assembler_sparc.hpp revision 3724:8e47bac5643a
12606Sdfr/*
22606Sdfr * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
32606Sdfr * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
42606Sdfr *
52606Sdfr * This code is free software; you can redistribute it and/or modify it
62606Sdfr * under the terms of the GNU General Public License version 2 only, as
72606Sdfr * published by the Free Software Foundation.
82606Sdfr *
92606Sdfr * This code is distributed in the hope that it will be useful, but WITHOUT
102606Sdfr * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
112606Sdfr * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
122606Sdfr * version 2 for more details (a copy is included in the LICENSE file that
132606Sdfr * accompanied this code).
142606Sdfr *
152606Sdfr * You should have received a copy of the GNU General Public License version
162606Sdfr * 2 along with this work; if not, write to the Free Software Foundation,
172606Sdfr * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
182606Sdfr *
192606Sdfr * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
202606Sdfr * or visit www.oracle.com if you need additional information or have any
212606Sdfr * questions.
2219753Ssos *
232606Sdfr */
242606Sdfr
2519753Ssos#ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
2619753Ssos#define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
2719753Ssos
2819753Ssosclass BiasedLockingCounters;
2919753Ssos
3019753Ssos// <sys/trap.h> promises that the system will not use traps 16-31
3119753Ssos#define ST_RESERVED_FOR_USER_0 0x10
3219753Ssos
3319753Ssos/* Written: David Ungar 4/19/97 */
3419753Ssos
3519753Ssos// Contains all the definitions needed for sparc assembly code generation.
3619753Ssos
3719753Ssos// Register aliases for parts of the system:
3819753Ssos
3919753Ssos// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
4019753Ssos// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
4119753Ssos// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
4219753Ssos
4319753Ssos// g2-g4 are scratch registers called "application globals".  Their
4419753Ssos// meaning is reserved to the "compilation system"--which means us!
452606Sdfr// They are are not supposed to be touched by ordinary C code, although
4619753Ssos// highly-optimized C code might steal them for temps.  They are safe
4719753Ssos// across thread switches, and the ABI requires that they be safe
4819753Ssos// across function calls.
4919753Ssos//
502606Sdfr// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
512606Sdfr// across func calls, and V8+ also allows g5 to be clobbered across
522606Sdfr// func calls.  Also, g1 and g5 can get touched while doing shared
532606Sdfr// library loading.
542606Sdfr//
552606Sdfr// We must not touch g7 (it is the thread-self register) and g6 is
562606Sdfr// reserved for certain tools.  g0, of course, is always zero.
572606Sdfr//
582606Sdfr// (Sources:  SunSoft Compilers Group, thread library engineers.)
592606Sdfr
6019753Ssos// %%%% The interpreter should be revisited to reduce global scratch regs.
6119753Ssos
6219753Ssos// This global always holds the current JavaThread pointer:
6319753Ssos
6419753SsosREGISTER_DECLARATION(Register, G2_thread , G2);
6519753SsosREGISTER_DECLARATION(Register, G6_heapbase , G6);
6619753Ssos
6719753Ssos// The following globals are part of the Java calling convention:
6819753Ssos
6919753SsosREGISTER_DECLARATION(Register, G5_method             , G5);
7019753SsosREGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
7119753SsosREGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
7219753Ssos
7319753Ssos// The following globals are used for the new C1 & interpreter calling convention:
7419753SsosREGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
7519753Ssos
7619753Ssos// This local is used to preserve G2_thread in the interpreter and in stubs:
7719753SsosREGISTER_DECLARATION(Register, L7_thread_cache , L7);
782606Sdfr
7919753Ssos// These globals are used as scratch registers in the interpreter:
8019753Ssos
8119753SsosREGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
8219753SsosREGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
8319753SsosREGISTER_DECLARATION(Register, G3_scratch    , G3);
8419753SsosREGISTER_DECLARATION(Register, G4_scratch    , G4);
8519753Ssos
8619753Ssos// These globals are used as short-lived scratch registers in the compiler:
8719753Ssos
8819753SsosREGISTER_DECLARATION(Register, Gtemp  , G5);
8919753Ssos
9019753Ssos// JSR 292 fixed register usages:
9119753SsosREGISTER_DECLARATION(Register, G5_method_type        , G5);
9219753SsosREGISTER_DECLARATION(Register, G3_method_handle      , G3);
9319753SsosREGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
9419753Ssos
9519753Ssos// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
9619753Ssos// because a single patchable "set" instruction (NativeMovConstReg,
9719753Ssos// or NativeMovConstPatching for compiler1) instruction
9819753Ssos// serves to set up either quantity, depending on whether the compiled
9919753Ssos// call site is an inline cache or is megamorphic.  See the function
10019753Ssos// CompiledIC::set_to_megamorphic.
10119753Ssos//
10219753Ssos// If a inline cache targets an interpreted method, then the
10319753Ssos// G5 register will be used twice during the call.  First,
10419753Ssos// the call site will be patched to load a compiledICHolder
10519753Ssos// into G5. (This is an ordered pair of ic_klass, method.)
10619753Ssos// The c2i adapter will first check the ic_klass, then load
10719753Ssos// G5_method with the method part of the pair just before
10819753Ssos// jumping into the interpreter.
10919753Ssos//
11019753Ssos// Note that G5_method is only the method-self for the interpreter,
11119753Ssos// and is logically unrelated to G5_megamorphic_method.
11219753Ssos//
11319753Ssos// Invariants on G2_thread (the JavaThread pointer):
11419753Ssos//  - it should not be used for any other purpose anywhere
11519753Ssos//  - it must be re-initialized by StubRoutines::call_stub()
11619753Ssos//  - it must be preserved around every use of call_VM
11719753Ssos
11819753Ssos// We can consider using g2/g3/g4 to cache more values than the
11919753Ssos// JavaThread, such as the card-marking base or perhaps pointers into
12019753Ssos// Eden.  It's something of a waste to use them as scratch temporaries,
12119753Ssos// since they are not supposed to be volatile.  (Of course, if we find
12219753Ssos// that Java doesn't benefit from application globals, then we can just
12319753Ssos// use them as ordinary temporaries.)
12419753Ssos//
12519753Ssos// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
12619753Ssos// it makes sense to use them routinely for procedure linkage,
127// whenever the On registers are not applicable.  Examples:  G5_method,
128// G5_inline_cache_klass, and a double handful of miscellaneous compiler
129// stubs.  This means that compiler stubs, etc., should be kept to a
130// maximum of two or three G-register arguments.
131
132
133// stub frames
134
135REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
136
137// Interpreter frames
138
139#ifdef CC_INTERP
140REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
141REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
142REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
143REGISTER_DECLARATION(Register, L2_scratch       , L2);
144REGISTER_DECLARATION(Register, L3_scratch       , L3);
145REGISTER_DECLARATION(Register, L4_scratch       , L4);
146REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
147REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
148REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
149REGISTER_DECLARATION(Register, O5_savedSP       , O5);
150REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
151                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
152                                                       // is added and removed as needed in the frame code.
153// Interface to signature handler
154REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
155REGISTER_DECLARATION(Register, Lmethod          , L6); // Method* when calling signature handler
156
157#else
158REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
159REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
160REGISTER_DECLARATION(Register, Lmethod          , L2);
161REGISTER_DECLARATION(Register, Llocals          , L3);
162REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
163                                                       // must match Llocals in asm interpreter
164REGISTER_DECLARATION(Register, Lmonitors        , L4);
165REGISTER_DECLARATION(Register, Lbyte_code       , L5);
166// When calling out from the interpreter we record SP so that we can remove any extra stack
167// space allocated during adapter transitions. This register is only live from the point
168// of the call until we return.
169REGISTER_DECLARATION(Register, Llast_SP         , L5);
170REGISTER_DECLARATION(Register, Lscratch         , L5);
171REGISTER_DECLARATION(Register, Lscratch2        , L6);
172REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
173
174REGISTER_DECLARATION(Register, O5_savedSP       , O5);
175REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
176                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
177                                                       // is added and removed as needed in the frame code.
178REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
179REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
180REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
181#endif /* CC_INTERP */
182
183// NOTE: Lscratch2 and LcpoolCache point to the same registers in
184//       the interpreter code. If Lscratch2 needs to be used for some
185//       purpose than LcpoolCache should be restore after that for
186//       the interpreter to work right
187// (These assignments must be compatible with L7_thread_cache; see above.)
188
189// Since Lbcp points into the middle of the method object,
190// it is temporarily converted into a "bcx" during GC.
191
192// Exception processing
193// These registers are passed into exception handlers.
194// All exception handlers require the exception object being thrown.
195// In addition, an nmethod's exception handler must be passed
196// the address of the call site within the nmethod, to allow
197// proper selection of the applicable catch block.
198// (Interpreter frames use their own bcp() for this purpose.)
199//
200// The Oissuing_pc value is not always needed.  When jumping to a
201// handler that is known to be interpreted, the Oissuing_pc value can be
202// omitted.  An actual catch block in compiled code receives (from its
203// nmethod's exception handler) the thrown exception in the Oexception,
204// but it doesn't need the Oissuing_pc.
205//
206// If an exception handler (either interpreted or compiled)
207// discovers there is no applicable catch block, it updates
208// the Oissuing_pc to the continuation PC of its own caller,
209// pops back to that caller's stack frame, and executes that
210// caller's exception handler.  Obviously, this process will
211// iterate until the control stack is popped back to a method
212// containing an applicable catch block.  A key invariant is
213// that the Oissuing_pc value is always a value local to
214// the method whose exception handler is currently executing.
215//
216// Note:  The issuing PC value is __not__ a raw return address (I7 value).
217// It is a "return pc", the address __following__ the call.
218// Raw return addresses are converted to issuing PCs by frame::pc(),
219// or by stubs.  Issuing PCs can be used directly with PC range tables.
220//
221REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
222REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
223
224
225// These must occur after the declarations above
226#ifndef DONT_USE_REGISTER_DEFINES
227
228#define Gthread             AS_REGISTER(Register, Gthread)
229#define Gmethod             AS_REGISTER(Register, Gmethod)
230#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
231#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
232#define Gargs               AS_REGISTER(Register, Gargs)
233#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
234#define Gframe_size         AS_REGISTER(Register, Gframe_size)
235#define Gtemp               AS_REGISTER(Register, Gtemp)
236
237#ifdef CC_INTERP
238#define Lstate              AS_REGISTER(Register, Lstate)
239#define Lesp                AS_REGISTER(Register, Lesp)
240#define L1_scratch          AS_REGISTER(Register, L1_scratch)
241#define Lmirror             AS_REGISTER(Register, Lmirror)
242#define L2_scratch          AS_REGISTER(Register, L2_scratch)
243#define L3_scratch          AS_REGISTER(Register, L3_scratch)
244#define L4_scratch          AS_REGISTER(Register, L4_scratch)
245#define Lscratch            AS_REGISTER(Register, Lscratch)
246#define Lscratch2           AS_REGISTER(Register, Lscratch2)
247#define L7_scratch          AS_REGISTER(Register, L7_scratch)
248#define Ostate              AS_REGISTER(Register, Ostate)
249#else
250#define Lesp                AS_REGISTER(Register, Lesp)
251#define Lbcp                AS_REGISTER(Register, Lbcp)
252#define Lmethod             AS_REGISTER(Register, Lmethod)
253#define Llocals             AS_REGISTER(Register, Llocals)
254#define Lmonitors           AS_REGISTER(Register, Lmonitors)
255#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
256#define Lscratch            AS_REGISTER(Register, Lscratch)
257#define Lscratch2           AS_REGISTER(Register, Lscratch2)
258#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
259#endif /* ! CC_INTERP */
260
261#define Lentry_args         AS_REGISTER(Register, Lentry_args)
262#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
263#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
264#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
265#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
266#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
267
268#define Oexception          AS_REGISTER(Register, Oexception)
269#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
270
271
272#endif
273
274// Address is an abstraction used to represent a memory location.
275//
276// Note: A register location is represented via a Register, not
277//       via an address for efficiency & simplicity reasons.
278
279class Address VALUE_OBJ_CLASS_SPEC {
280 private:
281  Register           _base;           // Base register.
282  RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
283  RelocationHolder   _rspec;
284
285 public:
286  Address() : _base(noreg), _index_or_disp(noreg) {}
287
288  Address(Register base, RegisterOrConstant index_or_disp)
289    : _base(base),
290      _index_or_disp(index_or_disp) {
291  }
292
293  Address(Register base, Register index)
294    : _base(base),
295      _index_or_disp(index) {
296  }
297
298  Address(Register base, int disp)
299    : _base(base),
300      _index_or_disp(disp) {
301  }
302
303#ifdef ASSERT
304  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
305  Address(Register base, ByteSize disp)
306    : _base(base),
307      _index_or_disp(in_bytes(disp)) {
308  }
309#endif
310
311  // accessors
312  Register base()             const { return _base; }
313  Register index()            const { return _index_or_disp.as_register(); }
314  int      disp()             const { return _index_or_disp.as_constant(); }
315
316  bool     has_index()        const { return _index_or_disp.is_register(); }
317  bool     has_disp()         const { return _index_or_disp.is_constant(); }
318
319  bool     uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
320
321  const relocInfo::relocType rtype() { return _rspec.type(); }
322  const RelocationHolder&    rspec() { return _rspec; }
323
324  RelocationHolder rspec(int offset) const {
325    return offset == 0 ? _rspec : _rspec.plus(offset);
326  }
327
328  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
329
330  Address plus_disp(int plusdisp) const {     // bump disp by a small amount
331    assert(_index_or_disp.is_constant(), "must have a displacement");
332    Address a(base(), disp() + plusdisp);
333    return a;
334  }
335  bool is_same_address(Address a) const {
336    // disregard _rspec
337    return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
338  }
339
340  Address after_save() const {
341    Address a = (*this);
342    a._base = a._base->after_save();
343    return a;
344  }
345
346  Address after_restore() const {
347    Address a = (*this);
348    a._base = a._base->after_restore();
349    return a;
350  }
351
352  // Convert the raw encoding form into the form expected by the
353  // constructor for Address.
354  static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
355
356  friend class Assembler;
357};
358
359
360class AddressLiteral VALUE_OBJ_CLASS_SPEC {
361 private:
362  address          _address;
363  RelocationHolder _rspec;
364
365  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
366    switch (rtype) {
367    case relocInfo::external_word_type:
368      return external_word_Relocation::spec(addr);
369    case relocInfo::internal_word_type:
370      return internal_word_Relocation::spec(addr);
371#ifdef _LP64
372    case relocInfo::opt_virtual_call_type:
373      return opt_virtual_call_Relocation::spec();
374    case relocInfo::static_call_type:
375      return static_call_Relocation::spec();
376    case relocInfo::runtime_call_type:
377      return runtime_call_Relocation::spec();
378#endif
379    case relocInfo::none:
380      return RelocationHolder();
381    default:
382      ShouldNotReachHere();
383      return RelocationHolder();
384    }
385  }
386
387 protected:
388  // creation
389  AddressLiteral() : _address(NULL), _rspec(NULL) {}
390
391 public:
392  AddressLiteral(address addr, RelocationHolder const& rspec)
393    : _address(addr),
394      _rspec(rspec) {}
395
396  // Some constructors to avoid casting at the call site.
397  AddressLiteral(jobject obj, RelocationHolder const& rspec)
398    : _address((address) obj),
399      _rspec(rspec) {}
400
401  AddressLiteral(intptr_t value, RelocationHolder const& rspec)
402    : _address((address) value),
403      _rspec(rspec) {}
404
405  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
406    : _address((address) addr),
407    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
408
409  // Some constructors to avoid casting at the call site.
410  AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
411    : _address((address) addr),
412    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
413
414  AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
415    : _address((address) addr),
416      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
417
418  AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
419    : _address((address) addr),
420      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
421
422  AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
423    : _address((address) addr),
424      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
425
426  AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
427    : _address((address) addr),
428      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
429
430  AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
431    : _address((address) addr),
432      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
433
434#ifdef _LP64
435  // 32-bit complains about a multiple declaration for int*.
436  AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
437    : _address((address) addr),
438      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
439#endif
440
441  AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
442    : _address((address) addr),
443      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
444
445  AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
446    : _address((address) addr),
447      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
448
449  AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
450    : _address((address) addr),
451      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
452
453  AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
454    : _address((address) addr),
455      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
456
457  intptr_t value() const { return (intptr_t) _address; }
458  int      low10() const;
459
460  const relocInfo::relocType rtype() const { return _rspec.type(); }
461  const RelocationHolder&    rspec() const { return _rspec; }
462
463  RelocationHolder rspec(int offset) const {
464    return offset == 0 ? _rspec : _rspec.plus(offset);
465  }
466};
467
468// Convenience classes
469class ExternalAddress: public AddressLiteral {
470 private:
471  static relocInfo::relocType reloc_for_target(address target) {
472    // Sometimes ExternalAddress is used for values which aren't
473    // exactly addresses, like the card table base.
474    // external_word_type can't be used for values in the first page
475    // so just skip the reloc in that case.
476    return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
477  }
478
479 public:
480  ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
481  ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
482};
483
484inline Address RegisterImpl::address_in_saved_window() const {
485   return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
486}
487
488
489
490// Argument is an abstraction used to represent an outgoing
491// actual argument or an incoming formal parameter, whether
492// it resides in memory or in a register, in a manner consistent
493// with the SPARC Application Binary Interface, or ABI.  This is
494// often referred to as the native or C calling convention.
495
496class Argument VALUE_OBJ_CLASS_SPEC {
497 private:
498  int _number;
499  bool _is_in;
500
501 public:
502#ifdef _LP64
503  enum {
504    n_register_parameters = 6,          // only 6 registers may contain integer parameters
505    n_float_register_parameters = 16    // Can have up to 16 floating registers
506  };
507#else
508  enum {
509    n_register_parameters = 6           // only 6 registers may contain integer parameters
510  };
511#endif
512
513  // creation
514  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
515
516  int  number() const  { return _number;  }
517  bool is_in()  const  { return _is_in;   }
518  bool is_out() const  { return !is_in(); }
519
520  Argument successor() const  { return Argument(number() + 1, is_in()); }
521  Argument as_in()     const  { return Argument(number(), true ); }
522  Argument as_out()    const  { return Argument(number(), false); }
523
524  // locating register-based arguments:
525  bool is_register() const { return _number < n_register_parameters; }
526
527#ifdef _LP64
528  // locating Floating Point register-based arguments:
529  bool is_float_register() const { return _number < n_float_register_parameters; }
530
531  FloatRegister as_float_register() const {
532    assert(is_float_register(), "must be a register argument");
533    return as_FloatRegister(( number() *2 ) + 1);
534  }
535  FloatRegister as_double_register() const {
536    assert(is_float_register(), "must be a register argument");
537    return as_FloatRegister(( number() *2 ));
538  }
539#endif
540
541  Register as_register() const {
542    assert(is_register(), "must be a register argument");
543    return is_in() ? as_iRegister(number()) : as_oRegister(number());
544  }
545
546  // locating memory-based arguments
547  Address as_address() const {
548    assert(!is_register(), "must be a memory argument");
549    return address_in_frame();
550  }
551
552  // When applied to a register-based argument, give the corresponding address
553  // into the 6-word area "into which callee may store register arguments"
554  // (This is a different place than the corresponding register-save area location.)
555  Address address_in_frame() const;
556
557  // debugging
558  const char* name() const;
559
560  friend class Assembler;
561};
562
563
564// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
565// level; i.e., what you write
566// is what you get. The Assembler is generating code into a CodeBuffer.
567
568class Assembler : public AbstractAssembler  {
569 protected:
570
571  static void print_instruction(int inst);
572  static int  patched_branch(int dest_pos, int inst, int inst_pos);
573  static int  branch_destination(int inst, int pos);
574
575
576  friend class AbstractAssembler;
577  friend class AddressLiteral;
578
579  // code patchers need various routines like inv_wdisp()
580  friend class NativeInstruction;
581  friend class NativeGeneralJump;
582  friend class Relocation;
583  friend class Label;
584
585 public:
586  // op carries format info; see page 62 & 267
587
588  enum ops {
589    call_op   = 1, // fmt 1
590    branch_op = 0, // also sethi (fmt2)
591    arith_op  = 2, // fmt 3, arith & misc
592    ldst_op   = 3  // fmt 3, load/store
593  };
594
595  enum op2s {
596    bpr_op2   = 3,
597    fb_op2    = 6,
598    fbp_op2   = 5,
599    br_op2    = 2,
600    bp_op2    = 1,
601    cb_op2    = 7, // V8
602    sethi_op2 = 4
603  };
604
605  enum op3s {
606    // selected op3s
607    add_op3      = 0x00,
608    and_op3      = 0x01,
609    or_op3       = 0x02,
610    xor_op3      = 0x03,
611    sub_op3      = 0x04,
612    andn_op3     = 0x05,
613    orn_op3      = 0x06,
614    xnor_op3     = 0x07,
615    addc_op3     = 0x08,
616    mulx_op3     = 0x09,
617    umul_op3     = 0x0a,
618    smul_op3     = 0x0b,
619    subc_op3     = 0x0c,
620    udivx_op3    = 0x0d,
621    udiv_op3     = 0x0e,
622    sdiv_op3     = 0x0f,
623
624    addcc_op3    = 0x10,
625    andcc_op3    = 0x11,
626    orcc_op3     = 0x12,
627    xorcc_op3    = 0x13,
628    subcc_op3    = 0x14,
629    andncc_op3   = 0x15,
630    orncc_op3    = 0x16,
631    xnorcc_op3   = 0x17,
632    addccc_op3   = 0x18,
633    umulcc_op3   = 0x1a,
634    smulcc_op3   = 0x1b,
635    subccc_op3   = 0x1c,
636    udivcc_op3   = 0x1e,
637    sdivcc_op3   = 0x1f,
638
639    taddcc_op3   = 0x20,
640    tsubcc_op3   = 0x21,
641    taddcctv_op3 = 0x22,
642    tsubcctv_op3 = 0x23,
643    mulscc_op3   = 0x24,
644    sll_op3      = 0x25,
645    sllx_op3     = 0x25,
646    srl_op3      = 0x26,
647    srlx_op3     = 0x26,
648    sra_op3      = 0x27,
649    srax_op3     = 0x27,
650    rdreg_op3    = 0x28,
651    membar_op3   = 0x28,
652
653    flushw_op3   = 0x2b,
654    movcc_op3    = 0x2c,
655    sdivx_op3    = 0x2d,
656    popc_op3     = 0x2e,
657    movr_op3     = 0x2f,
658
659    sir_op3      = 0x30,
660    wrreg_op3    = 0x30,
661    saved_op3    = 0x31,
662
663    fpop1_op3    = 0x34,
664    fpop2_op3    = 0x35,
665    impdep1_op3  = 0x36,
666    impdep2_op3  = 0x37,
667    jmpl_op3     = 0x38,
668    rett_op3     = 0x39,
669    trap_op3     = 0x3a,
670    flush_op3    = 0x3b,
671    save_op3     = 0x3c,
672    restore_op3  = 0x3d,
673    done_op3     = 0x3e,
674    retry_op3    = 0x3e,
675
676    lduw_op3     = 0x00,
677    ldub_op3     = 0x01,
678    lduh_op3     = 0x02,
679    ldd_op3      = 0x03,
680    stw_op3      = 0x04,
681    stb_op3      = 0x05,
682    sth_op3      = 0x06,
683    std_op3      = 0x07,
684    ldsw_op3     = 0x08,
685    ldsb_op3     = 0x09,
686    ldsh_op3     = 0x0a,
687    ldx_op3      = 0x0b,
688
689    ldstub_op3   = 0x0d,
690    stx_op3      = 0x0e,
691    swap_op3     = 0x0f,
692
693    stwa_op3     = 0x14,
694    stxa_op3     = 0x1e,
695
696    ldf_op3      = 0x20,
697    ldfsr_op3    = 0x21,
698    ldqf_op3     = 0x22,
699    lddf_op3     = 0x23,
700    stf_op3      = 0x24,
701    stfsr_op3    = 0x25,
702    stqf_op3     = 0x26,
703    stdf_op3     = 0x27,
704
705    prefetch_op3 = 0x2d,
706
707
708    ldc_op3      = 0x30,
709    ldcsr_op3    = 0x31,
710    lddc_op3     = 0x33,
711    stc_op3      = 0x34,
712    stcsr_op3    = 0x35,
713    stdcq_op3    = 0x36,
714    stdc_op3     = 0x37,
715
716    casa_op3     = 0x3c,
717    casxa_op3    = 0x3e,
718
719    mftoi_op3    = 0x36,
720
721    alt_bit_op3  = 0x10,
722     cc_bit_op3  = 0x10
723  };
724
725  enum opfs {
726    // selected opfs
727    fmovs_opf   = 0x01,
728    fmovd_opf   = 0x02,
729
730    fnegs_opf   = 0x05,
731    fnegd_opf   = 0x06,
732
733    fadds_opf   = 0x41,
734    faddd_opf   = 0x42,
735    fsubs_opf   = 0x45,
736    fsubd_opf   = 0x46,
737
738    fmuls_opf   = 0x49,
739    fmuld_opf   = 0x4a,
740    fdivs_opf   = 0x4d,
741    fdivd_opf   = 0x4e,
742
743    fcmps_opf   = 0x51,
744    fcmpd_opf   = 0x52,
745
746    fstox_opf   = 0x81,
747    fdtox_opf   = 0x82,
748    fxtos_opf   = 0x84,
749    fxtod_opf   = 0x88,
750    fitos_opf   = 0xc4,
751    fdtos_opf   = 0xc6,
752    fitod_opf   = 0xc8,
753    fstod_opf   = 0xc9,
754    fstoi_opf   = 0xd1,
755    fdtoi_opf   = 0xd2,
756
757    mdtox_opf   = 0x110,
758    mstouw_opf  = 0x111,
759    mstosw_opf  = 0x113,
760    mxtod_opf   = 0x118,
761    mwtos_opf   = 0x119
762  };
763
764  enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez  };
765
766  enum Condition {
767     // for FBfcc & FBPfcc instruction
768    f_never                     = 0,
769    f_notEqual                  = 1,
770    f_notZero                   = 1,
771    f_lessOrGreater             = 2,
772    f_unorderedOrLess           = 3,
773    f_less                      = 4,
774    f_unorderedOrGreater        = 5,
775    f_greater                   = 6,
776    f_unordered                 = 7,
777    f_always                    = 8,
778    f_equal                     = 9,
779    f_zero                      = 9,
780    f_unorderedOrEqual          = 10,
781    f_greaterOrEqual            = 11,
782    f_unorderedOrGreaterOrEqual = 12,
783    f_lessOrEqual               = 13,
784    f_unorderedOrLessOrEqual    = 14,
785    f_ordered                   = 15,
786
787    // V8 coproc, pp 123 v8 manual
788
789    cp_always  = 8,
790    cp_never   = 0,
791    cp_3       = 7,
792    cp_2       = 6,
793    cp_2or3    = 5,
794    cp_1       = 4,
795    cp_1or3    = 3,
796    cp_1or2    = 2,
797    cp_1or2or3 = 1,
798    cp_0       = 9,
799    cp_0or3    = 10,
800    cp_0or2    = 11,
801    cp_0or2or3 = 12,
802    cp_0or1    = 13,
803    cp_0or1or3 = 14,
804    cp_0or1or2 = 15,
805
806
807    // for integers
808
809    never                 =  0,
810    equal                 =  1,
811    zero                  =  1,
812    lessEqual             =  2,
813    less                  =  3,
814    lessEqualUnsigned     =  4,
815    lessUnsigned          =  5,
816    carrySet              =  5,
817    negative              =  6,
818    overflowSet           =  7,
819    always                =  8,
820    notEqual              =  9,
821    notZero               =  9,
822    greater               =  10,
823    greaterEqual          =  11,
824    greaterUnsigned       =  12,
825    greaterEqualUnsigned  =  13,
826    carryClear            =  13,
827    positive              =  14,
828    overflowClear         =  15
829  };
830
831  enum CC {
832    icc  = 0,  xcc  = 2,
833    // ptr_cc is the correct condition code for a pointer or intptr_t:
834    ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
835    fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
836  };
837
838  enum PrefetchFcn {
839    severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
840  };
841
842 public:
843  // Helper functions for groups of instructions
844
845  enum Predict { pt = 1, pn = 0 }; // pt = predict taken
846
847  enum Membar_mask_bits { // page 184, v9
848    StoreStore = 1 << 3,
849    LoadStore  = 1 << 2,
850    StoreLoad  = 1 << 1,
851    LoadLoad   = 1 << 0,
852
853    Sync       = 1 << 6,
854    MemIssue   = 1 << 5,
855    Lookaside  = 1 << 4
856  };
857
858  static bool is_in_wdisp_range(address a, address b, int nbits) {
859    intptr_t d = intptr_t(b) - intptr_t(a);
860    return is_simm(d, nbits + 2);
861  }
862
863  address target_distance(Label& L) {
864    // Assembler::target(L) should be called only when
865    // a branch instruction is emitted since non-bound
866    // labels record current pc() as a branch address.
867    if (L.is_bound()) return target(L);
868    // Return current address for non-bound labels.
869    return pc();
870  }
871
872  // test if label is in simm16 range in words (wdisp16).
873  bool is_in_wdisp16_range(Label& L) {
874    return is_in_wdisp_range(target_distance(L), pc(), 16);
875  }
876  // test if the distance between two addresses fits in simm30 range in words
877  static bool is_in_wdisp30_range(address a, address b) {
878    return is_in_wdisp_range(a, b, 30);
879  }
880
881  enum ASIs { // page 72, v9
882    ASI_PRIMARY            = 0x80,
883    ASI_PRIMARY_NOFAULT    = 0x82,
884    ASI_PRIMARY_LITTLE     = 0x88,
885    // Block initializing store
886    ASI_ST_BLKINIT_PRIMARY = 0xE2,
887    // Most-Recently-Used (MRU) BIS variant
888    ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
889    // add more from book as needed
890  };
891
892 protected:
893  // helpers
894
895  // x is supposed to fit in a field "nbits" wide
896  // and be sign-extended. Check the range.
897
898  static void assert_signed_range(intptr_t x, int nbits) {
899    assert(nbits == 32 || (-(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1)),
900           err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
901  }
902
903  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
904    assert( (x & 3) == 0, "not word aligned");
905    assert_signed_range(x, nbits + 2);
906  }
907
908  static void assert_unsigned_const(int x, int nbits) {
909    assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
910  }
911
912  // fields: note bits numbered from LSB = 0,
913  //  fields known by inclusive bit range
914
915  static int fmask(juint hi_bit, juint lo_bit) {
916    assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
917    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
918  }
919
920  // inverse of u_field
921
922  static int inv_u_field(int x, int hi_bit, int lo_bit) {
923    juint r = juint(x) >> lo_bit;
924    r &= fmask( hi_bit, lo_bit);
925    return int(r);
926  }
927
928
929  // signed version: extract from field and sign-extend
930
931  static int inv_s_field(int x, int hi_bit, int lo_bit) {
932    int sign_shift = 31 - hi_bit;
933    return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
934  }
935
936  // given a field that ranges from hi_bit to lo_bit (inclusive,
937  // LSB = 0), and an unsigned value for the field,
938  // shift it into the field
939
940#ifdef ASSERT
941  static int u_field(int x, int hi_bit, int lo_bit) {
942    assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
943            "value out of range");
944    int r = x << lo_bit;
945    assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
946    return r;
947  }
948#else
949  // make sure this is inlined as it will reduce code size significantly
950  #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
951#endif
952
953  static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
954  static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
955  static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
956  static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
957
958  static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
959
960  static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
961  static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
962  static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
963
964  static int op(       int         x)  { return  u_field(x,             31, 30); }
965  static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
966  static int fcn(      int         x)  { return  u_field(x,             29, 25); }
967  static int op3(      int         x)  { return  u_field(x,             24, 19); }
968  static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
969  static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
970  static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
971  static int cond(     int         x)  { return  u_field(x,             28, 25); }
972  static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
973  static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
974  static int op2(      int         x)  { return  u_field(x,             24, 22); }
975  static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
976  static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
977  static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
978  static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
979  static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
980  static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
981  static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
982  static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
983  static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
984  static int opf(      int         x)  { return  u_field(x,             13,  5); }
985
986  static bool is_cbcond( int x ) {
987    return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
988            inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
989  }
990  static bool is_cxb( int x ) {
991    assert(is_cbcond(x), "wrong instruction");
992    return (x & (1<<21)) != 0;
993  }
994  static int cond_cbcond( int         x)  { return  u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
995  static int inv_cond_cbcond(int      x)  {
996    assert(is_cbcond(x), "wrong instruction");
997    return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
998  }
999
1000  static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
1001  static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
1002
1003  static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
1004  static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
1005  static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
1006
1007  // some float instructions use this encoding on the op3 field
1008  static int alt_op3(int op, FloatRegisterImpl::Width w) {
1009    int r;
1010    switch(w) {
1011     case FloatRegisterImpl::S: r = op + 0;  break;
1012     case FloatRegisterImpl::D: r = op + 3;  break;
1013     case FloatRegisterImpl::Q: r = op + 2;  break;
1014     default: ShouldNotReachHere(); break;
1015    }
1016    return op3(r);
1017  }
1018
1019
1020  // compute inverse of simm
1021  static int inv_simm(int x, int nbits) {
1022    return (int)(x << (32 - nbits)) >> (32 - nbits);
1023  }
1024
1025  static int inv_simm13( int x ) { return inv_simm(x, 13); }
1026
1027  // signed immediate, in low bits, nbits long
1028  static int simm(int x, int nbits) {
1029    assert_signed_range(x, nbits);
1030    return x  &  (( 1 << nbits ) - 1);
1031  }
1032
1033  // compute inverse of wdisp16
1034  static intptr_t inv_wdisp16(int x, intptr_t pos) {
1035    int lo = x & (( 1 << 14 ) - 1);
1036    int hi = (x >> 20) & 3;
1037    if (hi >= 2) hi |= ~1;
1038    return (((hi << 14) | lo) << 2) + pos;
1039  }
1040
1041  // word offset, 14 bits at LSend, 2 bits at B21, B20
1042  static int wdisp16(intptr_t x, intptr_t off) {
1043    intptr_t xx = x - off;
1044    assert_signed_word_disp_range(xx, 16);
1045    int r =  (xx >> 2) & ((1 << 14) - 1)
1046           |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
1047    assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
1048    return r;
1049  }
1050
1051  // compute inverse of wdisp10
1052  static intptr_t inv_wdisp10(int x, intptr_t pos) {
1053    assert(is_cbcond(x), "wrong instruction");
1054    int lo = inv_u_field(x, 12, 5);
1055    int hi = (x >> 19) & 3;
1056    if (hi >= 2) hi |= ~1;
1057    return (((hi << 8) | lo) << 2) + pos;
1058  }
1059
1060  // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
1061  static int wdisp10(intptr_t x, intptr_t off) {
1062    assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
1063    intptr_t xx = x - off;
1064    assert_signed_word_disp_range(xx, 10);
1065    int r =  ( ( (xx >>  2   ) & ((1 << 8) - 1) ) <<  5 )
1066           | ( ( (xx >> (2+8)) & 3              ) << 19 );
1067    // Have to fake cbcond instruction to pass assert in inv_wdisp10()
1068    assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x,  "inverse is not inverse");
1069    return r;
1070  }
1071
1072  // word displacement in low-order nbits bits
1073
1074  static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
1075    int pre_sign_extend = x & (( 1 << nbits ) - 1);
1076    int r =  pre_sign_extend >= ( 1 << (nbits-1) )
1077       ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
1078       :   pre_sign_extend;
1079    return (r << 2) + pos;
1080  }
1081
1082  static int wdisp( intptr_t x, intptr_t off, int nbits ) {
1083    intptr_t xx = x - off;
1084    assert_signed_word_disp_range(xx, nbits);
1085    int r =  (xx >> 2) & (( 1 << nbits ) - 1);
1086    assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
1087    return r;
1088  }
1089
1090
1091  // Extract the top 32 bits in a 64 bit word
1092  static int32_t hi32( int64_t x ) {
1093    int32_t r = int32_t( (uint64_t)x >> 32 );
1094    return r;
1095  }
1096
1097  // given a sethi instruction, extract the constant, left-justified
1098  static int inv_hi22( int x ) {
1099    return x << 10;
1100  }
1101
1102  // create an imm22 field, given a 32-bit left-justified constant
1103  static int hi22( int x ) {
1104    int r = int( juint(x) >> 10 );
1105    assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
1106    return r;
1107  }
1108
1109  // create a low10 __value__ (not a field) for a given a 32-bit constant
1110  static int low10( int x ) {
1111    return x & ((1 << 10) - 1);
1112  }
1113
1114  // instruction only in VIS3
1115  static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
1116
1117  // instruction only in v9
1118  static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
1119
1120  // instruction only in v8
1121  static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
1122
1123  // instruction deprecated in v9
1124  static void v9_dep()  { } // do nothing for now
1125
1126  // some float instructions only exist for single prec. on v8
1127  static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
1128
1129  // v8 has no CC field
1130  static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
1131
1132 protected:
1133  // Simple delay-slot scheme:
1134  // In order to check the programmer, the assembler keeps track of deley slots.
1135  // It forbids CTIs in delay slots (conservative, but should be OK).
1136  // Also, when putting an instruction into a delay slot, you must say
1137  // asm->delayed()->add(...), in order to check that you don't omit
1138  // delay-slot instructions.
1139  // To implement this, we use a simple FSA
1140
1141#ifdef ASSERT
1142  #define CHECK_DELAY
1143#endif
1144#ifdef CHECK_DELAY
1145  enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
1146#endif
1147
1148 public:
1149  // Tells assembler next instruction must NOT be in delay slot.
1150  // Use at start of multinstruction macros.
1151  void assert_not_delayed() {
1152    // This is a separate overloading to avoid creation of string constants
1153    // in non-asserted code--with some compilers this pollutes the object code.
1154#ifdef CHECK_DELAY
1155    assert_not_delayed("next instruction should not be a delay slot");
1156#endif
1157  }
1158  void assert_not_delayed(const char* msg) {
1159#ifdef CHECK_DELAY
1160    assert(delay_state == no_delay, msg);
1161#endif
1162  }
1163
1164 protected:
1165  // Delay slot helpers
1166  // cti is called when emitting control-transfer instruction,
1167  // BEFORE doing the emitting.
1168  // Only effective when assertion-checking is enabled.
1169  void cti() {
1170#ifdef CHECK_DELAY
1171    assert_not_delayed("cti should not be in delay slot");
1172#endif
1173  }
1174
1175  // called when emitting cti with a delay slot, AFTER emitting
1176  void has_delay_slot() {
1177#ifdef CHECK_DELAY
1178    assert_not_delayed("just checking");
1179    delay_state = at_delay_slot;
1180#endif
1181  }
1182
1183  // cbcond instruction should not be generated one after an other
1184  bool cbcond_before() {
1185    if (offset() == 0) return false; // it is first instruction
1186    int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
1187    return is_cbcond(x);
1188  }
1189
1190  void no_cbcond_before() {
1191    assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
1192  }
1193
1194public:
1195
1196  bool use_cbcond(Label& L) {
1197    if (!UseCBCond || cbcond_before()) return false;
1198    intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
1199    assert( (x & 3) == 0, "not word aligned");
1200    return is_simm12(x);
1201  }
1202
1203  // Tells assembler you know that next instruction is delayed
1204  Assembler* delayed() {
1205#ifdef CHECK_DELAY
1206    assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
1207    delay_state = filling_delay_slot;
1208#endif
1209    return this;
1210  }
1211
1212  void flush() {
1213#ifdef CHECK_DELAY
1214    assert ( delay_state == no_delay, "ending code with a delay slot");
1215#endif
1216    AbstractAssembler::flush();
1217  }
1218
1219  inline void emit_long(int);  // shadows AbstractAssembler::emit_long
1220  inline void emit_data(int x) { emit_long(x); }
1221  inline void emit_data(int, RelocationHolder const&);
1222  inline void emit_data(int, relocInfo::relocType rtype);
1223  // helper for above fcns
1224  inline void check_delay();
1225
1226
1227 public:
1228  // instructions, refer to page numbers in the SPARC Architecture Manual, V9
1229
1230  // pp 135 (addc was addx in v8)
1231
1232  inline void add(Register s1, Register s2, Register d );
1233  inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
1234  inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
1235  inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
1236  inline void add(const Address& a, Register d, int offset = 0);
1237
1238  void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1239  void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1240  void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
1241  void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1242  void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1243  void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1244
1245
1246  // pp 136
1247
1248  inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
1249  inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
1250
1251  // compare and branch
1252  inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
1253  inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
1254
1255 protected: // use MacroAssembler::br instead
1256
1257  // pp 138
1258
1259  inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1260  inline void fb( Condition c, bool a, Label& L );
1261
1262  // pp 141
1263
1264  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1265  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1266
1267  // pp 144
1268
1269  inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1270  inline void br( Condition c, bool a, Label& L );
1271
1272  // pp 146
1273
1274  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1275  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1276
1277  // pp 121 (V8)
1278
1279  inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1280  inline void cb( Condition c, bool a, Label& L );
1281
1282  // pp 149
1283
1284  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1285  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1286
1287 public:
1288
1289  // pp 150
1290
1291  // These instructions compare the contents of s2 with the contents of
1292  // memory at address in s1. If the values are equal, the contents of memory
1293  // at address s1 is swapped with the data in d. If the values are not equal,
1294  // the the contents of memory at s1 is loaded into d, without the swap.
1295
1296  void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1297  void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1298
1299  // pp 152
1300
1301  void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
1302  void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1303  void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
1304  void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1305  void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1306  void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1307  void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1308  void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1309
1310  // pp 155
1311
1312  void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
1313  void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
1314
1315  // pp 156
1316
1317  void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
1318  void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
1319
1320  // pp 157
1321
1322  void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
1323  void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
1324
1325  // pp 159
1326
1327  void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
1328  void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
1329
1330  // pp 160
1331
1332  void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
1333
1334  // pp 161
1335
1336  void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
1337  void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
1338
1339  // pp 162
1340
1341  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
1342
1343  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
1344
1345  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
1346  // on v8 to do negation of single, double and quad precision floats.
1347
1348  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
1349
1350  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
1351
1352  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
1353  // on v8 to do abs operation on single/double/quad precision floats.
1354
1355  void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
1356
1357  // pp 163
1358
1359  void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
1360  void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
1361  void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
1362
1363  // pp 164
1364
1365  void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
1366
1367  // pp 165
1368
1369  inline void flush( Register s1, Register s2 );
1370  inline void flush( Register s1, int simm13a);
1371
1372  // pp 167
1373
1374  void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
1375
1376  // pp 168
1377
1378  void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
1379  // v8 unimp == illtrap(0)
1380
1381  // pp 169
1382
1383  void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
1384  void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
1385
1386  // pp 149 (v8)
1387
1388  void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1389  void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1390
1391  // pp 170
1392
1393  void jmpl( Register s1, Register s2, Register d );
1394  void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1395
1396  // 171
1397
1398  inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
1399  inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
1400  inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
1401
1402  inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
1403
1404
1405  inline void ldfsr(  Register s1, Register s2 );
1406  inline void ldfsr(  Register s1, int simm13a);
1407  inline void ldxfsr( Register s1, Register s2 );
1408  inline void ldxfsr( Register s1, int simm13a);
1409
1410  // pp 94 (v8)
1411
1412  inline void ldc(   Register s1, Register s2, int crd );
1413  inline void ldc(   Register s1, int simm13a, int crd);
1414  inline void lddc(  Register s1, Register s2, int crd );
1415  inline void lddc(  Register s1, int simm13a, int crd);
1416  inline void ldcsr( Register s1, Register s2, int crd );
1417  inline void ldcsr( Register s1, int simm13a, int crd);
1418
1419
1420  // 173
1421
1422  void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1423  void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1424
1425  // pp 175, lduw is ld on v8
1426
1427  inline void ldsb(  Register s1, Register s2, Register d );
1428  inline void ldsb(  Register s1, int simm13a, Register d);
1429  inline void ldsh(  Register s1, Register s2, Register d );
1430  inline void ldsh(  Register s1, int simm13a, Register d);
1431  inline void ldsw(  Register s1, Register s2, Register d );
1432  inline void ldsw(  Register s1, int simm13a, Register d);
1433  inline void ldub(  Register s1, Register s2, Register d );
1434  inline void ldub(  Register s1, int simm13a, Register d);
1435  inline void lduh(  Register s1, Register s2, Register d );
1436  inline void lduh(  Register s1, int simm13a, Register d);
1437  inline void lduw(  Register s1, Register s2, Register d );
1438  inline void lduw(  Register s1, int simm13a, Register d);
1439  inline void ldx(   Register s1, Register s2, Register d );
1440  inline void ldx(   Register s1, int simm13a, Register d);
1441  inline void ld(    Register s1, Register s2, Register d );
1442  inline void ld(    Register s1, int simm13a, Register d);
1443  inline void ldd(   Register s1, Register s2, Register d );
1444  inline void ldd(   Register s1, int simm13a, Register d);
1445
1446#ifdef ASSERT
1447  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1448  inline void ld(    Register s1, ByteSize simm13a, Register d);
1449#endif
1450
1451  inline void ldsb(const Address& a, Register d, int offset = 0);
1452  inline void ldsh(const Address& a, Register d, int offset = 0);
1453  inline void ldsw(const Address& a, Register d, int offset = 0);
1454  inline void ldub(const Address& a, Register d, int offset = 0);
1455  inline void lduh(const Address& a, Register d, int offset = 0);
1456  inline void lduw(const Address& a, Register d, int offset = 0);
1457  inline void ldx( const Address& a, Register d, int offset = 0);
1458  inline void ld(  const Address& a, Register d, int offset = 0);
1459  inline void ldd( const Address& a, Register d, int offset = 0);
1460
1461  inline void ldub(  Register s1, RegisterOrConstant s2, Register d );
1462  inline void ldsb(  Register s1, RegisterOrConstant s2, Register d );
1463  inline void lduh(  Register s1, RegisterOrConstant s2, Register d );
1464  inline void ldsh(  Register s1, RegisterOrConstant s2, Register d );
1465  inline void lduw(  Register s1, RegisterOrConstant s2, Register d );
1466  inline void ldsw(  Register s1, RegisterOrConstant s2, Register d );
1467  inline void ldx(   Register s1, RegisterOrConstant s2, Register d );
1468  inline void ld(    Register s1, RegisterOrConstant s2, Register d );
1469  inline void ldd(   Register s1, RegisterOrConstant s2, Register d );
1470
1471  // pp 177
1472
1473  void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1474  void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1475  void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1476  void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1477  void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1478  void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1479  void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1480  void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1481  void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1482  void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1483  void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1484  void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1485  void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1486  void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1487  void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1488  void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1489
1490  // pp 179
1491
1492  inline void ldstub(  Register s1, Register s2, Register d );
1493  inline void ldstub(  Register s1, int simm13a, Register d);
1494
1495  // pp 180
1496
1497  void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1498  void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1499
1500  // pp 181
1501
1502  void and3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
1503  void and3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1504  void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1505  void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1506  void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
1507  void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1508  void andn(    Register s1, RegisterOrConstant s2, Register d);
1509  void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1510  void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1511  void or3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
1512  void or3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1513  void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1514  void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1515  void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
1516  void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1517  void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1518  void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1519  void xor3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
1520  void xor3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1521  void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1522  void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1523  void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
1524  void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1525  void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1526  void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1527
1528  // pp 183
1529
1530  void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
1531
1532  // pp 185
1533
1534  void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
1535
1536  // pp 189
1537
1538  void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
1539
1540  // pp 191
1541
1542  void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
1543  void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
1544
1545  // pp 195
1546
1547  void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
1548  void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
1549
1550  // pp 196
1551
1552  void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
1553  void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1554  void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
1555  void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1556  void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
1557  void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1558
1559  // pp 197
1560
1561  void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
1562  void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1563  void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
1564  void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1565  void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1566  void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1567  void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1568  void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1569
1570  // pp 199
1571
1572  void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
1573  void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1574
1575  // pp 201
1576
1577  void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
1578
1579
1580  // pp 202
1581
1582  void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
1583  void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
1584
1585  // pp 203
1586
1587  void prefetch(   Register s1, Register s2,         PrefetchFcn f);
1588  void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
1589  void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1590  void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1591
1592  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
1593
1594  // pp 208
1595
1596  // not implementing read privileged register
1597
1598  inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
1599  inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
1600  inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
1601  inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
1602  inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
1603  inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
1604
1605  // pp 213
1606
1607  inline void rett( Register s1, Register s2);
1608  inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
1609
1610  // pp 214
1611
1612  void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
1613  void save(    Register s1, int simm13a, Register d ) {
1614    // make sure frame is at least large enough for the register save area
1615    assert(-simm13a >= 16 * wordSize, "frame too small");
1616    emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
1617  }
1618
1619  void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
1620  void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1621
1622  // pp 216
1623
1624  void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
1625  void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
1626
1627  // pp 217
1628
1629  inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1630  // pp 218
1631
1632  void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1633  void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1634  void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1635  void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1636  void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1637  void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1638
1639  void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1640  void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1641  void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1642  void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1643  void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1644  void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1645
1646  // pp 220
1647
1648  void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
1649
1650  // pp 221
1651
1652  void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
1653
1654  // pp 222
1655
1656  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
1657  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
1658  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
1659  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
1660
1661  inline void stfsr(  Register s1, Register s2 );
1662  inline void stfsr(  Register s1, int simm13a);
1663  inline void stxfsr( Register s1, Register s2 );
1664  inline void stxfsr( Register s1, int simm13a);
1665
1666  //  pp 224
1667
1668  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1669  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1670
1671  // p 226
1672
1673  inline void stb(  Register d, Register s1, Register s2 );
1674  inline void stb(  Register d, Register s1, int simm13a);
1675  inline void sth(  Register d, Register s1, Register s2 );
1676  inline void sth(  Register d, Register s1, int simm13a);
1677  inline void stw(  Register d, Register s1, Register s2 );
1678  inline void stw(  Register d, Register s1, int simm13a);
1679  inline void st(   Register d, Register s1, Register s2 );
1680  inline void st(   Register d, Register s1, int simm13a);
1681  inline void stx(  Register d, Register s1, Register s2 );
1682  inline void stx(  Register d, Register s1, int simm13a);
1683  inline void std(  Register d, Register s1, Register s2 );
1684  inline void std(  Register d, Register s1, int simm13a);
1685
1686#ifdef ASSERT
1687  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1688  inline void st(   Register d, Register s1, ByteSize simm13a);
1689#endif
1690
1691  inline void stb(  Register d, const Address& a, int offset = 0 );
1692  inline void sth(  Register d, const Address& a, int offset = 0 );
1693  inline void stw(  Register d, const Address& a, int offset = 0 );
1694  inline void stx(  Register d, const Address& a, int offset = 0 );
1695  inline void st(   Register d, const Address& a, int offset = 0 );
1696  inline void std(  Register d, const Address& a, int offset = 0 );
1697
1698  inline void stb(  Register d, Register s1, RegisterOrConstant s2 );
1699  inline void sth(  Register d, Register s1, RegisterOrConstant s2 );
1700  inline void stw(  Register d, Register s1, RegisterOrConstant s2 );
1701  inline void stx(  Register d, Register s1, RegisterOrConstant s2 );
1702  inline void std(  Register d, Register s1, RegisterOrConstant s2 );
1703  inline void st(   Register d, Register s1, RegisterOrConstant s2 );
1704
1705  // pp 177
1706
1707  void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1708  void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1709  void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1710  void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1711  void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1712  void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1713  void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1714  void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1715  void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1716  void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1717
1718  // pp 97 (v8)
1719
1720  inline void stc(   int crd, Register s1, Register s2 );
1721  inline void stc(   int crd, Register s1, int simm13a);
1722  inline void stdc(  int crd, Register s1, Register s2 );
1723  inline void stdc(  int crd, Register s1, int simm13a);
1724  inline void stcsr( int crd, Register s1, Register s2 );
1725  inline void stcsr( int crd, Register s1, int simm13a);
1726  inline void stdcq( int crd, Register s1, Register s2 );
1727  inline void stdcq( int crd, Register s1, int simm13a);
1728
1729  // pp 230
1730
1731  void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
1732  void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1733
1734  // Note: offset is added to s2.
1735  inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
1736
1737  void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
1738  void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1739  void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
1740  void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1741  void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1742  void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1743
1744  // pp 231
1745
1746  inline void swap( Register s1, Register s2, Register d );
1747  inline void swap( Register s1, int simm13a, Register d);
1748  inline void swap( Address& a,               Register d, int offset = 0 );
1749
1750  // pp 232
1751
1752  void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1753  void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1754
1755  // pp 234, note op in book is wrong, see pp 268
1756
1757  void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
1758  void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1759  void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
1760  void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1761
1762  // pp 235
1763
1764  void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
1765  void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1766  void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
1767  void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1768
1769  // pp 237
1770
1771  void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
1772  void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
1773  // simple uncond. trap
1774  void trap( int trapa ) { trap( always, icc, G0, trapa ); }
1775
1776  // pp 239 omit write priv register for now
1777
1778  inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
1779  inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
1780  inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
1781                                                                           rs1(s) |
1782                                                                           op3(wrreg_op3) |
1783                                                                           u_field(2, 29, 25) |
1784                                                                           immed(true) |
1785                                                                           simm(simm13a, 13)); }
1786  inline void wrasi(Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
1787  // wrasi(d, imm) stores (d xor imm) to asi
1788  inline void wrasi(Register d, int simm13a) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) |
1789                                               u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
1790  inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
1791
1792
1793  // VIS3 instructions
1794
1795  void movstosw( FloatRegister s, Register d ) { vis3_only();  emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
1796  void movstouw( FloatRegister s, Register d ) { vis3_only();  emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
1797  void movdtox(  FloatRegister s, Register d ) { vis3_only();  emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
1798
1799  void movwtos( Register s, FloatRegister d ) { vis3_only();  emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
1800  void movxtod( Register s, FloatRegister d ) { vis3_only();  emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
1801
1802
1803
1804
1805  // For a given register condition, return the appropriate condition code
1806  // Condition (the one you would use to get the same effect after "tst" on
1807  // the target register.)
1808  Assembler::Condition reg_cond_to_cc_cond(RCondition in);
1809
1810
1811  // Creation
1812  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1813#ifdef CHECK_DELAY
1814    delay_state = no_delay;
1815#endif
1816  }
1817
1818  // Testing
1819#ifndef PRODUCT
1820  void test_v9();
1821  void test_v8_onlys();
1822#endif
1823};
1824
1825
1826class RegistersForDebugging : public StackObj {
1827 public:
1828  intptr_t i[8], l[8], o[8], g[8];
1829  float    f[32];
1830  double   d[32];
1831
1832  void print(outputStream* s);
1833
1834  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
1835  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
1836  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
1837  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
1838  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
1839  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
1840
1841  // gen asm code to save regs
1842  static void save_registers(MacroAssembler* a);
1843
1844  // restore global registers in case C code disturbed them
1845  static void restore_registers(MacroAssembler* a, Register r);
1846
1847
1848};
1849
1850
1851// MacroAssembler extends Assembler by a few frequently used macros.
1852//
1853// Most of the standard SPARC synthetic ops are defined here.
1854// Instructions for which a 'better' code sequence exists depending
1855// on arguments should also go in here.
1856
1857#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
1858#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
1859#define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
1860#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
1861
1862
1863class MacroAssembler: public Assembler {
1864 protected:
1865  // Support for VM calls
1866  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1867  // may customize this version by overriding it for its purposes (e.g., to save/restore
1868  // additional registers when doing a VM call).
1869#ifdef CC_INTERP
1870  #define VIRTUAL
1871#else
1872  #define VIRTUAL virtual
1873#endif
1874
1875  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
1876
1877  //
1878  // It is imperative that all calls into the VM are handled via the call_VM macros.
1879  // They make sure that the stack linkage is setup correctly. call_VM's correspond
1880  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1881  //
1882  // This is the base routine called by the different versions of call_VM. The interpreter
1883  // may customize this version by overriding it for its purposes (e.g., to save/restore
1884  // additional registers when doing a VM call).
1885  //
1886  // A non-volatile java_thread_cache register should be specified so
1887  // that the G2_thread value can be preserved across the call.
1888  // (If java_thread_cache is noreg, then a slow get_thread call
1889  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
1890  // thread.
1891  //
1892  // If no last_java_sp is specified (noreg) than SP will be used instead.
1893
1894  virtual void call_VM_base(
1895    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
1896    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
1897    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
1898    address         entry_point,            // the entry point
1899    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
1900    bool            check_exception=true    // flag which indicates if exception should be checked
1901  );
1902
1903  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1904  // The implementation is only non-empty for the InterpreterMacroAssembler,
1905  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
1906  virtual void check_and_handle_popframe(Register scratch_reg);
1907  virtual void check_and_handle_earlyret(Register scratch_reg);
1908
1909 public:
1910  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1911
1912  // Support for NULL-checks
1913  //
1914  // Generates code that causes a NULL OS exception if the content of reg is NULL.
1915  // If the accessed location is M[reg + offset] and the offset is known, provide the
1916  // offset.  No explicit code generation is needed if the offset is within a certain
1917  // range (0 <= offset <= page_size).
1918  //
1919  // %%%%%% Currently not done for SPARC
1920
1921  void null_check(Register reg, int offset = -1);
1922  static bool needs_explicit_null_check(intptr_t offset);
1923
1924  // support for delayed instructions
1925  MacroAssembler* delayed() { Assembler::delayed();  return this; }
1926
1927  // branches that use right instruction for v8 vs. v9
1928  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1929  inline void br( Condition c, bool a, Predict p, Label& L );
1930
1931  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1932  inline void fb( Condition c, bool a, Predict p, Label& L );
1933
1934  // compares register with zero (32 bit) and branches (V9 and V8 instructions)
1935  void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
1936  // Compares a pointer register with zero and branches on (not)null.
1937  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1938  void br_null   ( Register s1, bool a, Predict p, Label& L );
1939  void br_notnull( Register s1, bool a, Predict p, Label& L );
1940
1941  //
1942  // Compare registers and branch with nop in delay slot or cbcond without delay slot.
1943  //
1944  // ATTENTION: use these instructions with caution because cbcond instruction
1945  //            has very short distance: 512 instructions (2Kbyte).
1946
1947  // Compare integer (32 bit) values (icc only).
1948  void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
1949  void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
1950  // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
1951  void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
1952  void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
1953
1954  // Short branch version for compares a pointer pwith zero.
1955  void br_null_short   ( Register s1, Predict p, Label& L );
1956  void br_notnull_short( Register s1, Predict p, Label& L );
1957
1958  // unconditional short branch
1959  void ba_short(Label& L);
1960
1961  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1962  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1963
1964  // Branch that tests xcc in LP64 and icc in !LP64
1965  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1966  inline void brx( Condition c, bool a, Predict p, Label& L );
1967
1968  // unconditional branch
1969  inline void ba( Label& L );
1970
1971  // Branch that tests fp condition codes
1972  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1973  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1974
1975  // get PC the best way
1976  inline int get_pc( Register d );
1977
1978  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
1979  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
1980  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
1981
1982  inline void jmp( Register s1, Register s2 );
1983  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1984
1985  // Check if the call target is out of wdisp30 range (relative to the code cache)
1986  static inline bool is_far_target(address d);
1987  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1988  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1989  inline void callr( Register s1, Register s2 );
1990  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1991
1992  // Emits nothing on V8
1993  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
1994  inline void iprefetch( Label& L);
1995
1996  inline void tst( Register s ) { orcc( G0, s, G0 ); }
1997
1998#ifdef PRODUCT
1999  inline void ret(  bool trace = TraceJumps )   { if (trace) {
2000                                                    mov(I7, O7); // traceable register
2001                                                    JMP(O7, 2 * BytesPerInstWord);
2002                                                  } else {
2003                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
2004                                                  }
2005                                                }
2006
2007  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
2008                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
2009#else
2010  void ret(  bool trace = TraceJumps );
2011  void retl( bool trace = TraceJumps );
2012#endif /* PRODUCT */
2013
2014  // Required platform-specific helpers for Label::patch_instructions.
2015  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
2016  void pd_patch_instruction(address branch, address target);
2017#ifndef PRODUCT
2018  static void pd_print_patched_instruction(address branch);
2019#endif
2020
2021  // sethi Macro handles optimizations and relocations
2022private:
2023  void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
2024public:
2025  void sethi(const AddressLiteral& addrlit, Register d);
2026  void patchable_sethi(const AddressLiteral& addrlit, Register d);
2027
2028  // compute the number of instructions for a sethi/set
2029  static int  insts_for_sethi( address a, bool worst_case = false );
2030  static int  worst_case_insts_for_set();
2031
2032  // set may be either setsw or setuw (high 32 bits may be zero or sign)
2033private:
2034  void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
2035  static int insts_for_internal_set(intptr_t value);
2036public:
2037  void set(const AddressLiteral& addrlit, Register d);
2038  void set(intptr_t value, Register d);
2039  void set(address addr, Register d, RelocationHolder const& rspec);
2040  static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
2041
2042  void patchable_set(const AddressLiteral& addrlit, Register d);
2043  void patchable_set(intptr_t value, Register d);
2044  void set64(jlong value, Register d, Register tmp);
2045  static int insts_for_set64(jlong value);
2046
2047  // sign-extend 32 to 64
2048  inline void signx( Register s, Register d ) { sra( s, G0, d); }
2049  inline void signx( Register d )             { sra( d, G0, d); }
2050
2051  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
2052  inline void not1( Register d )             { xnor( d, G0, d ); }
2053
2054  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
2055  inline void neg( Register d )             { sub( G0, d, d ); }
2056
2057  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
2058  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
2059  // Functions for isolating 64 bit atomic swaps for LP64
2060  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
2061  inline void cas_ptr(  Register s1, Register s2, Register d) {
2062#ifdef _LP64
2063    casx( s1, s2, d );
2064#else
2065    cas( s1, s2, d );
2066#endif
2067  }
2068
2069  // Functions for isolating 64 bit shifts for LP64
2070  inline void sll_ptr( Register s1, Register s2, Register d );
2071  inline void sll_ptr( Register s1, int imm6a,   Register d );
2072  inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
2073  inline void srl_ptr( Register s1, Register s2, Register d );
2074  inline void srl_ptr( Register s1, int imm6a,   Register d );
2075
2076  // little-endian
2077  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
2078  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
2079
2080  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
2081  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
2082
2083  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
2084  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
2085
2086  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
2087  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
2088
2089  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
2090  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
2091
2092  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
2093  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
2094
2095  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
2096  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
2097
2098  inline void clr( Register d ) { or3( G0, G0, d ); }
2099
2100  inline void clrb( Register s1, Register s2);
2101  inline void clrh( Register s1, Register s2);
2102  inline void clr(  Register s1, Register s2);
2103  inline void clrx( Register s1, Register s2);
2104
2105  inline void clrb( Register s1, int simm13a);
2106  inline void clrh( Register s1, int simm13a);
2107  inline void clr(  Register s1, int simm13a);
2108  inline void clrx( Register s1, int simm13a);
2109
2110  // copy & clear upper word
2111  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
2112  // clear upper word
2113  inline void clruwu( Register d ) { srl( d, G0, d); }
2114
2115  // membar psuedo instruction.  takes into account target memory model.
2116  inline void membar( Assembler::Membar_mask_bits const7a );
2117
2118  // returns if membar generates anything.
2119  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
2120
2121  // mov pseudo instructions
2122  inline void mov( Register s,  Register d) {
2123    if ( s != d )    or3( G0, s, d);
2124    else             assert_not_delayed();  // Put something useful in the delay slot!
2125  }
2126
2127  inline void mov_or_nop( Register s,  Register d) {
2128    if ( s != d )    or3( G0, s, d);
2129    else             nop();
2130  }
2131
2132  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
2133
2134  // address pseudos: make these names unlike instruction names to avoid confusion
2135  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
2136  inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
2137  inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
2138  inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
2139  inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
2140  inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
2141  inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
2142  inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
2143  inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
2144
2145  // ring buffer traceable jumps
2146
2147  void jmp2( Register r1, Register r2, const char* file, int line );
2148  void jmp ( Register r1, int offset,  const char* file, int line );
2149
2150  void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
2151  void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
2152
2153
2154  // argument pseudos:
2155
2156  inline void load_argument( Argument& a, Register  d );
2157  inline void store_argument( Register s, Argument& a );
2158  inline void store_ptr_argument( Register s, Argument& a );
2159  inline void store_float_argument( FloatRegister s, Argument& a );
2160  inline void store_double_argument( FloatRegister s, Argument& a );
2161  inline void store_long_argument( Register s, Argument& a );
2162
2163  // handy macros:
2164
2165  inline void round_to( Register r, int modulus ) {
2166    assert_not_delayed();
2167    inc( r, modulus - 1 );
2168    and3( r, -modulus, r );
2169  }
2170
2171  // --------------------------------------------------
2172
2173  // Functions for isolating 64 bit loads for LP64
2174  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
2175  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
2176  inline void ld_ptr(Register s1, Register s2, Register d);
2177  inline void ld_ptr(Register s1, int simm13a, Register d);
2178  inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
2179  inline void ld_ptr(const Address& a, Register d, int offset = 0);
2180  inline void st_ptr(Register d, Register s1, Register s2);
2181  inline void st_ptr(Register d, Register s1, int simm13a);
2182  inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
2183  inline void st_ptr(Register d, const Address& a, int offset = 0);
2184
2185#ifdef ASSERT
2186  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
2187  inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
2188  inline void st_ptr(Register d, Register s1, ByteSize simm13a);
2189#endif
2190
2191  // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
2192  // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
2193  inline void ld_long(Register s1, Register s2, Register d);
2194  inline void ld_long(Register s1, int simm13a, Register d);
2195  inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
2196  inline void ld_long(const Address& a, Register d, int offset = 0);
2197  inline void st_long(Register d, Register s1, Register s2);
2198  inline void st_long(Register d, Register s1, int simm13a);
2199  inline void st_long(Register d, Register s1, RegisterOrConstant s2);
2200  inline void st_long(Register d, const Address& a, int offset = 0);
2201
2202  // Helpers for address formation.
2203  // - They emit only a move if s2 is a constant zero.
2204  // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
2205  // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
2206  RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2207  RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2208  RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2209
2210  RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
2211    if (is_simm13(src.constant_or_zero()))
2212      return src;               // register or short constant
2213    guarantee(temp != noreg, "constant offset overflow");
2214    set(src.as_constant(), temp);
2215    return temp;
2216  }
2217
2218  // --------------------------------------------------
2219
2220 public:
2221  // traps as per trap.h (SPARC ABI?)
2222
2223  void breakpoint_trap();
2224  void breakpoint_trap(Condition c, CC cc);
2225  void flush_windows_trap();
2226  void clean_windows_trap();
2227  void get_psr_trap();
2228  void set_psr_trap();
2229
2230  // V8/V9 flush_windows
2231  void flush_windows();
2232
2233  // Support for serializing memory accesses between threads
2234  void serialize_memory(Register thread, Register tmp1, Register tmp2);
2235
2236  // Stack frame creation/removal
2237  void enter();
2238  void leave();
2239
2240  // V8/V9 integer multiply
2241  void mult(Register s1, Register s2, Register d);
2242  void mult(Register s1, int simm13a, Register d);
2243
2244  // V8/V9 read and write of condition codes.
2245  void read_ccr(Register d);
2246  void write_ccr(Register s);
2247
2248  // Manipulation of C++ bools
2249  // These are idioms to flag the need for care with accessing bools but on
2250  // this platform we assume byte size
2251
2252  inline void stbool(Register d, const Address& a) { stb(d, a); }
2253  inline void ldbool(const Address& a, Register d) { ldub(a, d); }
2254  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
2255
2256  // klass oop manipulations if compressed
2257  void load_klass(Register src_oop, Register klass);
2258  void store_klass(Register klass, Register dst_oop);
2259  void store_klass_gap(Register s, Register dst_oop);
2260
2261   // oop manipulations
2262  void load_heap_oop(const Address& s, Register d);
2263  void load_heap_oop(Register s1, Register s2, Register d);
2264  void load_heap_oop(Register s1, int simm13a, Register d);
2265  void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
2266  void store_heap_oop(Register d, Register s1, Register s2);
2267  void store_heap_oop(Register d, Register s1, int simm13a);
2268  void store_heap_oop(Register d, const Address& a, int offset = 0);
2269
2270  void encode_heap_oop(Register src, Register dst);
2271  void encode_heap_oop(Register r) {
2272    encode_heap_oop(r, r);
2273  }
2274  void decode_heap_oop(Register src, Register dst);
2275  void decode_heap_oop(Register r) {
2276    decode_heap_oop(r, r);
2277  }
2278  void encode_heap_oop_not_null(Register r);
2279  void decode_heap_oop_not_null(Register r);
2280  void encode_heap_oop_not_null(Register src, Register dst);
2281  void decode_heap_oop_not_null(Register src, Register dst);
2282
2283  void encode_klass_not_null(Register r);
2284  void decode_klass_not_null(Register r);
2285  void encode_klass_not_null(Register src, Register dst);
2286  void decode_klass_not_null(Register src, Register dst);
2287
2288  // Support for managing the JavaThread pointer (i.e.; the reference to
2289  // thread-local information).
2290  void get_thread();                                // load G2_thread
2291  void verify_thread();                             // verify G2_thread contents
2292  void save_thread   (const Register threache); // save to cache
2293  void restore_thread(const Register thread_cache); // restore from cache
2294
2295  // Support for last Java frame (but use call_VM instead where possible)
2296  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
2297  void reset_last_Java_frame(void);
2298
2299  // Call into the VM.
2300  // Passes the thread pointer (in O0) as a prepended argument.
2301  // Makes sure oop return values are visible to the GC.
2302  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2303  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
2304  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2305  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2306
2307  // these overloadings are not presently used on SPARC:
2308  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2309  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
2310  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2311  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2312
2313  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
2314  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
2315  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
2316  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
2317
2318  void get_vm_result  (Register oop_result);
2319  void get_vm_result_2(Register metadata_result);
2320
2321  // vm result is currently getting hijacked to for oop preservation
2322  void set_vm_result(Register oop_result);
2323
2324  // Emit the CompiledIC call idiom
2325  void ic_call(address entry, bool emit_delay = true);
2326
2327  // if call_VM_base was called with check_exceptions=false, then call
2328  // check_and_forward_exception to handle exceptions when it is safe
2329  void check_and_forward_exception(Register scratch_reg);
2330
2331 private:
2332  // For V8
2333  void read_ccr_trap(Register ccr_save);
2334  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
2335
2336#ifdef ASSERT
2337  // For V8 debugging.  Uses V8 instruction sequence and checks
2338  // result with V9 insturctions rdccr and wrccr.
2339  // Uses Gscatch and Gscatch2
2340  void read_ccr_v8_assert(Register ccr_save);
2341  void write_ccr_v8_assert(Register ccr_save);
2342#endif // ASSERT
2343
2344 public:
2345
2346  // Write to card table for - register is destroyed afterwards.
2347  void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
2348
2349  void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2350
2351#ifndef SERIALGC
2352  // General G1 pre-barrier generator.
2353  void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
2354
2355  // General G1 post-barrier generator
2356  void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2357#endif // SERIALGC
2358
2359  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2360  void push_fTOS();
2361
2362  // pops double TOS element from CPU stack and pushes on FPU stack
2363  void pop_fTOS();
2364
2365  void empty_FPU_stack();
2366
2367  void push_IU_state();
2368  void pop_IU_state();
2369
2370  void push_FPU_state();
2371  void pop_FPU_state();
2372
2373  void push_CPU_state();
2374  void pop_CPU_state();
2375
2376  // if heap base register is used - reinit it with the correct value
2377  void reinit_heapbase();
2378
2379  // Debugging
2380  void _verify_oop(Register reg, const char * msg, const char * file, int line);
2381  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
2382
2383  // TODO: verify_method and klass metadata (compare against vptr?)
2384  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
2385  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
2386
2387#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
2388#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
2389#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
2390#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
2391
2392        // only if +VerifyOops
2393  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2394        // only if +VerifyFPU
2395  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
2396  void warn(const char* msg);                          // prints msg, but don't stop
2397  void untested(const char* what = "");
2398  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
2399  void should_not_reach_here()                   { stop("should not reach here"); }
2400  void print_CPU_state();
2401
2402  // oops in code
2403  AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
2404  AddressLiteral constant_oop_address(jobject obj);                          // find_index
2405  inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
2406  inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
2407  inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
2408
2409  // metadata in code that we have to keep track of
2410  AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
2411  AddressLiteral constant_metadata_address(Metadata* obj); // find_index
2412  inline void    set_metadata             (Metadata* obj, Register d);              // uses allocate_metadata_address
2413  inline void    set_metadata_constant    (Metadata* obj, Register d);              // uses constant_metadata_address
2414  inline void    set_metadata             (const AddressLiteral& obj_addr, Register d); // same as load_address
2415
2416  void set_narrow_oop( jobject obj, Register d );
2417  void set_narrow_klass( Klass* k, Register d );
2418
2419  // nop padding
2420  void align(int modulus);
2421
2422  // declare a safepoint
2423  void safepoint();
2424
2425  // factor out part of stop into subroutine to save space
2426  void stop_subroutine();
2427  // factor out part of verify_oop into subroutine to save space
2428  void verify_oop_subroutine();
2429
2430  // side-door communication with signalHandler in os_solaris.cpp
2431  static address _verify_oop_implicit_branch[3];
2432
2433#ifndef PRODUCT
2434  static void test();
2435#endif
2436
2437  int total_frame_size_in_bytes(int extraWords);
2438
2439  // used when extraWords known statically
2440  void save_frame(int extraWords = 0);
2441  void save_frame_c1(int size_in_bytes);
2442  // make a frame, and simultaneously pass up one or two register value
2443  // into the new register window
2444  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
2445
2446  // give no. (outgoing) params, calc # of words will need on frame
2447  void calc_mem_param_words(Register Rparam_words, Register Rresult);
2448
2449  // used to calculate frame size dynamically
2450  // result is in bytes and must be negated for save inst
2451  void calc_frame_size(Register extraWords, Register resultReg);
2452
2453  // calc and also save
2454  void calc_frame_size_and_save(Register extraWords, Register resultReg);
2455
2456  static void debug(char* msg, RegistersForDebugging* outWindow);
2457
2458  // implementations of bytecodes used by both interpreter and compiler
2459
2460  void lcmp( Register Ra_hi, Register Ra_low,
2461             Register Rb_hi, Register Rb_low,
2462             Register Rresult);
2463
2464  void lneg( Register Rhi, Register Rlow );
2465
2466  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
2467              Register Rout_high, Register Rout_low, Register Rtemp );
2468
2469  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
2470              Register Rout_high, Register Rout_low, Register Rtemp );
2471
2472  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
2473              Register Rout_high, Register Rout_low, Register Rtemp );
2474
2475#ifdef _LP64
2476  void lcmp( Register Ra, Register Rb, Register Rresult);
2477#endif
2478
2479  // Load and store values by size and signed-ness
2480  void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
2481  void store_sized_value(Register src, Address dst, size_t size_in_bytes);
2482
2483  void float_cmp( bool is_float, int unordered_result,
2484                  FloatRegister Fa, FloatRegister Fb,
2485                  Register Rresult);
2486
2487  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2488  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
2489  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2490  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2491
2492  void save_all_globals_into_locals();
2493  void restore_globals_from_locals();
2494
2495  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2496    address lock_addr=0, bool use_call_vm=false);
2497  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2498    address lock_addr=0, bool use_call_vm=false);
2499  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
2500
2501  // These set the icc condition code to equal if the lock succeeded
2502  // and notEqual if it failed and requires a slow case
2503  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
2504                            Register Rscratch,
2505                            BiasedLockingCounters* counters = NULL,
2506                            bool try_bias = UseBiasedLocking);
2507  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
2508                              Register Rscratch,
2509                              bool try_bias = UseBiasedLocking);
2510
2511  // Biased locking support
2512  // Upon entry, lock_reg must point to the lock record on the stack,
2513  // obj_reg must contain the target object, and mark_reg must contain
2514  // the target object's header.
2515  // Destroys mark_reg if an attempt is made to bias an anonymously
2516  // biased lock. In this case a failure will go either to the slow
2517  // case or fall through with the notEqual condition code set with
2518  // the expectation that the slow case in the runtime will be called.
2519  // In the fall-through case where the CAS-based lock is done,
2520  // mark_reg is not destroyed.
2521  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2522                            Label& done, Label* slow_case = NULL,
2523                            BiasedLockingCounters* counters = NULL);
2524  // Upon entry, the base register of mark_addr must contain the oop.
2525  // Destroys temp_reg.
2526
2527  // If allow_delay_slot_filling is set to true, the next instruction
2528  // emitted after this one will go in an annulled delay slot if the
2529  // biased locking exit case failed.
2530  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
2531
2532  // allocation
2533  void eden_allocate(
2534    Register obj,                      // result: pointer to object after successful allocation
2535    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2536    int      con_size_in_bytes,        // object size in bytes if   known at compile time
2537    Register t1,                       // temp register
2538    Register t2,                       // temp register
2539    Label&   slow_case                 // continuation point if fast allocation fails
2540  );
2541  void tlab_allocate(
2542    Register obj,                      // result: pointer to object after successful allocation
2543    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2544    int      con_size_in_bytes,        // object size in bytes if   known at compile time
2545    Register t1,                       // temp register
2546    Label&   slow_case                 // continuation point if fast allocation fails
2547  );
2548  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
2549  void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
2550                            Register t1, Register t2);
2551
2552  // interface method calling
2553  void lookup_interface_method(Register recv_klass,
2554                               Register intf_klass,
2555                               RegisterOrConstant itable_index,
2556                               Register method_result,
2557                               Register temp_reg, Register temp2_reg,
2558                               Label& no_such_interface);
2559
2560  // virtual method calling
2561  void lookup_virtual_method(Register recv_klass,
2562                             RegisterOrConstant vtable_index,
2563                             Register method_result);
2564
2565  // Test sub_klass against super_klass, with fast and slow paths.
2566
2567  // The fast path produces a tri-state answer: yes / no / maybe-slow.
2568  // One of the three labels can be NULL, meaning take the fall-through.
2569  // If super_check_offset is -1, the value is loaded up from super_klass.
2570  // No registers are killed, except temp_reg and temp2_reg.
2571  // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
2572  void check_klass_subtype_fast_path(Register sub_klass,
2573                                     Register super_klass,
2574                                     Register temp_reg,
2575                                     Register temp2_reg,
2576                                     Label* L_success,
2577                                     Label* L_failure,
2578                                     Label* L_slow_path,
2579                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
2580
2581  // The rest of the type check; must be wired to a corresponding fast path.
2582  // It does not repeat the fast path logic, so don't use it standalone.
2583  // The temp_reg can be noreg, if no temps are available.
2584  // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
2585  // Updates the sub's secondary super cache as necessary.
2586  void check_klass_subtype_slow_path(Register sub_klass,
2587                                     Register super_klass,
2588                                     Register temp_reg,
2589                                     Register temp2_reg,
2590                                     Register temp3_reg,
2591                                     Register temp4_reg,
2592                                     Label* L_success,
2593                                     Label* L_failure);
2594
2595  // Simplified, combined version, good for typical uses.
2596  // Falls through on failure.
2597  void check_klass_subtype(Register sub_klass,
2598                           Register super_klass,
2599                           Register temp_reg,
2600                           Register temp2_reg,
2601                           Label& L_success);
2602
2603  // method handles (JSR 292)
2604  // offset relative to Gargs of argument at tos[arg_slot].
2605  // (arg_slot == 0 means the last argument, not the first).
2606  RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
2607                                     Register temp_reg,
2608                                     int extra_slot_offset = 0);
2609  // Address of Gargs and argument_offset.
2610  Address            argument_address(RegisterOrConstant arg_slot,
2611                                      Register temp_reg = noreg,
2612                                      int extra_slot_offset = 0);
2613
2614  // Stack overflow checking
2615
2616  // Note: this clobbers G3_scratch
2617  void bang_stack_with_offset(int offset) {
2618    // stack grows down, caller passes positive offset
2619    assert(offset > 0, "must bang with negative offset");
2620    set((-offset)+STACK_BIAS, G3_scratch);
2621    st(G0, SP, G3_scratch);
2622  }
2623
2624  // Writes to stack successive pages until offset reached to check for
2625  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
2626  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
2627
2628  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
2629
2630  void verify_tlab();
2631
2632  Condition negate_condition(Condition cond);
2633
2634  // Helper functions for statistics gathering.
2635  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
2636  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
2637  // Unconditional increment.
2638  void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
2639  void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
2640
2641  // Compare char[] arrays aligned to 4 bytes.
2642  void char_arrays_equals(Register ary1, Register ary2,
2643                          Register limit, Register result,
2644                          Register chr1, Register chr2, Label& Ldone);
2645  // Use BIS for zeroing
2646  void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
2647
2648#undef VIRTUAL
2649
2650};
2651
2652/**
2653 * class SkipIfEqual:
2654 *
2655 * Instantiating this class will result in assembly code being output that will
2656 * jump around any code emitted between the creation of the instance and it's
2657 * automatic destruction at the end of a scope block, depending on the value of
2658 * the flag passed to the constructor, which will be checked at run-time.
2659 */
2660class SkipIfEqual : public StackObj {
2661 private:
2662  MacroAssembler* _masm;
2663  Label _label;
2664
2665 public:
2666   // 'temp' is a temp register that this object can use (and trash)
2667   SkipIfEqual(MacroAssembler*, Register temp,
2668               const bool* flag_addr, Assembler::Condition condition);
2669   ~SkipIfEqual();
2670};
2671
2672#ifdef ASSERT
2673// On RISC, there's no benefit to verifying instruction boundaries.
2674inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
2675#endif
2676
2677#endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
2678