c1_MacroAssembler_sparc.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_c1_MacroAssembler_sparc.cpp.incl"
27
28void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
29  Label L;
30  const Register temp_reg = G3_scratch;
31  // Note: needs more testing of out-of-line vs. inline slow case
32  Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
33  verify_oop(receiver);
34  ld_ptr(receiver, oopDesc::klass_offset_in_bytes(), temp_reg);
35  cmp(temp_reg, iCache);
36  brx(Assembler::equal, true, Assembler::pt, L);
37  delayed()->nop();
38  jump_to(ic_miss, 0);
39  delayed()->nop();
40  align(CodeEntryAlignment);
41  bind(L);
42}
43
44
45void C1_MacroAssembler::method_exit(bool restore_frame) {
46  // this code must be structured this way so that the return
47  // instruction can be a safepoint.
48  if (restore_frame) {
49    restore();
50  }
51  retl();
52  delayed()->nop();
53}
54
55
56void C1_MacroAssembler::explicit_null_check(Register base) {
57  Unimplemented();
58}
59
60
61void C1_MacroAssembler::build_frame(int frame_size_in_bytes) {
62
63  generate_stack_overflow_check(frame_size_in_bytes);
64  // Create the frame.
65  save_frame_c1(frame_size_in_bytes);
66}
67
68
69void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
70  if (C1Breakpoint) breakpoint_trap();
71  inline_cache_check(receiver, ic_klass);
72}
73
74
75void C1_MacroAssembler::verified_entry() {
76  if (C1Breakpoint) breakpoint_trap();
77  // build frame
78  verify_FPU(0, "method_entry");
79}
80
81
82void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) {
83  assert_different_registers(Rmark, Roop, Rbox, Rscratch);
84
85  Label done;
86
87  Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
88
89  // The following move must be the first instruction of emitted since debug
90  // information may be generated for it.
91  // Load object header
92  ld_ptr(mark_addr, Rmark);
93
94  verify_oop(Roop);
95
96  // save object being locked into the BasicObjectLock
97  st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes());
98
99  if (UseBiasedLocking) {
100    biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case);
101  }
102
103  // Save Rbox in Rscratch to be used for the cas operation
104  mov(Rbox, Rscratch);
105
106  // and mark it unlocked
107  or3(Rmark, markOopDesc::unlocked_value, Rmark);
108
109  // save unlocked object header into the displaced header location on the stack
110  st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
111
112  // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
113  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
114  casx_under_lock(mark_addr.base(), Rmark, Rscratch, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
115  // if compare/exchange succeeded we found an unlocked object and we now have locked it
116  // hence we are done
117  cmp(Rmark, Rscratch);
118  brx(Assembler::equal, false, Assembler::pt, done);
119  delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
120  // we did not find an unlocked object so see if this is a recursive case
121  // sub(Rscratch, SP, Rscratch);
122  assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
123  andcc(Rscratch, 0xfffff003, Rscratch);
124  brx(Assembler::notZero, false, Assembler::pn, slow_case);
125  delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
126  bind(done);
127}
128
129
130void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) {
131  assert_different_registers(Rmark, Roop, Rbox);
132
133  Label done;
134
135  Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
136  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
137
138  if (UseBiasedLocking) {
139    // load the object out of the BasicObjectLock
140    ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
141    verify_oop(Roop);
142    biased_locking_exit(mark_addr, Rmark, done);
143  }
144  // Test first it it is a fast recursive unlock
145  ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
146  br_null(Rmark, false, Assembler::pt, done);
147  delayed()->nop();
148  if (!UseBiasedLocking) {
149    // load object
150    ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
151    verify_oop(Roop);
152  }
153
154  // Check if it is still a light weight lock, this is is true if we see
155  // the stack address of the basicLock in the markOop of the object
156  casx_under_lock(mark_addr.base(), Rbox, Rmark, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
157  cmp(Rbox, Rmark);
158
159  brx(Assembler::notEqual, false, Assembler::pn, slow_case);
160  delayed()->nop();
161  // Done
162  bind(done);
163}
164
165
166void C1_MacroAssembler::try_allocate(
167  Register obj,                        // result: pointer to object after successful allocation
168  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
169  int      con_size_in_bytes,          // object size in bytes if   known at compile time
170  Register t1,                         // temp register
171  Register t2,                         // temp register
172  Label&   slow_case                   // continuation point if fast allocation fails
173) {
174  if (UseTLAB) {
175    tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
176  } else {
177    eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
178  }
179}
180
181
182void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
183  assert_different_registers(obj, klass, len, t1, t2);
184  if (UseBiasedLocking && !len->is_valid()) {
185    ld_ptr(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes(), t1);
186  } else {
187    set((intx)markOopDesc::prototype(), t1);
188  }
189  st_ptr(t1  , obj, oopDesc::mark_offset_in_bytes       ());
190  st_ptr(klass, obj, oopDesc::klass_offset_in_bytes      ());
191  if (len->is_valid()) st(len  , obj, arrayOopDesc::length_offset_in_bytes());
192}
193
194
195void C1_MacroAssembler::initialize_body(Register base, Register index) {
196  assert_different_registers(base, index);
197  Label loop;
198  bind(loop);
199  subcc(index, HeapWordSize, index);
200  brx(Assembler::greaterEqual, true, Assembler::pt, loop);
201  delayed()->st_ptr(G0, base, index);
202}
203
204
205void C1_MacroAssembler::allocate_object(
206  Register obj,                        // result: pointer to object after successful allocation
207  Register t1,                         // temp register
208  Register t2,                         // temp register
209  Register t3,                         // temp register
210  int      hdr_size,                   // object header size in words
211  int      obj_size,                   // object size in words
212  Register klass,                      // object klass
213  Label&   slow_case                   // continuation point if fast allocation fails
214) {
215  assert_different_registers(obj, t1, t2, t3, klass);
216  assert(klass == G5, "must be G5");
217
218  // allocate space & initialize header
219  if (!is_simm13(obj_size * wordSize)) {
220    // would need to use extra register to load
221    // object size => go the slow case for now
222    br(Assembler::always, false, Assembler::pt, slow_case);
223    delayed()->nop();
224    return;
225  }
226  try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case);
227
228  initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
229}
230
231void C1_MacroAssembler::initialize_object(
232  Register obj,                        // result: pointer to object after successful allocation
233  Register klass,                      // object klass
234  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
235  int      con_size_in_bytes,          // object size in bytes if   known at compile time
236  Register t1,                         // temp register
237  Register t2                          // temp register
238  ) {
239  const int hdr_size_in_bytes = oopDesc::header_size_in_bytes();
240
241  initialize_header(obj, klass, noreg, t1, t2);
242
243#ifdef ASSERT
244  {
245    Label ok;
246    ld(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), t1);
247    if (var_size_in_bytes != noreg) {
248      cmp(t1, var_size_in_bytes);
249    } else {
250      cmp(t1, con_size_in_bytes);
251    }
252    brx(Assembler::equal, false, Assembler::pt, ok);
253    delayed()->nop();
254    stop("bad size in initialize_object");
255    should_not_reach_here();
256
257    bind(ok);
258  }
259
260#endif
261
262  // initialize body
263  const int threshold = 5 * HeapWordSize;              // approximate break even point for code size
264  if (var_size_in_bytes != noreg) {
265    // use a loop
266    add(obj, hdr_size_in_bytes, t1);               // compute address of first element
267    sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body
268    initialize_body(t1, t2);
269#ifndef _LP64
270  } else if (VM_Version::v9_instructions_work() && con_size_in_bytes < threshold * 2) {
271    // on v9 we can do double word stores to fill twice as much space.
272    assert(hdr_size_in_bytes % 8 == 0, "double word aligned");
273    assert(con_size_in_bytes % 8 == 0, "double word aligned");
274    for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i);
275#endif
276  } else if (con_size_in_bytes <= threshold) {
277    // use explicit NULL stores
278    for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize)     st_ptr(G0, obj, i);
279  } else if (con_size_in_bytes > hdr_size_in_bytes) {
280    // use a loop
281    const Register base  = t1;
282    const Register index = t2;
283    add(obj, hdr_size_in_bytes, base);               // compute address of first element
284    // compute index = number of words to clear
285    set(con_size_in_bytes - hdr_size_in_bytes, index);
286    initialize_body(base, index);
287  }
288
289  if (DTraceAllocProbes) {
290    assert(obj == O0, "must be");
291    call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
292         relocInfo::runtime_call_type);
293    delayed()->nop();
294  }
295
296  verify_oop(obj);
297}
298
299
300void C1_MacroAssembler::allocate_array(
301  Register obj,                        // result: pointer to array after successful allocation
302  Register len,                        // array length
303  Register t1,                         // temp register
304  Register t2,                         // temp register
305  Register t3,                         // temp register
306  int      hdr_size,                   // object header size in words
307  int      elt_size,                   // element size in bytes
308  Register klass,                      // object klass
309  Label&   slow_case                   // continuation point if fast allocation fails
310) {
311  assert_different_registers(obj, len, t1, t2, t3, klass);
312  assert(klass == G5, "must be G5");
313  assert(t1 == G1, "must be G1");
314
315  // determine alignment mask
316  assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
317
318  // check for negative or excessive length
319  // note: the maximum length allowed is chosen so that arrays of any
320  //       element size with this length are always smaller or equal
321  //       to the largest integer (i.e., array size computation will
322  //       not overflow)
323  set(max_array_allocation_length, t1);
324  cmp(len, t1);
325  br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
326
327  // compute array size
328  // note: if 0 <= len <= max_length, len*elt_size + header + alignment is
329  //       smaller or equal to the largest integer; also, since top is always
330  //       aligned, we can do the alignment here instead of at the end address
331  //       computation
332  const Register arr_size = t1;
333  switch (elt_size) {
334    case  1: delayed()->mov(len,    arr_size); break;
335    case  2: delayed()->sll(len, 1, arr_size); break;
336    case  4: delayed()->sll(len, 2, arr_size); break;
337    case  8: delayed()->sll(len, 3, arr_size); break;
338    default: ShouldNotReachHere();
339  }
340  add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment
341  and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size);                     // align array size
342
343  // allocate space & initialize header
344  if (UseTLAB) {
345    tlab_allocate(obj, arr_size, 0, t2, slow_case);
346  } else {
347    eden_allocate(obj, arr_size, 0, t2, t3, slow_case);
348  }
349  initialize_header(obj, klass, len, t2, t3);
350
351  // initialize body
352  const Register base  = t2;
353  const Register index = t3;
354  add(obj, hdr_size * wordSize, base);               // compute address of first element
355  sub(arr_size, hdr_size * wordSize, index);         // compute index = number of words to clear
356  initialize_body(base, index);
357
358  if (DTraceAllocProbes) {
359    assert(obj == O0, "must be");
360    call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
361         relocInfo::runtime_call_type);
362    delayed()->nop();
363  }
364
365  verify_oop(obj);
366}
367
368
369#ifndef PRODUCT
370
371void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
372  if (!VerifyOops) return;
373  verify_oop_addr(Address(SP, 0, stack_offset + STACK_BIAS));
374}
375
376void C1_MacroAssembler::verify_not_null_oop(Register r) {
377  Label not_null;
378  br_zero(Assembler::notEqual, false, Assembler::pt, r, not_null);
379  delayed()->nop();
380  stop("non-null oop required");
381  bind(not_null);
382  if (!VerifyOops) return;
383  verify_oop(r);
384}
385
386void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters,
387                                             Register preserve1, Register preserve2) {
388  if (iregisters) {
389    for (int i = 0; i < 6; i++) {
390      Register r = as_iRegister(i);
391      if (r != preserve1 && r != preserve2)  set(0xdead, r);
392    }
393  }
394  if (oregisters) {
395    for (int i = 0; i < 6; i++) {
396      Register r = as_oRegister(i);
397      if (r != preserve1 && r != preserve2)  set(0xdead, r);
398    }
399  }
400  if (lregisters) {
401    for (int i = 0; i < 8; i++) {
402      Register r = as_lRegister(i);
403      if (r != preserve1 && r != preserve2)  set(0xdead, r);
404    }
405  }
406}
407
408
409#endif
410