frame_sparc.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_frame_sparc.cpp.incl"
27
28void RegisterMap::pd_clear() {
29  if (_thread->has_last_Java_frame()) {
30    frame fr = _thread->last_frame();
31    _window = fr.sp();
32  } else {
33    _window = NULL;
34  }
35  _younger_window = NULL;
36}
37
38
39// Unified register numbering scheme: each 32-bits counts as a register
40// number, so all the V9 registers take 2 slots.
41const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040};
42const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060};
43const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020};
44const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000};
45static RegisterMap::LocationValidType bad_mask = 0;
46static RegisterMap::LocationValidType R_LIO_mask = 0;
47static bool register_map_inited = false;
48
49static void register_map_init() {
50  if (!register_map_inited) {
51    register_map_inited = true;
52    int i;
53    for (i = 0; i < 8; i++) {
54      assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
55      assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
56      assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
57      assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
58    }
59
60    bad_mask |= (1LL << R_O_nums[6]); // SP
61    bad_mask |= (1LL << R_O_nums[7]); // cPC
62    bad_mask |= (1LL << R_I_nums[6]); // FP
63    bad_mask |= (1LL << R_I_nums[7]); // rPC
64    bad_mask |= (1LL << R_G_nums[2]); // TLS
65    bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread
66
67    for (i = 0; i < 8; i++) {
68      R_LIO_mask |= (1LL << R_L_nums[i]);
69      R_LIO_mask |= (1LL << R_I_nums[i]);
70      R_LIO_mask |= (1LL << R_O_nums[i]);
71    }
72  }
73}
74
75
76address RegisterMap::pd_location(VMReg regname) const {
77  register_map_init();
78
79  assert(regname->is_reg(), "sanity check");
80  // Only the GPRs get handled this way
81  if( !regname->is_Register())
82    return NULL;
83
84  // don't talk about bad registers
85  if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) {
86    return NULL;
87  }
88
89  // Convert to a GPR
90  Register reg;
91  int second_word = 0;
92  // 32-bit registers for in, out and local
93  if (!regname->is_concrete()) {
94    // HMM ought to return NULL for any non-concrete (odd) vmreg
95    // this all tied up in the fact we put out double oopMaps for
96    // register locations. When that is fixed we'd will return NULL
97    // (or assert here).
98    reg = regname->prev()->as_Register();
99#ifdef _LP64
100    second_word = sizeof(jint);
101#else
102    return NULL;
103#endif // _LP64
104  } else {
105    reg = regname->as_Register();
106  }
107  if (reg->is_out()) {
108    assert(_younger_window != NULL, "Younger window should be available");
109    return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()];
110  }
111  if (reg->is_local() || reg->is_in()) {
112    assert(_window != NULL, "Window should be available");
113    return second_word + (address)&_window[reg->sp_offset_in_saved_window()];
114  }
115  // Only the window'd GPRs get handled this way; not the globals.
116  return NULL;
117}
118
119
120#ifdef ASSERT
121void RegisterMap::check_location_valid() {
122  register_map_init();
123  assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc.");
124}
125#endif
126
127// We are shifting windows.  That means we are moving all %i to %o,
128// getting rid of all current %l, and keeping all %g.  This is only
129// complicated if any of the location pointers for these are valid.
130// The normal case is that everything is in its standard register window
131// home, and _location_valid[0] is zero.  In that case, this routine
132// does exactly nothing.
133void RegisterMap::shift_individual_registers() {
134  if (!update_map())  return;  // this only applies to maps with locations
135  register_map_init();
136  check_location_valid();
137
138  LocationValidType lv = _location_valid[0];
139  LocationValidType lv0 = lv;
140
141  lv &= ~R_LIO_mask;  // clear %l, %o, %i regs
142
143  // if we cleared some non-%g locations, we may have to do some shifting
144  if (lv != lv0) {
145    // copy %i0-%i5 to %o0-%o5, if they have special locations
146    // This can happen in within stubs which spill argument registers
147    // around a dynamic link operation, such as resolve_opt_virtual_call.
148    for (int i = 0; i < 8; i++) {
149      if (lv0 & (1LL << R_I_nums[i])) {
150        _location[R_O_nums[i]] = _location[R_I_nums[i]];
151        lv |=  (1LL << R_O_nums[i]);
152      }
153    }
154  }
155
156  _location_valid[0] = lv;
157  check_location_valid();
158}
159
160bool frame::safe_for_sender(JavaThread *thread) {
161
162  address _SP = (address) sp();
163  address _FP = (address) fp();
164  address _UNEXTENDED_SP = (address) unextended_sp();
165  // sp must be within the stack
166  bool sp_safe = (_SP <= thread->stack_base()) &&
167                 (_SP >= thread->stack_base() - thread->stack_size());
168
169  if (!sp_safe) {
170    return false;
171  }
172
173  // unextended sp must be within the stack and above or equal sp
174  bool unextended_sp_safe = (_UNEXTENDED_SP <= thread->stack_base()) &&
175                            (_UNEXTENDED_SP >= _SP);
176
177  if (!unextended_sp_safe) return false;
178
179  // an fp must be within the stack and above (but not equal) sp
180  bool fp_safe = (_FP <= thread->stack_base()) &&
181                 (_FP > _SP);
182
183  // We know sp/unextended_sp are safe only fp is questionable here
184
185  // If the current frame is known to the code cache then we can attempt to
186  // to construct the sender and do some validation of it. This goes a long way
187  // toward eliminating issues when we get in frame construction code
188
189  if (_cb != NULL ) {
190
191    // First check if frame is complete and tester is reliable
192    // Unfortunately we can only check frame complete for runtime stubs and nmethod
193    // other generic buffer blobs are more problematic so we just assume they are
194    // ok. adapter blobs never have a frame complete and are never ok.
195
196    if (!_cb->is_frame_complete_at(_pc)) {
197      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
198        return false;
199      }
200    }
201
202    // Entry frame checks
203    if (is_entry_frame()) {
204      // an entry frame must have a valid fp.
205
206      if (!fp_safe) {
207        return false;
208      }
209
210      // Validate the JavaCallWrapper an entry frame must have
211
212      address jcw = (address)entry_frame_call_wrapper();
213
214      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > _FP);
215
216      return jcw_safe;
217
218    }
219
220    intptr_t* younger_sp = sp();
221    intptr_t* _SENDER_SP = sender_sp(); // sender is actually just _FP
222    bool adjusted_stack = is_interpreted_frame();
223
224    address   sender_pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
225
226
227    // We must always be able to find a recognizable pc
228    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
229    if (sender_pc == NULL ||  sender_blob == NULL) {
230      return false;
231    }
232
233    // It should be safe to construct the sender though it might not be valid
234
235    frame sender(_SENDER_SP, younger_sp, adjusted_stack);
236
237    // Do we have a valid fp?
238    address sender_fp = (address) sender.fp();
239
240    // an fp must be within the stack and above (but not equal) current frame's _FP
241
242    bool sender_fp_safe = (sender_fp <= thread->stack_base()) &&
243                   (sender_fp > _FP);
244
245    if (!sender_fp_safe) {
246      return false;
247    }
248
249
250    // If the potential sender is the interpreter then we can do some more checking
251    if (Interpreter::contains(sender_pc)) {
252      return sender.is_interpreted_frame_valid(thread);
253    }
254
255    // Could just be some random pointer within the codeBlob
256    if (!sender.cb()->instructions_contains(sender_pc)) return false;
257
258    // We should never be able to see an adapter if the current frame is something from code cache
259
260    if ( sender_blob->is_adapter_blob()) {
261      return false;
262    }
263
264    if( sender.is_entry_frame()) {
265      // Validate the JavaCallWrapper an entry frame must have
266
267      address jcw = (address)sender.entry_frame_call_wrapper();
268
269      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > sender_fp);
270
271      return jcw_safe;
272    }
273
274    // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
275    // because you must allocate window space
276
277    if (sender_blob->frame_size() == 0) {
278      assert(!sender_blob->is_nmethod(), "should count return address at least");
279      return false;
280    }
281
282    // The sender should positively be an nmethod or call_stub. On sparc we might in fact see something else.
283    // The cause of this is because at a save instruction the O7 we get is a leftover from an earlier
284    // window use. So if a runtime stub creates two frames (common in fastdebug/jvmg) then we see the
285    // stale pc. So if the sender blob is not something we'd expect we have little choice but to declare
286    // the stack unwalkable. pd_get_top_frame_for_signal_handler tries to recover from this by unwinding
287    // that initial frame and retrying.
288
289    if (!sender_blob->is_nmethod()) {
290      return false;
291    }
292
293    // Could put some more validation for the potential non-interpreted sender
294    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
295
296    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
297
298    // We've validated the potential sender that would be created
299
300    return true;
301
302  }
303
304  // Must be native-compiled frame. Since sender will try and use fp to find
305  // linkages it must be safe
306
307  if (!fp_safe) return false;
308
309  // could try and do some more potential verification of native frame if we could think of some...
310
311  return true;
312}
313
314// constructors
315
316// Construct an unpatchable, deficient frame
317frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
318#ifdef _LP64
319  assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
320#endif
321  _sp = sp;
322  _younger_sp = NULL;
323  _pc = pc;
324  _cb = cb;
325  _sp_adjustment_by_callee = 0;
326  assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!");
327  if (_cb == NULL && _pc != NULL ) {
328    _cb = CodeCache::find_blob(_pc);
329  }
330  _deopt_state = unknown;
331#ifdef ASSERT
332  if ( _cb != NULL && _cb->is_nmethod()) {
333    // Without a valid unextended_sp() we can't convert the pc to "original"
334    assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken");
335  }
336#endif // ASSERT
337}
338
339frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_adjusted_stack) {
340  _sp = sp;
341  _younger_sp = younger_sp;
342  if (younger_sp == NULL) {
343    // make a deficient frame which doesn't know where its PC is
344    _pc = NULL;
345    _cb = NULL;
346  } else {
347    _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
348    assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid");
349    // Any frame we ever build should always "safe" therefore we should not have to call
350    // find_blob_unsafe
351    // In case of native stubs, the pc retrieved here might be
352    // wrong.  (the _last_native_pc will have the right value)
353    // So do not put add any asserts on the _pc here.
354  }
355  if (younger_frame_adjusted_stack) {
356    // compute adjustment to this frame's SP made by its interpreted callee
357    _sp_adjustment_by_callee = (intptr_t*)((intptr_t)younger_sp[I5_savedSP->sp_offset_in_saved_window()] +
358                                             STACK_BIAS) - sp;
359  } else {
360    _sp_adjustment_by_callee = 0;
361  }
362
363  _deopt_state = unknown;
364
365  // It is important that frame be fully construct when we do this lookup
366  // as get_original_pc() needs correct value for unextended_sp()
367  if (_pc != NULL) {
368    _cb = CodeCache::find_blob(_pc);
369    if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
370      _pc = ((nmethod*)_cb)->get_original_pc(this);
371      _deopt_state = is_deoptimized;
372    } else {
373      _deopt_state = not_deoptimized;
374    }
375  }
376}
377
378bool frame::is_interpreted_frame() const  {
379  return Interpreter::contains(pc());
380}
381
382// sender_sp
383
384intptr_t* frame::interpreter_frame_sender_sp() const {
385  assert(is_interpreted_frame(), "interpreted frame expected");
386  return fp();
387}
388
389#ifndef CC_INTERP
390void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
391  assert(is_interpreted_frame(), "interpreted frame expected");
392  Unimplemented();
393}
394#endif // CC_INTERP
395
396
397#ifdef ASSERT
398// Debugging aid
399static frame nth_sender(int n) {
400  frame f = JavaThread::current()->last_frame();
401
402  for(int i = 0; i < n; ++i)
403    f = f.sender((RegisterMap*)NULL);
404
405  printf("first frame %d\n",          f.is_first_frame()       ? 1 : 0);
406  printf("interpreted frame %d\n",    f.is_interpreted_frame() ? 1 : 0);
407  printf("java frame %d\n",           f.is_java_frame()        ? 1 : 0);
408  printf("entry frame %d\n",          f.is_entry_frame()       ? 1 : 0);
409  printf("native frame %d\n",         f.is_native_frame()      ? 1 : 0);
410  if (f.is_compiled_frame()) {
411    if (f.is_deoptimized_frame())
412      printf("deoptimized frame 1\n");
413    else
414      printf("compiled frame 1\n");
415  }
416
417  return f;
418}
419#endif
420
421
422frame frame::sender_for_entry_frame(RegisterMap *map) const {
423  assert(map != NULL, "map must be set");
424  // Java frame called from C; skip all C frames and return top C
425  // frame of that chunk as the sender
426  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
427  assert(!entry_frame_is_first(), "next Java fp must be non zero");
428  assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
429  intptr_t* last_Java_sp = jfa->last_Java_sp();
430  // Since we are walking the stack now this nested anchor is obviously walkable
431  // even if it wasn't when it was stacked.
432  if (!jfa->walkable()) {
433    // Capture _last_Java_pc (if needed) and mark anchor walkable.
434    jfa->capture_last_Java_pc(_sp);
435  }
436  assert(jfa->last_Java_pc() != NULL, "No captured pc!");
437  map->clear();
438  map->make_integer_regs_unsaved();
439  map->shift_window(last_Java_sp, NULL);
440  assert(map->include_argument_oops(), "should be set by clear");
441  return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc());
442}
443
444frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
445  ShouldNotCallThis();
446  return sender(map);
447}
448
449frame frame::sender_for_compiled_frame(RegisterMap *map) const {
450  ShouldNotCallThis();
451  return sender(map);
452}
453
454frame frame::sender(RegisterMap* map) const {
455  assert(map != NULL, "map must be set");
456
457  assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent");
458
459  // Default is not to follow arguments; update it accordingly below
460  map->set_include_argument_oops(false);
461
462  if (is_entry_frame()) return sender_for_entry_frame(map);
463
464  intptr_t* younger_sp     = sp();
465  intptr_t* sp             = sender_sp();
466  bool      adjusted_stack = false;
467
468  // Note:  The version of this operation on any platform with callee-save
469  //        registers must update the register map (if not null).
470  //        In order to do this correctly, the various subtypes of
471  //        of frame (interpreted, compiled, glue, native),
472  //        must be distinguished.  There is no need on SPARC for
473  //        such distinctions, because all callee-save registers are
474  //        preserved for all frames via SPARC-specific mechanisms.
475  //
476  //        *** HOWEVER, *** if and when we make any floating-point
477  //        registers callee-saved, then we will have to copy over
478  //        the RegisterMap update logic from the Intel code.
479
480  // The constructor of the sender must know whether this frame is interpreted so it can set the
481  // sender's _sp_adjustment_by_callee field.  An osr adapter frame was originally
482  // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
483  // explicitly recognized.
484
485  adjusted_stack = is_interpreted_frame();
486  if (adjusted_stack) {
487    map->make_integer_regs_unsaved();
488    map->shift_window(sp, younger_sp);
489  } else if (_cb != NULL) {
490    // Update the locations of implicitly saved registers to be their
491    // addresses in the register save area.
492    // For %o registers, the addresses of %i registers in the next younger
493    // frame are used.
494    map->shift_window(sp, younger_sp);
495    if (map->update_map()) {
496      // Tell GC to use argument oopmaps for some runtime stubs that need it.
497      // For C1, the runtime stub might not have oop maps, so set this flag
498      // outside of update_register_map.
499      map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
500      if (_cb->oop_maps() != NULL) {
501        OopMapSet::update_register_map(this, map);
502      }
503    }
504  }
505  return frame(sp, younger_sp, adjusted_stack);
506}
507
508
509void frame::patch_pc(Thread* thread, address pc) {
510  if(thread == Thread::current()) {
511   StubRoutines::Sparc::flush_callers_register_windows_func()();
512  }
513  if (TracePcPatching) {
514    // QQQ this assert is invalid (or too strong anyway) sice _pc could
515    // be original pc and frame could have the deopt pc.
516    // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc");
517    tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc);
518  }
519  _cb = CodeCache::find_blob(pc);
520  *O7_addr() = pc - pc_return_offset;
521  _cb = CodeCache::find_blob(_pc);
522  if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
523    address orig = ((nmethod*)_cb)->get_original_pc(this);
524    assert(orig == _pc, "expected original to be stored before patching");
525    _deopt_state = is_deoptimized;
526  } else {
527    _deopt_state = not_deoptimized;
528  }
529}
530
531
532static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) {
533  return (((intptr_t)sp & (2*wordSize-1)) == 0 &&
534          sp <= old_sp &&
535          sp >= young_sp);
536}
537
538
539/*
540  Find the (biased) sp that is just younger than old_sp starting at sp.
541  If not found return NULL. Register windows are assumed to be flushed.
542*/
543intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) {
544
545  intptr_t* previous_sp = NULL;
546  intptr_t* orig_sp = sp;
547
548  int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16
549  int max_frame2 = max_frames;
550  while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) {
551    if (max_frames-- <= 0)
552      // too many frames have gone by; invalid parameters given to this function
553      break;
554    previous_sp = sp;
555    sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()];
556    sp = (intptr_t*)((intptr_t)sp + STACK_BIAS);
557  }
558
559  return (sp == old_sp ? previous_sp : NULL);
560}
561
562/*
563  Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than
564  "valid_sp". So if "sp" is valid itself then it should be possible to walk frames
565  from "sp" to "valid_sp". The assumption is that the registers windows for the
566  thread stack in question are flushed.
567*/
568bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) {
569  return next_younger_sp_or_null(valid_sp, sp) != NULL;
570}
571
572
573bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
574  assert(is_interpreted_frame(), "must be interpreter frame");
575  return this->fp() == fp;
576}
577
578
579void frame::pd_gc_epilog() {
580  if (is_interpreted_frame()) {
581    // set constant pool cache entry for interpreter
582    methodOop m = interpreter_frame_method();
583
584    *interpreter_frame_cpoolcache_addr() = m->constants()->cache();
585  }
586}
587
588
589bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
590#ifdef CC_INTERP
591  // Is there anything to do?
592#else
593  assert(is_interpreted_frame(), "Not an interpreted frame");
594  // These are reasonable sanity checks
595  if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) {
596    return false;
597  }
598  if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) {
599    return false;
600  }
601
602  const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words;
603  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
604    return false;
605  }
606  // These are hacks to keep us out of trouble.
607  // The problem with these is that they mask other problems
608  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
609    return false;
610  }
611  // do some validation of frame elements
612
613  // first the method
614
615  methodOop m = *interpreter_frame_method_addr();
616
617  // validate the method we'd find in this potential sender
618  if (!Universe::heap()->is_valid_method(m)) return false;
619
620  // stack frames shouldn't be much larger than max_stack elements
621
622  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize()) {
623    return false;
624  }
625
626  // validate bci/bcx
627
628  intptr_t  bcx    = interpreter_frame_bcx();
629  if (m->validate_bci_from_bcx(bcx) < 0) {
630    return false;
631  }
632
633  // validate constantPoolCacheOop
634
635  constantPoolCacheOop cp = *interpreter_frame_cache_addr();
636
637  if (cp == NULL ||
638      !Space::is_aligned(cp) ||
639      !Universe::heap()->is_permanent((void*)cp)) return false;
640
641  // validate locals
642
643  address locals =  (address) *interpreter_frame_locals_addr();
644
645  if (locals > thread->stack_base() || locals < (address) fp()) return false;
646
647  // We'd have to be pretty unlucky to be mislead at this point
648#endif /* CC_INTERP */
649  return true;
650}
651
652
653// Windows have been flushed on entry (but not marked). Capture the pc that
654// is the return address to the frame that contains "sp" as its stack pointer.
655// This pc resides in the called of the frame corresponding to "sp".
656// As a side effect we mark this JavaFrameAnchor as having flushed the windows.
657// This side effect lets us mark stacked JavaFrameAnchors (stacked in the
658// call_helper) as flushed when we have flushed the windows for the most
659// recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls
660// and lets us find the pc just once rather than multiple times as it did
661// in the bad old _post_Java_state days.
662//
663void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) {
664  if (last_Java_sp() != NULL && last_Java_pc() == NULL) {
665    // try and find the sp just younger than _last_Java_sp
666    intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp);
667    // Really this should never fail otherwise VM call must have non-standard
668    // frame linkage (bad) or stack is not properly flushed (worse).
669    guarantee(_post_Java_sp != NULL, "bad stack!");
670    _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset;
671
672  }
673  set_window_flushed();
674}
675
676void JavaFrameAnchor::make_walkable(JavaThread* thread) {
677  if (walkable()) return;
678  // Eventually make an assert
679  guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers");
680  // We always flush in case the profiler wants it but we won't mark
681  // the windows as flushed unless we have a last_Java_frame
682  intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
683  if (last_Java_sp() != NULL ) {
684    capture_last_Java_pc(sp);
685  }
686}
687
688intptr_t* frame::entry_frame_argument_at(int offset) const {
689  // convert offset to index to deal with tsi
690  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
691
692  intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()];
693  return &LSP[index+1];
694}
695
696
697BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
698  assert(is_interpreted_frame(), "interpreted frame expected");
699  methodOop method = interpreter_frame_method();
700  BasicType type = method->result_type();
701
702  if (method->is_native()) {
703    // Prior to notifying the runtime of the method_exit the possible result
704    // value is saved to l_scratch and d_scratch.
705
706#ifdef CC_INTERP
707    interpreterState istate = get_interpreterState();
708    intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult;
709    intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult;
710#else /* CC_INTERP */
711    intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset;
712    intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset;
713#endif /* CC_INTERP */
714
715    address l_addr = (address)l_scratch;
716#ifdef _LP64
717    // On 64-bit the result for 1/8/16/32-bit result types is in the other
718    // word half
719    l_addr += wordSize/2;
720#endif
721
722    switch (type) {
723      case T_OBJECT:
724      case T_ARRAY: {
725#ifdef CC_INTERP
726        *oop_result = istate->_oop_temp;
727#else
728        oop obj = (oop) at(interpreter_frame_oop_temp_offset);
729        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
730        *oop_result = obj;
731#endif // CC_INTERP
732        break;
733      }
734
735      case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
736      case T_BYTE    : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
737      case T_CHAR    : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
738      case T_SHORT   : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
739      case T_INT     : value_result->i = *(jint*)l_addr; break;
740      case T_LONG    : value_result->j = *(jlong*)l_scratch; break;
741      case T_FLOAT   : value_result->f = *(jfloat*)d_scratch; break;
742      case T_DOUBLE  : value_result->d = *(jdouble*)d_scratch; break;
743      case T_VOID    : /* Nothing to do */ break;
744      default        : ShouldNotReachHere();
745    }
746  } else {
747    intptr_t* tos_addr = interpreter_frame_tos_address();
748
749    switch(type) {
750      case T_OBJECT:
751      case T_ARRAY: {
752        oop obj = (oop)*tos_addr;
753        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
754        *oop_result = obj;
755        break;
756      }
757      case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
758      case T_BYTE    : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
759      case T_CHAR    : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
760      case T_SHORT   : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
761      case T_INT     : value_result->i = *(jint*)tos_addr; break;
762      case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
763      case T_FLOAT   : value_result->f = *(jfloat*)tos_addr; break;
764      case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
765      case T_VOID    : /* Nothing to do */ break;
766      default        : ShouldNotReachHere();
767    }
768  };
769
770  return type;
771}
772
773// Lesp pointer is one word lower than the top item on the stack.
774intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
775  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1;
776  return &interpreter_frame_tos_address()[index];
777}
778