assembler_sparc.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_assembler_sparc.cpp.incl"
27
28// Implementation of Address
29
30Address::Address( addr_type t, int which ) {
31  switch (t) {
32   case extra_in_argument:
33   case extra_out_argument:
34     _base = t == extra_in_argument ? FP : SP;
35     _hi   = 0;
36// Warning:  In LP64 mode, _disp will occupy more than 10 bits.
37//           This is inconsistent with the other constructors but op
38//           codes such as ld or ldx, only access disp() to get their
39//           simm13 argument.
40     _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
41    break;
42   default:
43    ShouldNotReachHere();
44    break;
45  }
46}
47
48static const char* argumentNames[][2] = {
49  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
50  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
51  {"A(n>9)","P(n>9)"}
52};
53
54const char* Argument::name() const {
55  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
56  int num = number();
57  if (num >= nofArgs)  num = nofArgs - 1;
58  return argumentNames[num][is_in() ? 1 : 0];
59}
60
61void Assembler::print_instruction(int inst) {
62  const char* s;
63  switch (inv_op(inst)) {
64  default:         s = "????"; break;
65  case call_op:    s = "call"; break;
66  case branch_op:
67    switch (inv_op2(inst)) {
68      case bpr_op2:    s = "bpr";  break;
69      case fb_op2:     s = "fb";   break;
70      case fbp_op2:    s = "fbp";  break;
71      case br_op2:     s = "br";   break;
72      case bp_op2:     s = "bp";   break;
73      case cb_op2:     s = "cb";   break;
74      default:         s = "????"; break;
75    }
76  }
77  ::tty->print("%s", s);
78}
79
80
81// Patch instruction inst at offset inst_pos to refer to dest_pos
82// and return the resulting instruction.
83// We should have pcs, not offsets, but since all is relative, it will work out
84// OK.
85int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
86
87  int m; // mask for displacement field
88  int v; // new value for displacement field
89  const int word_aligned_ones = -4;
90  switch (inv_op(inst)) {
91  default: ShouldNotReachHere();
92  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
93  case branch_op:
94    switch (inv_op2(inst)) {
95      case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
96      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
97      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
98      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
99      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
100      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
101      default: ShouldNotReachHere();
102    }
103  }
104  return  inst & ~m  |  v;
105}
106
107// Return the offset of the branch destionation of instruction inst
108// at offset pos.
109// Should have pcs, but since all is relative, it works out.
110int Assembler::branch_destination(int inst, int pos) {
111  int r;
112  switch (inv_op(inst)) {
113  default: ShouldNotReachHere();
114  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
115  case branch_op:
116    switch (inv_op2(inst)) {
117      case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
118      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
119      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
120      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
121      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
122      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
123      default: ShouldNotReachHere();
124    }
125  }
126  return r;
127}
128
129int AbstractAssembler::code_fill_byte() {
130  return 0x00;                  // illegal instruction 0x00000000
131}
132
133// Generate a bunch 'o stuff (including v9's
134#ifndef PRODUCT
135void Assembler::test_v9() {
136  add(    G0, G1, G2 );
137  add(    G3,  0, G4 );
138
139  addcc(  G5, G6, G7 );
140  addcc(  I0,  1, I1 );
141  addc(   I2, I3, I4 );
142  addc(   I5, -1, I6 );
143  addccc( I7, L0, L1 );
144  addccc( L2, (1 << 12) - 2, L3 );
145
146  Label lbl1, lbl2, lbl3;
147
148  bind(lbl1);
149
150  bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
151  delayed()->nop();
152  bpr( rc_lez, false, pt, L5, lbl1);
153  delayed()->nop();
154
155  fb( f_never,     true, pc() + 4,  relocInfo::none);
156  delayed()->nop();
157  fb( f_notEqual, false, lbl2 );
158  delayed()->nop();
159
160  fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
161  delayed()->nop();
162  fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
163  delayed()->nop();
164
165  br( equal,  true, pc() + 1024, relocInfo::none);
166  delayed()->nop();
167  br( lessEqual, false, lbl1 );
168  delayed()->nop();
169  br( never, false, lbl1 );
170  delayed()->nop();
171
172  bp( less,               true, icc, pn, pc(), relocInfo::none);
173  delayed()->nop();
174  bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
175  delayed()->nop();
176
177  call( pc(), relocInfo::none);
178  delayed()->nop();
179  call( lbl3 );
180  delayed()->nop();
181
182
183  casa(  L6, L7, O0 );
184  casxa( O1, O2, O3, 0 );
185
186  udiv(   O4, O5, O7 );
187  udiv(   G0, (1 << 12) - 1, G1 );
188  sdiv(   G1, G2, G3 );
189  sdiv(   G4, -((1 << 12) - 1), G5 );
190  udivcc( G6, G7, I0 );
191  udivcc( I1, -((1 << 12) - 2), I2 );
192  sdivcc( I3, I4, I5 );
193  sdivcc( I6, -((1 << 12) - 0), I7 );
194
195  done();
196  retry();
197
198  fadd( FloatRegisterImpl::S, F0,  F1, F2 );
199  fsub( FloatRegisterImpl::D, F34, F0, F62 );
200
201  fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
202  fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
203
204  ftox( FloatRegisterImpl::D, F2, F4 );
205  ftoi( FloatRegisterImpl::Q, F4, F8 );
206
207  ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
208
209  fxtof( FloatRegisterImpl::S, F4, F5 );
210  fitof( FloatRegisterImpl::D, F6, F8 );
211
212  fmov( FloatRegisterImpl::Q, F16, F20 );
213  fneg( FloatRegisterImpl::S, F6, F7 );
214  fabs( FloatRegisterImpl::D, F10, F12 );
215
216  fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
217  fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
218  fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
219
220  fsqrt( FloatRegisterImpl::S, F13, F14 );
221
222  flush( L0, L1 );
223  flush( L2, -1 );
224
225  flushw();
226
227  illtrap( (1 << 22) - 2);
228
229  impdep1( 17, (1 << 19) - 1 );
230  impdep2( 3,  0 );
231
232  jmpl( L3, L4, L5 );
233  delayed()->nop();
234  jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
235  delayed()->nop();
236
237
238  ldf(    FloatRegisterImpl::S, O0, O1, F15 );
239  ldf(    FloatRegisterImpl::D, O2, -1, F14 );
240
241
242  ldfsr(  O3, O4 );
243  ldfsr(  O5, -1 );
244  ldxfsr( O6, O7 );
245  ldxfsr( I0, -1 );
246
247  ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
248  ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
249
250  ldsb(  I4, I5, I6 );
251  ldsb(  I7, -1, G0 );
252  ldsh(  G1, G3, G4 );
253  ldsh(  G5, -1, G6 );
254  ldsw(  G7, L0, L1 );
255  ldsw(  L2, -1, L3 );
256  ldub(  L4, L5, L6 );
257  ldub(  L7, -1, O0 );
258  lduh(  O1, O2, O3 );
259  lduh(  O4, -1, O5 );
260  lduw(  O6, O7, G0 );
261  lduw(  G1, -1, G2 );
262  ldx(   G3, G4, G5 );
263  ldx(   G6, -1, G7 );
264  ldd(   I0, I1, I2 );
265  ldd(   I3, -1, I4 );
266
267  ldsba(  I5, I6, 2, I7 );
268  ldsba(  L0, -1, L1 );
269  ldsha(  L2, L3, 3, L4 );
270  ldsha(  L5, -1, L6 );
271  ldswa(  L7, O0, (1 << 8) - 1, O1 );
272  ldswa(  O2, -1, O3 );
273  lduba(  O4, O5, 0, O6 );
274  lduba(  O7, -1, I0 );
275  lduha(  I1, I2, 1, I3 );
276  lduha(  I4, -1, I5 );
277  lduwa(  I6, I7, 2, L0 );
278  lduwa(  L1, -1, L2 );
279  ldxa(   L3, L4, 3, L5 );
280  ldxa(   L6, -1, L7 );
281  ldda(   G0, G1, 4, G2 );
282  ldda(   G3, -1, G4 );
283
284  ldstub(  G5, G6, G7 );
285  ldstub(  O0, -1, O1 );
286
287  ldstuba( O2, O3, 5, O4 );
288  ldstuba( O5, -1, O6 );
289
290  and3(    I0, L0, O0 );
291  and3(    G7, -1, O7 );
292  andcc(   L2, I2, G2 );
293  andcc(   L4, -1, G4 );
294  andn(    I5, I6, I7 );
295  andn(    I6, -1, I7 );
296  andncc(  I5, I6, I7 );
297  andncc(  I7, -1, I6 );
298  or3(     I5, I6, I7 );
299  or3(     I7, -1, I6 );
300  orcc(    I5, I6, I7 );
301  orcc(    I7, -1, I6 );
302  orn(     I5, I6, I7 );
303  orn(     I7, -1, I6 );
304  orncc(   I5, I6, I7 );
305  orncc(   I7, -1, I6 );
306  xor3(    I5, I6, I7 );
307  xor3(    I7, -1, I6 );
308  xorcc(   I5, I6, I7 );
309  xorcc(   I7, -1, I6 );
310  xnor(    I5, I6, I7 );
311  xnor(    I7, -1, I6 );
312  xnorcc(  I5, I6, I7 );
313  xnorcc(  I7, -1, I6 );
314
315  membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
316  membar( StoreStore );
317  membar( LoadStore );
318  membar( StoreLoad );
319  membar( LoadLoad );
320  membar( Sync );
321  membar( MemIssue );
322  membar( Lookaside );
323
324  fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
325  fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
326
327  movcc( overflowClear,  false, icc, I6, L4 );
328  movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
329
330  movr( rc_nz, I5, I6, I7 );
331  movr( rc_gz, L1, -1,  L2 );
332
333  mulx(  I5, I6, I7 );
334  mulx(  I7, -1, I6 );
335  sdivx( I5, I6, I7 );
336  sdivx( I7, -1, I6 );
337  udivx( I5, I6, I7 );
338  udivx( I7, -1, I6 );
339
340  umul(   I5, I6, I7 );
341  umul(   I7, -1, I6 );
342  smul(   I5, I6, I7 );
343  smul(   I7, -1, I6 );
344  umulcc( I5, I6, I7 );
345  umulcc( I7, -1, I6 );
346  smulcc( I5, I6, I7 );
347  smulcc( I7, -1, I6 );
348
349  mulscc(   I5, I6, I7 );
350  mulscc(   I7, -1, I6 );
351
352  nop();
353
354
355  popc( G0,  G1);
356  popc( -1, G2);
357
358  prefetch(   L1, L2,    severalReads );
359  prefetch(   L3, -1,    oneRead );
360  prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
361  prefetcha(  G2, -1,    oneWrite );
362
363  rett( I7, I7);
364  delayed()->nop();
365  rett( G0, -1, relocInfo::none);
366  delayed()->nop();
367
368  save(    I5, I6, I7 );
369  save(    I7, -1, I6 );
370  restore( I5, I6, I7 );
371  restore( I7, -1, I6 );
372
373  saved();
374  restored();
375
376  sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
377
378  sll(  I5, I6, I7 );
379  sll(  I7, 31, I6 );
380  srl(  I5, I6, I7 );
381  srl(  I7,  0, I6 );
382  sra(  I5, I6, I7 );
383  sra(  I7, 30, I6 );
384  sllx( I5, I6, I7 );
385  sllx( I7, 63, I6 );
386  srlx( I5, I6, I7 );
387  srlx( I7,  0, I6 );
388  srax( I5, I6, I7 );
389  srax( I7, 62, I6 );
390
391  sir( -1 );
392
393  stbar();
394
395  stf(    FloatRegisterImpl::Q, F40, G0, I7 );
396  stf(    FloatRegisterImpl::S, F18, I3, -1 );
397
398  stfsr(  L1, L2 );
399  stfsr(  I7, -1 );
400  stxfsr( I6, I5 );
401  stxfsr( L4, -1 );
402
403  stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
404  stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
405
406  stb(  L5, O2, I7 );
407  stb(  I7, I6, -1 );
408  sth(  L5, O2, I7 );
409  sth(  I7, I6, -1 );
410  stw(  L5, O2, I7 );
411  stw(  I7, I6, -1 );
412  stx(  L5, O2, I7 );
413  stx(  I7, I6, -1 );
414  std(  L5, O2, I7 );
415  std(  I7, I6, -1 );
416
417  stba(  L5, O2, I7, 8 );
418  stba(  I7, I6, -1    );
419  stha(  L5, O2, I7, 9 );
420  stha(  I7, I6, -1    );
421  stwa(  L5, O2, I7, 0 );
422  stwa(  I7, I6, -1    );
423  stxa(  L5, O2, I7, 11 );
424  stxa(  I7, I6, -1     );
425  stda(  L5, O2, I7, 12 );
426  stda(  I7, I6, -1     );
427
428  sub(    I5, I6, I7 );
429  sub(    I7, -1, I6 );
430  subcc(  I5, I6, I7 );
431  subcc(  I7, -1, I6 );
432  subc(   I5, I6, I7 );
433  subc(   I7, -1, I6 );
434  subccc( I5, I6, I7 );
435  subccc( I7, -1, I6 );
436
437  swap( I5, I6, I7 );
438  swap( I7, -1, I6 );
439
440  swapa(   G0, G1, 13, G2 );
441  swapa(   I7, -1,     I6 );
442
443  taddcc(    I5, I6, I7 );
444  taddcc(    I7, -1, I6 );
445  taddcctv(  I5, I6, I7 );
446  taddcctv(  I7, -1, I6 );
447
448  tsubcc(    I5, I6, I7 );
449  tsubcc(    I7, -1, I6 );
450  tsubcctv(  I5, I6, I7 );
451  tsubcctv(  I7, -1, I6 );
452
453  trap( overflowClear, xcc, G0, G1 );
454  trap( lessEqual,     icc, I7, 17 );
455
456  bind(lbl2);
457  bind(lbl3);
458
459  code()->decode();
460}
461
462// Generate a bunch 'o stuff unique to V8
463void Assembler::test_v8_onlys() {
464  Label lbl1;
465
466  cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
467  delayed()->nop();
468  cb( cp_never,    true, lbl1);
469  delayed()->nop();
470
471  cpop1(1, 2, 3, 4);
472  cpop2(5, 6, 7, 8);
473
474  ldc( I0, I1, 31);
475  ldc( I2, -1,  0);
476
477  lddc( I4, I4, 30);
478  lddc( I6,  0, 1 );
479
480  ldcsr( L0, L1, 0);
481  ldcsr( L1, (1 << 12) - 1, 17 );
482
483  stc( 31, L4, L5);
484  stc( 30, L6, -(1 << 12) );
485
486  stdc( 0, L7, G0);
487  stdc( 1, G1, 0 );
488
489  stcsr( 16, G2, G3);
490  stcsr( 17, G4, 1 );
491
492  stdcq( 4, G5, G6);
493  stdcq( 5, G7, -1 );
494
495  bind(lbl1);
496
497  code()->decode();
498}
499#endif
500
501// Implementation of MacroAssembler
502
503void MacroAssembler::null_check(Register reg, int offset) {
504  if (needs_explicit_null_check((intptr_t)offset)) {
505    // provoke OS NULL exception if reg = NULL by
506    // accessing M[reg] w/o changing any registers
507    ld_ptr(reg, 0, G0);
508  }
509  else {
510    // nothing to do, (later) access of M[reg + offset]
511    // will provoke OS NULL exception if reg = NULL
512  }
513}
514
515// Ring buffer jumps
516
517#ifndef PRODUCT
518void MacroAssembler::ret(  bool trace )   { if (trace) {
519                                                    mov(I7, O7); // traceable register
520                                                    JMP(O7, 2 * BytesPerInstWord);
521                                                  } else {
522                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
523                                                  }
524                                                }
525
526void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
527                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
528#endif /* PRODUCT */
529
530
531void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
532  assert_not_delayed();
533  // This can only be traceable if r1 & r2 are visible after a window save
534  if (TraceJumps) {
535#ifndef PRODUCT
536    save_frame(0);
537    verify_thread();
538    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
539    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
540    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
541    add(O2, O1, O1);
542
543    add(r1->after_save(), r2->after_save(), O2);
544    set((intptr_t)file, O3);
545    set(line, O4);
546    Label L;
547    // get nearby pc, store jmp target
548    call(L, relocInfo::none);  // No relocation for call to pc+0x8
549    delayed()->st(O2, O1, 0);
550    bind(L);
551
552    // store nearby pc
553    st(O7, O1, sizeof(intptr_t));
554    // store file
555    st(O3, O1, 2*sizeof(intptr_t));
556    // store line
557    st(O4, O1, 3*sizeof(intptr_t));
558    add(O0, 1, O0);
559    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
560    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
561    restore();
562#endif /* PRODUCT */
563  }
564  jmpl(r1, r2, G0);
565}
566void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
567  assert_not_delayed();
568  // This can only be traceable if r1 is visible after a window save
569  if (TraceJumps) {
570#ifndef PRODUCT
571    save_frame(0);
572    verify_thread();
573    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
574    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
575    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
576    add(O2, O1, O1);
577
578    add(r1->after_save(), offset, O2);
579    set((intptr_t)file, O3);
580    set(line, O4);
581    Label L;
582    // get nearby pc, store jmp target
583    call(L, relocInfo::none);  // No relocation for call to pc+0x8
584    delayed()->st(O2, O1, 0);
585    bind(L);
586
587    // store nearby pc
588    st(O7, O1, sizeof(intptr_t));
589    // store file
590    st(O3, O1, 2*sizeof(intptr_t));
591    // store line
592    st(O4, O1, 3*sizeof(intptr_t));
593    add(O0, 1, O0);
594    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
595    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
596    restore();
597#endif /* PRODUCT */
598  }
599  jmp(r1, offset);
600}
601
602// This code sequence is relocatable to any address, even on LP64.
603void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
604  assert_not_delayed();
605  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
606  // variable length instruction streams.
607  sethi(a, /*ForceRelocatable=*/ true);
608  if (TraceJumps) {
609#ifndef PRODUCT
610    // Must do the add here so relocation can find the remainder of the
611    // value to be relocated.
612    add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
613    save_frame(0);
614    verify_thread();
615    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
616    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
617    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
618    add(O2, O1, O1);
619
620    set((intptr_t)file, O3);
621    set(line, O4);
622    Label L;
623
624    // get nearby pc, store jmp target
625    call(L, relocInfo::none);  // No relocation for call to pc+0x8
626    delayed()->st(a.base()->after_save(), O1, 0);
627    bind(L);
628
629    // store nearby pc
630    st(O7, O1, sizeof(intptr_t));
631    // store file
632    st(O3, O1, 2*sizeof(intptr_t));
633    // store line
634    st(O4, O1, 3*sizeof(intptr_t));
635    add(O0, 1, O0);
636    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
637    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
638    restore();
639    jmpl(a.base(), G0, d);
640#else
641    jmpl(a, d, offset);
642#endif /* PRODUCT */
643  } else {
644    jmpl(a, d, offset);
645  }
646}
647
648void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
649  jumpl( a, G0, offset, file, line );
650}
651
652
653// Convert to C varargs format
654void MacroAssembler::set_varargs( Argument inArg, Register d ) {
655  // spill register-resident args to their memory slots
656  // (SPARC calling convention requires callers to have already preallocated these)
657  // Note that the inArg might in fact be an outgoing argument,
658  // if a leaf routine or stub does some tricky argument shuffling.
659  // This routine must work even though one of the saved arguments
660  // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
661  for (Argument savePtr = inArg;
662       savePtr.is_register();
663       savePtr = savePtr.successor()) {
664    st_ptr(savePtr.as_register(), savePtr.address_in_frame());
665  }
666  // return the address of the first memory slot
667  add(inArg.address_in_frame(), d);
668}
669
670// Conditional breakpoint (for assertion checks in assembly code)
671void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
672  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
673}
674
675// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
676void MacroAssembler::breakpoint_trap() {
677  trap(ST_RESERVED_FOR_USER_0);
678}
679
680// flush windows (except current) using flushw instruction if avail.
681void MacroAssembler::flush_windows() {
682  if (VM_Version::v9_instructions_work())  flushw();
683  else                                     flush_windows_trap();
684}
685
686// Write serialization page so VM thread can do a pseudo remote membar
687// We use the current thread pointer to calculate a thread specific
688// offset to write to within the page. This minimizes bus traffic
689// due to cache line collision.
690void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
691  Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
692  srl(thread, os::get_serialize_page_shift_count(), tmp2);
693  if (Assembler::is_simm13(os::vm_page_size())) {
694    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
695  }
696  else {
697    set((os::vm_page_size() - sizeof(int)), tmp1);
698    and3(tmp2, tmp1, tmp2);
699  }
700  load_address(mem_serialize_page);
701  st(G0, tmp1, tmp2);
702}
703
704
705
706void MacroAssembler::enter() {
707  Unimplemented();
708}
709
710void MacroAssembler::leave() {
711  Unimplemented();
712}
713
714void MacroAssembler::mult(Register s1, Register s2, Register d) {
715  if(VM_Version::v9_instructions_work()) {
716    mulx (s1, s2, d);
717  } else {
718    smul (s1, s2, d);
719  }
720}
721
722void MacroAssembler::mult(Register s1, int simm13a, Register d) {
723  if(VM_Version::v9_instructions_work()) {
724    mulx (s1, simm13a, d);
725  } else {
726    smul (s1, simm13a, d);
727  }
728}
729
730
731#ifdef ASSERT
732void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
733  const Register s1 = G3_scratch;
734  const Register s2 = G4_scratch;
735  Label get_psr_test;
736  // Get the condition codes the V8 way.
737  read_ccr_trap(s1);
738  mov(ccr_save, s2);
739  // This is a test of V8 which has icc but not xcc
740  // so mask off the xcc bits
741  and3(s2, 0xf, s2);
742  // Compare condition codes from the V8 and V9 ways.
743  subcc(s2, s1, G0);
744  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
745  delayed()->breakpoint_trap();
746  bind(get_psr_test);
747}
748
749void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
750  const Register s1 = G3_scratch;
751  const Register s2 = G4_scratch;
752  Label set_psr_test;
753  // Write out the saved condition codes the V8 way
754  write_ccr_trap(ccr_save, s1, s2);
755  // Read back the condition codes using the V9 instruction
756  rdccr(s1);
757  mov(ccr_save, s2);
758  // This is a test of V8 which has icc but not xcc
759  // so mask off the xcc bits
760  and3(s2, 0xf, s2);
761  and3(s1, 0xf, s1);
762  // Compare the V8 way with the V9 way.
763  subcc(s2, s1, G0);
764  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
765  delayed()->breakpoint_trap();
766  bind(set_psr_test);
767}
768#else
769#define read_ccr_v8_assert(x)
770#define write_ccr_v8_assert(x)
771#endif // ASSERT
772
773void MacroAssembler::read_ccr(Register ccr_save) {
774  if (VM_Version::v9_instructions_work()) {
775    rdccr(ccr_save);
776    // Test code sequence used on V8.  Do not move above rdccr.
777    read_ccr_v8_assert(ccr_save);
778  } else {
779    read_ccr_trap(ccr_save);
780  }
781}
782
783void MacroAssembler::write_ccr(Register ccr_save) {
784  if (VM_Version::v9_instructions_work()) {
785    // Test code sequence used on V8.  Do not move below wrccr.
786    write_ccr_v8_assert(ccr_save);
787    wrccr(ccr_save);
788  } else {
789    const Register temp_reg1 = G3_scratch;
790    const Register temp_reg2 = G4_scratch;
791    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
792  }
793}
794
795
796// Calls to C land
797
798#ifdef ASSERT
799// a hook for debugging
800static Thread* reinitialize_thread() {
801  return ThreadLocalStorage::thread();
802}
803#else
804#define reinitialize_thread ThreadLocalStorage::thread
805#endif
806
807#ifdef ASSERT
808address last_get_thread = NULL;
809#endif
810
811// call this when G2_thread is not known to be valid
812void MacroAssembler::get_thread() {
813  save_frame(0);                // to avoid clobbering O0
814  mov(G1, L0);                  // avoid clobbering G1
815  mov(G5_method, L1);           // avoid clobbering G5
816  mov(G3, L2);                  // avoid clobbering G3 also
817  mov(G4, L5);                  // avoid clobbering G4
818#ifdef ASSERT
819  Address last_get_thread_addr(L3, (address)&last_get_thread);
820  sethi(last_get_thread_addr);
821  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
822  st_ptr(L4, last_get_thread_addr);
823#endif
824  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
825  delayed()->nop();
826  mov(L0, G1);
827  mov(L1, G5_method);
828  mov(L2, G3);
829  mov(L5, G4);
830  restore(O0, 0, G2_thread);
831}
832
833static Thread* verify_thread_subroutine(Thread* gthread_value) {
834  Thread* correct_value = ThreadLocalStorage::thread();
835  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
836  return correct_value;
837}
838
839void MacroAssembler::verify_thread() {
840  if (VerifyThread) {
841    // NOTE: this chops off the heads of the 64-bit O registers.
842#ifdef CC_INTERP
843    save_frame(0);
844#else
845    // make sure G2_thread contains the right value
846    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
847    mov(G1, L1);                // avoid clobbering G1
848    // G2 saved below
849    mov(G3, L3);                // avoid clobbering G3
850    mov(G4, L4);                // avoid clobbering G4
851    mov(G5_method, L5);         // avoid clobbering G5_method
852#endif /* CC_INTERP */
853#if defined(COMPILER2) && !defined(_LP64)
854    // Save & restore possible 64-bit Long arguments in G-regs
855    srlx(G1,32,L0);
856    srlx(G4,32,L6);
857#endif
858    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
859    delayed()->mov(G2_thread, O0);
860
861    mov(L1, G1);                // Restore G1
862    // G2 restored below
863    mov(L3, G3);                // restore G3
864    mov(L4, G4);                // restore G4
865    mov(L5, G5_method);         // restore G5_method
866#if defined(COMPILER2) && !defined(_LP64)
867    // Save & restore possible 64-bit Long arguments in G-regs
868    sllx(L0,32,G2);             // Move old high G1 bits high in G2
869    sllx(G1, 0,G1);             // Clear current high G1 bits
870    or3 (G1,G2,G1);             // Recover 64-bit G1
871    sllx(L6,32,G2);             // Move old high G4 bits high in G2
872    sllx(G4, 0,G4);             // Clear current high G4 bits
873    or3 (G4,G2,G4);             // Recover 64-bit G4
874#endif
875    restore(O0, 0, G2_thread);
876  }
877}
878
879
880void MacroAssembler::save_thread(const Register thread_cache) {
881  verify_thread();
882  if (thread_cache->is_valid()) {
883    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
884    mov(G2_thread, thread_cache);
885  }
886  if (VerifyThread) {
887    // smash G2_thread, as if the VM were about to anyway
888    set(0x67676767, G2_thread);
889  }
890}
891
892
893void MacroAssembler::restore_thread(const Register thread_cache) {
894  if (thread_cache->is_valid()) {
895    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
896    mov(thread_cache, G2_thread);
897    verify_thread();
898  } else {
899    // do it the slow way
900    get_thread();
901  }
902}
903
904
905// %%% maybe get rid of [re]set_last_Java_frame
906void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
907  assert_not_delayed();
908  Address flags(G2_thread,
909                0,
910                in_bytes(JavaThread::frame_anchor_offset()) +
911                         in_bytes(JavaFrameAnchor::flags_offset()));
912  Address pc_addr(G2_thread,
913                  0,
914                  in_bytes(JavaThread::last_Java_pc_offset()));
915
916  // Always set last_Java_pc and flags first because once last_Java_sp is visible
917  // has_last_Java_frame is true and users will look at the rest of the fields.
918  // (Note: flags should always be zero before we get here so doesn't need to be set.)
919
920#ifdef ASSERT
921  // Verify that flags was zeroed on return to Java
922  Label PcOk;
923  save_frame(0);                // to avoid clobbering O0
924  ld_ptr(pc_addr, L0);
925  tst(L0);
926#ifdef _LP64
927  brx(Assembler::zero, false, Assembler::pt, PcOk);
928#else
929  br(Assembler::zero, false, Assembler::pt, PcOk);
930#endif // _LP64
931  delayed() -> nop();
932  stop("last_Java_pc not zeroed before leaving Java");
933  bind(PcOk);
934
935  // Verify that flags was zeroed on return to Java
936  Label FlagsOk;
937  ld(flags, L0);
938  tst(L0);
939  br(Assembler::zero, false, Assembler::pt, FlagsOk);
940  delayed() -> restore();
941  stop("flags not zeroed before leaving Java");
942  bind(FlagsOk);
943#endif /* ASSERT */
944  //
945  // When returning from calling out from Java mode the frame anchor's last_Java_pc
946  // will always be set to NULL. It is set here so that if we are doing a call to
947  // native (not VM) that we capture the known pc and don't have to rely on the
948  // native call having a standard frame linkage where we can find the pc.
949
950  if (last_Java_pc->is_valid()) {
951    st_ptr(last_Java_pc, pc_addr);
952  }
953
954#ifdef _LP64
955#ifdef ASSERT
956  // Make sure that we have an odd stack
957  Label StackOk;
958  andcc(last_java_sp, 0x01, G0);
959  br(Assembler::notZero, false, Assembler::pt, StackOk);
960  delayed() -> nop();
961  stop("Stack Not Biased in set_last_Java_frame");
962  bind(StackOk);
963#endif // ASSERT
964  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
965  add( last_java_sp, STACK_BIAS, G4_scratch );
966  st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
967#else
968  st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
969#endif // _LP64
970}
971
972void MacroAssembler::reset_last_Java_frame(void) {
973  assert_not_delayed();
974
975  Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
976  Address pc_addr(G2_thread,
977                  0,
978                  in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
979  Address flags(G2_thread,
980                0,
981                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
982
983#ifdef ASSERT
984  // check that it WAS previously set
985#ifdef CC_INTERP
986    save_frame(0);
987#else
988    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
989#endif /* CC_INTERP */
990    ld_ptr(sp_addr, L0);
991    tst(L0);
992    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
993    restore();
994#endif // ASSERT
995
996  st_ptr(G0, sp_addr);
997  // Always return last_Java_pc to zero
998  st_ptr(G0, pc_addr);
999  // Always null flags after return to Java
1000  st(G0, flags);
1001}
1002
1003
1004void MacroAssembler::call_VM_base(
1005  Register        oop_result,
1006  Register        thread_cache,
1007  Register        last_java_sp,
1008  address         entry_point,
1009  int             number_of_arguments,
1010  bool            check_exceptions)
1011{
1012  assert_not_delayed();
1013
1014  // determine last_java_sp register
1015  if (!last_java_sp->is_valid()) {
1016    last_java_sp = SP;
1017  }
1018  // debugging support
1019  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1020
1021  // 64-bit last_java_sp is biased!
1022  set_last_Java_frame(last_java_sp, noreg);
1023  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1024  save_thread(thread_cache);
1025  // do the call
1026  call(entry_point, relocInfo::runtime_call_type);
1027  if (!VerifyThread)
1028    delayed()->mov(G2_thread, O0);  // pass thread as first argument
1029  else
1030    delayed()->nop();             // (thread already passed)
1031  restore_thread(thread_cache);
1032  reset_last_Java_frame();
1033
1034  // check for pending exceptions. use Gtemp as scratch register.
1035  if (check_exceptions) {
1036    check_and_forward_exception(Gtemp);
1037  }
1038
1039  // get oop result if there is one and reset the value in the thread
1040  if (oop_result->is_valid()) {
1041    get_vm_result(oop_result);
1042  }
1043}
1044
1045void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1046{
1047  Label L;
1048
1049  check_and_handle_popframe(scratch_reg);
1050  check_and_handle_earlyret(scratch_reg);
1051
1052  Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1053  ld_ptr(exception_addr, scratch_reg);
1054  br_null(scratch_reg,false,pt,L);
1055  delayed()->nop();
1056  // we use O7 linkage so that forward_exception_entry has the issuing PC
1057  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1058  delayed()->nop();
1059  bind(L);
1060}
1061
1062
1063void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1064}
1065
1066
1067void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1068}
1069
1070
1071void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1072  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1073}
1074
1075
1076void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1077  // O0 is reserved for the thread
1078  mov(arg_1, O1);
1079  call_VM(oop_result, entry_point, 1, check_exceptions);
1080}
1081
1082
1083void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1084  // O0 is reserved for the thread
1085  mov(arg_1, O1);
1086  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1087  call_VM(oop_result, entry_point, 2, check_exceptions);
1088}
1089
1090
1091void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1092  // O0 is reserved for the thread
1093  mov(arg_1, O1);
1094  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1095  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1096  call_VM(oop_result, entry_point, 3, check_exceptions);
1097}
1098
1099
1100
1101// Note: The following call_VM overloadings are useful when a "save"
1102// has already been performed by a stub, and the last Java frame is
1103// the previous one.  In that case, last_java_sp must be passed as FP
1104// instead of SP.
1105
1106
1107void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1108  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1109}
1110
1111
1112void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1113  // O0 is reserved for the thread
1114  mov(arg_1, O1);
1115  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1116}
1117
1118
1119void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1120  // O0 is reserved for the thread
1121  mov(arg_1, O1);
1122  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1123  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1124}
1125
1126
1127void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1128  // O0 is reserved for the thread
1129  mov(arg_1, O1);
1130  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1131  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1132  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1133}
1134
1135
1136
1137void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1138  assert_not_delayed();
1139  save_thread(thread_cache);
1140  // do the call
1141  call(entry_point, relocInfo::runtime_call_type);
1142  delayed()->nop();
1143  restore_thread(thread_cache);
1144}
1145
1146
1147void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1148  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1149}
1150
1151
1152void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1153  mov(arg_1, O0);
1154  call_VM_leaf(thread_cache, entry_point, 1);
1155}
1156
1157
1158void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1159  mov(arg_1, O0);
1160  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1161  call_VM_leaf(thread_cache, entry_point, 2);
1162}
1163
1164
1165void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1166  mov(arg_1, O0);
1167  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1168  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1169  call_VM_leaf(thread_cache, entry_point, 3);
1170}
1171
1172
1173void MacroAssembler::get_vm_result(Register oop_result) {
1174  verify_thread();
1175  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1176  ld_ptr(    vm_result_addr, oop_result);
1177  st_ptr(G0, vm_result_addr);
1178  verify_oop(oop_result);
1179}
1180
1181
1182void MacroAssembler::get_vm_result_2(Register oop_result) {
1183  verify_thread();
1184  Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
1185  ld_ptr(vm_result_addr_2, oop_result);
1186  st_ptr(G0, vm_result_addr_2);
1187  verify_oop(oop_result);
1188}
1189
1190
1191// We require that C code which does not return a value in vm_result will
1192// leave it undisturbed.
1193void MacroAssembler::set_vm_result(Register oop_result) {
1194  verify_thread();
1195  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1196  verify_oop(oop_result);
1197
1198# ifdef ASSERT
1199    // Check that we are not overwriting any other oop.
1200#ifdef CC_INTERP
1201    save_frame(0);
1202#else
1203    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1204#endif /* CC_INTERP */
1205    ld_ptr(vm_result_addr, L0);
1206    tst(L0);
1207    restore();
1208    breakpoint_trap(notZero, Assembler::ptr_cc);
1209    // }
1210# endif
1211
1212  st_ptr(oop_result, vm_result_addr);
1213}
1214
1215
1216void MacroAssembler::store_check(Register tmp, Register obj) {
1217  // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
1218
1219  /* $$$ This stuff needs to go into one of the BarrierSet generator
1220     functions.  (The particular barrier sets will have to be friends of
1221     MacroAssembler, I guess.) */
1222  BarrierSet* bs = Universe::heap()->barrier_set();
1223  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
1224  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1225  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1226#ifdef _LP64
1227  srlx(obj, CardTableModRefBS::card_shift, obj);
1228#else
1229  srl(obj, CardTableModRefBS::card_shift, obj);
1230#endif
1231  assert( tmp != obj, "need separate temp reg");
1232  Address rs(tmp, (address)ct->byte_map_base);
1233  load_address(rs);
1234  stb(G0, rs.base(), obj);
1235}
1236
1237void MacroAssembler::store_check(Register tmp, Register obj, Register offset) {
1238  store_check(tmp, obj);
1239}
1240
1241// %%% Note:  The following six instructions have been moved,
1242//            unchanged, from assembler_sparc.inline.hpp.
1243//            They will be refactored at a later date.
1244
1245void MacroAssembler::sethi(intptr_t imm22a,
1246                            Register d,
1247                            bool ForceRelocatable,
1248                            RelocationHolder const& rspec) {
1249  Address adr( d, (address)imm22a, rspec );
1250  MacroAssembler::sethi( adr, ForceRelocatable );
1251}
1252
1253
1254void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
1255  address save_pc;
1256  int shiftcnt;
1257  // if addr of local, do not need to load it
1258  assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
1259#ifdef _LP64
1260# ifdef CHECK_DELAY
1261  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1262# endif
1263  v9_dep();
1264//  ForceRelocatable = 1;
1265  save_pc = pc();
1266  if (a.hi32() == 0 && a.low32() >= 0) {
1267    Assembler::sethi(a.low32(), a.base(), a.rspec());
1268  }
1269  else if (a.hi32() == -1) {
1270    Assembler::sethi(~a.low32(), a.base(), a.rspec());
1271    xor3(a.base(), ~low10(~0), a.base());
1272  }
1273  else {
1274    Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
1275    if ( a.hi32() & 0x3ff )                     // Any bits?
1276      or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
1277    if ( a.low32() & 0xFFFFFC00 ) {             // done?
1278      if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
1279        sllx(a.base(), 12, a.base());           // Make room for next 12 bits
1280        or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
1281        shiftcnt = 0;                           // We already shifted
1282      }
1283      else
1284        shiftcnt = 12;
1285      if( (a.low32() >> 10) & 0x3ff ) {
1286        sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
1287        or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
1288        shiftcnt = 0;
1289      }
1290      else
1291        shiftcnt = 10;
1292      sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
1293    }
1294    else
1295      sllx( a.base(), 32, a.base() );
1296  }
1297  // Pad out the instruction sequence so it can be
1298  // patched later.
1299  if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
1300                            a.rtype() != relocInfo::runtime_call_type) ) {
1301    while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
1302      nop();
1303  }
1304#else
1305  Assembler::sethi(a.hi(), a.base(), a.rspec());
1306#endif
1307
1308}
1309
1310int MacroAssembler::size_of_sethi(address a, bool worst_case) {
1311#ifdef _LP64
1312  if (worst_case) return 7;
1313  intptr_t iaddr = (intptr_t)a;
1314  int hi32 = (int)(iaddr >> 32);
1315  int lo32 = (int)(iaddr);
1316  int inst_count;
1317  if (hi32 == 0 && lo32 >= 0)
1318    inst_count = 1;
1319  else if (hi32 == -1)
1320    inst_count = 2;
1321  else {
1322    inst_count = 2;
1323    if ( hi32 & 0x3ff )
1324      inst_count++;
1325    if ( lo32 & 0xFFFFFC00 ) {
1326      if( (lo32 >> 20) & 0xfff ) inst_count += 2;
1327      if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
1328    }
1329  }
1330  return BytesPerInstWord * inst_count;
1331#else
1332  return BytesPerInstWord;
1333#endif
1334}
1335
1336int MacroAssembler::worst_case_size_of_set() {
1337  return size_of_sethi(NULL, true) + 1;
1338}
1339
1340void MacroAssembler::set(intptr_t value, Register d,
1341                         RelocationHolder const& rspec) {
1342  Address val( d, (address)value, rspec);
1343
1344  if ( rspec.type() == relocInfo::none ) {
1345    // can optimize
1346    if (-4096 <= value  &&  value <= 4095) {
1347      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1348      return;
1349    }
1350    if (inv_hi22(hi22(value)) == value) {
1351      sethi(val);
1352      return;
1353    }
1354  }
1355  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1356  sethi( val );
1357  if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
1358    add( d, value &  0x3ff, d, rspec);
1359  }
1360}
1361
1362void MacroAssembler::setsw(int value, Register d,
1363                           RelocationHolder const& rspec) {
1364  Address val( d, (address)value, rspec);
1365  if ( rspec.type() == relocInfo::none ) {
1366    // can optimize
1367    if (-4096 <= value  &&  value <= 4095) {
1368      or3(G0, value, d);
1369      return;
1370    }
1371    if (inv_hi22(hi22(value)) == value) {
1372      sethi( val );
1373#ifndef _LP64
1374      if ( value < 0 ) {
1375        assert_not_delayed();
1376        sra (d, G0, d);
1377      }
1378#endif
1379      return;
1380    }
1381  }
1382  assert_not_delayed();
1383  sethi( val );
1384  add( d, value &  0x3ff, d, rspec);
1385
1386  // (A negative value could be loaded in 2 insns with sethi/xor,
1387  // but it would take a more complex relocation.)
1388#ifndef _LP64
1389  if ( value < 0)
1390    sra(d, G0, d);
1391#endif
1392}
1393
1394// %%% End of moved six set instructions.
1395
1396
1397void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1398  assert_not_delayed();
1399  v9_dep();
1400
1401  int hi = (int)(value >> 32);
1402  int lo = (int)(value & ~0);
1403  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1404  if (Assembler::is_simm13(lo) && value == lo) {
1405    or3(G0, lo, d);
1406  } else if (hi == 0) {
1407    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1408    if (low10(lo) != 0)
1409      or3(d, low10(lo), d);
1410  }
1411  else if (hi == -1) {
1412    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1413    xor3(d, low10(lo) ^ ~low10(~0), d);
1414  }
1415  else if (lo == 0) {
1416    if (Assembler::is_simm13(hi)) {
1417      or3(G0, hi, d);
1418    } else {
1419      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1420      if (low10(hi) != 0)
1421        or3(d, low10(hi), d);
1422    }
1423    sllx(d, 32, d);
1424  }
1425  else {
1426    Assembler::sethi(hi, tmp);
1427    Assembler::sethi(lo,   d); // macro assembler version sign-extends
1428    if (low10(hi) != 0)
1429      or3 (tmp, low10(hi), tmp);
1430    if (low10(lo) != 0)
1431      or3 (  d, low10(lo),   d);
1432    sllx(tmp, 32, tmp);
1433    or3 (d, tmp, d);
1434  }
1435}
1436
1437// compute size in bytes of sparc frame, given
1438// number of extraWords
1439int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1440
1441  int nWords = frame::memory_parameter_word_sp_offset;
1442
1443  nWords += extraWords;
1444
1445  if (nWords & 1) ++nWords; // round up to double-word
1446
1447  return nWords * BytesPerWord;
1448}
1449
1450
1451// save_frame: given number of "extra" words in frame,
1452// issue approp. save instruction (p 200, v8 manual)
1453
1454void MacroAssembler::save_frame(int extraWords = 0) {
1455  int delta = -total_frame_size_in_bytes(extraWords);
1456  if (is_simm13(delta)) {
1457    save(SP, delta, SP);
1458  } else {
1459    set(delta, G3_scratch);
1460    save(SP, G3_scratch, SP);
1461  }
1462}
1463
1464
1465void MacroAssembler::save_frame_c1(int size_in_bytes) {
1466  if (is_simm13(-size_in_bytes)) {
1467    save(SP, -size_in_bytes, SP);
1468  } else {
1469    set(-size_in_bytes, G3_scratch);
1470    save(SP, G3_scratch, SP);
1471  }
1472}
1473
1474
1475void MacroAssembler::save_frame_and_mov(int extraWords,
1476                                        Register s1, Register d1,
1477                                        Register s2, Register d2) {
1478  assert_not_delayed();
1479
1480  // The trick here is to use precisely the same memory word
1481  // that trap handlers also use to save the register.
1482  // This word cannot be used for any other purpose, but
1483  // it works fine to save the register's value, whether or not
1484  // an interrupt flushes register windows at any given moment!
1485  Address s1_addr;
1486  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1487    s1_addr = s1->address_in_saved_window();
1488    st_ptr(s1, s1_addr);
1489  }
1490
1491  Address s2_addr;
1492  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1493    s2_addr = s2->address_in_saved_window();
1494    st_ptr(s2, s2_addr);
1495  }
1496
1497  save_frame(extraWords);
1498
1499  if (s1_addr.base() == SP) {
1500    ld_ptr(s1_addr.after_save(), d1);
1501  } else if (s1->is_valid()) {
1502    mov(s1->after_save(), d1);
1503  }
1504
1505  if (s2_addr.base() == SP) {
1506    ld_ptr(s2_addr.after_save(), d2);
1507  } else if (s2->is_valid()) {
1508    mov(s2->after_save(), d2);
1509  }
1510}
1511
1512
1513Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
1514  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1515  int oop_index = oop_recorder()->allocate_index(obj);
1516  return Address(d, address(obj), oop_Relocation::spec(oop_index));
1517}
1518
1519
1520Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
1521  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1522  int oop_index = oop_recorder()->find_index(obj);
1523  return Address(d, address(obj), oop_Relocation::spec(oop_index));
1524}
1525
1526void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1527  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1528  int oop_index = oop_recorder()->find_index(obj);
1529  RelocationHolder rspec = oop_Relocation::spec(oop_index);
1530
1531  assert_not_delayed();
1532  // Relocation with special format (see relocInfo_sparc.hpp).
1533  relocate(rspec, 1);
1534  // Assembler::sethi(0x3fffff, d);
1535  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1536  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1537  add(d, 0x3ff, d);
1538
1539}
1540
1541
1542void MacroAssembler::align(int modulus) {
1543  while (offset() % modulus != 0) nop();
1544}
1545
1546
1547void MacroAssembler::safepoint() {
1548  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1549}
1550
1551
1552void RegistersForDebugging::print(outputStream* s) {
1553  int j;
1554  for ( j = 0;  j < 8;  ++j )
1555    if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1556    else          s->print_cr( "fp = 0x%.16lx",    i[j]);
1557  s->cr();
1558
1559  for ( j = 0;  j < 8;  ++j )
1560    s->print_cr("l%d = 0x%.16lx", j, l[j]);
1561  s->cr();
1562
1563  for ( j = 0;  j < 8;  ++j )
1564    if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1565    else          s->print_cr( "sp = 0x%.16lx",    o[j]);
1566  s->cr();
1567
1568  for ( j = 0;  j < 8;  ++j )
1569    s->print_cr("g%d = 0x%.16lx", j, g[j]);
1570  s->cr();
1571
1572  // print out floats with compression
1573  for (j = 0; j < 32; ) {
1574    jfloat val = f[j];
1575    int last = j;
1576    for ( ;  last+1 < 32;  ++last ) {
1577      char b1[1024], b2[1024];
1578      sprintf(b1, "%f", val);
1579      sprintf(b2, "%f", f[last+1]);
1580      if (strcmp(b1, b2))
1581        break;
1582    }
1583    s->print("f%d", j);
1584    if ( j != last )  s->print(" - f%d", last);
1585    s->print(" = %f", val);
1586    s->fill_to(25);
1587    s->print_cr(" (0x%x)", val);
1588    j = last + 1;
1589  }
1590  s->cr();
1591
1592  // and doubles (evens only)
1593  for (j = 0; j < 32; ) {
1594    jdouble val = d[j];
1595    int last = j;
1596    for ( ;  last+1 < 32;  ++last ) {
1597      char b1[1024], b2[1024];
1598      sprintf(b1, "%f", val);
1599      sprintf(b2, "%f", d[last+1]);
1600      if (strcmp(b1, b2))
1601        break;
1602    }
1603    s->print("d%d", 2 * j);
1604    if ( j != last )  s->print(" - d%d", last);
1605    s->print(" = %f", val);
1606    s->fill_to(30);
1607    s->print("(0x%x)", *(int*)&val);
1608    s->fill_to(42);
1609    s->print_cr("(0x%x)", *(1 + (int*)&val));
1610    j = last + 1;
1611  }
1612  s->cr();
1613}
1614
1615void RegistersForDebugging::save_registers(MacroAssembler* a) {
1616  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1617  a->flush_windows();
1618  int i;
1619  for (i = 0; i < 8; ++i) {
1620    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1621    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1622    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1623    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1624  }
1625  for (i = 0;  i < 32; ++i) {
1626    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1627  }
1628  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1629    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1630  }
1631}
1632
1633void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1634  for (int i = 1; i < 8;  ++i) {
1635    a->ld_ptr(r, g_offset(i), as_gRegister(i));
1636  }
1637  for (int j = 0; j < 32; ++j) {
1638    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1639  }
1640  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1641    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1642  }
1643}
1644
1645
1646// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1647void MacroAssembler::push_fTOS() {
1648  // %%%%%% need to implement this
1649}
1650
1651// pops double TOS element from CPU stack and pushes on FPU stack
1652void MacroAssembler::pop_fTOS() {
1653  // %%%%%% need to implement this
1654}
1655
1656void MacroAssembler::empty_FPU_stack() {
1657  // %%%%%% need to implement this
1658}
1659
1660void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1661  // plausibility check for oops
1662  if (!VerifyOops) return;
1663
1664  if (reg == G0)  return;       // always NULL, which is always an oop
1665
1666  char buffer[16];
1667  sprintf(buffer, "%d", line);
1668  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1669  char * real_msg = new char[len];
1670  sprintf(real_msg, "%s (%s:%d)", msg, file, line);
1671
1672  // Call indirectly to solve generation ordering problem
1673  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1674
1675  // Make some space on stack above the current register window.
1676  // Enough to hold 8 64-bit registers.
1677  add(SP,-8*8,SP);
1678
1679  // Save some 64-bit registers; a normal 'save' chops the heads off
1680  // of 64-bit longs in the 32-bit build.
1681  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1682  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1683  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1684  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1685
1686  set((intptr_t)real_msg, O1);
1687  // Load address to call to into O7
1688  load_ptr_contents(a, O7);
1689  // Register call to verify_oop_subroutine
1690  callr(O7, G0);
1691  delayed()->nop();
1692  // recover frame size
1693  add(SP, 8*8,SP);
1694}
1695
1696void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1697  // plausibility check for oops
1698  if (!VerifyOops) return;
1699
1700  char buffer[64];
1701  sprintf(buffer, "%d", line);
1702  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1703  sprintf(buffer, " at SP+%d ", addr.disp());
1704  len += strlen(buffer);
1705  char * real_msg = new char[len];
1706  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1707
1708  // Call indirectly to solve generation ordering problem
1709  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1710
1711  // Make some space on stack above the current register window.
1712  // Enough to hold 8 64-bit registers.
1713  add(SP,-8*8,SP);
1714
1715  // Save some 64-bit registers; a normal 'save' chops the heads off
1716  // of 64-bit longs in the 32-bit build.
1717  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1718  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1719  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1720  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1721
1722  set((intptr_t)real_msg, O1);
1723  // Load address to call to into O7
1724  load_ptr_contents(a, O7);
1725  // Register call to verify_oop_subroutine
1726  callr(O7, G0);
1727  delayed()->nop();
1728  // recover frame size
1729  add(SP, 8*8,SP);
1730}
1731
1732// side-door communication with signalHandler in os_solaris.cpp
1733address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1734
1735// This macro is expanded just once; it creates shared code.  Contract:
1736// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1737// registers, including flags.  May not use a register 'save', as this blows
1738// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1739// call.
1740void MacroAssembler::verify_oop_subroutine() {
1741  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1742
1743  // Leaf call; no frame.
1744  Label succeed, fail, null_or_fail;
1745
1746  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1747  // O0 is now the oop to be checked.  O7 is the return address.
1748  Register O0_obj = O0;
1749
1750  // Save some more registers for temps.
1751  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1752  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1753  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1754  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1755
1756  // Save flags
1757  Register O5_save_flags = O5;
1758  rdccr( O5_save_flags );
1759
1760  { // count number of verifies
1761    Register O2_adr   = O2;
1762    Register O3_accum = O3;
1763    Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
1764    sethi(count_addr);
1765    ld(count_addr, O3_accum);
1766    inc(O3_accum);
1767    st(O3_accum, count_addr);
1768  }
1769
1770  Register O2_mask = O2;
1771  Register O3_bits = O3;
1772  Register O4_temp = O4;
1773
1774  // mark lower end of faulting range
1775  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1776  _verify_oop_implicit_branch[0] = pc();
1777
1778  // We can't check the mark oop because it could be in the process of
1779  // locking or unlocking while this is running.
1780  set(Universe::verify_oop_mask (), O2_mask);
1781  set(Universe::verify_oop_bits (), O3_bits);
1782
1783  // assert((obj & oop_mask) == oop_bits);
1784  and3(O0_obj, O2_mask, O4_temp);
1785  cmp(O4_temp, O3_bits);
1786  brx(notEqual, false, pn, null_or_fail);
1787  delayed()->nop();
1788
1789  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1790    // the null_or_fail case is useless; must test for null separately
1791    br_null(O0_obj, false, pn, succeed);
1792    delayed()->nop();
1793  }
1794
1795  // Check the klassOop of this object for being in the right area of memory.
1796  // Cannot do the load in the delay above slot in case O0 is null
1797  load_klass(O0_obj, O0_obj);
1798  // assert((klass & klass_mask) == klass_bits);
1799  if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1800    set(Universe::verify_klass_mask(), O2_mask);
1801  if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1802    set(Universe::verify_klass_bits(), O3_bits);
1803  and3(O0_obj, O2_mask, O4_temp);
1804  cmp(O4_temp, O3_bits);
1805  brx(notEqual, false, pn, fail);
1806  delayed()->nop();
1807  // Check the klass's klass
1808  load_klass(O0_obj, O0_obj);
1809  and3(O0_obj, O2_mask, O4_temp);
1810  cmp(O4_temp, O3_bits);
1811  brx(notEqual, false, pn, fail);
1812  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1813
1814  // mark upper end of faulting range
1815  _verify_oop_implicit_branch[1] = pc();
1816
1817  //-----------------------
1818  // all tests pass
1819  bind(succeed);
1820
1821  // Restore prior 64-bit registers
1822  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1823  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1824  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1825  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1826  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1827  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1828
1829  retl();                       // Leaf return; restore prior O7 in delay slot
1830  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1831
1832  //-----------------------
1833  bind(null_or_fail);           // nulls are less common but OK
1834  br_null(O0_obj, false, pt, succeed);
1835  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1836
1837  //-----------------------
1838  // report failure:
1839  bind(fail);
1840  _verify_oop_implicit_branch[2] = pc();
1841
1842  wrccr( O5_save_flags ); // Restore CCR's
1843
1844  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1845
1846  // stop_subroutine expects message pointer in I1.
1847  mov(I1, O1);
1848
1849  // Restore prior 64-bit registers
1850  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1851  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1852  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1853  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1854  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1855  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1856
1857  // factor long stop-sequence into subroutine to save space
1858  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1859
1860  // call indirectly to solve generation ordering problem
1861  Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1862  load_ptr_contents(a, O5);
1863  jmpl(O5, 0, O7);
1864  delayed()->nop();
1865}
1866
1867
1868void MacroAssembler::stop(const char* msg) {
1869  // save frame first to get O7 for return address
1870  // add one word to size in case struct is odd number of words long
1871  // It must be doubleword-aligned for storing doubles into it.
1872
1873    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1874
1875    // stop_subroutine expects message pointer in I1.
1876    set((intptr_t)msg, O1);
1877
1878    // factor long stop-sequence into subroutine to save space
1879    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1880
1881    // call indirectly to solve generation ordering problem
1882    Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1883    load_ptr_contents(a, O5);
1884    jmpl(O5, 0, O7);
1885    delayed()->nop();
1886
1887    breakpoint_trap();   // make stop actually stop rather than writing
1888                         // unnoticeable results in the output files.
1889
1890    // restore(); done in callee to save space!
1891}
1892
1893
1894void MacroAssembler::warn(const char* msg) {
1895  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1896  RegistersForDebugging::save_registers(this);
1897  mov(O0, L0);
1898  set((intptr_t)msg, O0);
1899  call( CAST_FROM_FN_PTR(address, warning) );
1900  delayed()->nop();
1901//  ret();
1902//  delayed()->restore();
1903  RegistersForDebugging::restore_registers(this, L0);
1904  restore();
1905}
1906
1907
1908void MacroAssembler::untested(const char* what) {
1909  // We must be able to turn interactive prompting off
1910  // in order to run automated test scripts on the VM
1911  // Use the flag ShowMessageBoxOnError
1912
1913  char* b = new char[1024];
1914  sprintf(b, "untested: %s", what);
1915
1916  if ( ShowMessageBoxOnError )   stop(b);
1917  else                           warn(b);
1918}
1919
1920
1921void MacroAssembler::stop_subroutine() {
1922  RegistersForDebugging::save_registers(this);
1923
1924  // for the sake of the debugger, stick a PC on the current frame
1925  // (this assumes that the caller has performed an extra "save")
1926  mov(I7, L7);
1927  add(O7, -7 * BytesPerInt, I7);
1928
1929  save_frame(); // one more save to free up another O7 register
1930  mov(I0, O1); // addr of reg save area
1931
1932  // We expect pointer to message in I1. Caller must set it up in O1
1933  mov(I1, O0); // get msg
1934  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1935  delayed()->nop();
1936
1937  restore();
1938
1939  RegistersForDebugging::restore_registers(this, O0);
1940
1941  save_frame(0);
1942  call(CAST_FROM_FN_PTR(address,breakpoint));
1943  delayed()->nop();
1944  restore();
1945
1946  mov(L7, I7);
1947  retl();
1948  delayed()->restore(); // see stop above
1949}
1950
1951
1952void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1953  if ( ShowMessageBoxOnError ) {
1954      JavaThreadState saved_state = JavaThread::current()->thread_state();
1955      JavaThread::current()->set_thread_state(_thread_in_vm);
1956      {
1957        // In order to get locks work, we need to fake a in_VM state
1958        ttyLocker ttyl;
1959        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1960        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1961          ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
1962        }
1963        if (os::message_box(msg, "Execution stopped, print registers?"))
1964          regs->print(::tty);
1965      }
1966      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1967  }
1968  else
1969     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1970  assert(false, "error");
1971}
1972
1973
1974#ifndef PRODUCT
1975void MacroAssembler::test() {
1976  ResourceMark rm;
1977
1978  CodeBuffer cb("test", 10000, 10000);
1979  MacroAssembler* a = new MacroAssembler(&cb);
1980  VM_Version::allow_all();
1981  a->test_v9();
1982  a->test_v8_onlys();
1983  VM_Version::revert();
1984
1985  StubRoutines::Sparc::test_stop_entry()();
1986}
1987#endif
1988
1989
1990void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1991  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1992  Label no_extras;
1993  br( negative, true, pt, no_extras ); // if neg, clear reg
1994  delayed()->set( 0, Rresult);         // annuled, so only if taken
1995  bind( no_extras );
1996}
1997
1998
1999void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
2000#ifdef _LP64
2001  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2002#else
2003  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2004#endif
2005  bclr(1, Rresult);
2006  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
2007}
2008
2009
2010void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2011  calc_frame_size(Rextra_words, Rresult);
2012  neg(Rresult);
2013  save(SP, Rresult, SP);
2014}
2015
2016
2017// ---------------------------------------------------------
2018Assembler::RCondition cond2rcond(Assembler::Condition c) {
2019  switch (c) {
2020    /*case zero: */
2021    case Assembler::equal:        return Assembler::rc_z;
2022    case Assembler::lessEqual:    return Assembler::rc_lez;
2023    case Assembler::less:         return Assembler::rc_lz;
2024    /*case notZero:*/
2025    case Assembler::notEqual:     return Assembler::rc_nz;
2026    case Assembler::greater:      return Assembler::rc_gz;
2027    case Assembler::greaterEqual: return Assembler::rc_gez;
2028  }
2029  ShouldNotReachHere();
2030  return Assembler::rc_z;
2031}
2032
2033// compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2034void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
2035  tst(s1);
2036  br (c, a, p, L);
2037}
2038
2039
2040// Compares a pointer register with zero and branches on null.
2041// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2042void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2043  assert_not_delayed();
2044#ifdef _LP64
2045  bpr( rc_z, a, p, s1, L );
2046#else
2047  tst(s1);
2048  br ( zero, a, p, L );
2049#endif
2050}
2051
2052void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2053  assert_not_delayed();
2054#ifdef _LP64
2055  bpr( rc_nz, a, p, s1, L );
2056#else
2057  tst(s1);
2058  br ( notZero, a, p, L );
2059#endif
2060}
2061
2062
2063// instruction sequences factored across compiler & interpreter
2064
2065
2066void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2067                           Register Rb_hi, Register Rb_low,
2068                           Register Rresult) {
2069
2070  Label check_low_parts, done;
2071
2072  cmp(Ra_hi, Rb_hi );  // compare hi parts
2073  br(equal, true, pt, check_low_parts);
2074  delayed()->cmp(Ra_low, Rb_low); // test low parts
2075
2076  // And, with an unsigned comparison, it does not matter if the numbers
2077  // are negative or not.
2078  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2079  // The second one is bigger (unsignedly).
2080
2081  // Other notes:  The first move in each triplet can be unconditional
2082  // (and therefore probably prefetchable).
2083  // And the equals case for the high part does not need testing,
2084  // since that triplet is reached only after finding the high halves differ.
2085
2086  if (VM_Version::v9_instructions_work()) {
2087
2088                                    mov  (                     -1, Rresult);
2089    ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
2090  }
2091  else {
2092    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2093    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2094  }
2095
2096  bind( check_low_parts );
2097
2098  if (VM_Version::v9_instructions_work()) {
2099    mov(                               -1, Rresult);
2100    movcc(equal,           false, icc,  0, Rresult);
2101    movcc(greaterUnsigned, false, icc,  1, Rresult);
2102  }
2103  else {
2104                                                    set(-1, Rresult);
2105    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2106    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2107  }
2108  bind( done );
2109}
2110
2111void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2112  subcc(  G0, Rlow, Rlow );
2113  subc(   G0, Rhi,  Rhi  );
2114}
2115
2116void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2117                           Register Rcount,
2118                           Register Rout_high, Register Rout_low,
2119                           Register Rtemp ) {
2120
2121
2122  Register Ralt_count = Rtemp;
2123  Register Rxfer_bits = Rtemp;
2124
2125  assert( Ralt_count != Rin_high
2126      &&  Ralt_count != Rin_low
2127      &&  Ralt_count != Rcount
2128      &&  Rxfer_bits != Rin_low
2129      &&  Rxfer_bits != Rin_high
2130      &&  Rxfer_bits != Rcount
2131      &&  Rxfer_bits != Rout_low
2132      &&  Rout_low   != Rin_high,
2133        "register alias checks");
2134
2135  Label big_shift, done;
2136
2137  // This code can be optimized to use the 64 bit shifts in V9.
2138  // Here we use the 32 bit shifts.
2139
2140  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2141  subcc(Rcount,         31,             Ralt_count);
2142  br(greater, true, pn, big_shift);
2143  delayed()->
2144  dec(Ralt_count);
2145
2146  // shift < 32 bits, Ralt_count = Rcount-31
2147
2148  // We get the transfer bits by shifting right by 32-count the low
2149  // register. This is done by shifting right by 31-count and then by one
2150  // more to take care of the special (rare) case where count is zero
2151  // (shifting by 32 would not work).
2152
2153  neg(  Ralt_count                                 );
2154
2155  // The order of the next two instructions is critical in the case where
2156  // Rin and Rout are the same and should not be reversed.
2157
2158  srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
2159  if (Rcount != Rout_low) {
2160    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2161  }
2162  sll(  Rin_high,       Rcount,         Rout_high  );
2163  if (Rcount == Rout_low) {
2164    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2165  }
2166  srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
2167  ba (false, done);
2168  delayed()->
2169  or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2170
2171  // shift >= 32 bits, Ralt_count = Rcount-32
2172  bind(big_shift);
2173  sll(  Rin_low,        Ralt_count,     Rout_high  );
2174  clr(  Rout_low                                   );
2175
2176  bind(done);
2177}
2178
2179
2180void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2181                           Register Rcount,
2182                           Register Rout_high, Register Rout_low,
2183                           Register Rtemp ) {
2184
2185  Register Ralt_count = Rtemp;
2186  Register Rxfer_bits = Rtemp;
2187
2188  assert( Ralt_count != Rin_high
2189      &&  Ralt_count != Rin_low
2190      &&  Ralt_count != Rcount
2191      &&  Rxfer_bits != Rin_low
2192      &&  Rxfer_bits != Rin_high
2193      &&  Rxfer_bits != Rcount
2194      &&  Rxfer_bits != Rout_high
2195      &&  Rout_high  != Rin_low,
2196        "register alias checks");
2197
2198  Label big_shift, done;
2199
2200  // This code can be optimized to use the 64 bit shifts in V9.
2201  // Here we use the 32 bit shifts.
2202
2203  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2204  subcc(Rcount,         31,             Ralt_count);
2205  br(greater, true, pn, big_shift);
2206  delayed()->dec(Ralt_count);
2207
2208  // shift < 32 bits, Ralt_count = Rcount-31
2209
2210  // We get the transfer bits by shifting left by 32-count the high
2211  // register. This is done by shifting left by 31-count and then by one
2212  // more to take care of the special (rare) case where count is zero
2213  // (shifting by 32 would not work).
2214
2215  neg(  Ralt_count                                  );
2216  if (Rcount != Rout_low) {
2217    srl(        Rin_low,        Rcount,         Rout_low    );
2218  }
2219
2220  // The order of the next two instructions is critical in the case where
2221  // Rin and Rout are the same and should not be reversed.
2222
2223  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2224  sra(  Rin_high,       Rcount,         Rout_high   ); // high half
2225  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2226  if (Rcount == Rout_low) {
2227    srl(        Rin_low,        Rcount,         Rout_low    );
2228  }
2229  ba (false, done);
2230  delayed()->
2231  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2232
2233  // shift >= 32 bits, Ralt_count = Rcount-32
2234  bind(big_shift);
2235
2236  sra(  Rin_high,       Ralt_count,     Rout_low    );
2237  sra(  Rin_high,       31,             Rout_high   ); // sign into hi
2238
2239  bind( done );
2240}
2241
2242
2243
2244void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2245                            Register Rcount,
2246                            Register Rout_high, Register Rout_low,
2247                            Register Rtemp ) {
2248
2249  Register Ralt_count = Rtemp;
2250  Register Rxfer_bits = Rtemp;
2251
2252  assert( Ralt_count != Rin_high
2253      &&  Ralt_count != Rin_low
2254      &&  Ralt_count != Rcount
2255      &&  Rxfer_bits != Rin_low
2256      &&  Rxfer_bits != Rin_high
2257      &&  Rxfer_bits != Rcount
2258      &&  Rxfer_bits != Rout_high
2259      &&  Rout_high  != Rin_low,
2260        "register alias checks");
2261
2262  Label big_shift, done;
2263
2264  // This code can be optimized to use the 64 bit shifts in V9.
2265  // Here we use the 32 bit shifts.
2266
2267  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2268  subcc(Rcount,         31,             Ralt_count);
2269  br(greater, true, pn, big_shift);
2270  delayed()->dec(Ralt_count);
2271
2272  // shift < 32 bits, Ralt_count = Rcount-31
2273
2274  // We get the transfer bits by shifting left by 32-count the high
2275  // register. This is done by shifting left by 31-count and then by one
2276  // more to take care of the special (rare) case where count is zero
2277  // (shifting by 32 would not work).
2278
2279  neg(  Ralt_count                                  );
2280  if (Rcount != Rout_low) {
2281    srl(        Rin_low,        Rcount,         Rout_low    );
2282  }
2283
2284  // The order of the next two instructions is critical in the case where
2285  // Rin and Rout are the same and should not be reversed.
2286
2287  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2288  srl(  Rin_high,       Rcount,         Rout_high   ); // high half
2289  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2290  if (Rcount == Rout_low) {
2291    srl(        Rin_low,        Rcount,         Rout_low    );
2292  }
2293  ba (false, done);
2294  delayed()->
2295  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2296
2297  // shift >= 32 bits, Ralt_count = Rcount-32
2298  bind(big_shift);
2299
2300  srl(  Rin_high,       Ralt_count,     Rout_low    );
2301  clr(  Rout_high                                   );
2302
2303  bind( done );
2304}
2305
2306#ifdef _LP64
2307void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2308  cmp(Ra, Rb);
2309  mov(                       -1, Rresult);
2310  movcc(equal,   false, xcc,  0, Rresult);
2311  movcc(greater, false, xcc,  1, Rresult);
2312}
2313#endif
2314
2315
2316void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2317                                FloatRegister Fa, FloatRegister Fb,
2318                                Register Rresult) {
2319
2320  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2321
2322  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2323  Condition eq =                          f_equal;
2324  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2325
2326  if (VM_Version::v9_instructions_work()) {
2327
2328    mov(                   -1, Rresult );
2329    movcc( eq, true, fcc0,  0, Rresult );
2330    movcc( gt, true, fcc0,  1, Rresult );
2331
2332  } else {
2333    Label done;
2334
2335                                         set( -1, Rresult );
2336    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2337    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2338    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2339
2340    bind (done);
2341  }
2342}
2343
2344
2345void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2346{
2347  if (VM_Version::v9_instructions_work()) {
2348    Assembler::fneg(w, s, d);
2349  } else {
2350    if (w == FloatRegisterImpl::S) {
2351      Assembler::fneg(w, s, d);
2352    } else if (w == FloatRegisterImpl::D) {
2353      // number() does a sanity check on the alignment.
2354      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2355        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2356
2357      Assembler::fneg(FloatRegisterImpl::S, s, d);
2358      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2359    } else {
2360      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2361
2362      // number() does a sanity check on the alignment.
2363      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2364        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2365
2366      Assembler::fneg(FloatRegisterImpl::S, s, d);
2367      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2368      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2369      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2370    }
2371  }
2372}
2373
2374void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2375{
2376  if (VM_Version::v9_instructions_work()) {
2377    Assembler::fmov(w, s, d);
2378  } else {
2379    if (w == FloatRegisterImpl::S) {
2380      Assembler::fmov(w, s, d);
2381    } else if (w == FloatRegisterImpl::D) {
2382      // number() does a sanity check on the alignment.
2383      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2384        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2385
2386      Assembler::fmov(FloatRegisterImpl::S, s, d);
2387      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2388    } else {
2389      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2390
2391      // number() does a sanity check on the alignment.
2392      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2393        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2394
2395      Assembler::fmov(FloatRegisterImpl::S, s, d);
2396      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2397      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2398      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2399    }
2400  }
2401}
2402
2403void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2404{
2405  if (VM_Version::v9_instructions_work()) {
2406    Assembler::fabs(w, s, d);
2407  } else {
2408    if (w == FloatRegisterImpl::S) {
2409      Assembler::fabs(w, s, d);
2410    } else if (w == FloatRegisterImpl::D) {
2411      // number() does a sanity check on the alignment.
2412      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2413        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2414
2415      Assembler::fabs(FloatRegisterImpl::S, s, d);
2416      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2417    } else {
2418      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2419
2420      // number() does a sanity check on the alignment.
2421      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2422       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2423
2424      Assembler::fabs(FloatRegisterImpl::S, s, d);
2425      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2426      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2427      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2428    }
2429  }
2430}
2431
2432void MacroAssembler::save_all_globals_into_locals() {
2433  mov(G1,L1);
2434  mov(G2,L2);
2435  mov(G3,L3);
2436  mov(G4,L4);
2437  mov(G5,L5);
2438  mov(G6,L6);
2439  mov(G7,L7);
2440}
2441
2442void MacroAssembler::restore_globals_from_locals() {
2443  mov(L1,G1);
2444  mov(L2,G2);
2445  mov(L3,G3);
2446  mov(L4,G4);
2447  mov(L5,G5);
2448  mov(L6,G6);
2449  mov(L7,G7);
2450}
2451
2452// Use for 64 bit operation.
2453void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2454{
2455  // store ptr_reg as the new top value
2456#ifdef _LP64
2457  casx(top_ptr_reg, top_reg, ptr_reg);
2458#else
2459  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2460#endif // _LP64
2461}
2462
2463// [RGV] This routine does not handle 64 bit operations.
2464//       use casx_under_lock() or casx directly!!!
2465void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2466{
2467  // store ptr_reg as the new top value
2468  if (VM_Version::v9_instructions_work()) {
2469    cas(top_ptr_reg, top_reg, ptr_reg);
2470  } else {
2471
2472    // If the register is not an out nor global, it is not visible
2473    // after the save.  Allocate a register for it, save its
2474    // value in the register save area (the save may not flush
2475    // registers to the save area).
2476
2477    Register top_ptr_reg_after_save;
2478    Register top_reg_after_save;
2479    Register ptr_reg_after_save;
2480
2481    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2482      top_ptr_reg_after_save = top_ptr_reg->after_save();
2483    } else {
2484      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2485      top_ptr_reg_after_save = L0;
2486      st(top_ptr_reg, reg_save_addr);
2487    }
2488
2489    if (top_reg->is_out() || top_reg->is_global()) {
2490      top_reg_after_save = top_reg->after_save();
2491    } else {
2492      Address reg_save_addr = top_reg->address_in_saved_window();
2493      top_reg_after_save = L1;
2494      st(top_reg, reg_save_addr);
2495    }
2496
2497    if (ptr_reg->is_out() || ptr_reg->is_global()) {
2498      ptr_reg_after_save = ptr_reg->after_save();
2499    } else {
2500      Address reg_save_addr = ptr_reg->address_in_saved_window();
2501      ptr_reg_after_save = L2;
2502      st(ptr_reg, reg_save_addr);
2503    }
2504
2505    const Register& lock_reg = L3;
2506    const Register& lock_ptr_reg = L4;
2507    const Register& value_reg = L5;
2508    const Register& yield_reg = L6;
2509    const Register& yieldall_reg = L7;
2510
2511    save_frame();
2512
2513    if (top_ptr_reg_after_save == L0) {
2514      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2515    }
2516
2517    if (top_reg_after_save == L1) {
2518      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2519    }
2520
2521    if (ptr_reg_after_save == L2) {
2522      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2523    }
2524
2525    Label(retry_get_lock);
2526    Label(not_same);
2527    Label(dont_yield);
2528
2529    assert(lock_addr, "lock_address should be non null for v8");
2530    set((intptr_t)lock_addr, lock_ptr_reg);
2531    // Initialize yield counter
2532    mov(G0,yield_reg);
2533    mov(G0, yieldall_reg);
2534    set(StubRoutines::Sparc::locked, lock_reg);
2535
2536    bind(retry_get_lock);
2537    cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
2538    br(Assembler::less, false, Assembler::pt, dont_yield);
2539    delayed()->nop();
2540
2541    if(use_call_vm) {
2542      Untested("Need to verify global reg consistancy");
2543      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2544    } else {
2545      // Save the regs and make space for a C call
2546      save(SP, -96, SP);
2547      save_all_globals_into_locals();
2548      call(CAST_FROM_FN_PTR(address,os::yield_all));
2549      delayed()->mov(yieldall_reg, O0);
2550      restore_globals_from_locals();
2551      restore();
2552    }
2553
2554    // reset the counter
2555    mov(G0,yield_reg);
2556    add(yieldall_reg, 1, yieldall_reg);
2557
2558    bind(dont_yield);
2559    // try to get lock
2560    swap(lock_ptr_reg, 0, lock_reg);
2561
2562    // did we get the lock?
2563    cmp(lock_reg, StubRoutines::Sparc::unlocked);
2564    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2565    delayed()->add(yield_reg,1,yield_reg);
2566
2567    // yes, got lock.  do we have the same top?
2568    ld(top_ptr_reg_after_save, 0, value_reg);
2569    cmp(value_reg, top_reg_after_save);
2570    br(Assembler::notEqual, false, Assembler::pn, not_same);
2571    delayed()->nop();
2572
2573    // yes, same top.
2574    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2575    membar(Assembler::StoreStore);
2576
2577    bind(not_same);
2578    mov(value_reg, ptr_reg_after_save);
2579    st(lock_reg, lock_ptr_reg, 0); // unlock
2580
2581    restore();
2582  }
2583}
2584
2585void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2586                                          Label& done, Label* slow_case,
2587                                          BiasedLockingCounters* counters) {
2588  assert(UseBiasedLocking, "why call this otherwise?");
2589
2590  if (PrintBiasedLockingStatistics) {
2591    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2592    if (counters == NULL)
2593      counters = BiasedLocking::counters();
2594  }
2595
2596  Label cas_label;
2597
2598  // Biased locking
2599  // See whether the lock is currently biased toward our thread and
2600  // whether the epoch is still valid
2601  // Note that the runtime guarantees sufficient alignment of JavaThread
2602  // pointers to allow age to be placed into low bits
2603  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2604  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2605  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2606  brx(Assembler::notEqual, false, Assembler::pn, cas_label);
2607  delayed()->nop();
2608
2609  load_klass(obj_reg, temp_reg);
2610  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2611  or3(G2_thread, temp_reg, temp_reg);
2612  xor3(mark_reg, temp_reg, temp_reg);
2613  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2614  if (counters != NULL) {
2615    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2616    // Reload mark_reg as we may need it later
2617    ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
2618  }
2619  brx(Assembler::equal, true, Assembler::pt, done);
2620  delayed()->nop();
2621
2622  Label try_revoke_bias;
2623  Label try_rebias;
2624  Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
2625  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2626
2627  // At this point we know that the header has the bias pattern and
2628  // that we are not the bias owner in the current epoch. We need to
2629  // figure out more details about the state of the header in order to
2630  // know what operations can be legally performed on the object's
2631  // header.
2632
2633  // If the low three bits in the xor result aren't clear, that means
2634  // the prototype header is no longer biased and we have to revoke
2635  // the bias on this object.
2636  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2637  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2638
2639  // Biasing is still enabled for this data type. See whether the
2640  // epoch of the current bias is still valid, meaning that the epoch
2641  // bits of the mark word are equal to the epoch bits of the
2642  // prototype header. (Note that the prototype header's epoch bits
2643  // only change at a safepoint.) If not, attempt to rebias the object
2644  // toward the current thread. Note that we must be absolutely sure
2645  // that the current epoch is invalid in order to do this because
2646  // otherwise the manipulations it performs on the mark word are
2647  // illegal.
2648  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2649  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2650
2651  // The epoch of the current bias is still valid but we know nothing
2652  // about the owner; it might be set or it might be clear. Try to
2653  // acquire the bias of the object using an atomic operation. If this
2654  // fails we will go in to the runtime to revoke the object's bias.
2655  // Note that we first construct the presumed unbiased header so we
2656  // don't accidentally blow away another thread's valid bias.
2657  delayed()->and3(mark_reg,
2658                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2659                  mark_reg);
2660  or3(G2_thread, mark_reg, temp_reg);
2661  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2662                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2663  // If the biasing toward our thread failed, this means that
2664  // another thread succeeded in biasing it toward itself and we
2665  // need to revoke that bias. The revocation will occur in the
2666  // interpreter runtime in the slow case.
2667  cmp(mark_reg, temp_reg);
2668  if (counters != NULL) {
2669    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2670  }
2671  if (slow_case != NULL) {
2672    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2673    delayed()->nop();
2674  }
2675  br(Assembler::always, false, Assembler::pt, done);
2676  delayed()->nop();
2677
2678  bind(try_rebias);
2679  // At this point we know the epoch has expired, meaning that the
2680  // current "bias owner", if any, is actually invalid. Under these
2681  // circumstances _only_, we are allowed to use the current header's
2682  // value as the comparison value when doing the cas to acquire the
2683  // bias in the current epoch. In other words, we allow transfer of
2684  // the bias from one thread to another directly in this situation.
2685  //
2686  // FIXME: due to a lack of registers we currently blow away the age
2687  // bits in this situation. Should attempt to preserve them.
2688  load_klass(obj_reg, temp_reg);
2689  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2690  or3(G2_thread, temp_reg, temp_reg);
2691  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2692                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2693  // If the biasing toward our thread failed, this means that
2694  // another thread succeeded in biasing it toward itself and we
2695  // need to revoke that bias. The revocation will occur in the
2696  // interpreter runtime in the slow case.
2697  cmp(mark_reg, temp_reg);
2698  if (counters != NULL) {
2699    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2700  }
2701  if (slow_case != NULL) {
2702    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2703    delayed()->nop();
2704  }
2705  br(Assembler::always, false, Assembler::pt, done);
2706  delayed()->nop();
2707
2708  bind(try_revoke_bias);
2709  // The prototype mark in the klass doesn't have the bias bit set any
2710  // more, indicating that objects of this data type are not supposed
2711  // to be biased any more. We are going to try to reset the mark of
2712  // this object to the prototype value and fall through to the
2713  // CAS-based locking scheme. Note that if our CAS fails, it means
2714  // that another thread raced us for the privilege of revoking the
2715  // bias of this particular object, so it's okay to continue in the
2716  // normal locking code.
2717  //
2718  // FIXME: due to a lack of registers we currently blow away the age
2719  // bits in this situation. Should attempt to preserve them.
2720  load_klass(obj_reg, temp_reg);
2721  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2722  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2723                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2724  // Fall through to the normal CAS-based lock, because no matter what
2725  // the result of the above CAS, some thread must have succeeded in
2726  // removing the bias bit from the object's header.
2727  if (counters != NULL) {
2728    cmp(mark_reg, temp_reg);
2729    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2730  }
2731
2732  bind(cas_label);
2733}
2734
2735void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2736                                          bool allow_delay_slot_filling) {
2737  // Check for biased locking unlock case, which is a no-op
2738  // Note: we do not have to check the thread ID for two reasons.
2739  // First, the interpreter checks for IllegalMonitorStateException at
2740  // a higher level. Second, if the bias was revoked while we held the
2741  // lock, the object could not be rebiased toward another thread, so
2742  // the bias bit would be clear.
2743  ld_ptr(mark_addr, temp_reg);
2744  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2745  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2746  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2747  delayed();
2748  if (!allow_delay_slot_filling) {
2749    nop();
2750  }
2751}
2752
2753
2754// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
2755// Solaris/SPARC's "as".  Another apt name would be cas_ptr()
2756
2757void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
2758  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
2759}
2760
2761
2762
2763// compiler_lock_object() and compiler_unlock_object() are direct transliterations
2764// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2765// The code could be tightened up considerably.
2766//
2767// box->dhw disposition - post-conditions at DONE_LABEL.
2768// -   Successful inflated lock:  box->dhw != 0.
2769//     Any non-zero value suffices.
2770//     Consider G2_thread, rsp, boxReg, or unused_mark()
2771// -   Successful Stack-lock: box->dhw == mark.
2772//     box->dhw must contain the displaced mark word value
2773// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2774//     The slow-path fast_enter() and slow_enter() operators
2775//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
2776// -   Biased: box->dhw is undefined
2777//
2778// SPARC refworkload performance - specifically jetstream and scimark - are
2779// extremely sensitive to the size of the code emitted by compiler_lock_object
2780// and compiler_unlock_object.  Critically, the key factor is code size, not path
2781// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2782// effect).
2783
2784
2785void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
2786                                          BiasedLockingCounters* counters) {
2787   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
2788
2789   verify_oop(Roop);
2790   Label done ;
2791
2792   if (counters != NULL) {
2793     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2794   }
2795
2796   if (EmitSync & 1) {
2797     mov    (3, Rscratch) ;
2798     st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2799     cmp    (SP, G0) ;
2800     return ;
2801   }
2802
2803   if (EmitSync & 2) {
2804
2805     // Fetch object's markword
2806     ld_ptr(mark_addr, Rmark);
2807
2808     if (UseBiasedLocking) {
2809        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2810     }
2811
2812     // Save Rbox in Rscratch to be used for the cas operation
2813     mov(Rbox, Rscratch);
2814
2815     // set Rmark to markOop | markOopDesc::unlocked_value
2816     or3(Rmark, markOopDesc::unlocked_value, Rmark);
2817
2818     // Initialize the box.  (Must happen before we update the object mark!)
2819     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2820
2821     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2822     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2823     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
2824        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2825
2826     // if compare/exchange succeeded we found an unlocked object and we now have locked it
2827     // hence we are done
2828     cmp(Rmark, Rscratch);
2829#ifdef _LP64
2830     sub(Rscratch, STACK_BIAS, Rscratch);
2831#endif
2832     brx(Assembler::equal, false, Assembler::pt, done);
2833     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
2834
2835     // we did not find an unlocked object so see if this is a recursive case
2836     // sub(Rscratch, SP, Rscratch);
2837     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2838     andcc(Rscratch, 0xfffff003, Rscratch);
2839     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2840     bind (done) ;
2841     return ;
2842   }
2843
2844   Label Egress ;
2845
2846   if (EmitSync & 256) {
2847      Label IsInflated ;
2848
2849      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
2850      // Triage: biased, stack-locked, neutral, inflated
2851      if (UseBiasedLocking) {
2852        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2853        // Invariant: if control reaches this point in the emitted stream
2854        // then Rmark has not been modified.
2855      }
2856
2857      // Store mark into displaced mark field in the on-stack basic-lock "box"
2858      // Critically, this must happen before the CAS
2859      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2860      st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2861      andcc  (Rmark, 2, G0) ;
2862      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
2863      delayed() ->
2864
2865      // Try stack-lock acquisition.
2866      // Beware: the 1st instruction is in a delay slot
2867      mov    (Rbox,  Rscratch);
2868      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
2869      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
2870      casn   (mark_addr.base(), Rmark, Rscratch) ;
2871      cmp    (Rmark, Rscratch);
2872      brx    (Assembler::equal, false, Assembler::pt, done);
2873      delayed()->sub(Rscratch, SP, Rscratch);
2874
2875      // Stack-lock attempt failed - check for recursive stack-lock.
2876      // See the comments below about how we might remove this case.
2877#ifdef _LP64
2878      sub    (Rscratch, STACK_BIAS, Rscratch);
2879#endif
2880      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2881      andcc  (Rscratch, 0xfffff003, Rscratch);
2882      br     (Assembler::always, false, Assembler::pt, done) ;
2883      delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2884
2885      bind   (IsInflated) ;
2886      if (EmitSync & 64) {
2887         // If m->owner != null goto IsLocked
2888         // Pessimistic form: Test-and-CAS vs CAS
2889         // The optimistic form avoids RTS->RTO cache line upgrades.
2890         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
2891         andcc  (Rscratch, Rscratch, G0) ;
2892         brx    (Assembler::notZero, false, Assembler::pn, done) ;
2893         delayed()->nop() ;
2894         // m->owner == null : it's unlocked.
2895      }
2896
2897      // Try to CAS m->owner from null to Self
2898      // Invariant: if we acquire the lock then _recursions should be 0.
2899      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
2900      mov    (G2_thread, Rscratch) ;
2901      casn   (Rmark, G0, Rscratch) ;
2902      cmp    (Rscratch, G0) ;
2903      // Intentional fall-through into done
2904   } else {
2905      // Aggressively avoid the Store-before-CAS penalty
2906      // Defer the store into box->dhw until after the CAS
2907      Label IsInflated, Recursive ;
2908
2909// Anticipate CAS -- Avoid RTS->RTO upgrade
2910// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
2911
2912      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
2913      // Triage: biased, stack-locked, neutral, inflated
2914
2915      if (UseBiasedLocking) {
2916        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2917        // Invariant: if control reaches this point in the emitted stream
2918        // then Rmark has not been modified.
2919      }
2920      andcc  (Rmark, 2, G0) ;
2921      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
2922      delayed()->                         // Beware - dangling delay-slot
2923
2924      // Try stack-lock acquisition.
2925      // Transiently install BUSY (0) encoding in the mark word.
2926      // if the CAS of 0 into the mark was successful then we execute:
2927      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
2928      //   ST obj->mark = box    -- overwrite transient 0 value
2929      // This presumes TSO, of course.
2930
2931      mov    (0, Rscratch) ;
2932      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
2933      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
2934      casn   (mark_addr.base(), Rmark, Rscratch) ;
2935// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
2936      cmp    (Rscratch, Rmark) ;
2937      brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
2938      delayed() ->
2939        st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2940      if (counters != NULL) {
2941        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2942      }
2943      br     (Assembler::always, false, Assembler::pt, done);
2944      delayed() ->
2945        st_ptr (Rbox, mark_addr) ;
2946
2947      bind   (Recursive) ;
2948      // Stack-lock attempt failed - check for recursive stack-lock.
2949      // Tests show that we can remove the recursive case with no impact
2950      // on refworkload 0.83.  If we need to reduce the size of the code
2951      // emitted by compiler_lock_object() the recursive case is perfect
2952      // candidate.
2953      //
2954      // A more extreme idea is to always inflate on stack-lock recursion.
2955      // This lets us eliminate the recursive checks in compiler_lock_object
2956      // and compiler_unlock_object and the (box->dhw == 0) encoding.
2957      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2958      // and showed a performance *increase*.  In the same experiment I eliminated
2959      // the fast-path stack-lock code from the interpreter and always passed
2960      // control to the "slow" operators in synchronizer.cpp.
2961
2962      // RScratch contains the fetched obj->mark value from the failed CASN.
2963#ifdef _LP64
2964      sub    (Rscratch, STACK_BIAS, Rscratch);
2965#endif
2966      sub(Rscratch, SP, Rscratch);
2967      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2968      andcc  (Rscratch, 0xfffff003, Rscratch);
2969      if (counters != NULL) {
2970        // Accounting needs the Rscratch register
2971        st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2972        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2973        br     (Assembler::always, false, Assembler::pt, done) ;
2974        delayed()->nop() ;
2975      } else {
2976        br     (Assembler::always, false, Assembler::pt, done) ;
2977        delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2978      }
2979
2980      bind   (IsInflated) ;
2981      if (EmitSync & 64) {
2982         // If m->owner != null goto IsLocked
2983         // Test-and-CAS vs CAS
2984         // Pessimistic form avoids futile (doomed) CAS attempts
2985         // The optimistic form avoids RTS->RTO cache line upgrades.
2986         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
2987         andcc  (Rscratch, Rscratch, G0) ;
2988         brx    (Assembler::notZero, false, Assembler::pn, done) ;
2989         delayed()->nop() ;
2990         // m->owner == null : it's unlocked.
2991      }
2992
2993      // Try to CAS m->owner from null to Self
2994      // Invariant: if we acquire the lock then _recursions should be 0.
2995      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
2996      mov    (G2_thread, Rscratch) ;
2997      casn   (Rmark, G0, Rscratch) ;
2998      cmp    (Rscratch, G0) ;
2999      // ST box->displaced_header = NonZero.
3000      // Any non-zero value suffices:
3001      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3002      st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3003      // Intentional fall-through into done
3004   }
3005
3006   bind   (done) ;
3007}
3008
3009void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
3010   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
3011
3012   Label done ;
3013
3014   if (EmitSync & 4) {
3015     cmp  (SP, G0) ;
3016     return ;
3017   }
3018
3019   if (EmitSync & 8) {
3020     if (UseBiasedLocking) {
3021        biased_locking_exit(mark_addr, Rscratch, done);
3022     }
3023
3024     // Test first if it is a fast recursive unlock
3025     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3026     cmp(Rmark, G0);
3027     brx(Assembler::equal, false, Assembler::pt, done);
3028     delayed()->nop();
3029
3030     // Check if it is still a light weight lock, this is is true if we see
3031     // the stack address of the basicLock in the markOop of the object
3032     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3033     casx_under_lock(mark_addr.base(), Rbox, Rmark,
3034       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3035     br (Assembler::always, false, Assembler::pt, done);
3036     delayed()->cmp(Rbox, Rmark);
3037     bind (done) ;
3038     return ;
3039   }
3040
3041   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3042   // is too large performance rolls abruptly off a cliff.
3043   // This could be related to inlining policies, code cache management, or
3044   // I$ effects.
3045   Label LStacked ;
3046
3047   if (UseBiasedLocking) {
3048      // TODO: eliminate redundant LDs of obj->mark
3049      biased_locking_exit(mark_addr, Rscratch, done);
3050   }
3051
3052   ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
3053   ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3054   andcc  (Rscratch, Rscratch, G0);
3055   brx    (Assembler::zero, false, Assembler::pn, done);
3056   delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
3057   andcc  (Rmark, 2, G0) ;
3058   brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
3059   delayed()-> nop() ;
3060
3061   // It's inflated
3062   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3063   // the ST of 0 into _owner which releases the lock.  This prevents loads
3064   // and stores within the critical section from reordering (floating)
3065   // past the store that releases the lock.  But TSO is a strong memory model
3066   // and that particular flavor of barrier is a noop, so we can safely elide it.
3067   // Note that we use 1-0 locking by default for the inflated case.  We
3068   // close the resultant (and rare) race by having contented threads in
3069   // monitorenter periodically poll _owner.
3070   ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
3071   ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
3072   xor3   (Rscratch, G2_thread, Rscratch) ;
3073   orcc   (Rbox, Rscratch, Rbox) ;
3074   brx    (Assembler::notZero, false, Assembler::pn, done) ;
3075   delayed()->
3076   ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
3077   ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
3078   orcc   (Rbox, Rscratch, G0) ;
3079   if (EmitSync & 65536) {
3080      Label LSucc ;
3081      brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
3082      delayed()->nop() ;
3083      br     (Assembler::always, false, Assembler::pt, done) ;
3084      delayed()->
3085      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3086
3087      bind   (LSucc) ;
3088      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3089      if (os::is_MP()) { membar (StoreLoad) ; }
3090      ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
3091      andcc  (Rscratch, Rscratch, G0) ;
3092      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3093      delayed()-> andcc (G0, G0, G0) ;
3094      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3095      mov    (G2_thread, Rscratch) ;
3096      casn   (Rmark, G0, Rscratch) ;
3097      cmp    (Rscratch, G0) ;
3098      // invert icc.zf and goto done
3099      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3100      delayed() -> cmp (G0, G0) ;
3101      br     (Assembler::always, false, Assembler::pt, done);
3102      delayed() -> cmp (G0, 1) ;
3103   } else {
3104      brx    (Assembler::notZero, false, Assembler::pn, done) ;
3105      delayed()->nop() ;
3106      br     (Assembler::always, false, Assembler::pt, done) ;
3107      delayed()->
3108      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3109   }
3110
3111   bind   (LStacked) ;
3112   // Consider: we could replace the expensive CAS in the exit
3113   // path with a simple ST of the displaced mark value fetched from
3114   // the on-stack basiclock box.  That admits a race where a thread T2
3115   // in the slow lock path -- inflating with monitor M -- could race a
3116   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3117   // More precisely T1 in the stack-lock unlock path could "stomp" the
3118   // inflated mark value M installed by T2, resulting in an orphan
3119   // object monitor M and T2 becoming stranded.  We can remedy that situation
3120   // by having T2 periodically poll the object's mark word using timed wait
3121   // operations.  If T2 discovers that a stomp has occurred it vacates
3122   // the monitor M and wakes any other threads stranded on the now-orphan M.
3123   // In addition the monitor scavenger, which performs deflation,
3124   // would also need to check for orpan monitors and stranded threads.
3125   //
3126   // Finally, inflation is also used when T2 needs to assign a hashCode
3127   // to O and O is stack-locked by T1.  The "stomp" race could cause
3128   // an assigned hashCode value to be lost.  We can avoid that condition
3129   // and provide the necessary hashCode stability invariants by ensuring
3130   // that hashCode generation is idempotent between copying GCs.
3131   // For example we could compute the hashCode of an object O as
3132   // O's heap address XOR some high quality RNG value that is refreshed
3133   // at GC-time.  The monitor scavenger would install the hashCode
3134   // found in any orphan monitors.  Again, the mechanism admits a
3135   // lost-update "stomp" WAW race but detects and recovers as needed.
3136   //
3137   // A prototype implementation showed excellent results, although
3138   // the scavenger and timeout code was rather involved.
3139
3140   casn   (mark_addr.base(), Rbox, Rscratch) ;
3141   cmp    (Rbox, Rscratch);
3142   // Intentional fall through into done ...
3143
3144   bind   (done) ;
3145}
3146
3147
3148
3149void MacroAssembler::print_CPU_state() {
3150  // %%%%% need to implement this
3151}
3152
3153void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3154  // %%%%% need to implement this
3155}
3156
3157void MacroAssembler::push_IU_state() {
3158  // %%%%% need to implement this
3159}
3160
3161
3162void MacroAssembler::pop_IU_state() {
3163  // %%%%% need to implement this
3164}
3165
3166
3167void MacroAssembler::push_FPU_state() {
3168  // %%%%% need to implement this
3169}
3170
3171
3172void MacroAssembler::pop_FPU_state() {
3173  // %%%%% need to implement this
3174}
3175
3176
3177void MacroAssembler::push_CPU_state() {
3178  // %%%%% need to implement this
3179}
3180
3181
3182void MacroAssembler::pop_CPU_state() {
3183  // %%%%% need to implement this
3184}
3185
3186
3187
3188void MacroAssembler::verify_tlab() {
3189#ifdef ASSERT
3190  if (UseTLAB && VerifyOops) {
3191    Label next, next2, ok;
3192    Register t1 = L0;
3193    Register t2 = L1;
3194    Register t3 = L2;
3195
3196    save_frame(0);
3197    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3198    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3199    or3(t1, t2, t3);
3200    cmp(t1, t2);
3201    br(Assembler::greaterEqual, false, Assembler::pn, next);
3202    delayed()->nop();
3203    stop("assert(top >= start)");
3204    should_not_reach_here();
3205
3206    bind(next);
3207    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3208    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3209    or3(t3, t2, t3);
3210    cmp(t1, t2);
3211    br(Assembler::lessEqual, false, Assembler::pn, next2);
3212    delayed()->nop();
3213    stop("assert(top <= end)");
3214    should_not_reach_here();
3215
3216    bind(next2);
3217    and3(t3, MinObjAlignmentInBytesMask, t3);
3218    cmp(t3, 0);
3219    br(Assembler::lessEqual, false, Assembler::pn, ok);
3220    delayed()->nop();
3221    stop("assert(aligned)");
3222    should_not_reach_here();
3223
3224    bind(ok);
3225    restore();
3226  }
3227#endif
3228}
3229
3230
3231void MacroAssembler::eden_allocate(
3232  Register obj,                        // result: pointer to object after successful allocation
3233  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3234  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3235  Register t1,                         // temp register
3236  Register t2,                         // temp register
3237  Label&   slow_case                   // continuation point if fast allocation fails
3238){
3239  // make sure arguments make sense
3240  assert_different_registers(obj, var_size_in_bytes, t1, t2);
3241  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3242  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3243
3244  // get eden boundaries
3245  // note: we need both top & top_addr!
3246  const Register top_addr = t1;
3247  const Register end      = t2;
3248
3249  CollectedHeap* ch = Universe::heap();
3250  set((intx)ch->top_addr(), top_addr);
3251  intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3252  ld_ptr(top_addr, delta, end);
3253  ld_ptr(top_addr, 0, obj);
3254
3255  // try to allocate
3256  Label retry;
3257  bind(retry);
3258#ifdef ASSERT
3259  // make sure eden top is properly aligned
3260  {
3261    Label L;
3262    btst(MinObjAlignmentInBytesMask, obj);
3263    br(Assembler::zero, false, Assembler::pt, L);
3264    delayed()->nop();
3265    stop("eden top is not properly aligned");
3266    bind(L);
3267  }
3268#endif // ASSERT
3269  const Register free = end;
3270  sub(end, obj, free);                                   // compute amount of free space
3271  if (var_size_in_bytes->is_valid()) {
3272    // size is unknown at compile time
3273    cmp(free, var_size_in_bytes);
3274    br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3275    delayed()->add(obj, var_size_in_bytes, end);
3276  } else {
3277    // size is known at compile time
3278    cmp(free, con_size_in_bytes);
3279    br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3280    delayed()->add(obj, con_size_in_bytes, end);
3281  }
3282  // Compare obj with the value at top_addr; if still equal, swap the value of
3283  // end with the value at top_addr. If not equal, read the value at top_addr
3284  // into end.
3285  casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3286  // if someone beat us on the allocation, try again, otherwise continue
3287  cmp(obj, end);
3288  brx(Assembler::notEqual, false, Assembler::pn, retry);
3289  delayed()->mov(end, obj);                              // nop if successfull since obj == end
3290
3291#ifdef ASSERT
3292  // make sure eden top is properly aligned
3293  {
3294    Label L;
3295    const Register top_addr = t1;
3296
3297    set((intx)ch->top_addr(), top_addr);
3298    ld_ptr(top_addr, 0, top_addr);
3299    btst(MinObjAlignmentInBytesMask, top_addr);
3300    br(Assembler::zero, false, Assembler::pt, L);
3301    delayed()->nop();
3302    stop("eden top is not properly aligned");
3303    bind(L);
3304  }
3305#endif // ASSERT
3306}
3307
3308
3309void MacroAssembler::tlab_allocate(
3310  Register obj,                        // result: pointer to object after successful allocation
3311  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3312  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3313  Register t1,                         // temp register
3314  Label&   slow_case                   // continuation point if fast allocation fails
3315){
3316  // make sure arguments make sense
3317  assert_different_registers(obj, var_size_in_bytes, t1);
3318  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3319  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3320
3321  const Register free  = t1;
3322
3323  verify_tlab();
3324
3325  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3326
3327  // calculate amount of free space
3328  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3329  sub(free, obj, free);
3330
3331  Label done;
3332  if (var_size_in_bytes == noreg) {
3333    cmp(free, con_size_in_bytes);
3334  } else {
3335    cmp(free, var_size_in_bytes);
3336  }
3337  br(Assembler::less, false, Assembler::pn, slow_case);
3338  // calculate the new top pointer
3339  if (var_size_in_bytes == noreg) {
3340    delayed()->add(obj, con_size_in_bytes, free);
3341  } else {
3342    delayed()->add(obj, var_size_in_bytes, free);
3343  }
3344
3345  bind(done);
3346
3347#ifdef ASSERT
3348  // make sure new free pointer is properly aligned
3349  {
3350    Label L;
3351    btst(MinObjAlignmentInBytesMask, free);
3352    br(Assembler::zero, false, Assembler::pt, L);
3353    delayed()->nop();
3354    stop("updated TLAB free is not properly aligned");
3355    bind(L);
3356  }
3357#endif // ASSERT
3358
3359  // update the tlab top pointer
3360  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3361  verify_tlab();
3362}
3363
3364
3365void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3366  Register top = O0;
3367  Register t1 = G1;
3368  Register t2 = G3;
3369  Register t3 = O1;
3370  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3371  Label do_refill, discard_tlab;
3372
3373  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3374    // No allocation in the shared eden.
3375    br(Assembler::always, false, Assembler::pt, slow_case);
3376    delayed()->nop();
3377  }
3378
3379  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3380  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3381  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3382
3383  // calculate amount of free space
3384  sub(t1, top, t1);
3385  srl_ptr(t1, LogHeapWordSize, t1);
3386
3387  // Retain tlab and allocate object in shared space if
3388  // the amount free in the tlab is too large to discard.
3389  cmp(t1, t2);
3390  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3391
3392  // increment waste limit to prevent getting stuck on this slow path
3393  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3394  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3395  if (TLABStats) {
3396    // increment number of slow_allocations
3397    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3398    add(t2, 1, t2);
3399    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3400  }
3401  br(Assembler::always, false, Assembler::pt, try_eden);
3402  delayed()->nop();
3403
3404  bind(discard_tlab);
3405  if (TLABStats) {
3406    // increment number of refills
3407    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3408    add(t2, 1, t2);
3409    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3410    // accumulate wastage
3411    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3412    add(t2, t1, t2);
3413    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3414  }
3415
3416  // if tlab is currently allocated (top or end != null) then
3417  // fill [top, end + alignment_reserve) with array object
3418  br_null(top, false, Assembler::pn, do_refill);
3419  delayed()->nop();
3420
3421  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3422  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3423  // set klass to intArrayKlass
3424  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3425  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3426  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3427  st(t1, top, arrayOopDesc::length_offset_in_bytes());
3428  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3429  ld_ptr(t2, 0, t2);
3430  // store klass last.  concurrent gcs assumes klass length is valid if
3431  // klass field is not null.
3432  store_klass(t2, top);
3433  verify_oop(top);
3434
3435  // refill the tlab with an eden allocation
3436  bind(do_refill);
3437  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3438  sll_ptr(t1, LogHeapWordSize, t1);
3439  // add object_size ??
3440  eden_allocate(top, t1, 0, t2, t3, slow_case);
3441
3442  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3443  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3444#ifdef ASSERT
3445  // check that tlab_size (t1) is still valid
3446  {
3447    Label ok;
3448    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3449    sll_ptr(t2, LogHeapWordSize, t2);
3450    cmp(t1, t2);
3451    br(Assembler::equal, false, Assembler::pt, ok);
3452    delayed()->nop();
3453    stop("assert(t1 == tlab_size)");
3454    should_not_reach_here();
3455
3456    bind(ok);
3457  }
3458#endif // ASSERT
3459  add(top, t1, top); // t1 is tlab_size
3460  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3461  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3462  verify_tlab();
3463  br(Assembler::always, false, Assembler::pt, retry);
3464  delayed()->nop();
3465}
3466
3467Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3468  switch (cond) {
3469    // Note some conditions are synonyms for others
3470    case Assembler::never:                return Assembler::always;
3471    case Assembler::zero:                 return Assembler::notZero;
3472    case Assembler::lessEqual:            return Assembler::greater;
3473    case Assembler::less:                 return Assembler::greaterEqual;
3474    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3475    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3476    case Assembler::negative:             return Assembler::positive;
3477    case Assembler::overflowSet:          return Assembler::overflowClear;
3478    case Assembler::always:               return Assembler::never;
3479    case Assembler::notZero:              return Assembler::zero;
3480    case Assembler::greater:              return Assembler::lessEqual;
3481    case Assembler::greaterEqual:         return Assembler::less;
3482    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3483    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3484    case Assembler::positive:             return Assembler::negative;
3485    case Assembler::overflowClear:        return Assembler::overflowSet;
3486  }
3487
3488  ShouldNotReachHere(); return Assembler::overflowClear;
3489}
3490
3491void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3492                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3493  Condition negated_cond = negate_condition(cond);
3494  Label L;
3495  brx(negated_cond, false, Assembler::pt, L);
3496  delayed()->nop();
3497  inc_counter(counter_ptr, Rtmp1, Rtmp2);
3498  bind(L);
3499}
3500
3501void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
3502  Address counter_addr(Rtmp1, counter_ptr);
3503  load_contents(counter_addr, Rtmp2);
3504  inc(Rtmp2);
3505  store_contents(Rtmp2, counter_addr);
3506}
3507
3508SkipIfEqual::SkipIfEqual(
3509    MacroAssembler* masm, Register temp, const bool* flag_addr,
3510    Assembler::Condition condition) {
3511  _masm = masm;
3512  Address flag(temp, (address)flag_addr, relocInfo::none);
3513  _masm->sethi(flag);
3514  _masm->ldub(flag, temp);
3515  _masm->tst(temp);
3516  _masm->br(condition, false, Assembler::pt, _label);
3517  _masm->delayed()->nop();
3518}
3519
3520SkipIfEqual::~SkipIfEqual() {
3521  _masm->bind(_label);
3522}
3523
3524
3525// Writes to stack successive pages until offset reached to check for
3526// stack overflow + shadow pages.  This clobbers tsp and scratch.
3527void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3528                                     Register Rscratch) {
3529  // Use stack pointer in temp stack pointer
3530  mov(SP, Rtsp);
3531
3532  // Bang stack for total size given plus stack shadow page size.
3533  // Bang one page at a time because a large size can overflow yellow and
3534  // red zones (the bang will fail but stack overflow handling can't tell that
3535  // it was a stack overflow bang vs a regular segv).
3536  int offset = os::vm_page_size();
3537  Register Roffset = Rscratch;
3538
3539  Label loop;
3540  bind(loop);
3541  set((-offset)+STACK_BIAS, Rscratch);
3542  st(G0, Rtsp, Rscratch);
3543  set(offset, Roffset);
3544  sub(Rsize, Roffset, Rsize);
3545  cmp(Rsize, G0);
3546  br(Assembler::greater, false, Assembler::pn, loop);
3547  delayed()->sub(Rtsp, Roffset, Rtsp);
3548
3549  // Bang down shadow pages too.
3550  // The -1 because we already subtracted 1 page.
3551  for (int i = 0; i< StackShadowPages-1; i++) {
3552    set((-i*offset)+STACK_BIAS, Rscratch);
3553    st(G0, Rtsp, Rscratch);
3554  }
3555}
3556
3557void MacroAssembler::load_klass(Register src_oop, Register klass) {
3558  // The number of bytes in this code is used by
3559  // MachCallDynamicJavaNode::ret_addr_offset()
3560  // if this changes, change that.
3561  if (UseCompressedOops) {
3562    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3563    decode_heap_oop_not_null(klass);
3564  } else {
3565    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3566  }
3567}
3568
3569void MacroAssembler::store_klass(Register klass, Register dst_oop) {
3570  if (UseCompressedOops) {
3571    assert(dst_oop != klass, "not enough registers");
3572    encode_heap_oop_not_null(klass);
3573    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3574  } else {
3575    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3576  }
3577}
3578
3579void MacroAssembler::store_klass_gap(Register s, Register d) {
3580  if (UseCompressedOops) {
3581    assert(s != d, "not enough registers");
3582    st(s, d, oopDesc::klass_gap_offset_in_bytes());
3583  }
3584}
3585
3586void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
3587  if (UseCompressedOops) {
3588    lduw(s, d, offset);
3589    decode_heap_oop(d);
3590  } else {
3591    ld_ptr(s, d, offset);
3592  }
3593}
3594
3595void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
3596   if (UseCompressedOops) {
3597    lduw(s1, s2, d);
3598    decode_heap_oop(d, d);
3599  } else {
3600    ld_ptr(s1, s2, d);
3601  }
3602}
3603
3604void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
3605   if (UseCompressedOops) {
3606    lduw(s1, simm13a, d);
3607    decode_heap_oop(d, d);
3608  } else {
3609    ld_ptr(s1, simm13a, d);
3610  }
3611}
3612
3613void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
3614  if (UseCompressedOops) {
3615    assert(s1 != d && s2 != d, "not enough registers");
3616    encode_heap_oop(d);
3617    st(d, s1, s2);
3618  } else {
3619    st_ptr(d, s1, s2);
3620  }
3621}
3622
3623void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
3624  if (UseCompressedOops) {
3625    assert(s1 != d, "not enough registers");
3626    encode_heap_oop(d);
3627    st(d, s1, simm13a);
3628  } else {
3629    st_ptr(d, s1, simm13a);
3630  }
3631}
3632
3633void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
3634  if (UseCompressedOops) {
3635    assert(a.base() != d, "not enough registers");
3636    encode_heap_oop(d);
3637    st(d, a, offset);
3638  } else {
3639    st_ptr(d, a, offset);
3640  }
3641}
3642
3643
3644void MacroAssembler::encode_heap_oop(Register src, Register dst) {
3645  assert (UseCompressedOops, "must be compressed");
3646  verify_oop(src);
3647  Label done;
3648  if (src == dst) {
3649    // optimize for frequent case src == dst
3650    bpr(rc_nz, true, Assembler::pt, src, done);
3651    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
3652    bind(done);
3653    srlx(src, LogMinObjAlignmentInBytes, dst);
3654  } else {
3655    bpr(rc_z, false, Assembler::pn, src, done);
3656    delayed() -> mov(G0, dst);
3657    // could be moved before branch, and annulate delay,
3658    // but may add some unneeded work decoding null
3659    sub(src, G6_heapbase, dst);
3660    srlx(dst, LogMinObjAlignmentInBytes, dst);
3661    bind(done);
3662  }
3663}
3664
3665
3666void MacroAssembler::encode_heap_oop_not_null(Register r) {
3667  assert (UseCompressedOops, "must be compressed");
3668  verify_oop(r);
3669  sub(r, G6_heapbase, r);
3670  srlx(r, LogMinObjAlignmentInBytes, r);
3671}
3672
3673void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
3674  assert (UseCompressedOops, "must be compressed");
3675  verify_oop(src);
3676  sub(src, G6_heapbase, dst);
3677  srlx(dst, LogMinObjAlignmentInBytes, dst);
3678}
3679
3680// Same algorithm as oops.inline.hpp decode_heap_oop.
3681void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
3682  assert (UseCompressedOops, "must be compressed");
3683  Label done;
3684  sllx(src, LogMinObjAlignmentInBytes, dst);
3685  bpr(rc_nz, true, Assembler::pt, dst, done);
3686  delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
3687  bind(done);
3688  verify_oop(dst);
3689}
3690
3691void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3692  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
3693  // pd_code_size_limit.
3694  // Also do not verify_oop as this is called by verify_oop.
3695  assert (UseCompressedOops, "must be compressed");
3696  sllx(r, LogMinObjAlignmentInBytes, r);
3697  add(r, G6_heapbase, r);
3698}
3699
3700void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
3701  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
3702  // pd_code_size_limit.
3703  // Also do not verify_oop as this is called by verify_oop.
3704  assert (UseCompressedOops, "must be compressed");
3705  sllx(src, LogMinObjAlignmentInBytes, dst);
3706  add(dst, G6_heapbase, dst);
3707}
3708
3709void MacroAssembler::reinit_heapbase() {
3710  if (UseCompressedOops) {
3711    // call indirectly to solve generation ordering problem
3712    Address base(G6_heapbase, (address)Universe::heap_base_addr());
3713    load_ptr_contents(base, G6_heapbase);
3714  }
3715}
3716