c1_MacroAssembler_sparc.cpp revision 1988:b1a2afa37ec4
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_MacroAssembler.hpp"
27#include "c1/c1_Runtime1.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "gc_interface/collectedHeap.hpp"
30#include "interpreter/interpreter.hpp"
31#include "oops/arrayOop.hpp"
32#include "oops/markOop.hpp"
33#include "runtime/basicLock.hpp"
34#include "runtime/biasedLocking.hpp"
35#include "runtime/os.hpp"
36#include "runtime/stubRoutines.hpp"
37
38void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
39  Label L;
40  const Register temp_reg = G3_scratch;
41  // Note: needs more testing of out-of-line vs. inline slow case
42  verify_oop(receiver);
43  load_klass(receiver, temp_reg);
44  cmp(temp_reg, iCache);
45  brx(Assembler::equal, true, Assembler::pt, L);
46  delayed()->nop();
47  AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
48  jump_to(ic_miss, temp_reg);
49  delayed()->nop();
50  align(CodeEntryAlignment);
51  bind(L);
52}
53
54
55void C1_MacroAssembler::explicit_null_check(Register base) {
56  Unimplemented();
57}
58
59
60void C1_MacroAssembler::build_frame(int frame_size_in_bytes) {
61
62  generate_stack_overflow_check(frame_size_in_bytes);
63  // Create the frame.
64  save_frame_c1(frame_size_in_bytes);
65}
66
67
68void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
69  if (C1Breakpoint) breakpoint_trap();
70  inline_cache_check(receiver, ic_klass);
71}
72
73
74void C1_MacroAssembler::verified_entry() {
75  if (C1Breakpoint) breakpoint_trap();
76  // build frame
77  verify_FPU(0, "method_entry");
78}
79
80
81void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) {
82  assert_different_registers(Rmark, Roop, Rbox, Rscratch);
83
84  Label done;
85
86  Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
87
88  // The following move must be the first instruction of emitted since debug
89  // information may be generated for it.
90  // Load object header
91  ld_ptr(mark_addr, Rmark);
92
93  verify_oop(Roop);
94
95  // save object being locked into the BasicObjectLock
96  st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes());
97
98  if (UseBiasedLocking) {
99    biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case);
100  }
101
102  // Save Rbox in Rscratch to be used for the cas operation
103  mov(Rbox, Rscratch);
104
105  // and mark it unlocked
106  or3(Rmark, markOopDesc::unlocked_value, Rmark);
107
108  // save unlocked object header into the displaced header location on the stack
109  st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
110
111  // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
112  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
113  casx_under_lock(mark_addr.base(), Rmark, Rscratch, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
114  // if compare/exchange succeeded we found an unlocked object and we now have locked it
115  // hence we are done
116  cmp(Rmark, Rscratch);
117  brx(Assembler::equal, false, Assembler::pt, done);
118  delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
119  // we did not find an unlocked object so see if this is a recursive case
120  // sub(Rscratch, SP, Rscratch);
121  assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
122  andcc(Rscratch, 0xfffff003, Rscratch);
123  brx(Assembler::notZero, false, Assembler::pn, slow_case);
124  delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
125  bind(done);
126}
127
128
129void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) {
130  assert_different_registers(Rmark, Roop, Rbox);
131
132  Label done;
133
134  Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
135  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
136
137  if (UseBiasedLocking) {
138    // load the object out of the BasicObjectLock
139    ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
140    verify_oop(Roop);
141    biased_locking_exit(mark_addr, Rmark, done);
142  }
143  // Test first it it is a fast recursive unlock
144  ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
145  br_null(Rmark, false, Assembler::pt, done);
146  delayed()->nop();
147  if (!UseBiasedLocking) {
148    // load object
149    ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
150    verify_oop(Roop);
151  }
152
153  // Check if it is still a light weight lock, this is is true if we see
154  // the stack address of the basicLock in the markOop of the object
155  casx_under_lock(mark_addr.base(), Rbox, Rmark, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
156  cmp(Rbox, Rmark);
157
158  brx(Assembler::notEqual, false, Assembler::pn, slow_case);
159  delayed()->nop();
160  // Done
161  bind(done);
162}
163
164
165void C1_MacroAssembler::try_allocate(
166  Register obj,                        // result: pointer to object after successful allocation
167  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
168  int      con_size_in_bytes,          // object size in bytes if   known at compile time
169  Register t1,                         // temp register, must be global register for incr_allocated_bytes
170  Register t2,                         // temp register
171  Label&   slow_case                   // continuation point if fast allocation fails
172) {
173  if (UseTLAB) {
174    tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
175  } else {
176    eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
177    incr_allocated_bytes(var_size_in_bytes, con_size_in_bytes, t1);
178  }
179}
180
181
182void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
183  assert_different_registers(obj, klass, len, t1, t2);
184  if (UseBiasedLocking && !len->is_valid()) {
185    ld_ptr(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes(), t1);
186  } else {
187    set((intx)markOopDesc::prototype(), t1);
188  }
189  st_ptr(t1, obj, oopDesc::mark_offset_in_bytes());
190  if (UseCompressedOops) {
191    // Save klass
192    mov(klass, t1);
193    encode_heap_oop_not_null(t1);
194    stw(t1, obj, oopDesc::klass_offset_in_bytes());
195  } else {
196    st_ptr(klass, obj, oopDesc::klass_offset_in_bytes());
197  }
198  if (len->is_valid()) st(len, obj, arrayOopDesc::length_offset_in_bytes());
199  else if (UseCompressedOops) {
200    store_klass_gap(G0, obj);
201  }
202}
203
204
205void C1_MacroAssembler::initialize_body(Register base, Register index) {
206  assert_different_registers(base, index);
207  Label loop;
208  bind(loop);
209  subcc(index, HeapWordSize, index);
210  brx(Assembler::greaterEqual, true, Assembler::pt, loop);
211  delayed()->st_ptr(G0, base, index);
212}
213
214
215void C1_MacroAssembler::allocate_object(
216  Register obj,                        // result: pointer to object after successful allocation
217  Register t1,                         // temp register
218  Register t2,                         // temp register, must be a global register for try_allocate
219  Register t3,                         // temp register
220  int      hdr_size,                   // object header size in words
221  int      obj_size,                   // object size in words
222  Register klass,                      // object klass
223  Label&   slow_case                   // continuation point if fast allocation fails
224) {
225  assert_different_registers(obj, t1, t2, t3, klass);
226  assert(klass == G5, "must be G5");
227
228  // allocate space & initialize header
229  if (!is_simm13(obj_size * wordSize)) {
230    // would need to use extra register to load
231    // object size => go the slow case for now
232    br(Assembler::always, false, Assembler::pt, slow_case);
233    delayed()->nop();
234    return;
235  }
236  try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case);
237
238  initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
239}
240
241void C1_MacroAssembler::initialize_object(
242  Register obj,                        // result: pointer to object after successful allocation
243  Register klass,                      // object klass
244  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
245  int      con_size_in_bytes,          // object size in bytes if   known at compile time
246  Register t1,                         // temp register
247  Register t2                          // temp register
248  ) {
249  const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
250
251  initialize_header(obj, klass, noreg, t1, t2);
252
253#ifdef ASSERT
254  {
255    Label ok;
256    ld(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), t1);
257    if (var_size_in_bytes != noreg) {
258      cmp(t1, var_size_in_bytes);
259    } else {
260      cmp(t1, con_size_in_bytes);
261    }
262    brx(Assembler::equal, false, Assembler::pt, ok);
263    delayed()->nop();
264    stop("bad size in initialize_object");
265    should_not_reach_here();
266
267    bind(ok);
268  }
269
270#endif
271
272  // initialize body
273  const int threshold = 5 * HeapWordSize;              // approximate break even point for code size
274  if (var_size_in_bytes != noreg) {
275    // use a loop
276    add(obj, hdr_size_in_bytes, t1);               // compute address of first element
277    sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body
278    initialize_body(t1, t2);
279#ifndef _LP64
280  } else if (VM_Version::v9_instructions_work() && con_size_in_bytes < threshold * 2) {
281    // on v9 we can do double word stores to fill twice as much space.
282    assert(hdr_size_in_bytes % 8 == 0, "double word aligned");
283    assert(con_size_in_bytes % 8 == 0, "double word aligned");
284    for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i);
285#endif
286  } else if (con_size_in_bytes <= threshold) {
287    // use explicit NULL stores
288    for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize)     st_ptr(G0, obj, i);
289  } else if (con_size_in_bytes > hdr_size_in_bytes) {
290    // use a loop
291    const Register base  = t1;
292    const Register index = t2;
293    add(obj, hdr_size_in_bytes, base);               // compute address of first element
294    // compute index = number of words to clear
295    set(con_size_in_bytes - hdr_size_in_bytes, index);
296    initialize_body(base, index);
297  }
298
299  if (CURRENT_ENV->dtrace_alloc_probes()) {
300    assert(obj == O0, "must be");
301    call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
302         relocInfo::runtime_call_type);
303    delayed()->nop();
304  }
305
306  verify_oop(obj);
307}
308
309
310void C1_MacroAssembler::allocate_array(
311  Register obj,                        // result: pointer to array after successful allocation
312  Register len,                        // array length
313  Register t1,                         // temp register
314  Register t2,                         // temp register
315  Register t3,                         // temp register
316  int      hdr_size,                   // object header size in words
317  int      elt_size,                   // element size in bytes
318  Register klass,                      // object klass
319  Label&   slow_case                   // continuation point if fast allocation fails
320) {
321  assert_different_registers(obj, len, t1, t2, t3, klass);
322  assert(klass == G5, "must be G5");
323  assert(t1 == G1, "must be G1");
324
325  // determine alignment mask
326  assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
327
328  // check for negative or excessive length
329  // note: the maximum length allowed is chosen so that arrays of any
330  //       element size with this length are always smaller or equal
331  //       to the largest integer (i.e., array size computation will
332  //       not overflow)
333  set(max_array_allocation_length, t1);
334  cmp(len, t1);
335  br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
336
337  // compute array size
338  // note: if 0 <= len <= max_length, len*elt_size + header + alignment is
339  //       smaller or equal to the largest integer; also, since top is always
340  //       aligned, we can do the alignment here instead of at the end address
341  //       computation
342  const Register arr_size = t1;
343  switch (elt_size) {
344    case  1: delayed()->mov(len,    arr_size); break;
345    case  2: delayed()->sll(len, 1, arr_size); break;
346    case  4: delayed()->sll(len, 2, arr_size); break;
347    case  8: delayed()->sll(len, 3, arr_size); break;
348    default: ShouldNotReachHere();
349  }
350  add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment
351  and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size);                     // align array size
352
353  // allocate space & initialize header
354  if (UseTLAB) {
355    tlab_allocate(obj, arr_size, 0, t2, slow_case);
356  } else {
357    eden_allocate(obj, arr_size, 0, t2, t3, slow_case);
358  }
359  initialize_header(obj, klass, len, t2, t3);
360
361  // initialize body
362  const Register base  = t2;
363  const Register index = t3;
364  add(obj, hdr_size * wordSize, base);               // compute address of first element
365  sub(arr_size, hdr_size * wordSize, index);         // compute index = number of words to clear
366  initialize_body(base, index);
367
368  if (CURRENT_ENV->dtrace_alloc_probes()) {
369    assert(obj == O0, "must be");
370    call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
371         relocInfo::runtime_call_type);
372    delayed()->nop();
373  }
374
375  verify_oop(obj);
376}
377
378
379#ifndef PRODUCT
380
381void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
382  if (!VerifyOops) return;
383  verify_oop_addr(Address(SP, stack_offset + STACK_BIAS));
384}
385
386void C1_MacroAssembler::verify_not_null_oop(Register r) {
387  Label not_null;
388  br_zero(Assembler::notEqual, false, Assembler::pt, r, not_null);
389  delayed()->nop();
390  stop("non-null oop required");
391  bind(not_null);
392  if (!VerifyOops) return;
393  verify_oop(r);
394}
395
396void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters,
397                                             Register preserve1, Register preserve2) {
398  if (iregisters) {
399    for (int i = 0; i < 6; i++) {
400      Register r = as_iRegister(i);
401      if (r != preserve1 && r != preserve2)  set(0xdead, r);
402    }
403  }
404  if (oregisters) {
405    for (int i = 0; i < 6; i++) {
406      Register r = as_oRegister(i);
407      if (r != preserve1 && r != preserve2)  set(0xdead, r);
408    }
409  }
410  if (lregisters) {
411    for (int i = 0; i < 8; i++) {
412      Register r = as_lRegister(i);
413      if (r != preserve1 && r != preserve2)  set(0xdead, r);
414    }
415  }
416}
417
418
419#endif
420