assembler_sparc.hpp revision 1988:b1a2afa37ec4
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
26#define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
27
28class BiasedLockingCounters;
29
30// <sys/trap.h> promises that the system will not use traps 16-31
31#define ST_RESERVED_FOR_USER_0 0x10
32
33/* Written: David Ungar 4/19/97 */
34
35// Contains all the definitions needed for sparc assembly code generation.
36
37// Register aliases for parts of the system:
38
39// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
40// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
41// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
42
43// g2-g4 are scratch registers called "application globals".  Their
44// meaning is reserved to the "compilation system"--which means us!
45// They are are not supposed to be touched by ordinary C code, although
46// highly-optimized C code might steal them for temps.  They are safe
47// across thread switches, and the ABI requires that they be safe
48// across function calls.
49//
50// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
51// across func calls, and V8+ also allows g5 to be clobbered across
52// func calls.  Also, g1 and g5 can get touched while doing shared
53// library loading.
54//
55// We must not touch g7 (it is the thread-self register) and g6 is
56// reserved for certain tools.  g0, of course, is always zero.
57//
58// (Sources:  SunSoft Compilers Group, thread library engineers.)
59
60// %%%% The interpreter should be revisited to reduce global scratch regs.
61
62// This global always holds the current JavaThread pointer:
63
64REGISTER_DECLARATION(Register, G2_thread , G2);
65REGISTER_DECLARATION(Register, G6_heapbase , G6);
66
67// The following globals are part of the Java calling convention:
68
69REGISTER_DECLARATION(Register, G5_method             , G5);
70REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
71REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
72
73// The following globals are used for the new C1 & interpreter calling convention:
74REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
75
76// This local is used to preserve G2_thread in the interpreter and in stubs:
77REGISTER_DECLARATION(Register, L7_thread_cache , L7);
78
79// These globals are used as scratch registers in the interpreter:
80
81REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
82REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
83REGISTER_DECLARATION(Register, G3_scratch    , G3);
84REGISTER_DECLARATION(Register, G4_scratch    , G4);
85
86// These globals are used as short-lived scratch registers in the compiler:
87
88REGISTER_DECLARATION(Register, Gtemp  , G5);
89
90// JSR 292 fixed register usages:
91REGISTER_DECLARATION(Register, G5_method_type        , G5);
92REGISTER_DECLARATION(Register, G3_method_handle      , G3);
93REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
94
95// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
96// because a single patchable "set" instruction (NativeMovConstReg,
97// or NativeMovConstPatching for compiler1) instruction
98// serves to set up either quantity, depending on whether the compiled
99// call site is an inline cache or is megamorphic.  See the function
100// CompiledIC::set_to_megamorphic.
101//
102// If a inline cache targets an interpreted method, then the
103// G5 register will be used twice during the call.  First,
104// the call site will be patched to load a compiledICHolder
105// into G5. (This is an ordered pair of ic_klass, method.)
106// The c2i adapter will first check the ic_klass, then load
107// G5_method with the method part of the pair just before
108// jumping into the interpreter.
109//
110// Note that G5_method is only the method-self for the interpreter,
111// and is logically unrelated to G5_megamorphic_method.
112//
113// Invariants on G2_thread (the JavaThread pointer):
114//  - it should not be used for any other purpose anywhere
115//  - it must be re-initialized by StubRoutines::call_stub()
116//  - it must be preserved around every use of call_VM
117
118// We can consider using g2/g3/g4 to cache more values than the
119// JavaThread, such as the card-marking base or perhaps pointers into
120// Eden.  It's something of a waste to use them as scratch temporaries,
121// since they are not supposed to be volatile.  (Of course, if we find
122// that Java doesn't benefit from application globals, then we can just
123// use them as ordinary temporaries.)
124//
125// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
126// it makes sense to use them routinely for procedure linkage,
127// whenever the On registers are not applicable.  Examples:  G5_method,
128// G5_inline_cache_klass, and a double handful of miscellaneous compiler
129// stubs.  This means that compiler stubs, etc., should be kept to a
130// maximum of two or three G-register arguments.
131
132
133// stub frames
134
135REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
136
137// Interpreter frames
138
139#ifdef CC_INTERP
140REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
141REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
142REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
143REGISTER_DECLARATION(Register, L2_scratch       , L2);
144REGISTER_DECLARATION(Register, L3_scratch       , L3);
145REGISTER_DECLARATION(Register, L4_scratch       , L4);
146REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
147REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
148REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
149REGISTER_DECLARATION(Register, O5_savedSP       , O5);
150REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
151                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
152                                                       // is added and removed as needed in the frame code.
153// Interface to signature handler
154REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
155REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler
156
157#else
158REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
159REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
160REGISTER_DECLARATION(Register, Lmethod          , L2);
161REGISTER_DECLARATION(Register, Llocals          , L3);
162REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
163                                                       // must match Llocals in asm interpreter
164REGISTER_DECLARATION(Register, Lmonitors        , L4);
165REGISTER_DECLARATION(Register, Lbyte_code       , L5);
166// When calling out from the interpreter we record SP so that we can remove any extra stack
167// space allocated during adapter transitions. This register is only live from the point
168// of the call until we return.
169REGISTER_DECLARATION(Register, Llast_SP         , L5);
170REGISTER_DECLARATION(Register, Lscratch         , L5);
171REGISTER_DECLARATION(Register, Lscratch2        , L6);
172REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
173
174REGISTER_DECLARATION(Register, O5_savedSP       , O5);
175REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
176                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
177                                                       // is added and removed as needed in the frame code.
178REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
179REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
180REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
181#endif /* CC_INTERP */
182
183// NOTE: Lscratch2 and LcpoolCache point to the same registers in
184//       the interpreter code. If Lscratch2 needs to be used for some
185//       purpose than LcpoolCache should be restore after that for
186//       the interpreter to work right
187// (These assignments must be compatible with L7_thread_cache; see above.)
188
189// Since Lbcp points into the middle of the method object,
190// it is temporarily converted into a "bcx" during GC.
191
192// Exception processing
193// These registers are passed into exception handlers.
194// All exception handlers require the exception object being thrown.
195// In addition, an nmethod's exception handler must be passed
196// the address of the call site within the nmethod, to allow
197// proper selection of the applicable catch block.
198// (Interpreter frames use their own bcp() for this purpose.)
199//
200// The Oissuing_pc value is not always needed.  When jumping to a
201// handler that is known to be interpreted, the Oissuing_pc value can be
202// omitted.  An actual catch block in compiled code receives (from its
203// nmethod's exception handler) the thrown exception in the Oexception,
204// but it doesn't need the Oissuing_pc.
205//
206// If an exception handler (either interpreted or compiled)
207// discovers there is no applicable catch block, it updates
208// the Oissuing_pc to the continuation PC of its own caller,
209// pops back to that caller's stack frame, and executes that
210// caller's exception handler.  Obviously, this process will
211// iterate until the control stack is popped back to a method
212// containing an applicable catch block.  A key invariant is
213// that the Oissuing_pc value is always a value local to
214// the method whose exception handler is currently executing.
215//
216// Note:  The issuing PC value is __not__ a raw return address (I7 value).
217// It is a "return pc", the address __following__ the call.
218// Raw return addresses are converted to issuing PCs by frame::pc(),
219// or by stubs.  Issuing PCs can be used directly with PC range tables.
220//
221REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
222REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
223
224
225// These must occur after the declarations above
226#ifndef DONT_USE_REGISTER_DEFINES
227
228#define Gthread             AS_REGISTER(Register, Gthread)
229#define Gmethod             AS_REGISTER(Register, Gmethod)
230#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
231#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
232#define Gargs               AS_REGISTER(Register, Gargs)
233#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
234#define Gframe_size         AS_REGISTER(Register, Gframe_size)
235#define Gtemp               AS_REGISTER(Register, Gtemp)
236
237#ifdef CC_INTERP
238#define Lstate              AS_REGISTER(Register, Lstate)
239#define Lesp                AS_REGISTER(Register, Lesp)
240#define L1_scratch          AS_REGISTER(Register, L1_scratch)
241#define Lmirror             AS_REGISTER(Register, Lmirror)
242#define L2_scratch          AS_REGISTER(Register, L2_scratch)
243#define L3_scratch          AS_REGISTER(Register, L3_scratch)
244#define L4_scratch          AS_REGISTER(Register, L4_scratch)
245#define Lscratch            AS_REGISTER(Register, Lscratch)
246#define Lscratch2           AS_REGISTER(Register, Lscratch2)
247#define L7_scratch          AS_REGISTER(Register, L7_scratch)
248#define Ostate              AS_REGISTER(Register, Ostate)
249#else
250#define Lesp                AS_REGISTER(Register, Lesp)
251#define Lbcp                AS_REGISTER(Register, Lbcp)
252#define Lmethod             AS_REGISTER(Register, Lmethod)
253#define Llocals             AS_REGISTER(Register, Llocals)
254#define Lmonitors           AS_REGISTER(Register, Lmonitors)
255#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
256#define Lscratch            AS_REGISTER(Register, Lscratch)
257#define Lscratch2           AS_REGISTER(Register, Lscratch2)
258#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
259#endif /* ! CC_INTERP */
260
261#define Lentry_args         AS_REGISTER(Register, Lentry_args)
262#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
263#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
264#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
265#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
266#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
267
268#define Oexception          AS_REGISTER(Register, Oexception)
269#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
270
271
272#endif
273
274// Address is an abstraction used to represent a memory location.
275//
276// Note: A register location is represented via a Register, not
277//       via an address for efficiency & simplicity reasons.
278
279class Address VALUE_OBJ_CLASS_SPEC {
280 private:
281  Register           _base;           // Base register.
282  RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
283  RelocationHolder   _rspec;
284
285 public:
286  Address() : _base(noreg), _index_or_disp(noreg) {}
287
288  Address(Register base, RegisterOrConstant index_or_disp)
289    : _base(base),
290      _index_or_disp(index_or_disp) {
291  }
292
293  Address(Register base, Register index)
294    : _base(base),
295      _index_or_disp(index) {
296  }
297
298  Address(Register base, int disp)
299    : _base(base),
300      _index_or_disp(disp) {
301  }
302
303#ifdef ASSERT
304  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
305  Address(Register base, ByteSize disp)
306    : _base(base),
307      _index_or_disp(in_bytes(disp)) {
308  }
309#endif
310
311  // accessors
312  Register base()      const { return _base; }
313  Register index()     const { return _index_or_disp.as_register(); }
314  int      disp()      const { return _index_or_disp.as_constant(); }
315
316  bool     has_index() const { return _index_or_disp.is_register(); }
317  bool     has_disp()  const { return _index_or_disp.is_constant(); }
318
319  const relocInfo::relocType rtype() { return _rspec.type(); }
320  const RelocationHolder&    rspec() { return _rspec; }
321
322  RelocationHolder rspec(int offset) const {
323    return offset == 0 ? _rspec : _rspec.plus(offset);
324  }
325
326  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
327
328  Address plus_disp(int plusdisp) const {     // bump disp by a small amount
329    assert(_index_or_disp.is_constant(), "must have a displacement");
330    Address a(base(), disp() + plusdisp);
331    return a;
332  }
333
334  Address after_save() const {
335    Address a = (*this);
336    a._base = a._base->after_save();
337    return a;
338  }
339
340  Address after_restore() const {
341    Address a = (*this);
342    a._base = a._base->after_restore();
343    return a;
344  }
345
346  // Convert the raw encoding form into the form expected by the
347  // constructor for Address.
348  static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
349
350  friend class Assembler;
351};
352
353
354class AddressLiteral VALUE_OBJ_CLASS_SPEC {
355 private:
356  address          _address;
357  RelocationHolder _rspec;
358
359  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
360    switch (rtype) {
361    case relocInfo::external_word_type:
362      return external_word_Relocation::spec(addr);
363    case relocInfo::internal_word_type:
364      return internal_word_Relocation::spec(addr);
365#ifdef _LP64
366    case relocInfo::opt_virtual_call_type:
367      return opt_virtual_call_Relocation::spec();
368    case relocInfo::static_call_type:
369      return static_call_Relocation::spec();
370    case relocInfo::runtime_call_type:
371      return runtime_call_Relocation::spec();
372#endif
373    case relocInfo::none:
374      return RelocationHolder();
375    default:
376      ShouldNotReachHere();
377      return RelocationHolder();
378    }
379  }
380
381 protected:
382  // creation
383  AddressLiteral() : _address(NULL), _rspec(NULL) {}
384
385 public:
386  AddressLiteral(address addr, RelocationHolder const& rspec)
387    : _address(addr),
388      _rspec(rspec) {}
389
390  // Some constructors to avoid casting at the call site.
391  AddressLiteral(jobject obj, RelocationHolder const& rspec)
392    : _address((address) obj),
393      _rspec(rspec) {}
394
395  AddressLiteral(intptr_t value, RelocationHolder const& rspec)
396    : _address((address) value),
397      _rspec(rspec) {}
398
399  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
400    : _address((address) addr),
401    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
402
403  // Some constructors to avoid casting at the call site.
404  AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
405    : _address((address) addr),
406    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
407
408  AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
409    : _address((address) addr),
410      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
411
412  AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
413    : _address((address) addr),
414      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
415
416  AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
417    : _address((address) addr),
418      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
419
420  AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
421    : _address((address) addr),
422      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
423
424  AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
425    : _address((address) addr),
426      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
427
428#ifdef _LP64
429  // 32-bit complains about a multiple declaration for int*.
430  AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
431    : _address((address) addr),
432      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
433#endif
434
435  AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
436    : _address((address) addr),
437      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
438
439  AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
440    : _address((address) addr),
441      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
442
443  AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
444    : _address((address) addr),
445      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
446
447  intptr_t value() const { return (intptr_t) _address; }
448  int      low10() const;
449
450  const relocInfo::relocType rtype() const { return _rspec.type(); }
451  const RelocationHolder&    rspec() const { return _rspec; }
452
453  RelocationHolder rspec(int offset) const {
454    return offset == 0 ? _rspec : _rspec.plus(offset);
455  }
456};
457
458
459inline Address RegisterImpl::address_in_saved_window() const {
460   return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
461}
462
463
464
465// Argument is an abstraction used to represent an outgoing
466// actual argument or an incoming formal parameter, whether
467// it resides in memory or in a register, in a manner consistent
468// with the SPARC Application Binary Interface, or ABI.  This is
469// often referred to as the native or C calling convention.
470
471class Argument VALUE_OBJ_CLASS_SPEC {
472 private:
473  int _number;
474  bool _is_in;
475
476 public:
477#ifdef _LP64
478  enum {
479    n_register_parameters = 6,          // only 6 registers may contain integer parameters
480    n_float_register_parameters = 16    // Can have up to 16 floating registers
481  };
482#else
483  enum {
484    n_register_parameters = 6           // only 6 registers may contain integer parameters
485  };
486#endif
487
488  // creation
489  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
490
491  int  number() const  { return _number;  }
492  bool is_in()  const  { return _is_in;   }
493  bool is_out() const  { return !is_in(); }
494
495  Argument successor() const  { return Argument(number() + 1, is_in()); }
496  Argument as_in()     const  { return Argument(number(), true ); }
497  Argument as_out()    const  { return Argument(number(), false); }
498
499  // locating register-based arguments:
500  bool is_register() const { return _number < n_register_parameters; }
501
502#ifdef _LP64
503  // locating Floating Point register-based arguments:
504  bool is_float_register() const { return _number < n_float_register_parameters; }
505
506  FloatRegister as_float_register() const {
507    assert(is_float_register(), "must be a register argument");
508    return as_FloatRegister(( number() *2 ) + 1);
509  }
510  FloatRegister as_double_register() const {
511    assert(is_float_register(), "must be a register argument");
512    return as_FloatRegister(( number() *2 ));
513  }
514#endif
515
516  Register as_register() const {
517    assert(is_register(), "must be a register argument");
518    return is_in() ? as_iRegister(number()) : as_oRegister(number());
519  }
520
521  // locating memory-based arguments
522  Address as_address() const {
523    assert(!is_register(), "must be a memory argument");
524    return address_in_frame();
525  }
526
527  // When applied to a register-based argument, give the corresponding address
528  // into the 6-word area "into which callee may store register arguments"
529  // (This is a different place than the corresponding register-save area location.)
530  Address address_in_frame() const;
531
532  // debugging
533  const char* name() const;
534
535  friend class Assembler;
536};
537
538
539// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
540// level; i.e., what you write
541// is what you get. The Assembler is generating code into a CodeBuffer.
542
543class Assembler : public AbstractAssembler  {
544 protected:
545
546  static void print_instruction(int inst);
547  static int  patched_branch(int dest_pos, int inst, int inst_pos);
548  static int  branch_destination(int inst, int pos);
549
550
551  friend class AbstractAssembler;
552  friend class AddressLiteral;
553
554  // code patchers need various routines like inv_wdisp()
555  friend class NativeInstruction;
556  friend class NativeGeneralJump;
557  friend class Relocation;
558  friend class Label;
559
560 public:
561  // op carries format info; see page 62 & 267
562
563  enum ops {
564    call_op   = 1, // fmt 1
565    branch_op = 0, // also sethi (fmt2)
566    arith_op  = 2, // fmt 3, arith & misc
567    ldst_op   = 3  // fmt 3, load/store
568  };
569
570  enum op2s {
571    bpr_op2   = 3,
572    fb_op2    = 6,
573    fbp_op2   = 5,
574    br_op2    = 2,
575    bp_op2    = 1,
576    cb_op2    = 7, // V8
577    sethi_op2 = 4
578  };
579
580  enum op3s {
581    // selected op3s
582    add_op3      = 0x00,
583    and_op3      = 0x01,
584    or_op3       = 0x02,
585    xor_op3      = 0x03,
586    sub_op3      = 0x04,
587    andn_op3     = 0x05,
588    orn_op3      = 0x06,
589    xnor_op3     = 0x07,
590    addc_op3     = 0x08,
591    mulx_op3     = 0x09,
592    umul_op3     = 0x0a,
593    smul_op3     = 0x0b,
594    subc_op3     = 0x0c,
595    udivx_op3    = 0x0d,
596    udiv_op3     = 0x0e,
597    sdiv_op3     = 0x0f,
598
599    addcc_op3    = 0x10,
600    andcc_op3    = 0x11,
601    orcc_op3     = 0x12,
602    xorcc_op3    = 0x13,
603    subcc_op3    = 0x14,
604    andncc_op3   = 0x15,
605    orncc_op3    = 0x16,
606    xnorcc_op3   = 0x17,
607    addccc_op3   = 0x18,
608    umulcc_op3   = 0x1a,
609    smulcc_op3   = 0x1b,
610    subccc_op3   = 0x1c,
611    udivcc_op3   = 0x1e,
612    sdivcc_op3   = 0x1f,
613
614    taddcc_op3   = 0x20,
615    tsubcc_op3   = 0x21,
616    taddcctv_op3 = 0x22,
617    tsubcctv_op3 = 0x23,
618    mulscc_op3   = 0x24,
619    sll_op3      = 0x25,
620    sllx_op3     = 0x25,
621    srl_op3      = 0x26,
622    srlx_op3     = 0x26,
623    sra_op3      = 0x27,
624    srax_op3     = 0x27,
625    rdreg_op3    = 0x28,
626    membar_op3   = 0x28,
627
628    flushw_op3   = 0x2b,
629    movcc_op3    = 0x2c,
630    sdivx_op3    = 0x2d,
631    popc_op3     = 0x2e,
632    movr_op3     = 0x2f,
633
634    sir_op3      = 0x30,
635    wrreg_op3    = 0x30,
636    saved_op3    = 0x31,
637
638    fpop1_op3    = 0x34,
639    fpop2_op3    = 0x35,
640    impdep1_op3  = 0x36,
641    impdep2_op3  = 0x37,
642    jmpl_op3     = 0x38,
643    rett_op3     = 0x39,
644    trap_op3     = 0x3a,
645    flush_op3    = 0x3b,
646    save_op3     = 0x3c,
647    restore_op3  = 0x3d,
648    done_op3     = 0x3e,
649    retry_op3    = 0x3e,
650
651    lduw_op3     = 0x00,
652    ldub_op3     = 0x01,
653    lduh_op3     = 0x02,
654    ldd_op3      = 0x03,
655    stw_op3      = 0x04,
656    stb_op3      = 0x05,
657    sth_op3      = 0x06,
658    std_op3      = 0x07,
659    ldsw_op3     = 0x08,
660    ldsb_op3     = 0x09,
661    ldsh_op3     = 0x0a,
662    ldx_op3      = 0x0b,
663
664    ldstub_op3   = 0x0d,
665    stx_op3      = 0x0e,
666    swap_op3     = 0x0f,
667
668    stwa_op3     = 0x14,
669    stxa_op3     = 0x1e,
670
671    ldf_op3      = 0x20,
672    ldfsr_op3    = 0x21,
673    ldqf_op3     = 0x22,
674    lddf_op3     = 0x23,
675    stf_op3      = 0x24,
676    stfsr_op3    = 0x25,
677    stqf_op3     = 0x26,
678    stdf_op3     = 0x27,
679
680    prefetch_op3 = 0x2d,
681
682
683    ldc_op3      = 0x30,
684    ldcsr_op3    = 0x31,
685    lddc_op3     = 0x33,
686    stc_op3      = 0x34,
687    stcsr_op3    = 0x35,
688    stdcq_op3    = 0x36,
689    stdc_op3     = 0x37,
690
691    casa_op3     = 0x3c,
692    casxa_op3    = 0x3e,
693
694    alt_bit_op3  = 0x10,
695     cc_bit_op3  = 0x10
696  };
697
698  enum opfs {
699    // selected opfs
700    fmovs_opf   = 0x01,
701    fmovd_opf   = 0x02,
702
703    fnegs_opf   = 0x05,
704    fnegd_opf   = 0x06,
705
706    fadds_opf   = 0x41,
707    faddd_opf   = 0x42,
708    fsubs_opf   = 0x45,
709    fsubd_opf   = 0x46,
710
711    fmuls_opf   = 0x49,
712    fmuld_opf   = 0x4a,
713    fdivs_opf   = 0x4d,
714    fdivd_opf   = 0x4e,
715
716    fcmps_opf   = 0x51,
717    fcmpd_opf   = 0x52,
718
719    fstox_opf   = 0x81,
720    fdtox_opf   = 0x82,
721    fxtos_opf   = 0x84,
722    fxtod_opf   = 0x88,
723    fitos_opf   = 0xc4,
724    fdtos_opf   = 0xc6,
725    fitod_opf   = 0xc8,
726    fstod_opf   = 0xc9,
727    fstoi_opf   = 0xd1,
728    fdtoi_opf   = 0xd2
729  };
730
731  enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };
732
733  enum Condition {
734     // for FBfcc & FBPfcc instruction
735    f_never                     = 0,
736    f_notEqual                  = 1,
737    f_notZero                   = 1,
738    f_lessOrGreater             = 2,
739    f_unorderedOrLess           = 3,
740    f_less                      = 4,
741    f_unorderedOrGreater        = 5,
742    f_greater                   = 6,
743    f_unordered                 = 7,
744    f_always                    = 8,
745    f_equal                     = 9,
746    f_zero                      = 9,
747    f_unorderedOrEqual          = 10,
748    f_greaterOrEqual            = 11,
749    f_unorderedOrGreaterOrEqual = 12,
750    f_lessOrEqual               = 13,
751    f_unorderedOrLessOrEqual    = 14,
752    f_ordered                   = 15,
753
754    // V8 coproc, pp 123 v8 manual
755
756    cp_always  = 8,
757    cp_never   = 0,
758    cp_3       = 7,
759    cp_2       = 6,
760    cp_2or3    = 5,
761    cp_1       = 4,
762    cp_1or3    = 3,
763    cp_1or2    = 2,
764    cp_1or2or3 = 1,
765    cp_0       = 9,
766    cp_0or3    = 10,
767    cp_0or2    = 11,
768    cp_0or2or3 = 12,
769    cp_0or1    = 13,
770    cp_0or1or3 = 14,
771    cp_0or1or2 = 15,
772
773
774    // for integers
775
776    never                 =  0,
777    equal                 =  1,
778    zero                  =  1,
779    lessEqual             =  2,
780    less                  =  3,
781    lessEqualUnsigned     =  4,
782    lessUnsigned          =  5,
783    carrySet              =  5,
784    negative              =  6,
785    overflowSet           =  7,
786    always                =  8,
787    notEqual              =  9,
788    notZero               =  9,
789    greater               =  10,
790    greaterEqual          =  11,
791    greaterUnsigned       =  12,
792    greaterEqualUnsigned  =  13,
793    carryClear            =  13,
794    positive              =  14,
795    overflowClear         =  15
796  };
797
798  enum CC {
799    icc  = 0,  xcc  = 2,
800    // ptr_cc is the correct condition code for a pointer or intptr_t:
801    ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
802    fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
803  };
804
805  enum PrefetchFcn {
806    severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
807  };
808
809 public:
810  // Helper functions for groups of instructions
811
812  enum Predict { pt = 1, pn = 0 }; // pt = predict taken
813
814  enum Membar_mask_bits { // page 184, v9
815    StoreStore = 1 << 3,
816    LoadStore  = 1 << 2,
817    StoreLoad  = 1 << 1,
818    LoadLoad   = 1 << 0,
819
820    Sync       = 1 << 6,
821    MemIssue   = 1 << 5,
822    Lookaside  = 1 << 4
823  };
824
825  // test if x is within signed immediate range for nbits
826  static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
827
828  // test if -4096 <= x <= 4095
829  static bool is_simm13(int x) { return is_simm(x, 13); }
830
831  // test if label is in simm16 range in words (wdisp16).
832  bool is_in_wdisp16_range(Label& L) {
833    intptr_t d = intptr_t(pc()) - intptr_t(target(L));
834    return is_simm(d, 18);
835  }
836
837  enum ASIs { // page 72, v9
838    ASI_PRIMARY        = 0x80,
839    ASI_PRIMARY_LITTLE = 0x88
840    // add more from book as needed
841  };
842
843 protected:
844  // helpers
845
846  // x is supposed to fit in a field "nbits" wide
847  // and be sign-extended. Check the range.
848
849  static void assert_signed_range(intptr_t x, int nbits) {
850    assert( nbits == 32
851        ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
852      "value out of range");
853  }
854
855  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
856    assert( (x & 3) == 0, "not word aligned");
857    assert_signed_range(x, nbits + 2);
858  }
859
860  static void assert_unsigned_const(int x, int nbits) {
861    assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
862  }
863
864  // fields: note bits numbered from LSB = 0,
865  //  fields known by inclusive bit range
866
867  static int fmask(juint hi_bit, juint lo_bit) {
868    assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
869    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
870  }
871
872  // inverse of u_field
873
874  static int inv_u_field(int x, int hi_bit, int lo_bit) {
875    juint r = juint(x) >> lo_bit;
876    r &= fmask( hi_bit, lo_bit);
877    return int(r);
878  }
879
880
881  // signed version: extract from field and sign-extend
882
883  static int inv_s_field(int x, int hi_bit, int lo_bit) {
884    int sign_shift = 31 - hi_bit;
885    return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
886  }
887
888  // given a field that ranges from hi_bit to lo_bit (inclusive,
889  // LSB = 0), and an unsigned value for the field,
890  // shift it into the field
891
892#ifdef ASSERT
893  static int u_field(int x, int hi_bit, int lo_bit) {
894    assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
895            "value out of range");
896    int r = x << lo_bit;
897    assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
898    return r;
899  }
900#else
901  // make sure this is inlined as it will reduce code size significantly
902  #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
903#endif
904
905  static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
906  static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
907  static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
908  static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
909
910  static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
911
912  static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
913  static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
914  static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
915
916  static int op(       int         x)  { return  u_field(x,             31, 30); }
917  static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
918  static int fcn(      int         x)  { return  u_field(x,             29, 25); }
919  static int op3(      int         x)  { return  u_field(x,             24, 19); }
920  static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
921  static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
922  static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
923  static int cond(     int         x)  { return  u_field(x,             28, 25); }
924  static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
925  static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
926  static int op2(      int         x)  { return  u_field(x,             24, 22); }
927  static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
928  static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
929  static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
930  static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
931  static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
932  static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
933  static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
934  static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
935  static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
936  static int opf(      int         x)  { return  u_field(x,             13,  5); }
937
938  static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
939  static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
940
941  static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
942  static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
943  static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
944
945  // some float instructions use this encoding on the op3 field
946  static int alt_op3(int op, FloatRegisterImpl::Width w) {
947    int r;
948    switch(w) {
949     case FloatRegisterImpl::S: r = op + 0;  break;
950     case FloatRegisterImpl::D: r = op + 3;  break;
951     case FloatRegisterImpl::Q: r = op + 2;  break;
952     default: ShouldNotReachHere(); break;
953    }
954    return op3(r);
955  }
956
957
958  // compute inverse of simm
959  static int inv_simm(int x, int nbits) {
960    return (int)(x << (32 - nbits)) >> (32 - nbits);
961  }
962
963  static int inv_simm13( int x ) { return inv_simm(x, 13); }
964
965  // signed immediate, in low bits, nbits long
966  static int simm(int x, int nbits) {
967    assert_signed_range(x, nbits);
968    return x  &  (( 1 << nbits ) - 1);
969  }
970
971  // compute inverse of wdisp16
972  static intptr_t inv_wdisp16(int x, intptr_t pos) {
973    int lo = x & (( 1 << 14 ) - 1);
974    int hi = (x >> 20) & 3;
975    if (hi >= 2) hi |= ~1;
976    return (((hi << 14) | lo) << 2) + pos;
977  }
978
979  // word offset, 14 bits at LSend, 2 bits at B21, B20
980  static int wdisp16(intptr_t x, intptr_t off) {
981    intptr_t xx = x - off;
982    assert_signed_word_disp_range(xx, 16);
983    int r =  (xx >> 2) & ((1 << 14) - 1)
984           |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
985    assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
986    return r;
987  }
988
989
990  // word displacement in low-order nbits bits
991
992  static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
993    int pre_sign_extend = x & (( 1 << nbits ) - 1);
994    int r =  pre_sign_extend >= ( 1 << (nbits-1) )
995       ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
996       :   pre_sign_extend;
997    return (r << 2) + pos;
998  }
999
1000  static int wdisp( intptr_t x, intptr_t off, int nbits ) {
1001    intptr_t xx = x - off;
1002    assert_signed_word_disp_range(xx, nbits);
1003    int r =  (xx >> 2) & (( 1 << nbits ) - 1);
1004    assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
1005    return r;
1006  }
1007
1008
1009  // Extract the top 32 bits in a 64 bit word
1010  static int32_t hi32( int64_t x ) {
1011    int32_t r = int32_t( (uint64_t)x >> 32 );
1012    return r;
1013  }
1014
1015  // given a sethi instruction, extract the constant, left-justified
1016  static int inv_hi22( int x ) {
1017    return x << 10;
1018  }
1019
1020  // create an imm22 field, given a 32-bit left-justified constant
1021  static int hi22( int x ) {
1022    int r = int( juint(x) >> 10 );
1023    assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
1024    return r;
1025  }
1026
1027  // create a low10 __value__ (not a field) for a given a 32-bit constant
1028  static int low10( int x ) {
1029    return x & ((1 << 10) - 1);
1030  }
1031
1032  // instruction only in v9
1033  static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
1034
1035  // instruction only in v8
1036  static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
1037
1038  // instruction deprecated in v9
1039  static void v9_dep()  { } // do nothing for now
1040
1041  // some float instructions only exist for single prec. on v8
1042  static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
1043
1044  // v8 has no CC field
1045  static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
1046
1047 protected:
1048  // Simple delay-slot scheme:
1049  // In order to check the programmer, the assembler keeps track of deley slots.
1050  // It forbids CTIs in delay slots (conservative, but should be OK).
1051  // Also, when putting an instruction into a delay slot, you must say
1052  // asm->delayed()->add(...), in order to check that you don't omit
1053  // delay-slot instructions.
1054  // To implement this, we use a simple FSA
1055
1056#ifdef ASSERT
1057  #define CHECK_DELAY
1058#endif
1059#ifdef CHECK_DELAY
1060  enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
1061#endif
1062
1063 public:
1064  // Tells assembler next instruction must NOT be in delay slot.
1065  // Use at start of multinstruction macros.
1066  void assert_not_delayed() {
1067    // This is a separate overloading to avoid creation of string constants
1068    // in non-asserted code--with some compilers this pollutes the object code.
1069#ifdef CHECK_DELAY
1070    assert_not_delayed("next instruction should not be a delay slot");
1071#endif
1072  }
1073  void assert_not_delayed(const char* msg) {
1074#ifdef CHECK_DELAY
1075    assert(delay_state == no_delay, msg);
1076#endif
1077  }
1078
1079 protected:
1080  // Delay slot helpers
1081  // cti is called when emitting control-transfer instruction,
1082  // BEFORE doing the emitting.
1083  // Only effective when assertion-checking is enabled.
1084  void cti() {
1085#ifdef CHECK_DELAY
1086    assert_not_delayed("cti should not be in delay slot");
1087#endif
1088  }
1089
1090  // called when emitting cti with a delay slot, AFTER emitting
1091  void has_delay_slot() {
1092#ifdef CHECK_DELAY
1093    assert_not_delayed("just checking");
1094    delay_state = at_delay_slot;
1095#endif
1096  }
1097
1098public:
1099  // Tells assembler you know that next instruction is delayed
1100  Assembler* delayed() {
1101#ifdef CHECK_DELAY
1102    assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
1103    delay_state = filling_delay_slot;
1104#endif
1105    return this;
1106  }
1107
1108  void flush() {
1109#ifdef CHECK_DELAY
1110    assert ( delay_state == no_delay, "ending code with a delay slot");
1111#endif
1112    AbstractAssembler::flush();
1113  }
1114
1115  inline void emit_long(int);  // shadows AbstractAssembler::emit_long
1116  inline void emit_data(int x) { emit_long(x); }
1117  inline void emit_data(int, RelocationHolder const&);
1118  inline void emit_data(int, relocInfo::relocType rtype);
1119  // helper for above fcns
1120  inline void check_delay();
1121
1122
1123 public:
1124  // instructions, refer to page numbers in the SPARC Architecture Manual, V9
1125
1126  // pp 135 (addc was addx in v8)
1127
1128  inline void add(Register s1, Register s2, Register d );
1129  inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
1130  inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
1131  inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
1132  inline void add(const Address& a, Register d, int offset = 0);
1133
1134  void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1135  void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1136  void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
1137  void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1138  void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1139  void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1140
1141  // pp 136
1142
1143  inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
1144  inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
1145
1146 protected: // use MacroAssembler::br instead
1147
1148  // pp 138
1149
1150  inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1151  inline void fb( Condition c, bool a, Label& L );
1152
1153  // pp 141
1154
1155  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1156  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1157
1158 public:
1159
1160  // pp 144
1161
1162  inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1163  inline void br( Condition c, bool a, Label& L );
1164
1165  // pp 146
1166
1167  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1168  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1169
1170  // pp 121 (V8)
1171
1172  inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1173  inline void cb( Condition c, bool a, Label& L );
1174
1175  // pp 149
1176
1177  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1178  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1179
1180  // pp 150
1181
1182  // These instructions compare the contents of s2 with the contents of
1183  // memory at address in s1. If the values are equal, the contents of memory
1184  // at address s1 is swapped with the data in d. If the values are not equal,
1185  // the the contents of memory at s1 is loaded into d, without the swap.
1186
1187  void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1188  void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1189
1190  // pp 152
1191
1192  void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
1193  void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1194  void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
1195  void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1196  void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1197  void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1198  void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1199  void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1200
1201  // pp 155
1202
1203  void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
1204  void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
1205
1206  // pp 156
1207
1208  void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
1209  void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
1210
1211  // pp 157
1212
1213  void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
1214  void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
1215
1216  // pp 159
1217
1218  void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
1219  void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
1220
1221  // pp 160
1222
1223  void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
1224
1225  // pp 161
1226
1227  void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
1228  void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
1229
1230  // pp 162
1231
1232  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
1233
1234  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
1235
1236  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
1237  // on v8 to do negation of single, double and quad precision floats.
1238
1239  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
1240
1241  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
1242
1243  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
1244  // on v8 to do abs operation on single/double/quad precision floats.
1245
1246  void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
1247
1248  // pp 163
1249
1250  void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
1251  void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
1252  void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
1253
1254  // pp 164
1255
1256  void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
1257
1258  // pp 165
1259
1260  inline void flush( Register s1, Register s2 );
1261  inline void flush( Register s1, int simm13a);
1262
1263  // pp 167
1264
1265  void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
1266
1267  // pp 168
1268
1269  void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
1270  // v8 unimp == illtrap(0)
1271
1272  // pp 169
1273
1274  void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
1275  void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
1276
1277  // pp 149 (v8)
1278
1279  void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1280  void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1281
1282  // pp 170
1283
1284  void jmpl( Register s1, Register s2, Register d );
1285  void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1286
1287  // 171
1288
1289  inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
1290  inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
1291  inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
1292
1293  inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
1294
1295
1296  inline void ldfsr(  Register s1, Register s2 );
1297  inline void ldfsr(  Register s1, int simm13a);
1298  inline void ldxfsr( Register s1, Register s2 );
1299  inline void ldxfsr( Register s1, int simm13a);
1300
1301  // pp 94 (v8)
1302
1303  inline void ldc(   Register s1, Register s2, int crd );
1304  inline void ldc(   Register s1, int simm13a, int crd);
1305  inline void lddc(  Register s1, Register s2, int crd );
1306  inline void lddc(  Register s1, int simm13a, int crd);
1307  inline void ldcsr( Register s1, Register s2, int crd );
1308  inline void ldcsr( Register s1, int simm13a, int crd);
1309
1310
1311  // 173
1312
1313  void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1314  void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1315
1316  // pp 175, lduw is ld on v8
1317
1318  inline void ldsb(  Register s1, Register s2, Register d );
1319  inline void ldsb(  Register s1, int simm13a, Register d);
1320  inline void ldsh(  Register s1, Register s2, Register d );
1321  inline void ldsh(  Register s1, int simm13a, Register d);
1322  inline void ldsw(  Register s1, Register s2, Register d );
1323  inline void ldsw(  Register s1, int simm13a, Register d);
1324  inline void ldub(  Register s1, Register s2, Register d );
1325  inline void ldub(  Register s1, int simm13a, Register d);
1326  inline void lduh(  Register s1, Register s2, Register d );
1327  inline void lduh(  Register s1, int simm13a, Register d);
1328  inline void lduw(  Register s1, Register s2, Register d );
1329  inline void lduw(  Register s1, int simm13a, Register d);
1330  inline void ldx(   Register s1, Register s2, Register d );
1331  inline void ldx(   Register s1, int simm13a, Register d);
1332  inline void ld(    Register s1, Register s2, Register d );
1333  inline void ld(    Register s1, int simm13a, Register d);
1334  inline void ldd(   Register s1, Register s2, Register d );
1335  inline void ldd(   Register s1, int simm13a, Register d);
1336
1337#ifdef ASSERT
1338  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1339  inline void ld(    Register s1, ByteSize simm13a, Register d);
1340#endif
1341
1342  inline void ldsb(const Address& a, Register d, int offset = 0);
1343  inline void ldsh(const Address& a, Register d, int offset = 0);
1344  inline void ldsw(const Address& a, Register d, int offset = 0);
1345  inline void ldub(const Address& a, Register d, int offset = 0);
1346  inline void lduh(const Address& a, Register d, int offset = 0);
1347  inline void lduw(const Address& a, Register d, int offset = 0);
1348  inline void ldx( const Address& a, Register d, int offset = 0);
1349  inline void ld(  const Address& a, Register d, int offset = 0);
1350  inline void ldd( const Address& a, Register d, int offset = 0);
1351
1352  inline void ldub(  Register s1, RegisterOrConstant s2, Register d );
1353  inline void ldsb(  Register s1, RegisterOrConstant s2, Register d );
1354  inline void lduh(  Register s1, RegisterOrConstant s2, Register d );
1355  inline void ldsh(  Register s1, RegisterOrConstant s2, Register d );
1356  inline void lduw(  Register s1, RegisterOrConstant s2, Register d );
1357  inline void ldsw(  Register s1, RegisterOrConstant s2, Register d );
1358  inline void ldx(   Register s1, RegisterOrConstant s2, Register d );
1359  inline void ld(    Register s1, RegisterOrConstant s2, Register d );
1360  inline void ldd(   Register s1, RegisterOrConstant s2, Register d );
1361
1362  // pp 177
1363
1364  void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1365  void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1366  void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1367  void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1368  void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1369  void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1370  void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1371  void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1372  void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1373  void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1374  void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1375  void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1376  void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1377  void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1378  void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1379  void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1380
1381  // pp 179
1382
1383  inline void ldstub(  Register s1, Register s2, Register d );
1384  inline void ldstub(  Register s1, int simm13a, Register d);
1385
1386  // pp 180
1387
1388  void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1389  void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1390
1391  // pp 181
1392
1393  void and3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
1394  void and3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1395  void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1396  void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1397  void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
1398  void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1399  void andn(    Register s1, RegisterOrConstant s2, Register d);
1400  void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1401  void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1402  void or3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
1403  void or3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1404  void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1405  void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1406  void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
1407  void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1408  void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1409  void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1410  void xor3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
1411  void xor3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1412  void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1413  void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1414  void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
1415  void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1416  void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1417  void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1418
1419  // pp 183
1420
1421  void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
1422
1423  // pp 185
1424
1425  void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
1426
1427  // pp 189
1428
1429  void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
1430
1431  // pp 191
1432
1433  void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
1434  void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
1435
1436  // pp 195
1437
1438  void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
1439  void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
1440
1441  // pp 196
1442
1443  void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
1444  void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1445  void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
1446  void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1447  void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
1448  void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1449
1450  // pp 197
1451
1452  void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
1453  void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1454  void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
1455  void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1456  void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1457  void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1458  void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1459  void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1460
1461  // pp 199
1462
1463  void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
1464  void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1465
1466  // pp 201
1467
1468  void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
1469
1470
1471  // pp 202
1472
1473  void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
1474  void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
1475
1476  // pp 203
1477
1478  void prefetch(   Register s1, Register s2,         PrefetchFcn f);
1479  void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
1480  void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1481  void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1482
1483  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
1484
1485  // pp 208
1486
1487  // not implementing read privileged register
1488
1489  inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
1490  inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
1491  inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
1492  inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
1493  inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
1494  inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
1495
1496  // pp 213
1497
1498  inline void rett( Register s1, Register s2);
1499  inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
1500
1501  // pp 214
1502
1503  void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
1504  void save(    Register s1, int simm13a, Register d ) {
1505    // make sure frame is at least large enough for the register save area
1506    assert(-simm13a >= 16 * wordSize, "frame too small");
1507    emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
1508  }
1509
1510  void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
1511  void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1512
1513  // pp 216
1514
1515  void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
1516  void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
1517
1518  // pp 217
1519
1520  inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1521  // pp 218
1522
1523  void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1524  void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1525  void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1526  void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1527  void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1528  void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1529
1530  void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1531  void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1532  void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1533  void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1534  void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1535  void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1536
1537  // pp 220
1538
1539  void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
1540
1541  // pp 221
1542
1543  void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
1544
1545  // pp 222
1546
1547  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
1548  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
1549  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
1550  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
1551
1552  inline void stfsr(  Register s1, Register s2 );
1553  inline void stfsr(  Register s1, int simm13a);
1554  inline void stxfsr( Register s1, Register s2 );
1555  inline void stxfsr( Register s1, int simm13a);
1556
1557  //  pp 224
1558
1559  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1560  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1561
1562  // p 226
1563
1564  inline void stb(  Register d, Register s1, Register s2 );
1565  inline void stb(  Register d, Register s1, int simm13a);
1566  inline void sth(  Register d, Register s1, Register s2 );
1567  inline void sth(  Register d, Register s1, int simm13a);
1568  inline void stw(  Register d, Register s1, Register s2 );
1569  inline void stw(  Register d, Register s1, int simm13a);
1570  inline void st(   Register d, Register s1, Register s2 );
1571  inline void st(   Register d, Register s1, int simm13a);
1572  inline void stx(  Register d, Register s1, Register s2 );
1573  inline void stx(  Register d, Register s1, int simm13a);
1574  inline void std(  Register d, Register s1, Register s2 );
1575  inline void std(  Register d, Register s1, int simm13a);
1576
1577#ifdef ASSERT
1578  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1579  inline void st(   Register d, Register s1, ByteSize simm13a);
1580#endif
1581
1582  inline void stb(  Register d, const Address& a, int offset = 0 );
1583  inline void sth(  Register d, const Address& a, int offset = 0 );
1584  inline void stw(  Register d, const Address& a, int offset = 0 );
1585  inline void stx(  Register d, const Address& a, int offset = 0 );
1586  inline void st(   Register d, const Address& a, int offset = 0 );
1587  inline void std(  Register d, const Address& a, int offset = 0 );
1588
1589  inline void stb(  Register d, Register s1, RegisterOrConstant s2 );
1590  inline void sth(  Register d, Register s1, RegisterOrConstant s2 );
1591  inline void stw(  Register d, Register s1, RegisterOrConstant s2 );
1592  inline void stx(  Register d, Register s1, RegisterOrConstant s2 );
1593  inline void std(  Register d, Register s1, RegisterOrConstant s2 );
1594  inline void st(   Register d, Register s1, RegisterOrConstant s2 );
1595
1596  // pp 177
1597
1598  void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1599  void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1600  void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1601  void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1602  void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1603  void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1604  void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1605  void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1606  void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1607  void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1608
1609  // pp 97 (v8)
1610
1611  inline void stc(   int crd, Register s1, Register s2 );
1612  inline void stc(   int crd, Register s1, int simm13a);
1613  inline void stdc(  int crd, Register s1, Register s2 );
1614  inline void stdc(  int crd, Register s1, int simm13a);
1615  inline void stcsr( int crd, Register s1, Register s2 );
1616  inline void stcsr( int crd, Register s1, int simm13a);
1617  inline void stdcq( int crd, Register s1, Register s2 );
1618  inline void stdcq( int crd, Register s1, int simm13a);
1619
1620  // pp 230
1621
1622  void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
1623  void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1624
1625  // Note: offset is added to s2.
1626  inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
1627
1628  void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
1629  void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1630  void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
1631  void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1632  void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1633  void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1634
1635  // pp 231
1636
1637  inline void swap( Register s1, Register s2, Register d );
1638  inline void swap( Register s1, int simm13a, Register d);
1639  inline void swap( Address& a,               Register d, int offset = 0 );
1640
1641  // pp 232
1642
1643  void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1644  void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1645
1646  // pp 234, note op in book is wrong, see pp 268
1647
1648  void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
1649  void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1650  void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
1651  void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1652
1653  // pp 235
1654
1655  void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
1656  void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1657  void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
1658  void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1659
1660  // pp 237
1661
1662  void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
1663  void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
1664  // simple uncond. trap
1665  void trap( int trapa ) { trap( always, icc, G0, trapa ); }
1666
1667  // pp 239 omit write priv register for now
1668
1669  inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
1670  inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
1671  inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
1672                                                                           rs1(s) |
1673                                                                           op3(wrreg_op3) |
1674                                                                           u_field(2, 29, 25) |
1675                                                                           u_field(1, 13, 13) |
1676                                                                           simm(simm13a, 13)); }
1677  inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
1678  inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
1679
1680  // For a given register condition, return the appropriate condition code
1681  // Condition (the one you would use to get the same effect after "tst" on
1682  // the target register.)
1683  Assembler::Condition reg_cond_to_cc_cond(RCondition in);
1684
1685
1686  // Creation
1687  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1688#ifdef CHECK_DELAY
1689    delay_state = no_delay;
1690#endif
1691  }
1692
1693  // Testing
1694#ifndef PRODUCT
1695  void test_v9();
1696  void test_v8_onlys();
1697#endif
1698};
1699
1700
1701class RegistersForDebugging : public StackObj {
1702 public:
1703  intptr_t i[8], l[8], o[8], g[8];
1704  float    f[32];
1705  double   d[32];
1706
1707  void print(outputStream* s);
1708
1709  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
1710  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
1711  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
1712  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
1713  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
1714  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
1715
1716  // gen asm code to save regs
1717  static void save_registers(MacroAssembler* a);
1718
1719  // restore global registers in case C code disturbed them
1720  static void restore_registers(MacroAssembler* a, Register r);
1721
1722
1723};
1724
1725
1726// MacroAssembler extends Assembler by a few frequently used macros.
1727//
1728// Most of the standard SPARC synthetic ops are defined here.
1729// Instructions for which a 'better' code sequence exists depending
1730// on arguments should also go in here.
1731
1732#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
1733#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
1734#define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
1735#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
1736
1737
1738class MacroAssembler: public Assembler {
1739 protected:
1740  // Support for VM calls
1741  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1742  // may customize this version by overriding it for its purposes (e.g., to save/restore
1743  // additional registers when doing a VM call).
1744#ifdef CC_INTERP
1745  #define VIRTUAL
1746#else
1747  #define VIRTUAL virtual
1748#endif
1749
1750  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
1751
1752  //
1753  // It is imperative that all calls into the VM are handled via the call_VM macros.
1754  // They make sure that the stack linkage is setup correctly. call_VM's correspond
1755  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1756  //
1757  // This is the base routine called by the different versions of call_VM. The interpreter
1758  // may customize this version by overriding it for its purposes (e.g., to save/restore
1759  // additional registers when doing a VM call).
1760  //
1761  // A non-volatile java_thread_cache register should be specified so
1762  // that the G2_thread value can be preserved across the call.
1763  // (If java_thread_cache is noreg, then a slow get_thread call
1764  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
1765  // thread.
1766  //
1767  // If no last_java_sp is specified (noreg) than SP will be used instead.
1768
1769  virtual void call_VM_base(
1770    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
1771    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
1772    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
1773    address         entry_point,            // the entry point
1774    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
1775    bool            check_exception=true    // flag which indicates if exception should be checked
1776  );
1777
1778  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1779  // The implementation is only non-empty for the InterpreterMacroAssembler,
1780  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
1781  virtual void check_and_handle_popframe(Register scratch_reg);
1782  virtual void check_and_handle_earlyret(Register scratch_reg);
1783
1784 public:
1785  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1786
1787  // Support for NULL-checks
1788  //
1789  // Generates code that causes a NULL OS exception if the content of reg is NULL.
1790  // If the accessed location is M[reg + offset] and the offset is known, provide the
1791  // offset.  No explicit code generation is needed if the offset is within a certain
1792  // range (0 <= offset <= page_size).
1793  //
1794  // %%%%%% Currently not done for SPARC
1795
1796  void null_check(Register reg, int offset = -1);
1797  static bool needs_explicit_null_check(intptr_t offset);
1798
1799  // support for delayed instructions
1800  MacroAssembler* delayed() { Assembler::delayed();  return this; }
1801
1802  // branches that use right instruction for v8 vs. v9
1803  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1804  inline void br( Condition c, bool a, Predict p, Label& L );
1805
1806  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1807  inline void fb( Condition c, bool a, Predict p, Label& L );
1808
1809  // compares register with zero and branches (V9 and V8 instructions)
1810  void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
1811  // Compares a pointer register with zero and branches on (not)null.
1812  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1813  void br_null   ( Register s1, bool a, Predict p, Label& L );
1814  void br_notnull( Register s1, bool a, Predict p, Label& L );
1815
1816  // These versions will do the most efficient thing on v8 and v9.  Perhaps
1817  // this is what the routine above was meant to do, but it didn't (and
1818  // didn't cover both target address kinds.)
1819  void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
1820  void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
1821
1822  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1823  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1824
1825  // Branch that tests xcc in LP64 and icc in !LP64
1826  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1827  inline void brx( Condition c, bool a, Predict p, Label& L );
1828
1829  // unconditional short branch
1830  inline void ba( bool a, Label& L );
1831
1832  // Branch that tests fp condition codes
1833  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1834  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1835
1836  // get PC the best way
1837  inline int get_pc( Register d );
1838
1839  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
1840  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
1841  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
1842
1843  inline void jmp( Register s1, Register s2 );
1844  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1845
1846  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1847  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1848  inline void callr( Register s1, Register s2 );
1849  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1850
1851  // Emits nothing on V8
1852  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
1853  inline void iprefetch( Label& L);
1854
1855  inline void tst( Register s ) { orcc( G0, s, G0 ); }
1856
1857#ifdef PRODUCT
1858  inline void ret(  bool trace = TraceJumps )   { if (trace) {
1859                                                    mov(I7, O7); // traceable register
1860                                                    JMP(O7, 2 * BytesPerInstWord);
1861                                                  } else {
1862                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
1863                                                  }
1864                                                }
1865
1866  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
1867                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
1868#else
1869  void ret(  bool trace = TraceJumps );
1870  void retl( bool trace = TraceJumps );
1871#endif /* PRODUCT */
1872
1873  // Required platform-specific helpers for Label::patch_instructions.
1874  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1875  void pd_patch_instruction(address branch, address target);
1876#ifndef PRODUCT
1877  static void pd_print_patched_instruction(address branch);
1878#endif
1879
1880  // sethi Macro handles optimizations and relocations
1881private:
1882  void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
1883public:
1884  void sethi(const AddressLiteral& addrlit, Register d);
1885  void patchable_sethi(const AddressLiteral& addrlit, Register d);
1886
1887  // compute the size of a sethi/set
1888  static int  size_of_sethi( address a, bool worst_case = false );
1889  static int  worst_case_size_of_set();
1890
1891  // set may be either setsw or setuw (high 32 bits may be zero or sign)
1892private:
1893  void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
1894public:
1895  void set(const AddressLiteral& addrlit, Register d);
1896  void set(intptr_t value, Register d);
1897  void set(address addr, Register d, RelocationHolder const& rspec);
1898  void patchable_set(const AddressLiteral& addrlit, Register d);
1899  void patchable_set(intptr_t value, Register d);
1900  void set64(jlong value, Register d, Register tmp);
1901
1902  // Compute size of set64.
1903  static int size_of_set64(jlong value);
1904
1905  // sign-extend 32 to 64
1906  inline void signx( Register s, Register d ) { sra( s, G0, d); }
1907  inline void signx( Register d )             { sra( d, G0, d); }
1908
1909  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
1910  inline void not1( Register d )             { xnor( d, G0, d ); }
1911
1912  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
1913  inline void neg( Register d )             { sub( G0, d, d ); }
1914
1915  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
1916  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
1917  // Functions for isolating 64 bit atomic swaps for LP64
1918  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
1919  inline void cas_ptr(  Register s1, Register s2, Register d) {
1920#ifdef _LP64
1921    casx( s1, s2, d );
1922#else
1923    cas( s1, s2, d );
1924#endif
1925  }
1926
1927  // Functions for isolating 64 bit shifts for LP64
1928  inline void sll_ptr( Register s1, Register s2, Register d );
1929  inline void sll_ptr( Register s1, int imm6a,   Register d );
1930  inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
1931  inline void srl_ptr( Register s1, Register s2, Register d );
1932  inline void srl_ptr( Register s1, int imm6a,   Register d );
1933
1934  // little-endian
1935  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
1936  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
1937
1938  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
1939  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
1940
1941  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
1942  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
1943
1944  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
1945  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
1946
1947  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
1948  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
1949
1950  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
1951  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
1952
1953  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
1954  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
1955
1956  inline void clr( Register d ) { or3( G0, G0, d ); }
1957
1958  inline void clrb( Register s1, Register s2);
1959  inline void clrh( Register s1, Register s2);
1960  inline void clr(  Register s1, Register s2);
1961  inline void clrx( Register s1, Register s2);
1962
1963  inline void clrb( Register s1, int simm13a);
1964  inline void clrh( Register s1, int simm13a);
1965  inline void clr(  Register s1, int simm13a);
1966  inline void clrx( Register s1, int simm13a);
1967
1968  // copy & clear upper word
1969  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
1970  // clear upper word
1971  inline void clruwu( Register d ) { srl( d, G0, d); }
1972
1973  // membar psuedo instruction.  takes into account target memory model.
1974  inline void membar( Assembler::Membar_mask_bits const7a );
1975
1976  // returns if membar generates anything.
1977  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
1978
1979  // mov pseudo instructions
1980  inline void mov( Register s,  Register d) {
1981    if ( s != d )    or3( G0, s, d);
1982    else             assert_not_delayed();  // Put something useful in the delay slot!
1983  }
1984
1985  inline void mov_or_nop( Register s,  Register d) {
1986    if ( s != d )    or3( G0, s, d);
1987    else             nop();
1988  }
1989
1990  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
1991
1992  // address pseudos: make these names unlike instruction names to avoid confusion
1993  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
1994  inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
1995  inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
1996  inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
1997  inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
1998  inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
1999  inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
2000  inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
2001
2002  // ring buffer traceable jumps
2003
2004  void jmp2( Register r1, Register r2, const char* file, int line );
2005  void jmp ( Register r1, int offset,  const char* file, int line );
2006
2007  void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
2008  void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
2009
2010
2011  // argument pseudos:
2012
2013  inline void load_argument( Argument& a, Register  d );
2014  inline void store_argument( Register s, Argument& a );
2015  inline void store_ptr_argument( Register s, Argument& a );
2016  inline void store_float_argument( FloatRegister s, Argument& a );
2017  inline void store_double_argument( FloatRegister s, Argument& a );
2018  inline void store_long_argument( Register s, Argument& a );
2019
2020  // handy macros:
2021
2022  inline void round_to( Register r, int modulus ) {
2023    assert_not_delayed();
2024    inc( r, modulus - 1 );
2025    and3( r, -modulus, r );
2026  }
2027
2028  // --------------------------------------------------
2029
2030  // Functions for isolating 64 bit loads for LP64
2031  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
2032  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
2033  inline void ld_ptr(Register s1, Register s2, Register d);
2034  inline void ld_ptr(Register s1, int simm13a, Register d);
2035  inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
2036  inline void ld_ptr(const Address& a, Register d, int offset = 0);
2037  inline void st_ptr(Register d, Register s1, Register s2);
2038  inline void st_ptr(Register d, Register s1, int simm13a);
2039  inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
2040  inline void st_ptr(Register d, const Address& a, int offset = 0);
2041
2042#ifdef ASSERT
2043  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
2044  inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
2045  inline void st_ptr(Register d, Register s1, ByteSize simm13a);
2046#endif
2047
2048  // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
2049  // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
2050  inline void ld_long(Register s1, Register s2, Register d);
2051  inline void ld_long(Register s1, int simm13a, Register d);
2052  inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
2053  inline void ld_long(const Address& a, Register d, int offset = 0);
2054  inline void st_long(Register d, Register s1, Register s2);
2055  inline void st_long(Register d, Register s1, int simm13a);
2056  inline void st_long(Register d, Register s1, RegisterOrConstant s2);
2057  inline void st_long(Register d, const Address& a, int offset = 0);
2058
2059  // Helpers for address formation.
2060  // - They emit only a move if s2 is a constant zero.
2061  // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
2062  // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
2063  RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2064  RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2065  RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2066
2067  RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
2068    if (is_simm13(src.constant_or_zero()))
2069      return src;               // register or short constant
2070    guarantee(temp != noreg, "constant offset overflow");
2071    set(src.as_constant(), temp);
2072    return temp;
2073  }
2074
2075  // --------------------------------------------------
2076
2077 public:
2078  // traps as per trap.h (SPARC ABI?)
2079
2080  void breakpoint_trap();
2081  void breakpoint_trap(Condition c, CC cc = icc);
2082  void flush_windows_trap();
2083  void clean_windows_trap();
2084  void get_psr_trap();
2085  void set_psr_trap();
2086
2087  // V8/V9 flush_windows
2088  void flush_windows();
2089
2090  // Support for serializing memory accesses between threads
2091  void serialize_memory(Register thread, Register tmp1, Register tmp2);
2092
2093  // Stack frame creation/removal
2094  void enter();
2095  void leave();
2096
2097  // V8/V9 integer multiply
2098  void mult(Register s1, Register s2, Register d);
2099  void mult(Register s1, int simm13a, Register d);
2100
2101  // V8/V9 read and write of condition codes.
2102  void read_ccr(Register d);
2103  void write_ccr(Register s);
2104
2105  // Manipulation of C++ bools
2106  // These are idioms to flag the need for care with accessing bools but on
2107  // this platform we assume byte size
2108
2109  inline void stbool(Register d, const Address& a) { stb(d, a); }
2110  inline void ldbool(const Address& a, Register d) { ldsb(a, d); }
2111  inline void tstbool( Register s ) { tst(s); }
2112  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
2113
2114  // klass oop manipulations if compressed
2115  void load_klass(Register src_oop, Register klass);
2116  void store_klass(Register klass, Register dst_oop);
2117  void store_klass_gap(Register s, Register dst_oop);
2118
2119   // oop manipulations
2120  void load_heap_oop(const Address& s, Register d);
2121  void load_heap_oop(Register s1, Register s2, Register d);
2122  void load_heap_oop(Register s1, int simm13a, Register d);
2123  void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
2124  void store_heap_oop(Register d, Register s1, Register s2);
2125  void store_heap_oop(Register d, Register s1, int simm13a);
2126  void store_heap_oop(Register d, const Address& a, int offset = 0);
2127
2128  void encode_heap_oop(Register src, Register dst);
2129  void encode_heap_oop(Register r) {
2130    encode_heap_oop(r, r);
2131  }
2132  void decode_heap_oop(Register src, Register dst);
2133  void decode_heap_oop(Register r) {
2134    decode_heap_oop(r, r);
2135  }
2136  void encode_heap_oop_not_null(Register r);
2137  void decode_heap_oop_not_null(Register r);
2138  void encode_heap_oop_not_null(Register src, Register dst);
2139  void decode_heap_oop_not_null(Register src, Register dst);
2140
2141  // Support for managing the JavaThread pointer (i.e.; the reference to
2142  // thread-local information).
2143  void get_thread();                                // load G2_thread
2144  void verify_thread();                             // verify G2_thread contents
2145  void save_thread   (const Register threache); // save to cache
2146  void restore_thread(const Register thread_cache); // restore from cache
2147
2148  // Support for last Java frame (but use call_VM instead where possible)
2149  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
2150  void reset_last_Java_frame(void);
2151
2152  // Call into the VM.
2153  // Passes the thread pointer (in O0) as a prepended argument.
2154  // Makes sure oop return values are visible to the GC.
2155  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2156  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
2157  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2158  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2159
2160  // these overloadings are not presently used on SPARC:
2161  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2162  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
2163  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2164  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2165
2166  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
2167  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
2168  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
2169  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
2170
2171  void get_vm_result  (Register oop_result);
2172  void get_vm_result_2(Register oop_result);
2173
2174  // vm result is currently getting hijacked to for oop preservation
2175  void set_vm_result(Register oop_result);
2176
2177  // if call_VM_base was called with check_exceptions=false, then call
2178  // check_and_forward_exception to handle exceptions when it is safe
2179  void check_and_forward_exception(Register scratch_reg);
2180
2181 private:
2182  // For V8
2183  void read_ccr_trap(Register ccr_save);
2184  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
2185
2186#ifdef ASSERT
2187  // For V8 debugging.  Uses V8 instruction sequence and checks
2188  // result with V9 insturctions rdccr and wrccr.
2189  // Uses Gscatch and Gscatch2
2190  void read_ccr_v8_assert(Register ccr_save);
2191  void write_ccr_v8_assert(Register ccr_save);
2192#endif // ASSERT
2193
2194 public:
2195
2196  // Write to card table for - register is destroyed afterwards.
2197  void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
2198
2199  void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2200
2201#ifndef SERIALGC
2202  // Array store and offset
2203  void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs);
2204
2205  void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2206
2207  // May do filtering, depending on the boolean arguments.
2208  void g1_card_table_write(jbyte* byte_map_base,
2209                           Register tmp, Register obj, Register new_val,
2210                           bool region_filter, bool null_filter);
2211#endif // SERIALGC
2212
2213  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2214  void push_fTOS();
2215
2216  // pops double TOS element from CPU stack and pushes on FPU stack
2217  void pop_fTOS();
2218
2219  void empty_FPU_stack();
2220
2221  void push_IU_state();
2222  void pop_IU_state();
2223
2224  void push_FPU_state();
2225  void pop_FPU_state();
2226
2227  void push_CPU_state();
2228  void pop_CPU_state();
2229
2230  // if heap base register is used - reinit it with the correct value
2231  void reinit_heapbase();
2232
2233  // Debugging
2234  void _verify_oop(Register reg, const char * msg, const char * file, int line);
2235  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
2236
2237#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
2238#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
2239
2240        // only if +VerifyOops
2241  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2242        // only if +VerifyFPU
2243  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
2244  void warn(const char* msg);                          // prints msg, but don't stop
2245  void untested(const char* what = "");
2246  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
2247  void should_not_reach_here()                   { stop("should not reach here"); }
2248  void print_CPU_state();
2249
2250  // oops in code
2251  AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
2252  AddressLiteral constant_oop_address(jobject obj);                          // find_index
2253  inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
2254  inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
2255  inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
2256
2257  void set_narrow_oop( jobject obj, Register d );
2258
2259  // nop padding
2260  void align(int modulus);
2261
2262  // declare a safepoint
2263  void safepoint();
2264
2265  // factor out part of stop into subroutine to save space
2266  void stop_subroutine();
2267  // factor out part of verify_oop into subroutine to save space
2268  void verify_oop_subroutine();
2269
2270  // side-door communication with signalHandler in os_solaris.cpp
2271  static address _verify_oop_implicit_branch[3];
2272
2273#ifndef PRODUCT
2274  static void test();
2275#endif
2276
2277  // convert an incoming arglist to varargs format; put the pointer in d
2278  void set_varargs( Argument a, Register d );
2279
2280  int total_frame_size_in_bytes(int extraWords);
2281
2282  // used when extraWords known statically
2283  void save_frame(int extraWords);
2284  void save_frame_c1(int size_in_bytes);
2285  // make a frame, and simultaneously pass up one or two register value
2286  // into the new register window
2287  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
2288
2289  // give no. (outgoing) params, calc # of words will need on frame
2290  void calc_mem_param_words(Register Rparam_words, Register Rresult);
2291
2292  // used to calculate frame size dynamically
2293  // result is in bytes and must be negated for save inst
2294  void calc_frame_size(Register extraWords, Register resultReg);
2295
2296  // calc and also save
2297  void calc_frame_size_and_save(Register extraWords, Register resultReg);
2298
2299  static void debug(char* msg, RegistersForDebugging* outWindow);
2300
2301  // implementations of bytecodes used by both interpreter and compiler
2302
2303  void lcmp( Register Ra_hi, Register Ra_low,
2304             Register Rb_hi, Register Rb_low,
2305             Register Rresult);
2306
2307  void lneg( Register Rhi, Register Rlow );
2308
2309  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
2310              Register Rout_high, Register Rout_low, Register Rtemp );
2311
2312  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
2313              Register Rout_high, Register Rout_low, Register Rtemp );
2314
2315  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
2316              Register Rout_high, Register Rout_low, Register Rtemp );
2317
2318#ifdef _LP64
2319  void lcmp( Register Ra, Register Rb, Register Rresult);
2320#endif
2321
2322  // Loading values by size and signed-ness
2323  void load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed);
2324
2325  void float_cmp( bool is_float, int unordered_result,
2326                  FloatRegister Fa, FloatRegister Fb,
2327                  Register Rresult);
2328
2329  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2330  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
2331  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2332  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2333
2334  void save_all_globals_into_locals();
2335  void restore_globals_from_locals();
2336
2337  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2338    address lock_addr=0, bool use_call_vm=false);
2339  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2340    address lock_addr=0, bool use_call_vm=false);
2341  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
2342
2343  // These set the icc condition code to equal if the lock succeeded
2344  // and notEqual if it failed and requires a slow case
2345  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
2346                            Register Rscratch,
2347                            BiasedLockingCounters* counters = NULL,
2348                            bool try_bias = UseBiasedLocking);
2349  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
2350                              Register Rscratch,
2351                              bool try_bias = UseBiasedLocking);
2352
2353  // Biased locking support
2354  // Upon entry, lock_reg must point to the lock record on the stack,
2355  // obj_reg must contain the target object, and mark_reg must contain
2356  // the target object's header.
2357  // Destroys mark_reg if an attempt is made to bias an anonymously
2358  // biased lock. In this case a failure will go either to the slow
2359  // case or fall through with the notEqual condition code set with
2360  // the expectation that the slow case in the runtime will be called.
2361  // In the fall-through case where the CAS-based lock is done,
2362  // mark_reg is not destroyed.
2363  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2364                            Label& done, Label* slow_case = NULL,
2365                            BiasedLockingCounters* counters = NULL);
2366  // Upon entry, the base register of mark_addr must contain the oop.
2367  // Destroys temp_reg.
2368
2369  // If allow_delay_slot_filling is set to true, the next instruction
2370  // emitted after this one will go in an annulled delay slot if the
2371  // biased locking exit case failed.
2372  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
2373
2374  // allocation
2375  void eden_allocate(
2376    Register obj,                      // result: pointer to object after successful allocation
2377    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2378    int      con_size_in_bytes,        // object size in bytes if   known at compile time
2379    Register t1,                       // temp register
2380    Register t2,                       // temp register
2381    Label&   slow_case                 // continuation point if fast allocation fails
2382  );
2383  void tlab_allocate(
2384    Register obj,                      // result: pointer to object after successful allocation
2385    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2386    int      con_size_in_bytes,        // object size in bytes if   known at compile time
2387    Register t1,                       // temp register
2388    Label&   slow_case                 // continuation point if fast allocation fails
2389  );
2390  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
2391  void incr_allocated_bytes(Register var_size_in_bytes, int con_size_in_bytes, Register t1);
2392
2393  // interface method calling
2394  void lookup_interface_method(Register recv_klass,
2395                               Register intf_klass,
2396                               RegisterOrConstant itable_index,
2397                               Register method_result,
2398                               Register temp_reg, Register temp2_reg,
2399                               Label& no_such_interface);
2400
2401  // Test sub_klass against super_klass, with fast and slow paths.
2402
2403  // The fast path produces a tri-state answer: yes / no / maybe-slow.
2404  // One of the three labels can be NULL, meaning take the fall-through.
2405  // If super_check_offset is -1, the value is loaded up from super_klass.
2406  // No registers are killed, except temp_reg and temp2_reg.
2407  // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
2408  void check_klass_subtype_fast_path(Register sub_klass,
2409                                     Register super_klass,
2410                                     Register temp_reg,
2411                                     Register temp2_reg,
2412                                     Label* L_success,
2413                                     Label* L_failure,
2414                                     Label* L_slow_path,
2415                RegisterOrConstant super_check_offset = RegisterOrConstant(-1),
2416                Register instanceof_hack = noreg);
2417
2418  // The rest of the type check; must be wired to a corresponding fast path.
2419  // It does not repeat the fast path logic, so don't use it standalone.
2420  // The temp_reg can be noreg, if no temps are available.
2421  // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
2422  // Updates the sub's secondary super cache as necessary.
2423  void check_klass_subtype_slow_path(Register sub_klass,
2424                                     Register super_klass,
2425                                     Register temp_reg,
2426                                     Register temp2_reg,
2427                                     Register temp3_reg,
2428                                     Register temp4_reg,
2429                                     Label* L_success,
2430                                     Label* L_failure);
2431
2432  // Simplified, combined version, good for typical uses.
2433  // Falls through on failure.
2434  void check_klass_subtype(Register sub_klass,
2435                           Register super_klass,
2436                           Register temp_reg,
2437                           Register temp2_reg,
2438                           Label& L_success);
2439
2440  // method handles (JSR 292)
2441  void check_method_handle_type(Register mtype_reg, Register mh_reg,
2442                                Register temp_reg,
2443                                Label& wrong_method_type);
2444  void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
2445                                  Register temp_reg);
2446  void jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop = true);
2447  // offset relative to Gargs of argument at tos[arg_slot].
2448  // (arg_slot == 0 means the last argument, not the first).
2449  RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
2450                                     int extra_slot_offset = 0);
2451  // Address of Gargs and argument_offset.
2452  Address            argument_address(RegisterOrConstant arg_slot,
2453                                      int extra_slot_offset = 0);
2454
2455  // Stack overflow checking
2456
2457  // Note: this clobbers G3_scratch
2458  void bang_stack_with_offset(int offset) {
2459    // stack grows down, caller passes positive offset
2460    assert(offset > 0, "must bang with negative offset");
2461    set((-offset)+STACK_BIAS, G3_scratch);
2462    st(G0, SP, G3_scratch);
2463  }
2464
2465  // Writes to stack successive pages until offset reached to check for
2466  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
2467  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
2468
2469  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
2470
2471  void verify_tlab();
2472
2473  Condition negate_condition(Condition cond);
2474
2475  // Helper functions for statistics gathering.
2476  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
2477  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
2478  // Unconditional increment.
2479  void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
2480  void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
2481
2482  // Compare char[] arrays aligned to 4 bytes.
2483  void char_arrays_equals(Register ary1, Register ary2,
2484                          Register limit, Register result,
2485                          Register chr1, Register chr2, Label& Ldone);
2486
2487#undef VIRTUAL
2488
2489};
2490
2491/**
2492 * class SkipIfEqual:
2493 *
2494 * Instantiating this class will result in assembly code being output that will
2495 * jump around any code emitted between the creation of the instance and it's
2496 * automatic destruction at the end of a scope block, depending on the value of
2497 * the flag passed to the constructor, which will be checked at run-time.
2498 */
2499class SkipIfEqual : public StackObj {
2500 private:
2501  MacroAssembler* _masm;
2502  Label _label;
2503
2504 public:
2505   // 'temp' is a temp register that this object can use (and trash)
2506   SkipIfEqual(MacroAssembler*, Register temp,
2507               const bool* flag_addr, Assembler::Condition condition);
2508   ~SkipIfEqual();
2509};
2510
2511#ifdef ASSERT
2512// On RISC, there's no benefit to verifying instruction boundaries.
2513inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
2514#endif
2515
2516#endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
2517