {
946  assert_not_delayed();
947  brx(ok_condition, true, pt, ok);
948  // DELAY SLOT
949}
950
951void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
952                                                Register Rscratch,
953                                                Label&   ok ) {
954  assert(throw_entry_point != NULL, "entry point must be generated by now");
955  Address dest(Rscratch, throw_entry_point);
956  jump_to(dest);
957  delayed()->nop();
958  bind(ok);
959}
960
961
962// And if you cannot use the delay slot, here is a shorthand:
963
964void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
965                                                  address   throw_entry_point,
966                                                  Register  Rscratch ) {
967  Label ok;
968  if (ok_condition != never) {
969    throw_if_not_1_icc( ok_condition, ok);
970    delayed()->nop();
971  }
972  throw_if_not_2( throw_entry_point, Rscratch, ok);
973}
974void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
975                                                  address   throw_entry_point,
976                                                  Register  Rscratch ) {
977  Label ok;
978  if (ok_condition != never) {
979    throw_if_not_1_xcc( ok_condition, ok);
980    delayed()->nop();
981  }
982  throw_if_not_2( throw_entry_point, Rscratch, ok);
983}
984void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
985                                                address   throw_entry_point,
986                                                Register  Rscratch ) {
987  Label ok;
988  if (ok_condition != never) {
989    throw_if_not_1_x( ok_condition, ok);
990    delayed()->nop();
991  }
992  throw_if_not_2( throw_entry_point, Rscratch, ok);
993}
994
995// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
996// Note: res is still shy of address by array offset into object.
997
998void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
999  assert_not_delayed();
1000
1001  verify_oop(array);
1002#ifdef _LP64
1003  // sign extend since tos (index) can be a 32bit value
1004  sra(index, G0, index);
1005#endif // _LP64
1006
1007  // check array
1008  Label ptr_ok;
1009  tst(array);
1010  throw_if_not_1_x( notZero, ptr_ok );
1011  delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
1012  throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
1013
1014  Label index_ok;
1015  cmp(index, tmp);
1016  throw_if_not_1_icc( lessUnsigned, index_ok );
1017  if (index_shift > 0)  delayed()->sll(index, index_shift, index);
1018  else                  delayed()->add(array, index, res); // addr - const offset in index
1019  // convention: move aberrant index into G3_scratch for exception message
1020  mov(index, G3_scratch);
1021  throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
1022
1023  // add offset if didn't do it in delay slot
1024  if (index_shift > 0)   add(array, index, res); // addr - const offset in index
1025}
1026
1027
1028void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
1029  assert_not_delayed();
1030
1031  // pop array
1032  pop_ptr(array);
1033
1034  // check array
1035  index_check_without_pop(array, index, index_shift, tmp, res);
1036}
1037
1038
1039void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
1040  ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
1041}
1042
1043
1044void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
1045  get_constant_pool(Rdst);
1046  ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
1047}
1048
1049
1050void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
1051  get_constant_pool(Rcpool);
1052  ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
1053}
1054
1055
1056// unlock if synchronized method
1057//
1058// Unlock the receiver if this is a synchronized method.
1059// Unlock any Java monitors from syncronized blocks.
1060//
1061// If there are locked Java monitors
1062//    If throw_monitor_exception
1063//       throws IllegalMonitorStateException
1064//    Else if install_monitor_exception
1065//       installs IllegalMonitorStateException
1066//    Else
1067//       no error processing
1068void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
1069                                                              bool throw_monitor_exception,
1070                                                              bool install_monitor_exception) {
1071  Label unlocked, unlock, no_unlock;
1072
1073  // get the value of _do_not_unlock_if_synchronized into G1_scratch
1074  const Address do_not_unlock_if_synchronized(G2_thread, 0,
1075    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1076  ldbool(do_not_unlock_if_synchronized, G1_scratch);
1077  stbool(G0, do_not_unlock_if_synchronized); // reset the flag
1078
1079  // check if synchronized method
1080  const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
1081  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1082  push(state); // save tos
1083  ld(access_flags, G3_scratch);
1084  btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1085  br( zero, false, pt, unlocked);
1086  delayed()->nop();
1087
1088  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1089  // is set.
1090  tstbool(G1_scratch);
1091  br(Assembler::notZero, false, pn, no_unlock);
1092  delayed()->nop();
1093
1094  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1095  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1096
1097  //Intel: if (throw_monitor_exception) ... else ...
1098  // Entry already unlocked, need to throw exception
1099  //...
1100
1101  // pass top-most monitor elem
1102  add( top_most_monitor(), O1 );
1103
1104  ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1105  br_notnull(G3_scratch, false, pt, unlock);
1106  delayed()->nop();
1107
1108  if (throw_monitor_exception) {
1109    // Entry already unlocked need to throw an exception
1110    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1111    should_not_reach_here();
1112  } else {
1113    // Monitor already unlocked during a stack unroll.
1114    // If requested, install an illegal_monitor_state_exception.
1115    // Continue with stack unrolling.
1116    if (install_monitor_exception) {
1117      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1118    }
1119    ba(false, unlocked);
1120    delayed()->nop();
1121  }
1122
1123  bind(unlock);
1124
1125  unlock_object(O1);
1126
1127  bind(unlocked);
1128
1129  // I0, I1: Might contain return value
1130
1131  // Check that all monitors are unlocked
1132  { Label loop, exception, entry, restart;
1133
1134    Register Rmptr   = O0;
1135    Register Rtemp   = O1;
1136    Register Rlimit  = Lmonitors;
1137    const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1138    assert( (delta & LongAlignmentMask) == 0,
1139            "sizeof BasicObjectLock must be even number of doublewords");
1140
1141    #ifdef ASSERT
1142    add(top_most_monitor(), Rmptr, delta);
1143    { Label L;
1144      // ensure that Rmptr starts out above (or at) Rlimit
1145      cmp(Rmptr, Rlimit);
1146      brx(Assembler::greaterEqualUnsigned, false, pn, L);
1147      delayed()->nop();
1148      stop("monitor stack has negative size");
1149      bind(L);
1150    }
1151    #endif
1152    bind(restart);
1153    ba(false, entry);
1154    delayed()->
1155    add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1156
1157    // Entry is still locked, need to throw exception
1158    bind(exception);
1159    if (throw_monitor_exception) {
1160      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1161      should_not_reach_here();
1162    } else {
1163      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1164      // Unlock does not block, so don't have to worry about the frame
1165      unlock_object(Rmptr);
1166      if (install_monitor_exception) {
1167        MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1168      }
1169      ba(false, restart);
1170      delayed()->nop();
1171    }
1172
1173    bind(loop);
1174    cmp(Rtemp, G0);                             // check if current entry is used
1175    brx(Assembler::notEqual, false, pn, exception);
1176    delayed()->
1177    dec(Rmptr, delta);                          // otherwise advance to next entry
1178    #ifdef ASSERT
1179    { Label L;
1180      // ensure that Rmptr has not somehow stepped below Rlimit
1181      cmp(Rmptr, Rlimit);
1182      brx(Assembler::greaterEqualUnsigned, false, pn, L);
1183      delayed()->nop();
1184      stop("ran off the end of the monitor stack");
1185      bind(L);
1186    }
1187    #endif
1188    bind(entry);
1189    cmp(Rmptr, Rlimit);                         // check if bottom reached
1190    brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1191    delayed()->
1192    ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1193  }
1194
1195  bind(no_unlock);
1196  pop(state);
1197  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1198}
1199
1200
1201// remove activation
1202//
1203// Unlock the receiver if this is a synchronized method.
1204// Unlock any Java monitors from syncronized blocks.
1205// Remove the activation from the stack.
1206//
1207// If there are locked Java monitors
1208//    If throw_monitor_exception
1209//       throws IllegalMonitorStateException
1210//    Else if install_monitor_exception
1211//       installs IllegalMonitorStateException
1212//    Else
1213//       no error processing
1214void InterpreterMacroAssembler::remove_activation(TosState state,
1215                                                  bool throw_monitor_exception,
1216                                                  bool install_monitor_exception) {
1217
1218  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1219
1220  // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1221  notify_method_exit(false, state, NotifyJVMTI);
1222
1223  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1224  verify_oop(Lmethod);
1225  verify_thread();
1226
1227  // return tos
1228  assert(Otos_l1 == Otos_i, "adjust code below");
1229  switch (state) {
1230#ifdef _LP64
1231  case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1232#else
1233  case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1234#endif
1235  case btos:                                      // fall through
1236  case ctos:
1237  case stos:                                      // fall through
1238  case atos:                                      // fall through
1239  case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1240  case ftos:                                      // fall through
1241  case dtos:                                      // fall through
1242  case vtos: /* nothing to do */                     break;
1243  default  : ShouldNotReachHere();
1244  }
1245
1246#if defined(COMPILER2) && !defined(_LP64)
1247  if (state == ltos) {
1248    // C2 expects long results in G1 we can't tell if we're returning to interpreted
1249    // or compiled so just be safe use G1 and O0/O1
1250
1251    // Shift bits into high (msb) of G1
1252    sllx(Otos_l1->after_save(), 32, G1);
1253    // Zero extend low bits
1254    srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1255    or3 (Otos_l2->after_save(), G1, G1);
1256  }
1257#endif /* COMPILER2 */
1258
1259}
1260#endif /* CC_INTERP */
1261
1262
1263// Lock object
1264//
1265// Argument - lock_reg points to the BasicObjectLock to be used for locking,
1266//            it must be initialized with the object to lock
1267void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1268  if (UseHeavyMonitors) {
1269    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1270  }
1271  else {
1272    Register obj_reg = Object;
1273    Register mark_reg = G4_scratch;
1274    Register temp_reg = G1_scratch;
1275    Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
1276    Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
1277    Label    done;
1278
1279    Label slow_case;
1280
1281    assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1282
1283    // load markOop from object into mark_reg
1284    ld_ptr(mark_addr, mark_reg);
1285
1286    if (UseBiasedLocking) {
1287      biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1288    }
1289
1290    // get the address of basicLock on stack that will be stored in the object
1291    // we need a temporary register here as we do not want to clobber lock_reg
1292    // (cas clobbers the destination register)
1293    mov(lock_reg, temp_reg);
1294    // set mark reg to be (markOop of object | UNLOCK_VALUE)
1295    or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1296    // initialize the box  (Must happen before we update the object mark!)
1297    st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1298    // compare and exchange object_addr, markOop | 1, stack address of basicLock
1299    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1300    casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1301      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1302
1303    // if the compare and exchange succeeded we are done (we saw an unlocked object)
1304    cmp(mark_reg, temp_reg);
1305    brx(Assembler::equal, true, Assembler::pt, done);
1306    delayed()->nop();
1307
1308    // We did not see an unlocked object so try the fast recursive case
1309
1310    // Check if owner is self by comparing the value in the markOop of object
1311    // with the stack pointer
1312    sub(temp_reg, SP, temp_reg);
1313#ifdef _LP64
1314    sub(temp_reg, STACK_BIAS, temp_reg);
1315#endif
1316    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1317
1318    // Composite "andcc" test:
1319    // (a) %sp -vs- markword proximity check, and,
1320    // (b) verify mark word LSBs == 0 (Stack-locked).
1321    //
1322    // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1323    // Note that the page size used for %sp proximity testing is arbitrary and is
1324    // unrelated to the actual MMU page size.  We use a 'logical' page size of
1325    // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1326    // field of the andcc instruction.
1327    andcc (temp_reg, 0xFFFFF003, G0) ;
1328
1329    // if condition is true we are done and hence we can store 0 in the displaced
1330    // header indicating it is a recursive lock and be done
1331    brx(Assembler::zero, true, Assembler::pt, done);
1332    delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1333
1334    // none of the above fast optimizations worked so we have to get into the
1335    // slow case of monitor enter
1336    bind(slow_case);
1337    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1338
1339    bind(done);
1340  }
1341}
1342
1343// Unlocks an object. Used in monitorexit bytecode and remove_activation.
1344//
1345// Argument - lock_reg points to the BasicObjectLock for lock
1346// Throw IllegalMonitorException if object is not locked by current thread
1347void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1348  if (UseHeavyMonitors) {
1349    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1350  } else {
1351    Register obj_reg = G3_scratch;
1352    Register mark_reg = G4_scratch;
1353    Register displaced_header_reg = G1_scratch;
1354    Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
1355    Address  lockobj_addr = Address(lock_reg, 0, BasicObjectLock::obj_offset_in_bytes());
1356    Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
1357    Label    done;
1358
1359    if (UseBiasedLocking) {
1360      // load the object out of the BasicObjectLock
1361      ld_ptr(lockobj_addr, obj_reg);
1362      biased_locking_exit(mark_addr, mark_reg, done, true);
1363      st_ptr(G0, lockobj_addr);  // free entry
1364    }
1365
1366    // Test first if we are in the fast recursive case
1367    ld_ptr(lock_addr, displaced_header_reg, BasicLock::displaced_header_offset_in_bytes());
1368    br_null(displaced_header_reg, true, Assembler::pn, done);
1369    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1370
1371    // See if it is still a light weight lock, if so we just unlock
1372    // the object and we are done
1373
1374    if (!UseBiasedLocking) {
1375      // load the object out of the BasicObjectLock
1376      ld_ptr(lockobj_addr, obj_reg);
1377    }
1378
1379    // we have the displaced header in displaced_header_reg
1380    // we expect to see the stack address of the basicLock in case the
1381    // lock is still a light weight lock (lock_reg)
1382    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1383    casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1384      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1385    cmp(lock_reg, displaced_header_reg);
1386    brx(Assembler::equal, true, Assembler::pn, done);
1387    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1388
1389    // The lock has been converted into a heavy lock and hence
1390    // we need to get into the slow case
1391
1392    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1393
1394    bind(done);
1395  }
1396}
1397
1398#ifndef CC_INTERP
1399
1400// Get the method data pointer from the methodOop and set the
1401// specified register to its value.
1402
1403void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1404  assert(ProfileInterpreter, "must be profiling interpreter");
1405  Label get_continue;
1406
1407  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1408  test_method_data_pointer(get_continue);
1409  add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1410  if (Roff != noreg)
1411    // Roff contains a method data index ("mdi").  It defaults to zero.
1412    add(ImethodDataPtr, Roff, ImethodDataPtr);
1413  bind(get_continue);
1414}
1415
1416// Set the method data pointer for the current bcp.
1417
1418void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1419  assert(ProfileInterpreter, "must be profiling interpreter");
1420  Label zero_continue;
1421
1422  // Test MDO to avoid the call if it is NULL.
1423  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1424  test_method_data_pointer(zero_continue);
1425  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1426  set_method_data_pointer_offset(O0);
1427  bind(zero_continue);
1428}
1429
1430// Test ImethodDataPtr.  If it is null, continue at the specified label
1431
1432void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1433  assert(ProfileInterpreter, "must be profiling interpreter");
1434#ifdef _LP64
1435  bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1436#else
1437  tst(ImethodDataPtr);
1438  br(Assembler::zero, false, Assembler::pn, zero_continue);
1439#endif
1440  delayed()->nop();
1441}
1442
1443void InterpreterMacroAssembler::verify_method_data_pointer() {
1444  assert(ProfileInterpreter, "must be profiling interpreter");
1445#ifdef ASSERT
1446  Label verify_continue;
1447  test_method_data_pointer(verify_continue);
1448
1449  // If the mdp is valid, it will point to a DataLayout header which is
1450  // consistent with the bcp.  The converse is highly probable also.
1451  lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1452  ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::const_offset())), O5);
1453  add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1454  add(G3_scratch, O5, G3_scratch);
1455  cmp(Lbcp, G3_scratch);
1456  brx(Assembler::equal, false, Assembler::pt, verify_continue);
1457
1458  Register temp_reg = O5;
1459  delayed()->mov(ImethodDataPtr, temp_reg);
1460  // %%% should use call_VM_leaf here?
1461  //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1462  save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1463  Address d_save(FP, 0, -sizeof(jdouble) + STACK_BIAS);
1464  stf(FloatRegisterImpl::D, Ftos_d, d_save);
1465  mov(temp_reg->after_save(), O2);
1466  save_thread(L7_thread_cache);
1467  call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1468  delayed()->nop();
1469  restore_thread(L7_thread_cache);
1470  ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1471  restore();
1472  bind(verify_continue);
1473#endif // ASSERT
1474}
1475
1476void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1477                                                                Register cur_bcp,
1478                                                                Register Rtmp,
1479                                                                Label &profile_continue) {
1480  assert(ProfileInterpreter, "must be profiling interpreter");
1481  // Control will flow to "profile_continue" if the counter is less than the
1482  // limit or if we call profile_method()
1483
1484  Label done;
1485
1486  // if no method data exists, and the counter is high enough, make one
1487#ifdef _LP64
1488  bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1489#else
1490  tst(ImethodDataPtr);
1491  br(Assembler::notZero, false, Assembler::pn, done);
1492#endif
1493
1494  // Test to see if we should create a method data oop
1495  Address profile_limit(Rtmp, (address)&InvocationCounter::InterpreterProfileLimit);
1496#ifdef _LP64
1497  delayed()->nop();
1498  sethi(profile_limit);
1499#else
1500  delayed()->sethi(profile_limit);
1501#endif
1502  ld(profile_limit, Rtmp);
1503  cmp(invocation_count, Rtmp);
1504  br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1505  delayed()->nop();
1506
1507  // Build it now.
1508  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1509  set_method_data_pointer_offset(O0);
1510  ba(false, profile_continue);
1511  delayed()->nop();
1512  bind(done);
1513}
1514
1515// Store a value at some constant offset from the method data pointer.
1516
1517void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1518  assert(ProfileInterpreter, "must be profiling interpreter");
1519  st_ptr(value, ImethodDataPtr, constant);
1520}
1521
1522void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1523                                                      Register bumped_count,
1524                                                      bool decrement) {
1525  assert(ProfileInterpreter, "must be profiling interpreter");
1526
1527  // Load the counter.
1528  ld_ptr(counter, bumped_count);
1529
1530  if (decrement) {
1531    // Decrement the register.  Set condition codes.
1532    subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1533
1534    // If the decrement causes the counter to overflow, stay negative
1535    Label L;
1536    brx(Assembler::negative, true, Assembler::pn, L);
1537
1538    // Store the decremented counter, if it is still negative.
1539    delayed()->st_ptr(bumped_count, counter);
1540    bind(L);
1541  } else {
1542    // Increment the register.  Set carry flag.
1543    addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1544
1545    // If the increment causes the counter to overflow, pull back by 1.
1546    assert(DataLayout::counter_increment == 1, "subc works");
1547    subc(bumped_count, G0, bumped_count);
1548
1549    // Store the incremented counter.
1550    st_ptr(bumped_count, counter);
1551  }
1552}
1553
1554// Increment the value at some constant offset from the method data pointer.
1555
1556void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1557                                                      Register bumped_count,
1558                                                      bool decrement) {
1559  // Locate the counter at a fixed offset from the mdp:
1560  Address counter(ImethodDataPtr, 0, constant);
1561  increment_mdp_data_at(counter, bumped_count, decrement);
1562}
1563
1564// Increment the value at some non-fixed (reg + constant) offset from
1565// the method data pointer.
1566
1567void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1568                                                      int constant,
1569                                                      Register bumped_count,
1570                                                      Register scratch2,
1571                                                      bool decrement) {
1572  // Add the constant to reg to get the offset.
1573  add(ImethodDataPtr, reg, scratch2);
1574  Address counter(scratch2, 0, constant);
1575  increment_mdp_data_at(counter, bumped_count, decrement);
1576}
1577
1578// Set a flag value at the current method data pointer position.
1579// Updates a single byte of the header, to avoid races with other header bits.
1580
1581void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1582                                                Register scratch) {
1583  assert(ProfileInterpreter, "must be profiling interpreter");
1584  // Load the data header
1585  ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1586
1587  // Set the flag
1588  or3(scratch, flag_constant, scratch);
1589
1590  // Store the modified header.
1591  stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1592}
1593
1594// Test the location at some offset from the method data pointer.
1595// If it is not equal to value, branch to the not_equal_continue Label.
1596// Set condition codes to match the nullness of the loaded value.
1597
1598void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1599                                                 Register value,
1600                                                 Label& not_equal_continue,
1601                                                 Register scratch) {
1602  assert(ProfileInterpreter, "must be profiling interpreter");
1603  ld_ptr(ImethodDataPtr, offset, scratch);
1604  cmp(value, scratch);
1605  brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1606  delayed()->tst(scratch);
1607}
1608
1609// Update the method data pointer by the displacement located at some fixed
1610// offset from the method data pointer.
1611
1612void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1613                                                     Register scratch) {
1614  assert(ProfileInterpreter, "must be profiling interpreter");
1615  ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1616  add(ImethodDataPtr, scratch, ImethodDataPtr);
1617}
1618
1619// Update the method data pointer by the displacement located at the
1620// offset (reg + offset_of_disp).
1621
1622void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1623                                                     int offset_of_disp,
1624                                                     Register scratch) {
1625  assert(ProfileInterpreter, "must be profiling interpreter");
1626  add(reg, offset_of_disp, scratch);
1627  ld_ptr(ImethodDataPtr, scratch, scratch);
1628  add(ImethodDataPtr, scratch, ImethodDataPtr);
1629}
1630
1631// Update the method data pointer by a simple constant displacement.
1632
1633void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1634  assert(ProfileInterpreter, "must be profiling interpreter");
1635  add(ImethodDataPtr, constant, ImethodDataPtr);
1636}
1637
1638// Update the method data pointer for a _ret bytecode whose target
1639// was not among our cached targets.
1640
1641void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1642                                                   Register return_bci) {
1643  assert(ProfileInterpreter, "must be profiling interpreter");
1644  push(state);
1645  st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1646  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1647  ld_ptr(l_tmp, return_bci);
1648  pop(state);
1649}
1650
1651// Count a taken branch in the bytecodes.
1652
1653void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1654  if (ProfileInterpreter) {
1655    Label profile_continue;
1656
1657    // If no method data exists, go to profile_continue.
1658    test_method_data_pointer(profile_continue);
1659
1660    // We are taking a branch.  Increment the taken count.
1661    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1662
1663    // The method data pointer needs to be updated to reflect the new target.
1664    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1665    bind (profile_continue);
1666  }
1667}
1668
1669
1670// Count a not-taken branch in the bytecodes.
1671
1672void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1673  if (ProfileInterpreter) {
1674    Label profile_continue;
1675
1676    // If no method data exists, go to profile_continue.
1677    test_method_data_pointer(profile_continue);
1678
1679    // We are taking a branch.  Increment the not taken count.
1680    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1681
1682    // The method data pointer needs to be updated to correspond to the
1683    // next bytecode.
1684    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1685    bind (profile_continue);
1686  }
1687}
1688
1689
1690// Count a non-virtual call in the bytecodes.
1691
1692void InterpreterMacroAssembler::profile_call(Register scratch) {
1693  if (ProfileInterpreter) {
1694    Label profile_continue;
1695
1696    // If no method data exists, go to profile_continue.
1697    test_method_data_pointer(profile_continue);
1698
1699    // We are making a call.  Increment the count.
1700    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1701
1702    // The method data pointer needs to be updated to reflect the new target.
1703    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1704    bind (profile_continue);
1705  }
1706}
1707
1708
1709// Count a final call in the bytecodes.
1710
1711void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1712  if (ProfileInterpreter) {
1713    Label profile_continue;
1714
1715    // If no method data exists, go to profile_continue.
1716    test_method_data_pointer(profile_continue);
1717
1718    // We are making a call.  Increment the count.
1719    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1720
1721    // The method data pointer needs to be updated to reflect the new target.
1722    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1723    bind (profile_continue);
1724  }
1725}
1726
1727
1728// Count a virtual call in the bytecodes.
1729
1730void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1731                                                     Register scratch) {
1732  if (ProfileInterpreter) {
1733    Label profile_continue;
1734
1735    // If no method data exists, go to profile_continue.
1736    test_method_data_pointer(profile_continue);
1737
1738    // We are making a call.  Increment the count.
1739    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1740
1741    // Record the receiver type.
1742    record_klass_in_profile(receiver, scratch);
1743
1744    // The method data pointer needs to be updated to reflect the new target.
1745    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1746    bind (profile_continue);
1747  }
1748}
1749
1750void InterpreterMacroAssembler::record_klass_in_profile_helper(
1751                                        Register receiver, Register scratch,
1752                                        int start_row, Label& done) {
1753  int last_row = VirtualCallData::row_limit() - 1;
1754  assert(start_row <= last_row, "must be work left to do");
1755  // Test this row for both the receiver and for null.
1756  // Take any of three different outcomes:
1757  //   1. found receiver => increment count and goto done
1758  //   2. found null => keep looking for case 1, maybe allocate this cell
1759  //   3. found something else => keep looking for cases 1 and 2
1760  // Case 3 is handled by a recursive call.
1761  for (int row = start_row; row <= last_row; row++) {
1762    Label next_test;
1763    bool test_for_null_also = (row == start_row);
1764
1765    // See if the receiver is receiver[n].
1766    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1767    test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1768
1769    // The receiver is receiver[n].  Increment count[n].
1770    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1771    increment_mdp_data_at(count_offset, scratch);
1772    ba(false, done);
1773    delayed()->nop();
1774    bind(next_test);
1775
1776    if (test_for_null_also) {
1777      // Failed the equality check on receiver[n]...  Test for null.
1778      if (start_row == last_row) {
1779        // The only thing left to do is handle the null case.
1780        brx(Assembler::notZero, false, Assembler::pt, done);
1781        delayed()->nop();
1782        break;
1783      }
1784      // Since null is rare, make it be the branch-taken case.
1785      Label found_null;
1786      brx(Assembler::zero, false, Assembler::pn, found_null);
1787      delayed()->nop();
1788
1789      // Put all the "Case 3" tests here.
1790      record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);
1791
1792      // Found a null.  Keep searching for a matching receiver,
1793      // but remember that this is an empty (unused) slot.
1794      bind(found_null);
1795    }
1796  }
1797
1798  // In the fall-through case, we found no matching receiver, but we
1799  // observed the receiver[start_row] is NULL.
1800
1801  // Fill in the receiver field and increment the count.
1802  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1803  set_mdp_data_at(recvr_offset, receiver);
1804  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1805  mov(DataLayout::counter_increment, scratch);
1806  set_mdp_data_at(count_offset, scratch);
1807  ba(false, done);
1808  delayed()->nop();
1809}
1810
1811void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1812                                                        Register scratch) {
1813  assert(ProfileInterpreter, "must be profiling");
1814  Label done;
1815
1816  record_klass_in_profile_helper(receiver, scratch, 0, done);
1817
1818  bind (done);
1819}
1820
1821
1822// Count a ret in the bytecodes.
1823
1824void InterpreterMacroAssembler::profile_ret(TosState state,
1825                                            Register return_bci,
1826                                            Register scratch) {
1827  if (ProfileInterpreter) {
1828    Label profile_continue;
1829    uint row;
1830
1831    // If no method data exists, go to profile_continue.
1832    test_method_data_pointer(profile_continue);
1833
1834    // Update the total ret count.
1835    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1836
1837    for (row = 0; row < RetData::row_limit(); row++) {
1838      Label next_test;
1839
1840      // See if return_bci is equal to bci[n]:
1841      test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1842                       return_bci, next_test, scratch);
1843
1844      // return_bci is equal to bci[n].  Increment the count.
1845      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1846
1847      // The method data pointer needs to be updated to reflect the new target.
1848      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1849      ba(false, profile_continue);
1850      delayed()->nop();
1851      bind(next_test);
1852    }
1853
1854    update_mdp_for_ret(state, return_bci);
1855
1856    bind (profile_continue);
1857  }
1858}
1859
1860// Profile an unexpected null in the bytecodes.
1861void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1862  if (ProfileInterpreter) {
1863    Label profile_continue;
1864
1865    // If no method data exists, go to profile_continue.
1866    test_method_data_pointer(profile_continue);
1867
1868    set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1869
1870    // The method data pointer needs to be updated.
1871    int mdp_delta = in_bytes(BitData::bit_data_size());
1872    if (TypeProfileCasts) {
1873      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1874    }
1875    update_mdp_by_constant(mdp_delta);
1876
1877    bind (profile_continue);
1878  }
1879}
1880
1881void InterpreterMacroAssembler::profile_typecheck(Register klass,
1882                                                  Register scratch) {
1883  if (ProfileInterpreter) {
1884    Label profile_continue;
1885
1886    // If no method data exists, go to profile_continue.
1887    test_method_data_pointer(profile_continue);
1888
1889    int mdp_delta = in_bytes(BitData::bit_data_size());
1890    if (TypeProfileCasts) {
1891      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1892
1893      // Record the object type.
1894      record_klass_in_profile(klass, scratch);
1895    }
1896
1897    // The method data pointer needs to be updated.
1898    update_mdp_by_constant(mdp_delta);
1899
1900    bind (profile_continue);
1901  }
1902}
1903
1904void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1905  if (ProfileInterpreter && TypeProfileCasts) {
1906    Label profile_continue;
1907
1908    // If no method data exists, go to profile_continue.
1909    test_method_data_pointer(profile_continue);
1910
1911    int count_offset = in_bytes(CounterData::count_offset());
1912    // Back up the address, since we have already bumped the mdp.
1913    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1914
1915    // *Decrement* the counter.  We expect to see zero or small negatives.
1916    increment_mdp_data_at(count_offset, scratch, true);
1917
1918    bind (profile_continue);
1919  }
1920}
1921
1922// Count the default case of a switch construct.
1923
1924void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1925  if (ProfileInterpreter) {
1926    Label profile_continue;
1927
1928    // If no method data exists, go to profile_continue.
1929    test_method_data_pointer(profile_continue);
1930
1931    // Update the default case count
1932    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1933                          scratch);
1934
1935    // The method data pointer needs to be updated.
1936    update_mdp_by_offset(
1937                    in_bytes(MultiBranchData::default_displacement_offset()),
1938                    scratch);
1939
1940    bind (profile_continue);
1941  }
1942}
1943
1944// Count the index'th case of a switch construct.
1945
1946void InterpreterMacroAssembler::profile_switch_case(Register index,
1947                                                    Register scratch,
1948                                                    Register scratch2,
1949                                                    Register scratch3) {
1950  if (ProfileInterpreter) {
1951    Label profile_continue;
1952
1953    // If no method data exists, go to profile_continue.
1954    test_method_data_pointer(profile_continue);
1955
1956    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1957    set(in_bytes(MultiBranchData::per_case_size()), scratch);
1958    smul(index, scratch, scratch);
1959    add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1960
1961    // Update the case count
1962    increment_mdp_data_at(scratch,
1963                          in_bytes(MultiBranchData::relative_count_offset()),
1964                          scratch2,
1965                          scratch3);
1966
1967    // The method data pointer needs to be updated.
1968    update_mdp_by_offset(scratch,
1969                     in_bytes(MultiBranchData::relative_displacement_offset()),
1970                     scratch2);
1971
1972    bind (profile_continue);
1973  }
1974}
1975
1976// add a InterpMonitorElem to stack (see frame_sparc.hpp)
1977
1978void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1979                                                      Register Rtemp,
1980                                                      Register Rtemp2 ) {
1981
1982  Register Rlimit = Lmonitors;
1983  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1984  assert( (delta & LongAlignmentMask) == 0,
1985          "sizeof BasicObjectLock must be even number of doublewords");
1986
1987  sub( SP,        delta, SP);
1988  sub( Lesp,      delta, Lesp);
1989  sub( Lmonitors, delta, Lmonitors);
1990
1991  if (!stack_is_empty) {
1992
1993    // must copy stack contents down
1994
1995    Label start_copying, next;
1996
1997    // untested("monitor stack expansion");
1998    compute_stack_base(Rtemp);
1999    ba( false, start_copying );
2000    delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
2001
2002    // note: must copy from low memory upwards
2003    // On entry to loop,
2004    // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2005    // Loop mutates Rtemp
2006
2007    bind( next);
2008
2009    st_ptr(Rtemp2, Rtemp, 0);
2010    inc(Rtemp, wordSize);
2011    cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2012
2013    bind( start_copying );
2014
2015    brx( notEqual, true, pn, next );
2016    delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2017
2018    // done copying stack
2019  }
2020}
2021
2022// Locals
2023#ifdef ASSERT
2024void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
2025                                                 Register base,
2026                                                 Register scratch,
2027                                                 int n) {
2028  if (TaggedStackInterpreter) {
2029    Label ok, long_ok;
2030    // Use dst for scratch
2031    assert_different_registers(base, scratch);
2032    ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
2033    if (t == frame::TagCategory2) {
2034      cmp(scratch, G0);
2035      brx(Assembler::equal, false, Assembler::pt, long_ok);
2036      delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
2037      stop("local long/double tag value bad");
2038      bind(long_ok);
2039      // compare second half tag
2040      cmp(scratch, G0);
2041    } else if (t == frame::TagValue) {
2042      cmp(scratch, G0);
2043    } else {
2044      assert_different_registers(O3, base, scratch);
2045      mov(t, O3);
2046      cmp(scratch, O3);
2047    }
2048    brx(Assembler::equal, false, Assembler::pt, ok);
2049    delayed()->nop();
2050    // Also compare if the local value is zero, then the tag might
2051    // not have been set coming from deopt.
2052    ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
2053    cmp(scratch, G0);
2054    brx(Assembler::equal, false, Assembler::pt, ok);
2055    delayed()->nop();
2056    stop("Local tag value is bad");
2057    bind(ok);
2058  }
2059}
2060#endif // ASSERT
2061
2062void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2063  assert_not_delayed();
2064  sll(index, Interpreter::logStackElementSize(), index);
2065  sub(Llocals, index, index);
2066  debug_only(verify_local_tag(frame::TagReference, index, dst));
2067  ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2068  // Note:  index must hold the effective address--the iinc template uses it
2069}
2070
2071// Just like access_local_ptr but the tag is a returnAddress
2072void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2073                                                           Register dst ) {
2074  assert_not_delayed();
2075  sll(index, Interpreter::logStackElementSize(), index);
2076  sub(Llocals, index, index);
2077  debug_only(verify_local_tag(frame::TagValue, index, dst));
2078  ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2079}
2080
2081void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2082  assert_not_delayed();
2083  sll(index, Interpreter::logStackElementSize(), index);
2084  sub(Llocals, index, index);
2085  debug_only(verify_local_tag(frame::TagValue, index, dst));
2086  ld(index, Interpreter::value_offset_in_bytes(), dst);
2087  // Note:  index must hold the effective address--the iinc template uses it
2088}
2089
2090
2091void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2092  assert_not_delayed();
2093  sll(index, Interpreter::logStackElementSize(), index);
2094  sub(Llocals, index, index);
2095  debug_only(verify_local_tag(frame::TagCategory2, index, dst));
2096  // First half stored at index n+1 (which grows down from Llocals[n])
2097  load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2098}
2099
2100
2101void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2102  assert_not_delayed();
2103  sll(index, Interpreter::logStackElementSize(), index);
2104  sub(Llocals, index, index);
2105  debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
2106  ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
2107}
2108
2109
2110void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2111  assert_not_delayed();
2112  sll(index, Interpreter::logStackElementSize(), index);
2113  sub(Llocals, index, index);
2114  debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
2115  load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2116}
2117
2118
2119#ifdef ASSERT
2120void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2121  Label L;
2122
2123  assert(Rindex != Rscratch, "Registers cannot be same");
2124  assert(Rindex != Rscratch1, "Registers cannot be same");
2125  assert(Rlimit != Rscratch, "Registers cannot be same");
2126  assert(Rlimit != Rscratch1, "Registers cannot be same");
2127  assert(Rscratch1 != Rscratch, "Registers cannot be same");
2128
2129  // untested("reg area corruption");
2130  add(Rindex, offset, Rscratch);
2131  add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2132  cmp(Rscratch, Rscratch1);
2133  brx(Assembler::greaterEqualUnsigned, false, pn, L);
2134  delayed()->nop();
2135  stop("regsave area is being clobbered");
2136  bind(L);
2137}
2138#endif // ASSERT
2139
2140void InterpreterMacroAssembler::tag_local(frame::Tag t,
2141                                          Register base,
2142                                          Register src,
2143                                          int n) {
2144  if (TaggedStackInterpreter) {
2145    // have to store zero because local slots can be reused (rats!)
2146    if (t == frame::TagValue) {
2147      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2148    } else if (t == frame::TagCategory2) {
2149      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2150      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
2151    } else {
2152      // assert that we don't stomp the value in 'src'
2153      // O3 is arbitrary because it's not used.
2154      assert_different_registers(src, base, O3);
2155      mov( t, O3);
2156      st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
2157    }
2158  }
2159}
2160
2161
2162void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2163  assert_not_delayed();
2164  sll(index, Interpreter::logStackElementSize(), index);
2165  sub(Llocals, index, index);
2166  debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
2167  tag_local(frame::TagValue, index, src);
2168  st(src, index, Interpreter::value_offset_in_bytes());
2169}
2170
2171void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
2172                                                 Register tag ) {
2173  assert_not_delayed();
2174  sll(index, Interpreter::logStackElementSize(), index);
2175  sub(Llocals, index, index);
2176  #ifdef ASSERT
2177  check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2178  #endif
2179  st_ptr(src, index, Interpreter::value_offset_in_bytes());
2180  // Store tag register directly
2181  if (TaggedStackInterpreter) {
2182    st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
2183  }
2184}
2185
2186
2187
2188void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
2189                                                 Register tag ) {
2190  st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
2191  if (TaggedStackInterpreter) {
2192    st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
2193  }
2194}
2195
2196void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2197  assert_not_delayed();
2198  sll(index, Interpreter::logStackElementSize(), index);
2199  sub(Llocals, index, index);
2200  #ifdef ASSERT
2201  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2202  #endif
2203  tag_local(frame::TagCategory2, index, src);
2204  store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2205}
2206
2207
2208void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2209  assert_not_delayed();
2210  sll(index, Interpreter::logStackElementSize(), index);
2211  sub(Llocals, index, index);
2212  #ifdef ASSERT
2213  check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2214  #endif
2215  tag_local(frame::TagValue, index, G1_scratch);
2216  stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
2217}
2218
2219
2220void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2221  assert_not_delayed();
2222  sll(index, Interpreter::logStackElementSize(), index);
2223  sub(Llocals, index, index);
2224  #ifdef ASSERT
2225  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2226  #endif
2227  tag_local(frame::TagCategory2, index, G1_scratch);
2228  store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2229}
2230
2231
2232int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2233  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2234  int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2235  return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2236}
2237
2238
2239Address InterpreterMacroAssembler::top_most_monitor() {
2240  return Address(FP, 0, top_most_monitor_byte_offset());
2241}
2242
2243
2244void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2245  add( Lesp,      wordSize,                                    Rdest );
2246}
2247
2248#endif /* CC_INTERP */
2249
2250void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2251  assert(UseCompiler, "incrementing must be useful");
2252#ifdef CC_INTERP
2253  Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2254                            + InvocationCounter::counter_offset()));
2255  Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2256                            + InvocationCounter::counter_offset()));
2257#else
2258  Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2259                            + InvocationCounter::counter_offset()));
2260  Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2261                            + InvocationCounter::counter_offset()));
2262#endif /* CC_INTERP */
2263  int delta = InvocationCounter::count_increment;
2264
2265  // Load each counter in a register
2266  ld( inv_counter, Rtmp );
2267  ld( be_counter, Rtmp2 );
2268
2269  assert( is_simm13( delta ), " delta too large.");
2270
2271  // Add the delta to the invocation counter and store the result
2272  add( Rtmp, delta, Rtmp );
2273
2274  // Mask the backedge counter
2275  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2276
2277  // Store value
2278  st( Rtmp, inv_counter);
2279
2280  // Add invocation counter + backedge counter
2281  add( Rtmp, Rtmp2, Rtmp);
2282
2283  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2284}
2285
2286void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2287  assert(UseCompiler, "incrementing must be useful");
2288#ifdef CC_INTERP
2289  Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2290                            + InvocationCounter::counter_offset()));
2291  Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2292                            +  InvocationCounter::counter_offset()));
2293#else
2294  Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
2295                            + InvocationCounter::counter_offset()));
2296  Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
2297                            + InvocationCounter::counter_offset()));
2298#endif /* CC_INTERP */
2299  int delta = InvocationCounter::count_increment;
2300  // Load each counter in a register
2301  ld( be_counter, Rtmp );
2302  ld( inv_counter, Rtmp2 );
2303
2304  // Add the delta to the backedge counter
2305  add( Rtmp, delta, Rtmp );
2306
2307  // Mask the invocation counter, add to backedge counter
2308  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2309
2310  // and store the result to memory
2311  st( Rtmp, be_counter );
2312
2313  // Add backedge + invocation counter
2314  add( Rtmp, Rtmp2, Rtmp );
2315
2316  // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2317}
2318
2319#ifndef CC_INTERP
2320void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2321                                                             Register branch_bcp,
2322                                                             Register Rtmp ) {
2323  Label did_not_overflow;
2324  Label overflow_with_error;
2325  assert_different_registers(backedge_count, Rtmp, branch_bcp);
2326  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2327
2328  Address limit(Rtmp, address(&InvocationCounter::InterpreterBackwardBranchLimit));
2329  load_contents(limit, Rtmp);
2330  cmp(backedge_count, Rtmp);
2331  br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2332  delayed()->nop();
2333
2334  // When ProfileInterpreter is on, the backedge_count comes from the
2335  // methodDataOop, which value does not get reset on the call to
2336  // frequency_counter_overflow().  To avoid excessive calls to the overflow
2337  // routine while the method is being compiled, add a second test to make sure
2338  // the overflow function is called only once every overflow_frequency.
2339  if (ProfileInterpreter) {
2340    const int overflow_frequency = 1024;
2341    andcc(backedge_count, overflow_frequency-1, Rtmp);
2342    brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2343    delayed()->nop();
2344  }
2345
2346  // overflow in loop, pass branch bytecode
2347  set(6,Rtmp);
2348  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2349
2350  // Was an OSR adapter generated?
2351  // O0 = osr nmethod
2352  tst(O0);
2353  brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2354  delayed()->nop();
2355
2356  // Has the nmethod been invalidated already?
2357  ld(O0, nmethod::entry_bci_offset(), O2);
2358  cmp(O2, InvalidOSREntryBci);
2359  br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2360  delayed()->nop();
2361
2362  // migrate the interpreter frame off of the stack
2363
2364  mov(G2_thread, L7);
2365  // save nmethod
2366  mov(O0, L6);
2367  set_last_Java_frame(SP, noreg);
2368  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2369  reset_last_Java_frame();
2370  mov(L7, G2_thread);
2371
2372  // move OSR nmethod to I1
2373  mov(L6, I1);
2374
2375  // OSR buffer to I0
2376  mov(O0, I0);
2377
2378  // remove the interpreter frame
2379  restore(I5_savedSP, 0, SP);
2380
2381  // Jump to the osr code.
2382  ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2383  jmp(O2, G0);
2384  delayed()->nop();
2385
2386  bind(overflow_with_error);
2387
2388  bind(did_not_overflow);
2389}
2390
2391
2392
2393void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2394  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2395}
2396
2397
2398// local helper function for the verify_oop_or_return_address macro
2399static bool verify_return_address(methodOopDesc* m, int bci) {
2400#ifndef PRODUCT
2401  address pc = (address)(m->constMethod())
2402             + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2403  // assume it is a valid return address if it is inside m and is preceded by a jsr
2404  if (!m->contains(pc))                                          return false;
2405  address jsr_pc;
2406  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2407  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2408  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2409  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2410#endif // PRODUCT
2411  return false;
2412}
2413
2414
2415void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2416  if (!VerifyOops)  return;
2417  // the VM documentation for the astore[_wide] bytecode allows
2418  // the TOS to be not only an oop but also a return address
2419  Label test;
2420  Label skip;
2421  // See if it is an address (in the current method):
2422
2423  mov(reg, Rtmp);
2424  const int log2_bytecode_size_limit = 16;
2425  srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2426  br_notnull( Rtmp, false, pt, test );
2427  delayed()->nop();
2428
2429  // %%% should use call_VM_leaf here?
2430  save_frame_and_mov(0, Lmethod, O0, reg, O1);
2431  save_thread(L7_thread_cache);
2432  call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2433  delayed()->nop();
2434  restore_thread(L7_thread_cache);
2435  br_notnull( O0, false, pt, skip );
2436  delayed()->restore();
2437
2438  // Perform a more elaborate out-of-line call
2439  // Not an address; verify it:
2440  bind(test);
2441  verify_oop(reg);
2442  bind(skip);
2443}
2444
2445
2446void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2447  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2448}
2449#endif /* CC_INTERP */
2450
2451// Inline assembly for:
2452//
2453// if (thread is in interp_only_mode) {
2454//   InterpreterRuntime::post_method_entry();
2455// }
2456// if (DTraceMethodProbes) {
2457//   SharedRuntime::dtrace_method_entry(method, reciever);
2458// }
2459
2460void InterpreterMacroAssembler::notify_method_entry() {
2461
2462  // C++ interpreter only uses this for native methods.
2463
2464  // Whenever JVMTI puts a thread in interp_only_mode, method
2465  // entry/exit events are sent for that thread to track stack
2466  // depth.  If it is possible to enter interp_only_mode we add
2467  // the code to check if the event should be sent.
2468  if (JvmtiExport::can_post_interpreter_events()) {
2469    Label L;
2470    Register temp_reg = O5;
2471
2472    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
2473
2474    ld(interp_only, temp_reg);
2475    tst(temp_reg);
2476    br(zero, false, pt, L);
2477    delayed()->nop();
2478    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2479    bind(L);
2480  }
2481
2482  {
2483    Register temp_reg = O5;
2484    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2485    call_VM_leaf(noreg,
2486      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2487      G2_thread, Lmethod);
2488  }
2489}
2490
2491
2492// Inline assembly for:
2493//
2494// if (thread is in interp_only_mode) {
2495//   // save result
2496//   InterpreterRuntime::post_method_exit();
2497//   // restore result
2498// }
2499// if (DTraceMethodProbes) {
2500//   SharedRuntime::dtrace_method_exit(thread, method);
2501// }
2502//
2503// Native methods have their result stored in d_tmp and l_tmp
2504// Java methods have their result stored in the expression stack
2505
2506void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2507                                                   TosState state,
2508                                                   NotifyMethodExitMode mode) {
2509  // C++ interpreter only uses this for native methods.
2510
2511  // Whenever JVMTI puts a thread in interp_only_mode, method
2512  // entry/exit events are sent for that thread to track stack
2513  // depth.  If it is possible to enter interp_only_mode we add
2514  // the code to check if the event should be sent.
2515  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2516    Label L;
2517    Register temp_reg = O5;
2518
2519    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
2520
2521    ld(interp_only, temp_reg);
2522    tst(temp_reg);
2523    br(zero, false, pt, L);
2524    delayed()->nop();
2525
2526    // Note: frame::interpreter_frame_result has a dependency on how the
2527    // method result is saved across the call to post_method_exit. For
2528    // native methods it assumes the result registers are saved to
2529    // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2530    // implementation will need to be updated too.
2531
2532    save_return_value(state, is_native_method);
2533    call_VM(noreg,
2534            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2535    restore_return_value(state, is_native_method);
2536    bind(L);
2537  }
2538
2539  {
2540    Register temp_reg = O5;
2541    // Dtrace notification
2542    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2543    save_return_value(state, is_native_method);
2544    call_VM_leaf(
2545      noreg,
2546      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2547      G2_thread, Lmethod);
2548    restore_return_value(state, is_native_method);
2549  }
2550}
2551
2552void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2553#ifdef CC_INTERP
2554  // result potentially in O0/O1: save it across calls
2555  stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2556#ifdef _LP64
2557  stx(O0, STATE(_native_lresult));
2558#else
2559  std(O0, STATE(_native_lresult));
2560#endif
2561#else // CC_INTERP
2562  if (is_native_call) {
2563    stf(FloatRegisterImpl::D, F0, d_tmp);
2564#ifdef _LP64
2565    stx(O0, l_tmp);
2566#else
2567    std(O0, l_tmp);
2568#endif
2569  } else {
2570    push(state);
2571  }
2572#endif // CC_INTERP
2573}
2574
2575void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2576#ifdef CC_INTERP
2577  ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2578#ifdef _LP64
2579  ldx(STATE(_native_lresult), O0);
2580#else
2581  ldd(STATE(_native_lresult), O0);
2582#endif
2583#else // CC_INTERP
2584  if (is_native_call) {
2585    ldf(FloatRegisterImpl::D, d_tmp, F0);
2586#ifdef _LP64
2587    ldx(l_tmp, O0);
2588#else
2589    ldd(l_tmp, O0);
2590#endif
2591  } else {
2592    pop(state);
2593  }
2594#endif // CC_INTERP
2595}
2596