frame_sparc.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "interpreter/interpreter.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/method.hpp"
30#include "oops/oop.inline.hpp"
31#include "prims/methodHandles.hpp"
32#include "runtime/frame.inline.hpp"
33#include "runtime/handles.inline.hpp"
34#include "runtime/javaCalls.hpp"
35#include "runtime/monitorChunk.hpp"
36#include "runtime/signature.hpp"
37#include "runtime/stubCodeGenerator.hpp"
38#include "runtime/stubRoutines.hpp"
39#include "vmreg_sparc.inline.hpp"
40#ifdef COMPILER1
41#include "c1/c1_Runtime1.hpp"
42#include "runtime/vframeArray.hpp"
43#endif
44
45void RegisterMap::pd_clear() {
46  if (_thread->has_last_Java_frame()) {
47    frame fr = _thread->last_frame();
48    _window = fr.sp();
49  } else {
50    _window = NULL;
51  }
52  _younger_window = NULL;
53}
54
55
56// Unified register numbering scheme: each 32-bits counts as a register
57// number, so all the V9 registers take 2 slots.
58const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040};
59const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060};
60const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020};
61const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000};
62static RegisterMap::LocationValidType bad_mask = 0;
63static RegisterMap::LocationValidType R_LIO_mask = 0;
64static bool register_map_inited = false;
65
66static void register_map_init() {
67  if (!register_map_inited) {
68    register_map_inited = true;
69    int i;
70    for (i = 0; i < 8; i++) {
71      assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
72      assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
73      assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
74      assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
75    }
76
77    bad_mask |= (1LL << R_O_nums[6]); // SP
78    bad_mask |= (1LL << R_O_nums[7]); // cPC
79    bad_mask |= (1LL << R_I_nums[6]); // FP
80    bad_mask |= (1LL << R_I_nums[7]); // rPC
81    bad_mask |= (1LL << R_G_nums[2]); // TLS
82    bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread
83
84    for (i = 0; i < 8; i++) {
85      R_LIO_mask |= (1LL << R_L_nums[i]);
86      R_LIO_mask |= (1LL << R_I_nums[i]);
87      R_LIO_mask |= (1LL << R_O_nums[i]);
88    }
89  }
90}
91
92
93address RegisterMap::pd_location(VMReg regname) const {
94  register_map_init();
95
96  assert(regname->is_reg(), "sanity check");
97  // Only the GPRs get handled this way
98  if( !regname->is_Register())
99    return NULL;
100
101  // don't talk about bad registers
102  if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) {
103    return NULL;
104  }
105
106  // Convert to a GPR
107  Register reg;
108  int second_word = 0;
109  // 32-bit registers for in, out and local
110  if (!regname->is_concrete()) {
111    // HMM ought to return NULL for any non-concrete (odd) vmreg
112    // this all tied up in the fact we put out double oopMaps for
113    // register locations. When that is fixed we'd will return NULL
114    // (or assert here).
115    reg = regname->prev()->as_Register();
116#ifdef _LP64
117    second_word = sizeof(jint);
118#else
119    return NULL;
120#endif // _LP64
121  } else {
122    reg = regname->as_Register();
123  }
124  if (reg->is_out()) {
125    assert(_younger_window != NULL, "Younger window should be available");
126    return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()];
127  }
128  if (reg->is_local() || reg->is_in()) {
129    assert(_window != NULL, "Window should be available");
130    return second_word + (address)&_window[reg->sp_offset_in_saved_window()];
131  }
132  // Only the window'd GPRs get handled this way; not the globals.
133  return NULL;
134}
135
136
137#ifdef ASSERT
138void RegisterMap::check_location_valid() {
139  register_map_init();
140  assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc.");
141}
142#endif
143
144// We are shifting windows.  That means we are moving all %i to %o,
145// getting rid of all current %l, and keeping all %g.  This is only
146// complicated if any of the location pointers for these are valid.
147// The normal case is that everything is in its standard register window
148// home, and _location_valid[0] is zero.  In that case, this routine
149// does exactly nothing.
150void RegisterMap::shift_individual_registers() {
151  if (!update_map())  return;  // this only applies to maps with locations
152  register_map_init();
153  check_location_valid();
154
155  LocationValidType lv = _location_valid[0];
156  LocationValidType lv0 = lv;
157
158  lv &= ~R_LIO_mask;  // clear %l, %o, %i regs
159
160  // if we cleared some non-%g locations, we may have to do some shifting
161  if (lv != lv0) {
162    // copy %i0-%i5 to %o0-%o5, if they have special locations
163    // This can happen in within stubs which spill argument registers
164    // around a dynamic link operation, such as resolve_opt_virtual_call.
165    for (int i = 0; i < 8; i++) {
166      if (lv0 & (1LL << R_I_nums[i])) {
167        _location[R_O_nums[i]] = _location[R_I_nums[i]];
168        lv |=  (1LL << R_O_nums[i]);
169      }
170    }
171  }
172
173  _location_valid[0] = lv;
174  check_location_valid();
175}
176
177bool frame::safe_for_sender(JavaThread *thread) {
178
179  address _SP = (address) sp();
180  address _FP = (address) fp();
181  address _UNEXTENDED_SP = (address) unextended_sp();
182  // sp must be within the stack
183  bool sp_safe = (_SP <= thread->stack_base()) &&
184                 (_SP >= thread->stack_base() - thread->stack_size());
185
186  if (!sp_safe) {
187    return false;
188  }
189
190  // unextended sp must be within the stack and above or equal sp
191  bool unextended_sp_safe = (_UNEXTENDED_SP <= thread->stack_base()) &&
192                            (_UNEXTENDED_SP >= _SP);
193
194  if (!unextended_sp_safe) return false;
195
196  // an fp must be within the stack and above (but not equal) sp
197  bool fp_safe = (_FP <= thread->stack_base()) &&
198                 (_FP > _SP);
199
200  // We know sp/unextended_sp are safe only fp is questionable here
201
202  // If the current frame is known to the code cache then we can attempt to
203  // to construct the sender and do some validation of it. This goes a long way
204  // toward eliminating issues when we get in frame construction code
205
206  if (_cb != NULL ) {
207
208    // First check if frame is complete and tester is reliable
209    // Unfortunately we can only check frame complete for runtime stubs and nmethod
210    // other generic buffer blobs are more problematic so we just assume they are
211    // ok. adapter blobs never have a frame complete and are never ok.
212
213    if (!_cb->is_frame_complete_at(_pc)) {
214      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
215        return false;
216      }
217    }
218
219    // Entry frame checks
220    if (is_entry_frame()) {
221      // an entry frame must have a valid fp.
222
223      if (!fp_safe) {
224        return false;
225      }
226
227      // Validate the JavaCallWrapper an entry frame must have
228
229      address jcw = (address)entry_frame_call_wrapper();
230
231      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > _FP);
232
233      return jcw_safe;
234
235    }
236
237    intptr_t* younger_sp = sp();
238    intptr_t* _SENDER_SP = sender_sp(); // sender is actually just _FP
239    bool adjusted_stack = is_interpreted_frame();
240
241    address   sender_pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
242
243
244    // We must always be able to find a recognizable pc
245    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
246    if (sender_pc == NULL ||  sender_blob == NULL) {
247      return false;
248    }
249
250    // It should be safe to construct the sender though it might not be valid
251
252    frame sender(_SENDER_SP, younger_sp, adjusted_stack);
253
254    // Do we have a valid fp?
255    address sender_fp = (address) sender.fp();
256
257    // an fp must be within the stack and above (but not equal) current frame's _FP
258
259    bool sender_fp_safe = (sender_fp <= thread->stack_base()) &&
260                   (sender_fp > _FP);
261
262    if (!sender_fp_safe) {
263      return false;
264    }
265
266
267    // If the potential sender is the interpreter then we can do some more checking
268    if (Interpreter::contains(sender_pc)) {
269      return sender.is_interpreted_frame_valid(thread);
270    }
271
272    // Could just be some random pointer within the codeBlob
273    if (!sender.cb()->code_contains(sender_pc)) {
274      return false;
275    }
276
277    // We should never be able to see an adapter if the current frame is something from code cache
278    if (sender_blob->is_adapter_blob()) {
279      return false;
280    }
281
282    if( sender.is_entry_frame()) {
283      // Validate the JavaCallWrapper an entry frame must have
284
285      address jcw = (address)sender.entry_frame_call_wrapper();
286
287      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > sender_fp);
288
289      return jcw_safe;
290    }
291
292    // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
293    // because you must allocate window space
294
295    if (sender_blob->frame_size() == 0) {
296      assert(!sender_blob->is_nmethod(), "should count return address at least");
297      return false;
298    }
299
300    // The sender should positively be an nmethod or call_stub. On sparc we might in fact see something else.
301    // The cause of this is because at a save instruction the O7 we get is a leftover from an earlier
302    // window use. So if a runtime stub creates two frames (common in fastdebug/jvmg) then we see the
303    // stale pc. So if the sender blob is not something we'd expect we have little choice but to declare
304    // the stack unwalkable. pd_get_top_frame_for_signal_handler tries to recover from this by unwinding
305    // that initial frame and retrying.
306
307    if (!sender_blob->is_nmethod()) {
308      return false;
309    }
310
311    // Could put some more validation for the potential non-interpreted sender
312    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
313
314    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
315
316    // We've validated the potential sender that would be created
317
318    return true;
319
320  }
321
322  // Must be native-compiled frame. Since sender will try and use fp to find
323  // linkages it must be safe
324
325  if (!fp_safe) return false;
326
327  // could try and do some more potential verification of native frame if we could think of some...
328
329  return true;
330}
331
332// constructors
333
334// Construct an unpatchable, deficient frame
335frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
336#ifdef _LP64
337  assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
338#endif
339  _sp = sp;
340  _younger_sp = NULL;
341  _pc = pc;
342  _cb = cb;
343  _sp_adjustment_by_callee = 0;
344  assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!");
345  if (_cb == NULL && _pc != NULL ) {
346    _cb = CodeCache::find_blob(_pc);
347  }
348  _deopt_state = unknown;
349#ifdef ASSERT
350  if ( _cb != NULL && _cb->is_nmethod()) {
351    // Without a valid unextended_sp() we can't convert the pc to "original"
352    assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken");
353  }
354#endif // ASSERT
355}
356
357frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_is_interpreted) :
358  _sp(sp),
359  _younger_sp(younger_sp),
360  _deopt_state(unknown),
361  _sp_adjustment_by_callee(0) {
362  if (younger_sp == NULL) {
363    // make a deficient frame which doesn't know where its PC is
364    _pc = NULL;
365    _cb = NULL;
366  } else {
367    _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
368    assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid");
369    // Any frame we ever build should always "safe" therefore we should not have to call
370    // find_blob_unsafe
371    // In case of native stubs, the pc retrieved here might be
372    // wrong.  (the _last_native_pc will have the right value)
373    // So do not put add any asserts on the _pc here.
374  }
375
376  if (_pc != NULL)
377    _cb = CodeCache::find_blob(_pc);
378
379  // Check for MethodHandle call sites.
380  if (_cb != NULL) {
381    nmethod* nm = _cb->as_nmethod_or_null();
382    if (nm != NULL) {
383      if (nm->is_deopt_mh_entry(_pc) || nm->is_method_handle_return(_pc)) {
384        _sp_adjustment_by_callee = (intptr_t*) ((intptr_t) sp[L7_mh_SP_save->sp_offset_in_saved_window()] + STACK_BIAS) - sp;
385        // The SP is already adjusted by this MH call site, don't
386        // overwrite this value with the wrong interpreter value.
387        younger_frame_is_interpreted = false;
388      }
389    }
390  }
391
392  if (younger_frame_is_interpreted) {
393    // compute adjustment to this frame's SP made by its interpreted callee
394    _sp_adjustment_by_callee = (intptr_t*) ((intptr_t) younger_sp[I5_savedSP->sp_offset_in_saved_window()] + STACK_BIAS) - sp;
395  }
396
397  // It is important that the frame is fully constructed when we do
398  // this lookup as get_deopt_original_pc() needs a correct value for
399  // unextended_sp() which uses _sp_adjustment_by_callee.
400  if (_pc != NULL) {
401    address original_pc = nmethod::get_deopt_original_pc(this);
402    if (original_pc != NULL) {
403      _pc = original_pc;
404      _deopt_state = is_deoptimized;
405    } else {
406      _deopt_state = not_deoptimized;
407    }
408  }
409}
410
411bool frame::is_interpreted_frame() const  {
412  return Interpreter::contains(pc());
413}
414
415// sender_sp
416
417intptr_t* frame::interpreter_frame_sender_sp() const {
418  assert(is_interpreted_frame(), "interpreted frame expected");
419  return fp();
420}
421
422#ifndef CC_INTERP
423void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
424  assert(is_interpreted_frame(), "interpreted frame expected");
425  Unimplemented();
426}
427#endif // CC_INTERP
428
429
430#ifdef ASSERT
431// Debugging aid
432static frame nth_sender(int n) {
433  frame f = JavaThread::current()->last_frame();
434
435  for(int i = 0; i < n; ++i)
436    f = f.sender((RegisterMap*)NULL);
437
438  printf("first frame %d\n",          f.is_first_frame()       ? 1 : 0);
439  printf("interpreted frame %d\n",    f.is_interpreted_frame() ? 1 : 0);
440  printf("java frame %d\n",           f.is_java_frame()        ? 1 : 0);
441  printf("entry frame %d\n",          f.is_entry_frame()       ? 1 : 0);
442  printf("native frame %d\n",         f.is_native_frame()      ? 1 : 0);
443  if (f.is_compiled_frame()) {
444    if (f.is_deoptimized_frame())
445      printf("deoptimized frame 1\n");
446    else
447      printf("compiled frame 1\n");
448  }
449
450  return f;
451}
452#endif
453
454
455frame frame::sender_for_entry_frame(RegisterMap *map) const {
456  assert(map != NULL, "map must be set");
457  // Java frame called from C; skip all C frames and return top C
458  // frame of that chunk as the sender
459  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
460  assert(!entry_frame_is_first(), "next Java fp must be non zero");
461  assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
462  intptr_t* last_Java_sp = jfa->last_Java_sp();
463  // Since we are walking the stack now this nested anchor is obviously walkable
464  // even if it wasn't when it was stacked.
465  if (!jfa->walkable()) {
466    // Capture _last_Java_pc (if needed) and mark anchor walkable.
467    jfa->capture_last_Java_pc(_sp);
468  }
469  assert(jfa->last_Java_pc() != NULL, "No captured pc!");
470  map->clear();
471  map->make_integer_regs_unsaved();
472  map->shift_window(last_Java_sp, NULL);
473  assert(map->include_argument_oops(), "should be set by clear");
474  return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc());
475}
476
477frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
478  ShouldNotCallThis();
479  return sender(map);
480}
481
482frame frame::sender_for_compiled_frame(RegisterMap *map) const {
483  ShouldNotCallThis();
484  return sender(map);
485}
486
487frame frame::sender(RegisterMap* map) const {
488  assert(map != NULL, "map must be set");
489
490  assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent");
491
492  // Default is not to follow arguments; update it accordingly below
493  map->set_include_argument_oops(false);
494
495  if (is_entry_frame()) return sender_for_entry_frame(map);
496
497  intptr_t* younger_sp = sp();
498  intptr_t* sp         = sender_sp();
499
500  // Note:  The version of this operation on any platform with callee-save
501  //        registers must update the register map (if not null).
502  //        In order to do this correctly, the various subtypes of
503  //        of frame (interpreted, compiled, glue, native),
504  //        must be distinguished.  There is no need on SPARC for
505  //        such distinctions, because all callee-save registers are
506  //        preserved for all frames via SPARC-specific mechanisms.
507  //
508  //        *** HOWEVER, *** if and when we make any floating-point
509  //        registers callee-saved, then we will have to copy over
510  //        the RegisterMap update logic from the Intel code.
511
512  // The constructor of the sender must know whether this frame is interpreted so it can set the
513  // sender's _sp_adjustment_by_callee field.  An osr adapter frame was originally
514  // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
515  // explicitly recognized.
516
517
518  bool frame_is_interpreted = is_interpreted_frame();
519  if (frame_is_interpreted) {
520    map->make_integer_regs_unsaved();
521    map->shift_window(sp, younger_sp);
522  } else if (_cb != NULL) {
523    // Update the locations of implicitly saved registers to be their
524    // addresses in the register save area.
525    // For %o registers, the addresses of %i registers in the next younger
526    // frame are used.
527    map->shift_window(sp, younger_sp);
528    if (map->update_map()) {
529      // Tell GC to use argument oopmaps for some runtime stubs that need it.
530      // For C1, the runtime stub might not have oop maps, so set this flag
531      // outside of update_register_map.
532      map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
533      if (_cb->oop_maps() != NULL) {
534        OopMapSet::update_register_map(this, map);
535      }
536    }
537  }
538  return frame(sp, younger_sp, frame_is_interpreted);
539}
540
541
542void frame::patch_pc(Thread* thread, address pc) {
543  if(thread == Thread::current()) {
544   StubRoutines::Sparc::flush_callers_register_windows_func()();
545  }
546  if (TracePcPatching) {
547    // QQQ this assert is invalid (or too strong anyway) sice _pc could
548    // be original pc and frame could have the deopt pc.
549    // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc");
550    tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc);
551  }
552  _cb = CodeCache::find_blob(pc);
553  *O7_addr() = pc - pc_return_offset;
554  _cb = CodeCache::find_blob(_pc);
555  address original_pc = nmethod::get_deopt_original_pc(this);
556  if (original_pc != NULL) {
557    assert(original_pc == _pc, "expected original to be stored before patching");
558    _deopt_state = is_deoptimized;
559  } else {
560    _deopt_state = not_deoptimized;
561  }
562}
563
564
565static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) {
566  return (((intptr_t)sp & (2*wordSize-1)) == 0 &&
567          sp <= old_sp &&
568          sp >= young_sp);
569}
570
571
572/*
573  Find the (biased) sp that is just younger than old_sp starting at sp.
574  If not found return NULL. Register windows are assumed to be flushed.
575*/
576intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) {
577
578  intptr_t* previous_sp = NULL;
579  intptr_t* orig_sp = sp;
580
581  int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16
582  int max_frame2 = max_frames;
583  while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) {
584    if (max_frames-- <= 0)
585      // too many frames have gone by; invalid parameters given to this function
586      break;
587    previous_sp = sp;
588    sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()];
589    sp = (intptr_t*)((intptr_t)sp + STACK_BIAS);
590  }
591
592  return (sp == old_sp ? previous_sp : NULL);
593}
594
595/*
596  Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than
597  "valid_sp". So if "sp" is valid itself then it should be possible to walk frames
598  from "sp" to "valid_sp". The assumption is that the registers windows for the
599  thread stack in question are flushed.
600*/
601bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) {
602  return next_younger_sp_or_null(valid_sp, sp) != NULL;
603}
604
605
606bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
607  assert(is_interpreted_frame(), "must be interpreter frame");
608  return this->fp() == fp;
609}
610
611
612void frame::pd_gc_epilog() {
613  if (is_interpreted_frame()) {
614    // set constant pool cache entry for interpreter
615    Method* m = interpreter_frame_method();
616
617    *interpreter_frame_cpoolcache_addr() = m->constants()->cache();
618  }
619}
620
621
622bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
623#ifdef CC_INTERP
624  // Is there anything to do?
625#else
626  assert(is_interpreted_frame(), "Not an interpreted frame");
627  // These are reasonable sanity checks
628  if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) {
629    return false;
630  }
631  if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) {
632    return false;
633  }
634
635  const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words;
636  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
637    return false;
638  }
639  // These are hacks to keep us out of trouble.
640  // The problem with these is that they mask other problems
641  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
642    return false;
643  }
644  // do some validation of frame elements
645
646  // first the method
647
648  Method* m = *interpreter_frame_method_addr();
649
650  // validate the method we'd find in this potential sender
651  if (!Universe::heap()->is_valid_method(m)) return false;
652
653  // stack frames shouldn't be much larger than max_stack elements
654
655  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
656    return false;
657  }
658
659  // validate bci/bcx
660
661  intptr_t  bcx    = interpreter_frame_bcx();
662  if (m->validate_bci_from_bcx(bcx) < 0) {
663    return false;
664  }
665
666  // validate ConstantPoolCache*
667  ConstantPoolCache* cp = *interpreter_frame_cache_addr();
668  if (cp == NULL || !cp->is_metadata()) return false;
669
670  // validate locals
671
672  address locals =  (address) *interpreter_frame_locals_addr();
673
674  if (locals > thread->stack_base() || locals < (address) fp()) return false;
675
676  // We'd have to be pretty unlucky to be mislead at this point
677#endif /* CC_INTERP */
678  return true;
679}
680
681
682// Windows have been flushed on entry (but not marked). Capture the pc that
683// is the return address to the frame that contains "sp" as its stack pointer.
684// This pc resides in the called of the frame corresponding to "sp".
685// As a side effect we mark this JavaFrameAnchor as having flushed the windows.
686// This side effect lets us mark stacked JavaFrameAnchors (stacked in the
687// call_helper) as flushed when we have flushed the windows for the most
688// recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls
689// and lets us find the pc just once rather than multiple times as it did
690// in the bad old _post_Java_state days.
691//
692void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) {
693  if (last_Java_sp() != NULL && last_Java_pc() == NULL) {
694    // try and find the sp just younger than _last_Java_sp
695    intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp);
696    // Really this should never fail otherwise VM call must have non-standard
697    // frame linkage (bad) or stack is not properly flushed (worse).
698    guarantee(_post_Java_sp != NULL, "bad stack!");
699    _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset;
700
701  }
702  set_window_flushed();
703}
704
705void JavaFrameAnchor::make_walkable(JavaThread* thread) {
706  if (walkable()) return;
707  // Eventually make an assert
708  guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers");
709  // We always flush in case the profiler wants it but we won't mark
710  // the windows as flushed unless we have a last_Java_frame
711  intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
712  if (last_Java_sp() != NULL ) {
713    capture_last_Java_pc(sp);
714  }
715}
716
717intptr_t* frame::entry_frame_argument_at(int offset) const {
718  // convert offset to index to deal with tsi
719  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
720
721  intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()];
722  return &LSP[index+1];
723}
724
725
726BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
727  assert(is_interpreted_frame(), "interpreted frame expected");
728  Method* method = interpreter_frame_method();
729  BasicType type = method->result_type();
730
731  if (method->is_native()) {
732    // Prior to notifying the runtime of the method_exit the possible result
733    // value is saved to l_scratch and d_scratch.
734
735#ifdef CC_INTERP
736    interpreterState istate = get_interpreterState();
737    intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult;
738    intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult;
739#else /* CC_INTERP */
740    intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset;
741    intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset;
742#endif /* CC_INTERP */
743
744    address l_addr = (address)l_scratch;
745#ifdef _LP64
746    // On 64-bit the result for 1/8/16/32-bit result types is in the other
747    // word half
748    l_addr += wordSize/2;
749#endif
750
751    switch (type) {
752      case T_OBJECT:
753      case T_ARRAY: {
754#ifdef CC_INTERP
755        *oop_result = istate->_oop_temp;
756#else
757        oop obj = (oop) at(interpreter_frame_oop_temp_offset);
758        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
759        *oop_result = obj;
760#endif // CC_INTERP
761        break;
762      }
763
764      case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
765      case T_BYTE    : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
766      case T_CHAR    : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
767      case T_SHORT   : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
768      case T_INT     : value_result->i = *(jint*)l_addr; break;
769      case T_LONG    : value_result->j = *(jlong*)l_scratch; break;
770      case T_FLOAT   : value_result->f = *(jfloat*)d_scratch; break;
771      case T_DOUBLE  : value_result->d = *(jdouble*)d_scratch; break;
772      case T_VOID    : /* Nothing to do */ break;
773      default        : ShouldNotReachHere();
774    }
775  } else {
776    intptr_t* tos_addr = interpreter_frame_tos_address();
777
778    switch(type) {
779      case T_OBJECT:
780      case T_ARRAY: {
781        oop obj = (oop)*tos_addr;
782        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
783        *oop_result = obj;
784        break;
785      }
786      case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
787      case T_BYTE    : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
788      case T_CHAR    : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
789      case T_SHORT   : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
790      case T_INT     : value_result->i = *(jint*)tos_addr; break;
791      case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
792      case T_FLOAT   : value_result->f = *(jfloat*)tos_addr; break;
793      case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
794      case T_VOID    : /* Nothing to do */ break;
795      default        : ShouldNotReachHere();
796    }
797  };
798
799  return type;
800}
801
802// Lesp pointer is one word lower than the top item on the stack.
803intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
804  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1;
805  return &interpreter_frame_tos_address()[index];
806}
807
808
809#ifndef PRODUCT
810
811#define DESCRIBE_FP_OFFSET(name) \
812  values.describe(frame_no, fp() + frame::name##_offset, #name)
813
814void frame::describe_pd(FrameValues& values, int frame_no) {
815  for (int w = 0; w < frame::register_save_words; w++) {
816    values.describe(frame_no, sp() + w, err_msg("register save area word %d", w), 1);
817  }
818
819  if (is_interpreted_frame()) {
820    DESCRIBE_FP_OFFSET(interpreter_frame_d_scratch_fp);
821    DESCRIBE_FP_OFFSET(interpreter_frame_l_scratch_fp);
822    DESCRIBE_FP_OFFSET(interpreter_frame_padding);
823    DESCRIBE_FP_OFFSET(interpreter_frame_oop_temp);
824
825    // esp, according to Lesp (e.g. not depending on bci), if seems valid
826    intptr_t* esp = *interpreter_frame_esp_addr();
827    if ((esp >= sp()) && (esp < fp())) {
828      values.describe(-1, esp, "*Lesp");
829    }
830  }
831
832  if (!is_compiled_frame()) {
833    if (frame::callee_aggregate_return_pointer_words != 0) {
834      values.describe(frame_no, sp() + frame::callee_aggregate_return_pointer_sp_offset, "callee_aggregate_return_pointer_word");
835    }
836    for (int w = 0; w < frame::callee_register_argument_save_area_words; w++) {
837      values.describe(frame_no, sp() + frame::callee_register_argument_save_area_sp_offset + w,
838                      err_msg("callee_register_argument_save_area_words %d", w));
839    }
840  }
841}
842
843#endif
844
845intptr_t *frame::initial_deoptimization_info() {
846  // unused... but returns fp() to minimize changes introduced by 7087445
847  return fp();
848}
849