assembler_sparc.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_assembler_sparc.cpp.incl"
27
28// Implementation of Address
29
30Address::Address( addr_type t, int which ) {
31  switch (t) {
32   case extra_in_argument:
33   case extra_out_argument:
34     _base = t == extra_in_argument ? FP : SP;
35     _hi   = 0;
36// Warning:  In LP64 mode, _disp will occupy more than 10 bits.
37//           This is inconsistent with the other constructors but op
38//           codes such as ld or ldx, only access disp() to get their
39//           simm13 argument.
40     _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
41    break;
42   default:
43    ShouldNotReachHere();
44    break;
45  }
46}
47
48static const char* argumentNames[][2] = {
49  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
50  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
51  {"A(n>9)","P(n>9)"}
52};
53
54const char* Argument::name() const {
55  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
56  int num = number();
57  if (num >= nofArgs)  num = nofArgs - 1;
58  return argumentNames[num][is_in() ? 1 : 0];
59}
60
61void Assembler::print_instruction(int inst) {
62  const char* s;
63  switch (inv_op(inst)) {
64  default:         s = "????"; break;
65  case call_op:    s = "call"; break;
66  case branch_op:
67    switch (inv_op2(inst)) {
68      case bpr_op2:    s = "bpr";  break;
69      case fb_op2:     s = "fb";   break;
70      case fbp_op2:    s = "fbp";  break;
71      case br_op2:     s = "br";   break;
72      case bp_op2:     s = "bp";   break;
73      case cb_op2:     s = "cb";   break;
74      default:         s = "????"; break;
75    }
76  }
77  ::tty->print("%s", s);
78}
79
80
81// Patch instruction inst at offset inst_pos to refer to dest_pos
82// and return the resulting instruction.
83// We should have pcs, not offsets, but since all is relative, it will work out
84// OK.
85int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
86
87  int m; // mask for displacement field
88  int v; // new value for displacement field
89  const int word_aligned_ones = -4;
90  switch (inv_op(inst)) {
91  default: ShouldNotReachHere();
92  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
93  case branch_op:
94    switch (inv_op2(inst)) {
95      case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
96      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
97      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
98      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
99      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
100      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
101      default: ShouldNotReachHere();
102    }
103  }
104  return  inst & ~m  |  v;
105}
106
107// Return the offset of the branch destionation of instruction inst
108// at offset pos.
109// Should have pcs, but since all is relative, it works out.
110int Assembler::branch_destination(int inst, int pos) {
111  int r;
112  switch (inv_op(inst)) {
113  default: ShouldNotReachHere();
114  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
115  case branch_op:
116    switch (inv_op2(inst)) {
117      case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
118      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
119      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
120      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
121      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
122      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
123      default: ShouldNotReachHere();
124    }
125  }
126  return r;
127}
128
129int AbstractAssembler::code_fill_byte() {
130  return 0x00;                  // illegal instruction 0x00000000
131}
132
133// Generate a bunch 'o stuff (including v9's
134#ifndef PRODUCT
135void Assembler::test_v9() {
136  add(    G0, G1, G2 );
137  add(    G3,  0, G4 );
138
139  addcc(  G5, G6, G7 );
140  addcc(  I0,  1, I1 );
141  addc(   I2, I3, I4 );
142  addc(   I5, -1, I6 );
143  addccc( I7, L0, L1 );
144  addccc( L2, (1 << 12) - 2, L3 );
145
146  Label lbl1, lbl2, lbl3;
147
148  bind(lbl1);
149
150  bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
151  delayed()->nop();
152  bpr( rc_lez, false, pt, L5, lbl1);
153  delayed()->nop();
154
155  fb( f_never,     true, pc() + 4,  relocInfo::none);
156  delayed()->nop();
157  fb( f_notEqual, false, lbl2 );
158  delayed()->nop();
159
160  fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
161  delayed()->nop();
162  fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
163  delayed()->nop();
164
165  br( equal,  true, pc() + 1024, relocInfo::none);
166  delayed()->nop();
167  br( lessEqual, false, lbl1 );
168  delayed()->nop();
169  br( never, false, lbl1 );
170  delayed()->nop();
171
172  bp( less,               true, icc, pn, pc(), relocInfo::none);
173  delayed()->nop();
174  bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
175  delayed()->nop();
176
177  call( pc(), relocInfo::none);
178  delayed()->nop();
179  call( lbl3 );
180  delayed()->nop();
181
182
183  casa(  L6, L7, O0 );
184  casxa( O1, O2, O3, 0 );
185
186  udiv(   O4, O5, O7 );
187  udiv(   G0, (1 << 12) - 1, G1 );
188  sdiv(   G1, G2, G3 );
189  sdiv(   G4, -((1 << 12) - 1), G5 );
190  udivcc( G6, G7, I0 );
191  udivcc( I1, -((1 << 12) - 2), I2 );
192  sdivcc( I3, I4, I5 );
193  sdivcc( I6, -((1 << 12) - 0), I7 );
194
195  done();
196  retry();
197
198  fadd( FloatRegisterImpl::S, F0,  F1, F2 );
199  fsub( FloatRegisterImpl::D, F34, F0, F62 );
200
201  fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
202  fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
203
204  ftox( FloatRegisterImpl::D, F2, F4 );
205  ftoi( FloatRegisterImpl::Q, F4, F8 );
206
207  ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
208
209  fxtof( FloatRegisterImpl::S, F4, F5 );
210  fitof( FloatRegisterImpl::D, F6, F8 );
211
212  fmov( FloatRegisterImpl::Q, F16, F20 );
213  fneg( FloatRegisterImpl::S, F6, F7 );
214  fabs( FloatRegisterImpl::D, F10, F12 );
215
216  fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
217  fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
218  fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
219
220  fsqrt( FloatRegisterImpl::S, F13, F14 );
221
222  flush( L0, L1 );
223  flush( L2, -1 );
224
225  flushw();
226
227  illtrap( (1 << 22) - 2);
228
229  impdep1( 17, (1 << 19) - 1 );
230  impdep2( 3,  0 );
231
232  jmpl( L3, L4, L5 );
233  delayed()->nop();
234  jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
235  delayed()->nop();
236
237
238  ldf(    FloatRegisterImpl::S, O0, O1, F15 );
239  ldf(    FloatRegisterImpl::D, O2, -1, F14 );
240
241
242  ldfsr(  O3, O4 );
243  ldfsr(  O5, -1 );
244  ldxfsr( O6, O7 );
245  ldxfsr( I0, -1 );
246
247  ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
248  ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
249
250  ldsb(  I4, I5, I6 );
251  ldsb(  I7, -1, G0 );
252  ldsh(  G1, G3, G4 );
253  ldsh(  G5, -1, G6 );
254  ldsw(  G7, L0, L1 );
255  ldsw(  L2, -1, L3 );
256  ldub(  L4, L5, L6 );
257  ldub(  L7, -1, O0 );
258  lduh(  O1, O2, O3 );
259  lduh(  O4, -1, O5 );
260  lduw(  O6, O7, G0 );
261  lduw(  G1, -1, G2 );
262  ldx(   G3, G4, G5 );
263  ldx(   G6, -1, G7 );
264  ldd(   I0, I1, I2 );
265  ldd(   I3, -1, I4 );
266
267  ldsba(  I5, I6, 2, I7 );
268  ldsba(  L0, -1, L1 );
269  ldsha(  L2, L3, 3, L4 );
270  ldsha(  L5, -1, L6 );
271  ldswa(  L7, O0, (1 << 8) - 1, O1 );
272  ldswa(  O2, -1, O3 );
273  lduba(  O4, O5, 0, O6 );
274  lduba(  O7, -1, I0 );
275  lduha(  I1, I2, 1, I3 );
276  lduha(  I4, -1, I5 );
277  lduwa(  I6, I7, 2, L0 );
278  lduwa(  L1, -1, L2 );
279  ldxa(   L3, L4, 3, L5 );
280  ldxa(   L6, -1, L7 );
281  ldda(   G0, G1, 4, G2 );
282  ldda(   G3, -1, G4 );
283
284  ldstub(  G5, G6, G7 );
285  ldstub(  O0, -1, O1 );
286
287  ldstuba( O2, O3, 5, O4 );
288  ldstuba( O5, -1, O6 );
289
290  and3(    I0, L0, O0 );
291  and3(    G7, -1, O7 );
292  andcc(   L2, I2, G2 );
293  andcc(   L4, -1, G4 );
294  andn(    I5, I6, I7 );
295  andn(    I6, -1, I7 );
296  andncc(  I5, I6, I7 );
297  andncc(  I7, -1, I6 );
298  or3(     I5, I6, I7 );
299  or3(     I7, -1, I6 );
300  orcc(    I5, I6, I7 );
301  orcc(    I7, -1, I6 );
302  orn(     I5, I6, I7 );
303  orn(     I7, -1, I6 );
304  orncc(   I5, I6, I7 );
305  orncc(   I7, -1, I6 );
306  xor3(    I5, I6, I7 );
307  xor3(    I7, -1, I6 );
308  xorcc(   I5, I6, I7 );
309  xorcc(   I7, -1, I6 );
310  xnor(    I5, I6, I7 );
311  xnor(    I7, -1, I6 );
312  xnorcc(  I5, I6, I7 );
313  xnorcc(  I7, -1, I6 );
314
315  membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
316  membar( StoreStore );
317  membar( LoadStore );
318  membar( StoreLoad );
319  membar( LoadLoad );
320  membar( Sync );
321  membar( MemIssue );
322  membar( Lookaside );
323
324  fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
325  fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
326
327  movcc( overflowClear,  false, icc, I6, L4 );
328  movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
329
330  movr( rc_nz, I5, I6, I7 );
331  movr( rc_gz, L1, -1,  L2 );
332
333  mulx(  I5, I6, I7 );
334  mulx(  I7, -1, I6 );
335  sdivx( I5, I6, I7 );
336  sdivx( I7, -1, I6 );
337  udivx( I5, I6, I7 );
338  udivx( I7, -1, I6 );
339
340  umul(   I5, I6, I7 );
341  umul(   I7, -1, I6 );
342  smul(   I5, I6, I7 );
343  smul(   I7, -1, I6 );
344  umulcc( I5, I6, I7 );
345  umulcc( I7, -1, I6 );
346  smulcc( I5, I6, I7 );
347  smulcc( I7, -1, I6 );
348
349  mulscc(   I5, I6, I7 );
350  mulscc(   I7, -1, I6 );
351
352  nop();
353
354
355  popc( G0,  G1);
356  popc( -1, G2);
357
358  prefetch(   L1, L2,    severalReads );
359  prefetch(   L3, -1,    oneRead );
360  prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
361  prefetcha(  G2, -1,    oneWrite );
362
363  rett( I7, I7);
364  delayed()->nop();
365  rett( G0, -1, relocInfo::none);
366  delayed()->nop();
367
368  save(    I5, I6, I7 );
369  save(    I7, -1, I6 );
370  restore( I5, I6, I7 );
371  restore( I7, -1, I6 );
372
373  saved();
374  restored();
375
376  sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
377
378  sll(  I5, I6, I7 );
379  sll(  I7, 31, I6 );
380  srl(  I5, I6, I7 );
381  srl(  I7,  0, I6 );
382  sra(  I5, I6, I7 );
383  sra(  I7, 30, I6 );
384  sllx( I5, I6, I7 );
385  sllx( I7, 63, I6 );
386  srlx( I5, I6, I7 );
387  srlx( I7,  0, I6 );
388  srax( I5, I6, I7 );
389  srax( I7, 62, I6 );
390
391  sir( -1 );
392
393  stbar();
394
395  stf(    FloatRegisterImpl::Q, F40, G0, I7 );
396  stf(    FloatRegisterImpl::S, F18, I3, -1 );
397
398  stfsr(  L1, L2 );
399  stfsr(  I7, -1 );
400  stxfsr( I6, I5 );
401  stxfsr( L4, -1 );
402
403  stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
404  stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
405
406  stb(  L5, O2, I7 );
407  stb(  I7, I6, -1 );
408  sth(  L5, O2, I7 );
409  sth(  I7, I6, -1 );
410  stw(  L5, O2, I7 );
411  stw(  I7, I6, -1 );
412  stx(  L5, O2, I7 );
413  stx(  I7, I6, -1 );
414  std(  L5, O2, I7 );
415  std(  I7, I6, -1 );
416
417  stba(  L5, O2, I7, 8 );
418  stba(  I7, I6, -1    );
419  stha(  L5, O2, I7, 9 );
420  stha(  I7, I6, -1    );
421  stwa(  L5, O2, I7, 0 );
422  stwa(  I7, I6, -1    );
423  stxa(  L5, O2, I7, 11 );
424  stxa(  I7, I6, -1     );
425  stda(  L5, O2, I7, 12 );
426  stda(  I7, I6, -1     );
427
428  sub(    I5, I6, I7 );
429  sub(    I7, -1, I6 );
430  subcc(  I5, I6, I7 );
431  subcc(  I7, -1, I6 );
432  subc(   I5, I6, I7 );
433  subc(   I7, -1, I6 );
434  subccc( I5, I6, I7 );
435  subccc( I7, -1, I6 );
436
437  swap( I5, I6, I7 );
438  swap( I7, -1, I6 );
439
440  swapa(   G0, G1, 13, G2 );
441  swapa(   I7, -1,     I6 );
442
443  taddcc(    I5, I6, I7 );
444  taddcc(    I7, -1, I6 );
445  taddcctv(  I5, I6, I7 );
446  taddcctv(  I7, -1, I6 );
447
448  tsubcc(    I5, I6, I7 );
449  tsubcc(    I7, -1, I6 );
450  tsubcctv(  I5, I6, I7 );
451  tsubcctv(  I7, -1, I6 );
452
453  trap( overflowClear, xcc, G0, G1 );
454  trap( lessEqual,     icc, I7, 17 );
455
456  bind(lbl2);
457  bind(lbl3);
458
459  code()->decode();
460}
461
462// Generate a bunch 'o stuff unique to V8
463void Assembler::test_v8_onlys() {
464  Label lbl1;
465
466  cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
467  delayed()->nop();
468  cb( cp_never,    true, lbl1);
469  delayed()->nop();
470
471  cpop1(1, 2, 3, 4);
472  cpop2(5, 6, 7, 8);
473
474  ldc( I0, I1, 31);
475  ldc( I2, -1,  0);
476
477  lddc( I4, I4, 30);
478  lddc( I6,  0, 1 );
479
480  ldcsr( L0, L1, 0);
481  ldcsr( L1, (1 << 12) - 1, 17 );
482
483  stc( 31, L4, L5);
484  stc( 30, L6, -(1 << 12) );
485
486  stdc( 0, L7, G0);
487  stdc( 1, G1, 0 );
488
489  stcsr( 16, G2, G3);
490  stcsr( 17, G4, 1 );
491
492  stdcq( 4, G5, G6);
493  stdcq( 5, G7, -1 );
494
495  bind(lbl1);
496
497  code()->decode();
498}
499#endif
500
501// Implementation of MacroAssembler
502
503void MacroAssembler::null_check(Register reg, int offset) {
504  if (needs_explicit_null_check((intptr_t)offset)) {
505    // provoke OS NULL exception if reg = NULL by
506    // accessing M[reg] w/o changing any registers
507    ld_ptr(reg, 0, G0);
508  }
509  else {
510    // nothing to do, (later) access of M[reg + offset]
511    // will provoke OS NULL exception if reg = NULL
512  }
513}
514
515// Ring buffer jumps
516
517#ifndef PRODUCT
518void MacroAssembler::ret(  bool trace )   { if (trace) {
519                                                    mov(I7, O7); // traceable register
520                                                    JMP(O7, 2 * BytesPerInstWord);
521                                                  } else {
522                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
523                                                  }
524                                                }
525
526void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
527                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
528#endif /* PRODUCT */
529
530
531void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
532  assert_not_delayed();
533  // This can only be traceable if r1 & r2 are visible after a window save
534  if (TraceJumps) {
535#ifndef PRODUCT
536    save_frame(0);
537    verify_thread();
538    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
539    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
540    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
541    add(O2, O1, O1);
542
543    add(r1->after_save(), r2->after_save(), O2);
544    set((intptr_t)file, O3);
545    set(line, O4);
546    Label L;
547    // get nearby pc, store jmp target
548    call(L, relocInfo::none);  // No relocation for call to pc+0x8
549    delayed()->st(O2, O1, 0);
550    bind(L);
551
552    // store nearby pc
553    st(O7, O1, sizeof(intptr_t));
554    // store file
555    st(O3, O1, 2*sizeof(intptr_t));
556    // store line
557    st(O4, O1, 3*sizeof(intptr_t));
558    add(O0, 1, O0);
559    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
560    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
561    restore();
562#endif /* PRODUCT */
563  }
564  jmpl(r1, r2, G0);
565}
566void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
567  assert_not_delayed();
568  // This can only be traceable if r1 is visible after a window save
569  if (TraceJumps) {
570#ifndef PRODUCT
571    save_frame(0);
572    verify_thread();
573    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
574    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
575    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
576    add(O2, O1, O1);
577
578    add(r1->after_save(), offset, O2);
579    set((intptr_t)file, O3);
580    set(line, O4);
581    Label L;
582    // get nearby pc, store jmp target
583    call(L, relocInfo::none);  // No relocation for call to pc+0x8
584    delayed()->st(O2, O1, 0);
585    bind(L);
586
587    // store nearby pc
588    st(O7, O1, sizeof(intptr_t));
589    // store file
590    st(O3, O1, 2*sizeof(intptr_t));
591    // store line
592    st(O4, O1, 3*sizeof(intptr_t));
593    add(O0, 1, O0);
594    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
595    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
596    restore();
597#endif /* PRODUCT */
598  }
599  jmp(r1, offset);
600}
601
602// This code sequence is relocatable to any address, even on LP64.
603void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
604  assert_not_delayed();
605  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
606  // variable length instruction streams.
607  sethi(a, /*ForceRelocatable=*/ true);
608  if (TraceJumps) {
609#ifndef PRODUCT
610    // Must do the add here so relocation can find the remainder of the
611    // value to be relocated.
612    add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
613    save_frame(0);
614    verify_thread();
615    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
616    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
617    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
618    add(O2, O1, O1);
619
620    set((intptr_t)file, O3);
621    set(line, O4);
622    Label L;
623
624    // get nearby pc, store jmp target
625    call(L, relocInfo::none);  // No relocation for call to pc+0x8
626    delayed()->st(a.base()->after_save(), O1, 0);
627    bind(L);
628
629    // store nearby pc
630    st(O7, O1, sizeof(intptr_t));
631    // store file
632    st(O3, O1, 2*sizeof(intptr_t));
633    // store line
634    st(O4, O1, 3*sizeof(intptr_t));
635    add(O0, 1, O0);
636    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
637    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
638    restore();
639    jmpl(a.base(), G0, d);
640#else
641    jmpl(a, d, offset);
642#endif /* PRODUCT */
643  } else {
644    jmpl(a, d, offset);
645  }
646}
647
648void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
649  jumpl( a, G0, offset, file, line );
650}
651
652
653// Convert to C varargs format
654void MacroAssembler::set_varargs( Argument inArg, Register d ) {
655  // spill register-resident args to their memory slots
656  // (SPARC calling convention requires callers to have already preallocated these)
657  // Note that the inArg might in fact be an outgoing argument,
658  // if a leaf routine or stub does some tricky argument shuffling.
659  // This routine must work even though one of the saved arguments
660  // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
661  for (Argument savePtr = inArg;
662       savePtr.is_register();
663       savePtr = savePtr.successor()) {
664    st_ptr(savePtr.as_register(), savePtr.address_in_frame());
665  }
666  // return the address of the first memory slot
667  add(inArg.address_in_frame(), d);
668}
669
670// Conditional breakpoint (for assertion checks in assembly code)
671void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
672  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
673}
674
675// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
676void MacroAssembler::breakpoint_trap() {
677  trap(ST_RESERVED_FOR_USER_0);
678}
679
680// flush windows (except current) using flushw instruction if avail.
681void MacroAssembler::flush_windows() {
682  if (VM_Version::v9_instructions_work())  flushw();
683  else                                     flush_windows_trap();
684}
685
686// Write serialization page so VM thread can do a pseudo remote membar
687// We use the current thread pointer to calculate a thread specific
688// offset to write to within the page. This minimizes bus traffic
689// due to cache line collision.
690void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
691  Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
692  srl(thread, os::get_serialize_page_shift_count(), tmp2);
693  if (Assembler::is_simm13(os::vm_page_size())) {
694    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
695  }
696  else {
697    set((os::vm_page_size() - sizeof(int)), tmp1);
698    and3(tmp2, tmp1, tmp2);
699  }
700  load_address(mem_serialize_page);
701  st(G0, tmp1, tmp2);
702}
703
704
705
706void MacroAssembler::enter() {
707  Unimplemented();
708}
709
710void MacroAssembler::leave() {
711  Unimplemented();
712}
713
714void MacroAssembler::mult(Register s1, Register s2, Register d) {
715  if(VM_Version::v9_instructions_work()) {
716    mulx (s1, s2, d);
717  } else {
718    smul (s1, s2, d);
719  }
720}
721
722void MacroAssembler::mult(Register s1, int simm13a, Register d) {
723  if(VM_Version::v9_instructions_work()) {
724    mulx (s1, simm13a, d);
725  } else {
726    smul (s1, simm13a, d);
727  }
728}
729
730
731#ifdef ASSERT
732void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
733  const Register s1 = G3_scratch;
734  const Register s2 = G4_scratch;
735  Label get_psr_test;
736  // Get the condition codes the V8 way.
737  read_ccr_trap(s1);
738  mov(ccr_save, s2);
739  // This is a test of V8 which has icc but not xcc
740  // so mask off the xcc bits
741  and3(s2, 0xf, s2);
742  // Compare condition codes from the V8 and V9 ways.
743  subcc(s2, s1, G0);
744  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
745  delayed()->breakpoint_trap();
746  bind(get_psr_test);
747}
748
749void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
750  const Register s1 = G3_scratch;
751  const Register s2 = G4_scratch;
752  Label set_psr_test;
753  // Write out the saved condition codes the V8 way
754  write_ccr_trap(ccr_save, s1, s2);
755  // Read back the condition codes using the V9 instruction
756  rdccr(s1);
757  mov(ccr_save, s2);
758  // This is a test of V8 which has icc but not xcc
759  // so mask off the xcc bits
760  and3(s2, 0xf, s2);
761  and3(s1, 0xf, s1);
762  // Compare the V8 way with the V9 way.
763  subcc(s2, s1, G0);
764  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
765  delayed()->breakpoint_trap();
766  bind(set_psr_test);
767}
768#else
769#define read_ccr_v8_assert(x)
770#define write_ccr_v8_assert(x)
771#endif // ASSERT
772
773void MacroAssembler::read_ccr(Register ccr_save) {
774  if (VM_Version::v9_instructions_work()) {
775    rdccr(ccr_save);
776    // Test code sequence used on V8.  Do not move above rdccr.
777    read_ccr_v8_assert(ccr_save);
778  } else {
779    read_ccr_trap(ccr_save);
780  }
781}
782
783void MacroAssembler::write_ccr(Register ccr_save) {
784  if (VM_Version::v9_instructions_work()) {
785    // Test code sequence used on V8.  Do not move below wrccr.
786    write_ccr_v8_assert(ccr_save);
787    wrccr(ccr_save);
788  } else {
789    const Register temp_reg1 = G3_scratch;
790    const Register temp_reg2 = G4_scratch;
791    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
792  }
793}
794
795
796// Calls to C land
797
798#ifdef ASSERT
799// a hook for debugging
800static Thread* reinitialize_thread() {
801  return ThreadLocalStorage::thread();
802}
803#else
804#define reinitialize_thread ThreadLocalStorage::thread
805#endif
806
807#ifdef ASSERT
808address last_get_thread = NULL;
809#endif
810
811// call this when G2_thread is not known to be valid
812void MacroAssembler::get_thread() {
813  save_frame(0);                // to avoid clobbering O0
814  mov(G1, L0);                  // avoid clobbering G1
815  mov(G5_method, L1);           // avoid clobbering G5
816  mov(G3, L2);                  // avoid clobbering G3 also
817  mov(G4, L5);                  // avoid clobbering G4
818#ifdef ASSERT
819  Address last_get_thread_addr(L3, (address)&last_get_thread);
820  sethi(last_get_thread_addr);
821  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
822  st_ptr(L4, last_get_thread_addr);
823#endif
824  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
825  delayed()->nop();
826  mov(L0, G1);
827  mov(L1, G5_method);
828  mov(L2, G3);
829  mov(L5, G4);
830  restore(O0, 0, G2_thread);
831}
832
833static Thread* verify_thread_subroutine(Thread* gthread_value) {
834  Thread* correct_value = ThreadLocalStorage::thread();
835  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
836  return correct_value;
837}
838
839void MacroAssembler::verify_thread() {
840  if (VerifyThread) {
841    // NOTE: this chops off the heads of the 64-bit O registers.
842#ifdef CC_INTERP
843    save_frame(0);
844#else
845    // make sure G2_thread contains the right value
846    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
847    mov(G1, L1);                // avoid clobbering G1
848    // G2 saved below
849    mov(G3, L3);                // avoid clobbering G3
850    mov(G4, L4);                // avoid clobbering G4
851    mov(G5_method, L5);         // avoid clobbering G5_method
852#endif /* CC_INTERP */
853#if defined(COMPILER2) && !defined(_LP64)
854    // Save & restore possible 64-bit Long arguments in G-regs
855    srlx(G1,32,L0);
856    srlx(G4,32,L6);
857#endif
858    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
859    delayed()->mov(G2_thread, O0);
860
861    mov(L1, G1);                // Restore G1
862    // G2 restored below
863    mov(L3, G3);                // restore G3
864    mov(L4, G4);                // restore G4
865    mov(L5, G5_method);         // restore G5_method
866#if defined(COMPILER2) && !defined(_LP64)
867    // Save & restore possible 64-bit Long arguments in G-regs
868    sllx(L0,32,G2);             // Move old high G1 bits high in G2
869    sllx(G1, 0,G1);             // Clear current high G1 bits
870    or3 (G1,G2,G1);             // Recover 64-bit G1
871    sllx(L6,32,G2);             // Move old high G4 bits high in G2
872    sllx(G4, 0,G4);             // Clear current high G4 bits
873    or3 (G4,G2,G4);             // Recover 64-bit G4
874#endif
875    restore(O0, 0, G2_thread);
876  }
877}
878
879
880void MacroAssembler::save_thread(const Register thread_cache) {
881  verify_thread();
882  if (thread_cache->is_valid()) {
883    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
884    mov(G2_thread, thread_cache);
885  }
886  if (VerifyThread) {
887    // smash G2_thread, as if the VM were about to anyway
888    set(0x67676767, G2_thread);
889  }
890}
891
892
893void MacroAssembler::restore_thread(const Register thread_cache) {
894  if (thread_cache->is_valid()) {
895    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
896    mov(thread_cache, G2_thread);
897    verify_thread();
898  } else {
899    // do it the slow way
900    get_thread();
901  }
902}
903
904
905// %%% maybe get rid of [re]set_last_Java_frame
906void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
907  assert_not_delayed();
908  Address flags(G2_thread,
909                0,
910                in_bytes(JavaThread::frame_anchor_offset()) +
911                         in_bytes(JavaFrameAnchor::flags_offset()));
912  Address pc_addr(G2_thread,
913                  0,
914                  in_bytes(JavaThread::last_Java_pc_offset()));
915
916  // Always set last_Java_pc and flags first because once last_Java_sp is visible
917  // has_last_Java_frame is true and users will look at the rest of the fields.
918  // (Note: flags should always be zero before we get here so doesn't need to be set.)
919
920#ifdef ASSERT
921  // Verify that flags was zeroed on return to Java
922  Label PcOk;
923  save_frame(0);                // to avoid clobbering O0
924  ld_ptr(pc_addr, L0);
925  tst(L0);
926#ifdef _LP64
927  brx(Assembler::zero, false, Assembler::pt, PcOk);
928#else
929  br(Assembler::zero, false, Assembler::pt, PcOk);
930#endif // _LP64
931  delayed() -> nop();
932  stop("last_Java_pc not zeroed before leaving Java");
933  bind(PcOk);
934
935  // Verify that flags was zeroed on return to Java
936  Label FlagsOk;
937  ld(flags, L0);
938  tst(L0);
939  br(Assembler::zero, false, Assembler::pt, FlagsOk);
940  delayed() -> restore();
941  stop("flags not zeroed before leaving Java");
942  bind(FlagsOk);
943#endif /* ASSERT */
944  //
945  // When returning from calling out from Java mode the frame anchor's last_Java_pc
946  // will always be set to NULL. It is set here so that if we are doing a call to
947  // native (not VM) that we capture the known pc and don't have to rely on the
948  // native call having a standard frame linkage where we can find the pc.
949
950  if (last_Java_pc->is_valid()) {
951    st_ptr(last_Java_pc, pc_addr);
952  }
953
954#ifdef _LP64
955#ifdef ASSERT
956  // Make sure that we have an odd stack
957  Label StackOk;
958  andcc(last_java_sp, 0x01, G0);
959  br(Assembler::notZero, false, Assembler::pt, StackOk);
960  delayed() -> nop();
961  stop("Stack Not Biased in set_last_Java_frame");
962  bind(StackOk);
963#endif // ASSERT
964  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
965  add( last_java_sp, STACK_BIAS, G4_scratch );
966  st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
967#else
968  st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
969#endif // _LP64
970}
971
972void MacroAssembler::reset_last_Java_frame(void) {
973  assert_not_delayed();
974
975  Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
976  Address pc_addr(G2_thread,
977                  0,
978                  in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
979  Address flags(G2_thread,
980                0,
981                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
982
983#ifdef ASSERT
984  // check that it WAS previously set
985#ifdef CC_INTERP
986    save_frame(0);
987#else
988    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
989#endif /* CC_INTERP */
990    ld_ptr(sp_addr, L0);
991    tst(L0);
992    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
993    restore();
994#endif // ASSERT
995
996  st_ptr(G0, sp_addr);
997  // Always return last_Java_pc to zero
998  st_ptr(G0, pc_addr);
999  // Always null flags after return to Java
1000  st(G0, flags);
1001}
1002
1003
1004void MacroAssembler::call_VM_base(
1005  Register        oop_result,
1006  Register        thread_cache,
1007  Register        last_java_sp,
1008  address         entry_point,
1009  int             number_of_arguments,
1010  bool            check_exceptions)
1011{
1012  assert_not_delayed();
1013
1014  // determine last_java_sp register
1015  if (!last_java_sp->is_valid()) {
1016    last_java_sp = SP;
1017  }
1018  // debugging support
1019  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1020
1021  // 64-bit last_java_sp is biased!
1022  set_last_Java_frame(last_java_sp, noreg);
1023  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1024  save_thread(thread_cache);
1025  // do the call
1026  call(entry_point, relocInfo::runtime_call_type);
1027  if (!VerifyThread)
1028    delayed()->mov(G2_thread, O0);  // pass thread as first argument
1029  else
1030    delayed()->nop();             // (thread already passed)
1031  restore_thread(thread_cache);
1032  reset_last_Java_frame();
1033
1034  // check for pending exceptions. use Gtemp as scratch register.
1035  if (check_exceptions) {
1036    check_and_forward_exception(Gtemp);
1037  }
1038
1039  // get oop result if there is one and reset the value in the thread
1040  if (oop_result->is_valid()) {
1041    get_vm_result(oop_result);
1042  }
1043}
1044
1045void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1046{
1047  Label L;
1048
1049  check_and_handle_popframe(scratch_reg);
1050  check_and_handle_earlyret(scratch_reg);
1051
1052  Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1053  ld_ptr(exception_addr, scratch_reg);
1054  br_null(scratch_reg,false,pt,L);
1055  delayed()->nop();
1056  // we use O7 linkage so that forward_exception_entry has the issuing PC
1057  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1058  delayed()->nop();
1059  bind(L);
1060}
1061
1062
1063void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1064}
1065
1066
1067void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1068}
1069
1070
1071void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1072  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1073}
1074
1075
1076void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1077  // O0 is reserved for the thread
1078  mov(arg_1, O1);
1079  call_VM(oop_result, entry_point, 1, check_exceptions);
1080}
1081
1082
1083void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1084  // O0 is reserved for the thread
1085  mov(arg_1, O1);
1086  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1087  call_VM(oop_result, entry_point, 2, check_exceptions);
1088}
1089
1090
1091void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1092  // O0 is reserved for the thread
1093  mov(arg_1, O1);
1094  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1095  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1096  call_VM(oop_result, entry_point, 3, check_exceptions);
1097}
1098
1099
1100
1101// Note: The following call_VM overloadings are useful when a "save"
1102// has already been performed by a stub, and the last Java frame is
1103// the previous one.  In that case, last_java_sp must be passed as FP
1104// instead of SP.
1105
1106
1107void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1108  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1109}
1110
1111
1112void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1113  // O0 is reserved for the thread
1114  mov(arg_1, O1);
1115  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1116}
1117
1118
1119void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1120  // O0 is reserved for the thread
1121  mov(arg_1, O1);
1122  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1123  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1124}
1125
1126
1127void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1128  // O0 is reserved for the thread
1129  mov(arg_1, O1);
1130  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1131  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1132  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1133}
1134
1135
1136
1137void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1138  assert_not_delayed();
1139  save_thread(thread_cache);
1140  // do the call
1141  call(entry_point, relocInfo::runtime_call_type);
1142  delayed()->nop();
1143  restore_thread(thread_cache);
1144}
1145
1146
1147void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1148  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1149}
1150
1151
1152void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1153  mov(arg_1, O0);
1154  call_VM_leaf(thread_cache, entry_point, 1);
1155}
1156
1157
1158void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1159  mov(arg_1, O0);
1160  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1161  call_VM_leaf(thread_cache, entry_point, 2);
1162}
1163
1164
1165void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1166  mov(arg_1, O0);
1167  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1168  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1169  call_VM_leaf(thread_cache, entry_point, 3);
1170}
1171
1172
1173void MacroAssembler::get_vm_result(Register oop_result) {
1174  verify_thread();
1175  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1176  ld_ptr(    vm_result_addr, oop_result);
1177  st_ptr(G0, vm_result_addr);
1178  verify_oop(oop_result);
1179}
1180
1181
1182void MacroAssembler::get_vm_result_2(Register oop_result) {
1183  verify_thread();
1184  Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
1185  ld_ptr(vm_result_addr_2, oop_result);
1186  st_ptr(G0, vm_result_addr_2);
1187  verify_oop(oop_result);
1188}
1189
1190
1191// We require that C code which does not return a value in vm_result will
1192// leave it undisturbed.
1193void MacroAssembler::set_vm_result(Register oop_result) {
1194  verify_thread();
1195  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1196  verify_oop(oop_result);
1197
1198# ifdef ASSERT
1199    // Check that we are not overwriting any other oop.
1200#ifdef CC_INTERP
1201    save_frame(0);
1202#else
1203    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1204#endif /* CC_INTERP */
1205    ld_ptr(vm_result_addr, L0);
1206    tst(L0);
1207    restore();
1208    breakpoint_trap(notZero, Assembler::ptr_cc);
1209    // }
1210# endif
1211
1212  st_ptr(oop_result, vm_result_addr);
1213}
1214
1215
1216void MacroAssembler::store_check(Register tmp, Register obj) {
1217  // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
1218
1219  /* $$$ This stuff needs to go into one of the BarrierSet generator
1220     functions.  (The particular barrier sets will have to be friends of
1221     MacroAssembler, I guess.) */
1222  BarrierSet* bs = Universe::heap()->barrier_set();
1223  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
1224  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1225  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1226#ifdef _LP64
1227  srlx(obj, CardTableModRefBS::card_shift, obj);
1228#else
1229  srl(obj, CardTableModRefBS::card_shift, obj);
1230#endif
1231  assert( tmp != obj, "need separate temp reg");
1232  Address rs(tmp, (address)ct->byte_map_base);
1233  load_address(rs);
1234  stb(G0, rs.base(), obj);
1235}
1236
1237void MacroAssembler::store_check(Register tmp, Register obj, Register offset) {
1238  store_check(tmp, obj);
1239}
1240
1241// %%% Note:  The following six instructions have been moved,
1242//            unchanged, from assembler_sparc.inline.hpp.
1243//            They will be refactored at a later date.
1244
1245void MacroAssembler::sethi(intptr_t imm22a,
1246                            Register d,
1247                            bool ForceRelocatable,
1248                            RelocationHolder const& rspec) {
1249  Address adr( d, (address)imm22a, rspec );
1250  MacroAssembler::sethi( adr, ForceRelocatable );
1251}
1252
1253
1254void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
1255  address save_pc;
1256  int shiftcnt;
1257  // if addr of local, do not need to load it
1258  assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
1259#ifdef _LP64
1260# ifdef CHECK_DELAY
1261  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1262# endif
1263  v9_dep();
1264//  ForceRelocatable = 1;
1265  save_pc = pc();
1266  if (a.hi32() == 0 && a.low32() >= 0) {
1267    Assembler::sethi(a.low32(), a.base(), a.rspec());
1268  }
1269  else if (a.hi32() == -1) {
1270    Assembler::sethi(~a.low32(), a.base(), a.rspec());
1271    xor3(a.base(), ~low10(~0), a.base());
1272  }
1273  else {
1274    Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
1275    if ( a.hi32() & 0x3ff )                     // Any bits?
1276      or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
1277    if ( a.low32() & 0xFFFFFC00 ) {             // done?
1278      if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
1279        sllx(a.base(), 12, a.base());           // Make room for next 12 bits
1280        or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
1281        shiftcnt = 0;                           // We already shifted
1282      }
1283      else
1284        shiftcnt = 12;
1285      if( (a.low32() >> 10) & 0x3ff ) {
1286        sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
1287        or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
1288        shiftcnt = 0;
1289      }
1290      else
1291        shiftcnt = 10;
1292      sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
1293    }
1294    else
1295      sllx( a.base(), 32, a.base() );
1296  }
1297  // Pad out the instruction sequence so it can be
1298  // patched later.
1299  if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
1300                            a.rtype() != relocInfo::runtime_call_type) ) {
1301    while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
1302      nop();
1303  }
1304#else
1305  Assembler::sethi(a.hi(), a.base(), a.rspec());
1306#endif
1307
1308}
1309
1310int MacroAssembler::size_of_sethi(address a, bool worst_case) {
1311#ifdef _LP64
1312  if (worst_case) return 7;
1313  intptr_t iaddr = (intptr_t)a;
1314  int hi32 = (int)(iaddr >> 32);
1315  int lo32 = (int)(iaddr);
1316  int inst_count;
1317  if (hi32 == 0 && lo32 >= 0)
1318    inst_count = 1;
1319  else if (hi32 == -1)
1320    inst_count = 2;
1321  else {
1322    inst_count = 2;
1323    if ( hi32 & 0x3ff )
1324      inst_count++;
1325    if ( lo32 & 0xFFFFFC00 ) {
1326      if( (lo32 >> 20) & 0xfff ) inst_count += 2;
1327      if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
1328    }
1329  }
1330  return BytesPerInstWord * inst_count;
1331#else
1332  return BytesPerInstWord;
1333#endif
1334}
1335
1336int MacroAssembler::worst_case_size_of_set() {
1337  return size_of_sethi(NULL, true) + 1;
1338}
1339
1340void MacroAssembler::set(intptr_t value, Register d,
1341                         RelocationHolder const& rspec) {
1342  Address val( d, (address)value, rspec);
1343
1344  if ( rspec.type() == relocInfo::none ) {
1345    // can optimize
1346    if (-4096 <= value  &&  value <= 4095) {
1347      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1348      return;
1349    }
1350    if (inv_hi22(hi22(value)) == value) {
1351      sethi(val);
1352      return;
1353    }
1354  }
1355  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1356  sethi( val );
1357  if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
1358    add( d, value &  0x3ff, d, rspec);
1359  }
1360}
1361
1362void MacroAssembler::setsw(int value, Register d,
1363                           RelocationHolder const& rspec) {
1364  Address val( d, (address)value, rspec);
1365  if ( rspec.type() == relocInfo::none ) {
1366    // can optimize
1367    if (-4096 <= value  &&  value <= 4095) {
1368      or3(G0, value, d);
1369      return;
1370    }
1371    if (inv_hi22(hi22(value)) == value) {
1372      sethi( val );
1373#ifndef _LP64
1374      if ( value < 0 ) {
1375        assert_not_delayed();
1376        sra (d, G0, d);
1377      }
1378#endif
1379      return;
1380    }
1381  }
1382  assert_not_delayed();
1383  sethi( val );
1384  add( d, value &  0x3ff, d, rspec);
1385
1386  // (A negative value could be loaded in 2 insns with sethi/xor,
1387  // but it would take a more complex relocation.)
1388#ifndef _LP64
1389  if ( value < 0)
1390    sra(d, G0, d);
1391#endif
1392}
1393
1394// %%% End of moved six set instructions.
1395
1396
1397void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1398  assert_not_delayed();
1399  v9_dep();
1400
1401  int hi = (int)(value >> 32);
1402  int lo = (int)(value & ~0);
1403  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1404  if (Assembler::is_simm13(lo) && value == lo) {
1405    or3(G0, lo, d);
1406  } else if (hi == 0) {
1407    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1408    if (low10(lo) != 0)
1409      or3(d, low10(lo), d);
1410  }
1411  else if (hi == -1) {
1412    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1413    xor3(d, low10(lo) ^ ~low10(~0), d);
1414  }
1415  else if (lo == 0) {
1416    if (Assembler::is_simm13(hi)) {
1417      or3(G0, hi, d);
1418    } else {
1419      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1420      if (low10(hi) != 0)
1421        or3(d, low10(hi), d);
1422    }
1423    sllx(d, 32, d);
1424  }
1425  else {
1426    Assembler::sethi(hi, tmp);
1427    Assembler::sethi(lo,   d); // macro assembler version sign-extends
1428    if (low10(hi) != 0)
1429      or3 (tmp, low10(hi), tmp);
1430    if (low10(lo) != 0)
1431      or3 (  d, low10(lo),   d);
1432    sllx(tmp, 32, tmp);
1433    or3 (d, tmp, d);
1434  }
1435}
1436
1437// compute size in bytes of sparc frame, given
1438// number of extraWords
1439int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1440
1441  int nWords = frame::memory_parameter_word_sp_offset;
1442
1443  nWords += extraWords;
1444
1445  if (nWords & 1) ++nWords; // round up to double-word
1446
1447  return nWords * BytesPerWord;
1448}
1449
1450
1451// save_frame: given number of "extra" words in frame,
1452// issue approp. save instruction (p 200, v8 manual)
1453
1454void MacroAssembler::save_frame(int extraWords = 0) {
1455  int delta = -total_frame_size_in_bytes(extraWords);
1456  if (is_simm13(delta)) {
1457    save(SP, delta, SP);
1458  } else {
1459    set(delta, G3_scratch);
1460    save(SP, G3_scratch, SP);
1461  }
1462}
1463
1464
1465void MacroAssembler::save_frame_c1(int size_in_bytes) {
1466  if (is_simm13(-size_in_bytes)) {
1467    save(SP, -size_in_bytes, SP);
1468  } else {
1469    set(-size_in_bytes, G3_scratch);
1470    save(SP, G3_scratch, SP);
1471  }
1472}
1473
1474
1475void MacroAssembler::save_frame_and_mov(int extraWords,
1476                                        Register s1, Register d1,
1477                                        Register s2, Register d2) {
1478  assert_not_delayed();
1479
1480  // The trick here is to use precisely the same memory word
1481  // that trap handlers also use to save the register.
1482  // This word cannot be used for any other purpose, but
1483  // it works fine to save the register's value, whether or not
1484  // an interrupt flushes register windows at any given moment!
1485  Address s1_addr;
1486  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1487    s1_addr = s1->address_in_saved_window();
1488    st_ptr(s1, s1_addr);
1489  }
1490
1491  Address s2_addr;
1492  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1493    s2_addr = s2->address_in_saved_window();
1494    st_ptr(s2, s2_addr);
1495  }
1496
1497  save_frame(extraWords);
1498
1499  if (s1_addr.base() == SP) {
1500    ld_ptr(s1_addr.after_save(), d1);
1501  } else if (s1->is_valid()) {
1502    mov(s1->after_save(), d1);
1503  }
1504
1505  if (s2_addr.base() == SP) {
1506    ld_ptr(s2_addr.after_save(), d2);
1507  } else if (s2->is_valid()) {
1508    mov(s2->after_save(), d2);
1509  }
1510}
1511
1512
1513Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
1514  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1515  int oop_index = oop_recorder()->allocate_index(obj);
1516  return Address(d, address(obj), oop_Relocation::spec(oop_index));
1517}
1518
1519
1520Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
1521  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1522  int oop_index = oop_recorder()->find_index(obj);
1523  return Address(d, address(obj), oop_Relocation::spec(oop_index));
1524}
1525
1526
1527void MacroAssembler::align(int modulus) {
1528  while (offset() % modulus != 0) nop();
1529}
1530
1531
1532void MacroAssembler::safepoint() {
1533  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1534}
1535
1536
1537void RegistersForDebugging::print(outputStream* s) {
1538  int j;
1539  for ( j = 0;  j < 8;  ++j )
1540    if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1541    else          s->print_cr( "fp = 0x%.16lx",    i[j]);
1542  s->cr();
1543
1544  for ( j = 0;  j < 8;  ++j )
1545    s->print_cr("l%d = 0x%.16lx", j, l[j]);
1546  s->cr();
1547
1548  for ( j = 0;  j < 8;  ++j )
1549    if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1550    else          s->print_cr( "sp = 0x%.16lx",    o[j]);
1551  s->cr();
1552
1553  for ( j = 0;  j < 8;  ++j )
1554    s->print_cr("g%d = 0x%.16lx", j, g[j]);
1555  s->cr();
1556
1557  // print out floats with compression
1558  for (j = 0; j < 32; ) {
1559    jfloat val = f[j];
1560    int last = j;
1561    for ( ;  last+1 < 32;  ++last ) {
1562      char b1[1024], b2[1024];
1563      sprintf(b1, "%f", val);
1564      sprintf(b2, "%f", f[last+1]);
1565      if (strcmp(b1, b2))
1566        break;
1567    }
1568    s->print("f%d", j);
1569    if ( j != last )  s->print(" - f%d", last);
1570    s->print(" = %f", val);
1571    s->fill_to(25);
1572    s->print_cr(" (0x%x)", val);
1573    j = last + 1;
1574  }
1575  s->cr();
1576
1577  // and doubles (evens only)
1578  for (j = 0; j < 32; ) {
1579    jdouble val = d[j];
1580    int last = j;
1581    for ( ;  last+1 < 32;  ++last ) {
1582      char b1[1024], b2[1024];
1583      sprintf(b1, "%f", val);
1584      sprintf(b2, "%f", d[last+1]);
1585      if (strcmp(b1, b2))
1586        break;
1587    }
1588    s->print("d%d", 2 * j);
1589    if ( j != last )  s->print(" - d%d", last);
1590    s->print(" = %f", val);
1591    s->fill_to(30);
1592    s->print("(0x%x)", *(int*)&val);
1593    s->fill_to(42);
1594    s->print_cr("(0x%x)", *(1 + (int*)&val));
1595    j = last + 1;
1596  }
1597  s->cr();
1598}
1599
1600void RegistersForDebugging::save_registers(MacroAssembler* a) {
1601  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1602  a->flush_windows();
1603  int i;
1604  for (i = 0; i < 8; ++i) {
1605    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1606    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1607    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1608    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1609  }
1610  for (i = 0;  i < 32; ++i) {
1611    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1612  }
1613  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1614    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1615  }
1616}
1617
1618void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1619  for (int i = 1; i < 8;  ++i) {
1620    a->ld_ptr(r, g_offset(i), as_gRegister(i));
1621  }
1622  for (int j = 0; j < 32; ++j) {
1623    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1624  }
1625  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1626    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1627  }
1628}
1629
1630
1631// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1632void MacroAssembler::push_fTOS() {
1633  // %%%%%% need to implement this
1634}
1635
1636// pops double TOS element from CPU stack and pushes on FPU stack
1637void MacroAssembler::pop_fTOS() {
1638  // %%%%%% need to implement this
1639}
1640
1641void MacroAssembler::empty_FPU_stack() {
1642  // %%%%%% need to implement this
1643}
1644
1645void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1646  // plausibility check for oops
1647  if (!VerifyOops) return;
1648
1649  if (reg == G0)  return;       // always NULL, which is always an oop
1650
1651  char buffer[16];
1652  sprintf(buffer, "%d", line);
1653  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1654  char * real_msg = new char[len];
1655  sprintf(real_msg, "%s (%s:%d)", msg, file, line);
1656
1657  // Call indirectly to solve generation ordering problem
1658  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1659
1660  // Make some space on stack above the current register window.
1661  // Enough to hold 8 64-bit registers.
1662  add(SP,-8*8,SP);
1663
1664  // Save some 64-bit registers; a normal 'save' chops the heads off
1665  // of 64-bit longs in the 32-bit build.
1666  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1667  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1668  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1669  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1670
1671  set((intptr_t)real_msg, O1);
1672  // Load address to call to into O7
1673  load_ptr_contents(a, O7);
1674  // Register call to verify_oop_subroutine
1675  callr(O7, G0);
1676  delayed()->nop();
1677  // recover frame size
1678  add(SP, 8*8,SP);
1679}
1680
1681void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1682  // plausibility check for oops
1683  if (!VerifyOops) return;
1684
1685  char buffer[64];
1686  sprintf(buffer, "%d", line);
1687  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1688  sprintf(buffer, " at SP+%d ", addr.disp());
1689  len += strlen(buffer);
1690  char * real_msg = new char[len];
1691  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1692
1693  // Call indirectly to solve generation ordering problem
1694  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1695
1696  // Make some space on stack above the current register window.
1697  // Enough to hold 8 64-bit registers.
1698  add(SP,-8*8,SP);
1699
1700  // Save some 64-bit registers; a normal 'save' chops the heads off
1701  // of 64-bit longs in the 32-bit build.
1702  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1703  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1704  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1705  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1706
1707  set((intptr_t)real_msg, O1);
1708  // Load address to call to into O7
1709  load_ptr_contents(a, O7);
1710  // Register call to verify_oop_subroutine
1711  callr(O7, G0);
1712  delayed()->nop();
1713  // recover frame size
1714  add(SP, 8*8,SP);
1715}
1716
1717// side-door communication with signalHandler in os_solaris.cpp
1718address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1719
1720// This macro is expanded just once; it creates shared code.  Contract:
1721// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1722// registers, including flags.  May not use a register 'save', as this blows
1723// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1724// call.
1725void MacroAssembler::verify_oop_subroutine() {
1726  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1727
1728  // Leaf call; no frame.
1729  Label succeed, fail, null_or_fail;
1730
1731  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1732  // O0 is now the oop to be checked.  O7 is the return address.
1733  Register O0_obj = O0;
1734
1735  // Save some more registers for temps.
1736  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1737  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1738  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1739  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1740
1741  // Save flags
1742  Register O5_save_flags = O5;
1743  rdccr( O5_save_flags );
1744
1745  { // count number of verifies
1746    Register O2_adr   = O2;
1747    Register O3_accum = O3;
1748    Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
1749    sethi(count_addr);
1750    ld(count_addr, O3_accum);
1751    inc(O3_accum);
1752    st(O3_accum, count_addr);
1753  }
1754
1755  Register O2_mask = O2;
1756  Register O3_bits = O3;
1757  Register O4_temp = O4;
1758
1759  // mark lower end of faulting range
1760  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1761  _verify_oop_implicit_branch[0] = pc();
1762
1763  // We can't check the mark oop because it could be in the process of
1764  // locking or unlocking while this is running.
1765  set(Universe::verify_oop_mask (), O2_mask);
1766  set(Universe::verify_oop_bits (), O3_bits);
1767
1768  // assert((obj & oop_mask) == oop_bits);
1769  and3(O0_obj, O2_mask, O4_temp);
1770  cmp(O4_temp, O3_bits);
1771  brx(notEqual, false, pn, null_or_fail);
1772  delayed()->nop();
1773
1774  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1775    // the null_or_fail case is useless; must test for null separately
1776    br_null(O0_obj, false, pn, succeed);
1777    delayed()->nop();
1778  }
1779
1780  // Check the klassOop of this object for being in the right area of memory.
1781  // Cannot do the load in the delay above slot in case O0 is null
1782  ld_ptr(Address(O0_obj, 0, oopDesc::klass_offset_in_bytes()), O0_obj);
1783  // assert((klass & klass_mask) == klass_bits);
1784  if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1785    set(Universe::verify_klass_mask(), O2_mask);
1786  if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1787    set(Universe::verify_klass_bits(), O3_bits);
1788  and3(O0_obj, O2_mask, O4_temp);
1789  cmp(O4_temp, O3_bits);
1790  brx(notEqual, false, pn, fail);
1791  // Check the klass's klass
1792  delayed()->ld_ptr(Address(O0_obj, 0, oopDesc::klass_offset_in_bytes()), O0_obj);
1793  and3(O0_obj, O2_mask, O4_temp);
1794  cmp(O4_temp, O3_bits);
1795  brx(notEqual, false, pn, fail);
1796  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1797
1798  // mark upper end of faulting range
1799  _verify_oop_implicit_branch[1] = pc();
1800
1801  //-----------------------
1802  // all tests pass
1803  bind(succeed);
1804
1805  // Restore prior 64-bit registers
1806  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1807  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1808  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1809  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1810  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1811  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1812
1813  retl();                       // Leaf return; restore prior O7 in delay slot
1814  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1815
1816  //-----------------------
1817  bind(null_or_fail);           // nulls are less common but OK
1818  br_null(O0_obj, false, pt, succeed);
1819  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1820
1821  //-----------------------
1822  // report failure:
1823  bind(fail);
1824  _verify_oop_implicit_branch[2] = pc();
1825
1826  wrccr( O5_save_flags ); // Restore CCR's
1827
1828  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1829
1830  // stop_subroutine expects message pointer in I1.
1831  mov(I1, O1);
1832
1833  // Restore prior 64-bit registers
1834  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1835  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1836  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1837  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1838  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1839  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1840
1841  // factor long stop-sequence into subroutine to save space
1842  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1843
1844  // call indirectly to solve generation ordering problem
1845  Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1846  load_ptr_contents(a, O5);
1847  jmpl(O5, 0, O7);
1848  delayed()->nop();
1849}
1850
1851
1852void MacroAssembler::stop(const char* msg) {
1853  // save frame first to get O7 for return address
1854  // add one word to size in case struct is odd number of words long
1855  // It must be doubleword-aligned for storing doubles into it.
1856
1857    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1858
1859    // stop_subroutine expects message pointer in I1.
1860    set((intptr_t)msg, O1);
1861
1862    // factor long stop-sequence into subroutine to save space
1863    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1864
1865    // call indirectly to solve generation ordering problem
1866    Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1867    load_ptr_contents(a, O5);
1868    jmpl(O5, 0, O7);
1869    delayed()->nop();
1870
1871    breakpoint_trap();   // make stop actually stop rather than writing
1872                         // unnoticeable results in the output files.
1873
1874    // restore(); done in callee to save space!
1875}
1876
1877
1878void MacroAssembler::warn(const char* msg) {
1879  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1880  RegistersForDebugging::save_registers(this);
1881  mov(O0, L0);
1882  set((intptr_t)msg, O0);
1883  call( CAST_FROM_FN_PTR(address, warning) );
1884  delayed()->nop();
1885//  ret();
1886//  delayed()->restore();
1887  RegistersForDebugging::restore_registers(this, L0);
1888  restore();
1889}
1890
1891
1892void MacroAssembler::untested(const char* what) {
1893  // We must be able to turn interactive prompting off
1894  // in order to run automated test scripts on the VM
1895  // Use the flag ShowMessageBoxOnError
1896
1897  char* b = new char[1024];
1898  sprintf(b, "untested: %s", what);
1899
1900  if ( ShowMessageBoxOnError )   stop(b);
1901  else                           warn(b);
1902}
1903
1904
1905void MacroAssembler::stop_subroutine() {
1906  RegistersForDebugging::save_registers(this);
1907
1908  // for the sake of the debugger, stick a PC on the current frame
1909  // (this assumes that the caller has performed an extra "save")
1910  mov(I7, L7);
1911  add(O7, -7 * BytesPerInt, I7);
1912
1913  save_frame(); // one more save to free up another O7 register
1914  mov(I0, O1); // addr of reg save area
1915
1916  // We expect pointer to message in I1. Caller must set it up in O1
1917  mov(I1, O0); // get msg
1918  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1919  delayed()->nop();
1920
1921  restore();
1922
1923  RegistersForDebugging::restore_registers(this, O0);
1924
1925  save_frame(0);
1926  call(CAST_FROM_FN_PTR(address,breakpoint));
1927  delayed()->nop();
1928  restore();
1929
1930  mov(L7, I7);
1931  retl();
1932  delayed()->restore(); // see stop above
1933}
1934
1935
1936void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1937  if ( ShowMessageBoxOnError ) {
1938      JavaThreadState saved_state = JavaThread::current()->thread_state();
1939      JavaThread::current()->set_thread_state(_thread_in_vm);
1940      {
1941        // In order to get locks work, we need to fake a in_VM state
1942        ttyLocker ttyl;
1943        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1944        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1945          ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
1946        }
1947        if (os::message_box(msg, "Execution stopped, print registers?"))
1948          regs->print(::tty);
1949      }
1950      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1951  }
1952  else
1953     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1954  assert(false, "error");
1955}
1956
1957
1958#ifndef PRODUCT
1959void MacroAssembler::test() {
1960  ResourceMark rm;
1961
1962  CodeBuffer cb("test", 10000, 10000);
1963  MacroAssembler* a = new MacroAssembler(&cb);
1964  VM_Version::allow_all();
1965  a->test_v9();
1966  a->test_v8_onlys();
1967  VM_Version::revert();
1968
1969  StubRoutines::Sparc::test_stop_entry()();
1970}
1971#endif
1972
1973
1974void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1975  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1976  Label no_extras;
1977  br( negative, true, pt, no_extras ); // if neg, clear reg
1978  delayed()->set( 0, Rresult);         // annuled, so only if taken
1979  bind( no_extras );
1980}
1981
1982
1983void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1984#ifdef _LP64
1985  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1986#else
1987  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
1988#endif
1989  bclr(1, Rresult);
1990  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
1991}
1992
1993
1994void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1995  calc_frame_size(Rextra_words, Rresult);
1996  neg(Rresult);
1997  save(SP, Rresult, SP);
1998}
1999
2000
2001// ---------------------------------------------------------
2002Assembler::RCondition cond2rcond(Assembler::Condition c) {
2003  switch (c) {
2004    /*case zero: */
2005    case Assembler::equal:        return Assembler::rc_z;
2006    case Assembler::lessEqual:    return Assembler::rc_lez;
2007    case Assembler::less:         return Assembler::rc_lz;
2008    /*case notZero:*/
2009    case Assembler::notEqual:     return Assembler::rc_nz;
2010    case Assembler::greater:      return Assembler::rc_gz;
2011    case Assembler::greaterEqual: return Assembler::rc_gez;
2012  }
2013  ShouldNotReachHere();
2014  return Assembler::rc_z;
2015}
2016
2017// compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2018void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
2019  tst(s1);
2020  br (c, a, p, L);
2021}
2022
2023
2024// Compares a pointer register with zero and branches on null.
2025// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2026void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2027  assert_not_delayed();
2028#ifdef _LP64
2029  bpr( rc_z, a, p, s1, L );
2030#else
2031  tst(s1);
2032  br ( zero, a, p, L );
2033#endif
2034}
2035
2036void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2037  assert_not_delayed();
2038#ifdef _LP64
2039  bpr( rc_nz, a, p, s1, L );
2040#else
2041  tst(s1);
2042  br ( notZero, a, p, L );
2043#endif
2044}
2045
2046
2047// instruction sequences factored across compiler & interpreter
2048
2049
2050void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2051                           Register Rb_hi, Register Rb_low,
2052                           Register Rresult) {
2053
2054  Label check_low_parts, done;
2055
2056  cmp(Ra_hi, Rb_hi );  // compare hi parts
2057  br(equal, true, pt, check_low_parts);
2058  delayed()->cmp(Ra_low, Rb_low); // test low parts
2059
2060  // And, with an unsigned comparison, it does not matter if the numbers
2061  // are negative or not.
2062  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2063  // The second one is bigger (unsignedly).
2064
2065  // Other notes:  The first move in each triplet can be unconditional
2066  // (and therefore probably prefetchable).
2067  // And the equals case for the high part does not need testing,
2068  // since that triplet is reached only after finding the high halves differ.
2069
2070  if (VM_Version::v9_instructions_work()) {
2071
2072                                    mov  (                     -1, Rresult);
2073    ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
2074  }
2075  else {
2076    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2077    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2078  }
2079
2080  bind( check_low_parts );
2081
2082  if (VM_Version::v9_instructions_work()) {
2083    mov(                               -1, Rresult);
2084    movcc(equal,           false, icc,  0, Rresult);
2085    movcc(greaterUnsigned, false, icc,  1, Rresult);
2086  }
2087  else {
2088                                                    set(-1, Rresult);
2089    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2090    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2091  }
2092  bind( done );
2093}
2094
2095void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2096  subcc(  G0, Rlow, Rlow );
2097  subc(   G0, Rhi,  Rhi  );
2098}
2099
2100void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2101                           Register Rcount,
2102                           Register Rout_high, Register Rout_low,
2103                           Register Rtemp ) {
2104
2105
2106  Register Ralt_count = Rtemp;
2107  Register Rxfer_bits = Rtemp;
2108
2109  assert( Ralt_count != Rin_high
2110      &&  Ralt_count != Rin_low
2111      &&  Ralt_count != Rcount
2112      &&  Rxfer_bits != Rin_low
2113      &&  Rxfer_bits != Rin_high
2114      &&  Rxfer_bits != Rcount
2115      &&  Rxfer_bits != Rout_low
2116      &&  Rout_low   != Rin_high,
2117        "register alias checks");
2118
2119  Label big_shift, done;
2120
2121  // This code can be optimized to use the 64 bit shifts in V9.
2122  // Here we use the 32 bit shifts.
2123
2124  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2125  subcc(Rcount,         31,             Ralt_count);
2126  br(greater, true, pn, big_shift);
2127  delayed()->
2128  dec(Ralt_count);
2129
2130  // shift < 32 bits, Ralt_count = Rcount-31
2131
2132  // We get the transfer bits by shifting right by 32-count the low
2133  // register. This is done by shifting right by 31-count and then by one
2134  // more to take care of the special (rare) case where count is zero
2135  // (shifting by 32 would not work).
2136
2137  neg(  Ralt_count                                 );
2138
2139  // The order of the next two instructions is critical in the case where
2140  // Rin and Rout are the same and should not be reversed.
2141
2142  srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
2143  if (Rcount != Rout_low) {
2144    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2145  }
2146  sll(  Rin_high,       Rcount,         Rout_high  );
2147  if (Rcount == Rout_low) {
2148    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2149  }
2150  srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
2151  ba (false, done);
2152  delayed()->
2153  or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2154
2155  // shift >= 32 bits, Ralt_count = Rcount-32
2156  bind(big_shift);
2157  sll(  Rin_low,        Ralt_count,     Rout_high  );
2158  clr(  Rout_low                                   );
2159
2160  bind(done);
2161}
2162
2163
2164void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2165                           Register Rcount,
2166                           Register Rout_high, Register Rout_low,
2167                           Register Rtemp ) {
2168
2169  Register Ralt_count = Rtemp;
2170  Register Rxfer_bits = Rtemp;
2171
2172  assert( Ralt_count != Rin_high
2173      &&  Ralt_count != Rin_low
2174      &&  Ralt_count != Rcount
2175      &&  Rxfer_bits != Rin_low
2176      &&  Rxfer_bits != Rin_high
2177      &&  Rxfer_bits != Rcount
2178      &&  Rxfer_bits != Rout_high
2179      &&  Rout_high  != Rin_low,
2180        "register alias checks");
2181
2182  Label big_shift, done;
2183
2184  // This code can be optimized to use the 64 bit shifts in V9.
2185  // Here we use the 32 bit shifts.
2186
2187  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2188  subcc(Rcount,         31,             Ralt_count);
2189  br(greater, true, pn, big_shift);
2190  delayed()->dec(Ralt_count);
2191
2192  // shift < 32 bits, Ralt_count = Rcount-31
2193
2194  // We get the transfer bits by shifting left by 32-count the high
2195  // register. This is done by shifting left by 31-count and then by one
2196  // more to take care of the special (rare) case where count is zero
2197  // (shifting by 32 would not work).
2198
2199  neg(  Ralt_count                                  );
2200  if (Rcount != Rout_low) {
2201    srl(        Rin_low,        Rcount,         Rout_low    );
2202  }
2203
2204  // The order of the next two instructions is critical in the case where
2205  // Rin and Rout are the same and should not be reversed.
2206
2207  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2208  sra(  Rin_high,       Rcount,         Rout_high   ); // high half
2209  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2210  if (Rcount == Rout_low) {
2211    srl(        Rin_low,        Rcount,         Rout_low    );
2212  }
2213  ba (false, done);
2214  delayed()->
2215  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2216
2217  // shift >= 32 bits, Ralt_count = Rcount-32
2218  bind(big_shift);
2219
2220  sra(  Rin_high,       Ralt_count,     Rout_low    );
2221  sra(  Rin_high,       31,             Rout_high   ); // sign into hi
2222
2223  bind( done );
2224}
2225
2226
2227
2228void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2229                            Register Rcount,
2230                            Register Rout_high, Register Rout_low,
2231                            Register Rtemp ) {
2232
2233  Register Ralt_count = Rtemp;
2234  Register Rxfer_bits = Rtemp;
2235
2236  assert( Ralt_count != Rin_high
2237      &&  Ralt_count != Rin_low
2238      &&  Ralt_count != Rcount
2239      &&  Rxfer_bits != Rin_low
2240      &&  Rxfer_bits != Rin_high
2241      &&  Rxfer_bits != Rcount
2242      &&  Rxfer_bits != Rout_high
2243      &&  Rout_high  != Rin_low,
2244        "register alias checks");
2245
2246  Label big_shift, done;
2247
2248  // This code can be optimized to use the 64 bit shifts in V9.
2249  // Here we use the 32 bit shifts.
2250
2251  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2252  subcc(Rcount,         31,             Ralt_count);
2253  br(greater, true, pn, big_shift);
2254  delayed()->dec(Ralt_count);
2255
2256  // shift < 32 bits, Ralt_count = Rcount-31
2257
2258  // We get the transfer bits by shifting left by 32-count the high
2259  // register. This is done by shifting left by 31-count and then by one
2260  // more to take care of the special (rare) case where count is zero
2261  // (shifting by 32 would not work).
2262
2263  neg(  Ralt_count                                  );
2264  if (Rcount != Rout_low) {
2265    srl(        Rin_low,        Rcount,         Rout_low    );
2266  }
2267
2268  // The order of the next two instructions is critical in the case where
2269  // Rin and Rout are the same and should not be reversed.
2270
2271  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2272  srl(  Rin_high,       Rcount,         Rout_high   ); // high half
2273  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2274  if (Rcount == Rout_low) {
2275    srl(        Rin_low,        Rcount,         Rout_low    );
2276  }
2277  ba (false, done);
2278  delayed()->
2279  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2280
2281  // shift >= 32 bits, Ralt_count = Rcount-32
2282  bind(big_shift);
2283
2284  srl(  Rin_high,       Ralt_count,     Rout_low    );
2285  clr(  Rout_high                                   );
2286
2287  bind( done );
2288}
2289
2290#ifdef _LP64
2291void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2292  cmp(Ra, Rb);
2293  mov(                       -1, Rresult);
2294  movcc(equal,   false, xcc,  0, Rresult);
2295  movcc(greater, false, xcc,  1, Rresult);
2296}
2297#endif
2298
2299
2300void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2301                                FloatRegister Fa, FloatRegister Fb,
2302                                Register Rresult) {
2303
2304  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2305
2306  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2307  Condition eq =                          f_equal;
2308  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2309
2310  if (VM_Version::v9_instructions_work()) {
2311
2312    mov(                   -1, Rresult );
2313    movcc( eq, true, fcc0,  0, Rresult );
2314    movcc( gt, true, fcc0,  1, Rresult );
2315
2316  } else {
2317    Label done;
2318
2319                                         set( -1, Rresult );
2320    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2321    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2322    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2323
2324    bind (done);
2325  }
2326}
2327
2328
2329void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2330{
2331  if (VM_Version::v9_instructions_work()) {
2332    Assembler::fneg(w, s, d);
2333  } else {
2334    if (w == FloatRegisterImpl::S) {
2335      Assembler::fneg(w, s, d);
2336    } else if (w == FloatRegisterImpl::D) {
2337      // number() does a sanity check on the alignment.
2338      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2339        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2340
2341      Assembler::fneg(FloatRegisterImpl::S, s, d);
2342      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2343    } else {
2344      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2345
2346      // number() does a sanity check on the alignment.
2347      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2348        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2349
2350      Assembler::fneg(FloatRegisterImpl::S, s, d);
2351      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2352      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2353      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2354    }
2355  }
2356}
2357
2358void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2359{
2360  if (VM_Version::v9_instructions_work()) {
2361    Assembler::fmov(w, s, d);
2362  } else {
2363    if (w == FloatRegisterImpl::S) {
2364      Assembler::fmov(w, s, d);
2365    } else if (w == FloatRegisterImpl::D) {
2366      // number() does a sanity check on the alignment.
2367      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2368        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2369
2370      Assembler::fmov(FloatRegisterImpl::S, s, d);
2371      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2372    } else {
2373      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2374
2375      // number() does a sanity check on the alignment.
2376      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2377        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2378
2379      Assembler::fmov(FloatRegisterImpl::S, s, d);
2380      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2381      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2382      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2383    }
2384  }
2385}
2386
2387void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2388{
2389  if (VM_Version::v9_instructions_work()) {
2390    Assembler::fabs(w, s, d);
2391  } else {
2392    if (w == FloatRegisterImpl::S) {
2393      Assembler::fabs(w, s, d);
2394    } else if (w == FloatRegisterImpl::D) {
2395      // number() does a sanity check on the alignment.
2396      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2397        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2398
2399      Assembler::fabs(FloatRegisterImpl::S, s, d);
2400      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2401    } else {
2402      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2403
2404      // number() does a sanity check on the alignment.
2405      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2406       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2407
2408      Assembler::fabs(FloatRegisterImpl::S, s, d);
2409      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2410      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2411      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2412    }
2413  }
2414}
2415
2416void MacroAssembler::save_all_globals_into_locals() {
2417  mov(G1,L1);
2418  mov(G2,L2);
2419  mov(G3,L3);
2420  mov(G4,L4);
2421  mov(G5,L5);
2422  mov(G6,L6);
2423  mov(G7,L7);
2424}
2425
2426void MacroAssembler::restore_globals_from_locals() {
2427  mov(L1,G1);
2428  mov(L2,G2);
2429  mov(L3,G3);
2430  mov(L4,G4);
2431  mov(L5,G5);
2432  mov(L6,G6);
2433  mov(L7,G7);
2434}
2435
2436// Use for 64 bit operation.
2437void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2438{
2439  // store ptr_reg as the new top value
2440#ifdef _LP64
2441  casx(top_ptr_reg, top_reg, ptr_reg);
2442#else
2443  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2444#endif // _LP64
2445}
2446
2447// [RGV] This routine does not handle 64 bit operations.
2448//       use casx_under_lock() or casx directly!!!
2449void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2450{
2451  // store ptr_reg as the new top value
2452  if (VM_Version::v9_instructions_work()) {
2453    cas(top_ptr_reg, top_reg, ptr_reg);
2454  } else {
2455
2456    // If the register is not an out nor global, it is not visible
2457    // after the save.  Allocate a register for it, save its
2458    // value in the register save area (the save may not flush
2459    // registers to the save area).
2460
2461    Register top_ptr_reg_after_save;
2462    Register top_reg_after_save;
2463    Register ptr_reg_after_save;
2464
2465    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2466      top_ptr_reg_after_save = top_ptr_reg->after_save();
2467    } else {
2468      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2469      top_ptr_reg_after_save = L0;
2470      st(top_ptr_reg, reg_save_addr);
2471    }
2472
2473    if (top_reg->is_out() || top_reg->is_global()) {
2474      top_reg_after_save = top_reg->after_save();
2475    } else {
2476      Address reg_save_addr = top_reg->address_in_saved_window();
2477      top_reg_after_save = L1;
2478      st(top_reg, reg_save_addr);
2479    }
2480
2481    if (ptr_reg->is_out() || ptr_reg->is_global()) {
2482      ptr_reg_after_save = ptr_reg->after_save();
2483    } else {
2484      Address reg_save_addr = ptr_reg->address_in_saved_window();
2485      ptr_reg_after_save = L2;
2486      st(ptr_reg, reg_save_addr);
2487    }
2488
2489    const Register& lock_reg = L3;
2490    const Register& lock_ptr_reg = L4;
2491    const Register& value_reg = L5;
2492    const Register& yield_reg = L6;
2493    const Register& yieldall_reg = L7;
2494
2495    save_frame();
2496
2497    if (top_ptr_reg_after_save == L0) {
2498      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2499    }
2500
2501    if (top_reg_after_save == L1) {
2502      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2503    }
2504
2505    if (ptr_reg_after_save == L2) {
2506      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2507    }
2508
2509    Label(retry_get_lock);
2510    Label(not_same);
2511    Label(dont_yield);
2512
2513    assert(lock_addr, "lock_address should be non null for v8");
2514    set((intptr_t)lock_addr, lock_ptr_reg);
2515    // Initialize yield counter
2516    mov(G0,yield_reg);
2517    mov(G0, yieldall_reg);
2518    set(StubRoutines::Sparc::locked, lock_reg);
2519
2520    bind(retry_get_lock);
2521    cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
2522    br(Assembler::less, false, Assembler::pt, dont_yield);
2523    delayed()->nop();
2524
2525    if(use_call_vm) {
2526      Untested("Need to verify global reg consistancy");
2527      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2528    } else {
2529      // Save the regs and make space for a C call
2530      save(SP, -96, SP);
2531      save_all_globals_into_locals();
2532      call(CAST_FROM_FN_PTR(address,os::yield_all));
2533      delayed()->mov(yieldall_reg, O0);
2534      restore_globals_from_locals();
2535      restore();
2536    }
2537
2538    // reset the counter
2539    mov(G0,yield_reg);
2540    add(yieldall_reg, 1, yieldall_reg);
2541
2542    bind(dont_yield);
2543    // try to get lock
2544    swap(lock_ptr_reg, 0, lock_reg);
2545
2546    // did we get the lock?
2547    cmp(lock_reg, StubRoutines::Sparc::unlocked);
2548    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2549    delayed()->add(yield_reg,1,yield_reg);
2550
2551    // yes, got lock.  do we have the same top?
2552    ld(top_ptr_reg_after_save, 0, value_reg);
2553    cmp(value_reg, top_reg_after_save);
2554    br(Assembler::notEqual, false, Assembler::pn, not_same);
2555    delayed()->nop();
2556
2557    // yes, same top.
2558    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2559    membar(Assembler::StoreStore);
2560
2561    bind(not_same);
2562    mov(value_reg, ptr_reg_after_save);
2563    st(lock_reg, lock_ptr_reg, 0); // unlock
2564
2565    restore();
2566  }
2567}
2568
2569void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2570                                          Label& done, Label* slow_case,
2571                                          BiasedLockingCounters* counters) {
2572  assert(UseBiasedLocking, "why call this otherwise?");
2573
2574  if (PrintBiasedLockingStatistics) {
2575    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2576    if (counters == NULL)
2577      counters = BiasedLocking::counters();
2578  }
2579
2580  Label cas_label;
2581
2582  // Biased locking
2583  // See whether the lock is currently biased toward our thread and
2584  // whether the epoch is still valid
2585  // Note that the runtime guarantees sufficient alignment of JavaThread
2586  // pointers to allow age to be placed into low bits
2587  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2588  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2589  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2590  brx(Assembler::notEqual, false, Assembler::pn, cas_label);
2591
2592  delayed()->ld_ptr(Address(obj_reg, 0, oopDesc::klass_offset_in_bytes()), temp_reg);
2593  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2594  or3(G2_thread, temp_reg, temp_reg);
2595  xor3(mark_reg, temp_reg, temp_reg);
2596  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2597  if (counters != NULL) {
2598    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2599    // Reload mark_reg as we may need it later
2600    ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
2601  }
2602  brx(Assembler::equal, true, Assembler::pt, done);
2603  delayed()->nop();
2604
2605  Label try_revoke_bias;
2606  Label try_rebias;
2607  Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
2608  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2609
2610  // At this point we know that the header has the bias pattern and
2611  // that we are not the bias owner in the current epoch. We need to
2612  // figure out more details about the state of the header in order to
2613  // know what operations can be legally performed on the object's
2614  // header.
2615
2616  // If the low three bits in the xor result aren't clear, that means
2617  // the prototype header is no longer biased and we have to revoke
2618  // the bias on this object.
2619  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2620  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2621
2622  // Biasing is still enabled for this data type. See whether the
2623  // epoch of the current bias is still valid, meaning that the epoch
2624  // bits of the mark word are equal to the epoch bits of the
2625  // prototype header. (Note that the prototype header's epoch bits
2626  // only change at a safepoint.) If not, attempt to rebias the object
2627  // toward the current thread. Note that we must be absolutely sure
2628  // that the current epoch is invalid in order to do this because
2629  // otherwise the manipulations it performs on the mark word are
2630  // illegal.
2631  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2632  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2633
2634  // The epoch of the current bias is still valid but we know nothing
2635  // about the owner; it might be set or it might be clear. Try to
2636  // acquire the bias of the object using an atomic operation. If this
2637  // fails we will go in to the runtime to revoke the object's bias.
2638  // Note that we first construct the presumed unbiased header so we
2639  // don't accidentally blow away another thread's valid bias.
2640  delayed()->and3(mark_reg,
2641                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2642                  mark_reg);
2643  or3(G2_thread, mark_reg, temp_reg);
2644  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2645                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2646  // If the biasing toward our thread failed, this means that
2647  // another thread succeeded in biasing it toward itself and we
2648  // need to revoke that bias. The revocation will occur in the
2649  // interpreter runtime in the slow case.
2650  cmp(mark_reg, temp_reg);
2651  if (counters != NULL) {
2652    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2653  }
2654  if (slow_case != NULL) {
2655    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2656    delayed()->nop();
2657  }
2658  br(Assembler::always, false, Assembler::pt, done);
2659  delayed()->nop();
2660
2661  bind(try_rebias);
2662  // At this point we know the epoch has expired, meaning that the
2663  // current "bias owner", if any, is actually invalid. Under these
2664  // circumstances _only_, we are allowed to use the current header's
2665  // value as the comparison value when doing the cas to acquire the
2666  // bias in the current epoch. In other words, we allow transfer of
2667  // the bias from one thread to another directly in this situation.
2668  //
2669  // FIXME: due to a lack of registers we currently blow away the age
2670  // bits in this situation. Should attempt to preserve them.
2671  ld_ptr(Address(obj_reg, 0, oopDesc::klass_offset_in_bytes()), temp_reg);
2672  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2673  or3(G2_thread, temp_reg, temp_reg);
2674  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2675                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2676  // If the biasing toward our thread failed, this means that
2677  // another thread succeeded in biasing it toward itself and we
2678  // need to revoke that bias. The revocation will occur in the
2679  // interpreter runtime in the slow case.
2680  cmp(mark_reg, temp_reg);
2681  if (counters != NULL) {
2682    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2683  }
2684  if (slow_case != NULL) {
2685    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2686    delayed()->nop();
2687  }
2688  br(Assembler::always, false, Assembler::pt, done);
2689  delayed()->nop();
2690
2691  bind(try_revoke_bias);
2692  // The prototype mark in the klass doesn't have the bias bit set any
2693  // more, indicating that objects of this data type are not supposed
2694  // to be biased any more. We are going to try to reset the mark of
2695  // this object to the prototype value and fall through to the
2696  // CAS-based locking scheme. Note that if our CAS fails, it means
2697  // that another thread raced us for the privilege of revoking the
2698  // bias of this particular object, so it's okay to continue in the
2699  // normal locking code.
2700  //
2701  // FIXME: due to a lack of registers we currently blow away the age
2702  // bits in this situation. Should attempt to preserve them.
2703  ld_ptr(Address(obj_reg, 0, oopDesc::klass_offset_in_bytes()), temp_reg);
2704  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2705  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2706                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2707  // Fall through to the normal CAS-based lock, because no matter what
2708  // the result of the above CAS, some thread must have succeeded in
2709  // removing the bias bit from the object's header.
2710  if (counters != NULL) {
2711    cmp(mark_reg, temp_reg);
2712    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2713  }
2714
2715  bind(cas_label);
2716}
2717
2718void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2719                                          bool allow_delay_slot_filling) {
2720  // Check for biased locking unlock case, which is a no-op
2721  // Note: we do not have to check the thread ID for two reasons.
2722  // First, the interpreter checks for IllegalMonitorStateException at
2723  // a higher level. Second, if the bias was revoked while we held the
2724  // lock, the object could not be rebiased toward another thread, so
2725  // the bias bit would be clear.
2726  ld_ptr(mark_addr, temp_reg);
2727  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2728  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2729  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2730  delayed();
2731  if (!allow_delay_slot_filling) {
2732    nop();
2733  }
2734}
2735
2736
2737// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
2738// Solaris/SPARC's "as".  Another apt name would be cas_ptr()
2739
2740void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
2741  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
2742}
2743
2744
2745
2746// compiler_lock_object() and compiler_unlock_object() are direct transliterations
2747// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2748// The code could be tightened up considerably.
2749//
2750// box->dhw disposition - post-conditions at DONE_LABEL.
2751// -   Successful inflated lock:  box->dhw != 0.
2752//     Any non-zero value suffices.
2753//     Consider G2_thread, rsp, boxReg, or unused_mark()
2754// -   Successful Stack-lock: box->dhw == mark.
2755//     box->dhw must contain the displaced mark word value
2756// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2757//     The slow-path fast_enter() and slow_enter() operators
2758//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
2759// -   Biased: box->dhw is undefined
2760//
2761// SPARC refworkload performance - specifically jetstream and scimark - are
2762// extremely sensitive to the size of the code emitted by compiler_lock_object
2763// and compiler_unlock_object.  Critically, the key factor is code size, not path
2764// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2765// effect).
2766
2767
2768void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
2769                                          BiasedLockingCounters* counters) {
2770   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
2771
2772   verify_oop(Roop);
2773   Label done ;
2774
2775   if (counters != NULL) {
2776     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2777   }
2778
2779   if (EmitSync & 1) {
2780     mov    (3, Rscratch) ;
2781     st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2782     cmp    (SP, G0) ;
2783     return ;
2784   }
2785
2786   if (EmitSync & 2) {
2787
2788     // Fetch object's markword
2789     ld_ptr(mark_addr, Rmark);
2790
2791     if (UseBiasedLocking) {
2792        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2793     }
2794
2795     // Save Rbox in Rscratch to be used for the cas operation
2796     mov(Rbox, Rscratch);
2797
2798     // set Rmark to markOop | markOopDesc::unlocked_value
2799     or3(Rmark, markOopDesc::unlocked_value, Rmark);
2800
2801     // Initialize the box.  (Must happen before we update the object mark!)
2802     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2803
2804     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2805     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2806     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
2807        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2808
2809     // if compare/exchange succeeded we found an unlocked object and we now have locked it
2810     // hence we are done
2811     cmp(Rmark, Rscratch);
2812#ifdef _LP64
2813     sub(Rscratch, STACK_BIAS, Rscratch);
2814#endif
2815     brx(Assembler::equal, false, Assembler::pt, done);
2816     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
2817
2818     // we did not find an unlocked object so see if this is a recursive case
2819     // sub(Rscratch, SP, Rscratch);
2820     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2821     andcc(Rscratch, 0xfffff003, Rscratch);
2822     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2823     bind (done) ;
2824     return ;
2825   }
2826
2827   Label Egress ;
2828
2829   if (EmitSync & 256) {
2830      Label IsInflated ;
2831
2832      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
2833      // Triage: biased, stack-locked, neutral, inflated
2834      if (UseBiasedLocking) {
2835        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2836        // Invariant: if control reaches this point in the emitted stream
2837        // then Rmark has not been modified.
2838      }
2839
2840      // Store mark into displaced mark field in the on-stack basic-lock "box"
2841      // Critically, this must happen before the CAS
2842      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2843      st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2844      andcc  (Rmark, 2, G0) ;
2845      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
2846      delayed() ->
2847
2848      // Try stack-lock acquisition.
2849      // Beware: the 1st instruction is in a delay slot
2850      mov    (Rbox,  Rscratch);
2851      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
2852      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
2853      casn   (mark_addr.base(), Rmark, Rscratch) ;
2854      cmp    (Rmark, Rscratch);
2855      brx    (Assembler::equal, false, Assembler::pt, done);
2856      delayed()->sub(Rscratch, SP, Rscratch);
2857
2858      // Stack-lock attempt failed - check for recursive stack-lock.
2859      // See the comments below about how we might remove this case.
2860#ifdef _LP64
2861      sub    (Rscratch, STACK_BIAS, Rscratch);
2862#endif
2863      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2864      andcc  (Rscratch, 0xfffff003, Rscratch);
2865      br     (Assembler::always, false, Assembler::pt, done) ;
2866      delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2867
2868      bind   (IsInflated) ;
2869      if (EmitSync & 64) {
2870         // If m->owner != null goto IsLocked
2871         // Pessimistic form: Test-and-CAS vs CAS
2872         // The optimistic form avoids RTS->RTO cache line upgrades.
2873         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
2874         andcc  (Rscratch, Rscratch, G0) ;
2875         brx    (Assembler::notZero, false, Assembler::pn, done) ;
2876         delayed()->nop() ;
2877         // m->owner == null : it's unlocked.
2878      }
2879
2880      // Try to CAS m->owner from null to Self
2881      // Invariant: if we acquire the lock then _recursions should be 0.
2882      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
2883      mov    (G2_thread, Rscratch) ;
2884      casn   (Rmark, G0, Rscratch) ;
2885      cmp    (Rscratch, G0) ;
2886      // Intentional fall-through into done
2887   } else {
2888      // Aggressively avoid the Store-before-CAS penalty
2889      // Defer the store into box->dhw until after the CAS
2890      Label IsInflated, Recursive ;
2891
2892// Anticipate CAS -- Avoid RTS->RTO upgrade
2893// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
2894
2895      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
2896      // Triage: biased, stack-locked, neutral, inflated
2897
2898      if (UseBiasedLocking) {
2899        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2900        // Invariant: if control reaches this point in the emitted stream
2901        // then Rmark has not been modified.
2902      }
2903      andcc  (Rmark, 2, G0) ;
2904      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
2905      delayed()->                         // Beware - dangling delay-slot
2906
2907      // Try stack-lock acquisition.
2908      // Transiently install BUSY (0) encoding in the mark word.
2909      // if the CAS of 0 into the mark was successful then we execute:
2910      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
2911      //   ST obj->mark = box    -- overwrite transient 0 value
2912      // This presumes TSO, of course.
2913
2914      mov    (0, Rscratch) ;
2915      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
2916      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
2917      casn   (mark_addr.base(), Rmark, Rscratch) ;
2918// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
2919      cmp    (Rscratch, Rmark) ;
2920      brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
2921      delayed() ->
2922        st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2923      if (counters != NULL) {
2924        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2925      }
2926      br     (Assembler::always, false, Assembler::pt, done);
2927      delayed() ->
2928        st_ptr (Rbox, mark_addr) ;
2929
2930      bind   (Recursive) ;
2931      // Stack-lock attempt failed - check for recursive stack-lock.
2932      // Tests show that we can remove the recursive case with no impact
2933      // on refworkload 0.83.  If we need to reduce the size of the code
2934      // emitted by compiler_lock_object() the recursive case is perfect
2935      // candidate.
2936      //
2937      // A more extreme idea is to always inflate on stack-lock recursion.
2938      // This lets us eliminate the recursive checks in compiler_lock_object
2939      // and compiler_unlock_object and the (box->dhw == 0) encoding.
2940      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2941      // and showed a performance *increase*.  In the same experiment I eliminated
2942      // the fast-path stack-lock code from the interpreter and always passed
2943      // control to the "slow" operators in synchronizer.cpp.
2944
2945      // RScratch contains the fetched obj->mark value from the failed CASN.
2946#ifdef _LP64
2947      sub    (Rscratch, STACK_BIAS, Rscratch);
2948#endif
2949      sub(Rscratch, SP, Rscratch);
2950      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2951      andcc  (Rscratch, 0xfffff003, Rscratch);
2952      if (counters != NULL) {
2953        // Accounting needs the Rscratch register
2954        st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2955        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2956        br     (Assembler::always, false, Assembler::pt, done) ;
2957        delayed()->nop() ;
2958      } else {
2959        br     (Assembler::always, false, Assembler::pt, done) ;
2960        delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2961      }
2962
2963      bind   (IsInflated) ;
2964      if (EmitSync & 64) {
2965         // If m->owner != null goto IsLocked
2966         // Test-and-CAS vs CAS
2967         // Pessimistic form avoids futile (doomed) CAS attempts
2968         // The optimistic form avoids RTS->RTO cache line upgrades.
2969         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
2970         andcc  (Rscratch, Rscratch, G0) ;
2971         brx    (Assembler::notZero, false, Assembler::pn, done) ;
2972         delayed()->nop() ;
2973         // m->owner == null : it's unlocked.
2974      }
2975
2976      // Try to CAS m->owner from null to Self
2977      // Invariant: if we acquire the lock then _recursions should be 0.
2978      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
2979      mov    (G2_thread, Rscratch) ;
2980      casn   (Rmark, G0, Rscratch) ;
2981      cmp    (Rscratch, G0) ;
2982      // ST box->displaced_header = NonZero.
2983      // Any non-zero value suffices:
2984      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
2985      st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
2986      // Intentional fall-through into done
2987   }
2988
2989   bind   (done) ;
2990}
2991
2992void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
2993   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
2994
2995   Label done ;
2996
2997   if (EmitSync & 4) {
2998     cmp  (SP, G0) ;
2999     return ;
3000   }
3001
3002   if (EmitSync & 8) {
3003     if (UseBiasedLocking) {
3004        biased_locking_exit(mark_addr, Rscratch, done);
3005     }
3006
3007     // Test first if it is a fast recursive unlock
3008     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3009     cmp(Rmark, G0);
3010     brx(Assembler::equal, false, Assembler::pt, done);
3011     delayed()->nop();
3012
3013     // Check if it is still a light weight lock, this is is true if we see
3014     // the stack address of the basicLock in the markOop of the object
3015     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3016     casx_under_lock(mark_addr.base(), Rbox, Rmark,
3017       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3018     br (Assembler::always, false, Assembler::pt, done);
3019     delayed()->cmp(Rbox, Rmark);
3020     bind (done) ;
3021     return ;
3022   }
3023
3024   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3025   // is too large performance rolls abruptly off a cliff.
3026   // This could be related to inlining policies, code cache management, or
3027   // I$ effects.
3028   Label LStacked ;
3029
3030   if (UseBiasedLocking) {
3031      // TODO: eliminate redundant LDs of obj->mark
3032      biased_locking_exit(mark_addr, Rscratch, done);
3033   }
3034
3035   ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
3036   ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3037   andcc  (Rscratch, Rscratch, G0);
3038   brx    (Assembler::zero, false, Assembler::pn, done);
3039   delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
3040   andcc  (Rmark, 2, G0) ;
3041   brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
3042   delayed()-> nop() ;
3043
3044   // It's inflated
3045   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3046   // the ST of 0 into _owner which releases the lock.  This prevents loads
3047   // and stores within the critical section from reordering (floating)
3048   // past the store that releases the lock.  But TSO is a strong memory model
3049   // and that particular flavor of barrier is a noop, so we can safely elide it.
3050   // Note that we use 1-0 locking by default for the inflated case.  We
3051   // close the resultant (and rare) race by having contented threads in
3052   // monitorenter periodically poll _owner.
3053   ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
3054   ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
3055   xor3   (Rscratch, G2_thread, Rscratch) ;
3056   orcc   (Rbox, Rscratch, Rbox) ;
3057   brx    (Assembler::notZero, false, Assembler::pn, done) ;
3058   delayed()->
3059   ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
3060   ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
3061   orcc   (Rbox, Rscratch, G0) ;
3062   if (EmitSync & 65536) {
3063      Label LSucc ;
3064      brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
3065      delayed()->nop() ;
3066      br     (Assembler::always, false, Assembler::pt, done) ;
3067      delayed()->
3068      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3069
3070      bind   (LSucc) ;
3071      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3072      if (os::is_MP()) { membar (StoreLoad) ; }
3073      ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
3074      andcc  (Rscratch, Rscratch, G0) ;
3075      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3076      delayed()-> andcc (G0, G0, G0) ;
3077      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3078      mov    (G2_thread, Rscratch) ;
3079      casn   (Rmark, G0, Rscratch) ;
3080      cmp    (Rscratch, G0) ;
3081      // invert icc.zf and goto done
3082      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3083      delayed() -> cmp (G0, G0) ;
3084      br     (Assembler::always, false, Assembler::pt, done);
3085      delayed() -> cmp (G0, 1) ;
3086   } else {
3087      brx    (Assembler::notZero, false, Assembler::pn, done) ;
3088      delayed()->nop() ;
3089      br     (Assembler::always, false, Assembler::pt, done) ;
3090      delayed()->
3091      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3092   }
3093
3094   bind   (LStacked) ;
3095   // Consider: we could replace the expensive CAS in the exit
3096   // path with a simple ST of the displaced mark value fetched from
3097   // the on-stack basiclock box.  That admits a race where a thread T2
3098   // in the slow lock path -- inflating with monitor M -- could race a
3099   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3100   // More precisely T1 in the stack-lock unlock path could "stomp" the
3101   // inflated mark value M installed by T2, resulting in an orphan
3102   // object monitor M and T2 becoming stranded.  We can remedy that situation
3103   // by having T2 periodically poll the object's mark word using timed wait
3104   // operations.  If T2 discovers that a stomp has occurred it vacates
3105   // the monitor M and wakes any other threads stranded on the now-orphan M.
3106   // In addition the monitor scavenger, which performs deflation,
3107   // would also need to check for orpan monitors and stranded threads.
3108   //
3109   // Finally, inflation is also used when T2 needs to assign a hashCode
3110   // to O and O is stack-locked by T1.  The "stomp" race could cause
3111   // an assigned hashCode value to be lost.  We can avoid that condition
3112   // and provide the necessary hashCode stability invariants by ensuring
3113   // that hashCode generation is idempotent between copying GCs.
3114   // For example we could compute the hashCode of an object O as
3115   // O's heap address XOR some high quality RNG value that is refreshed
3116   // at GC-time.  The monitor scavenger would install the hashCode
3117   // found in any orphan monitors.  Again, the mechanism admits a
3118   // lost-update "stomp" WAW race but detects and recovers as needed.
3119   //
3120   // A prototype implementation showed excellent results, although
3121   // the scavenger and timeout code was rather involved.
3122
3123   casn   (mark_addr.base(), Rbox, Rscratch) ;
3124   cmp    (Rbox, Rscratch);
3125   // Intentional fall through into done ...
3126
3127   bind   (done) ;
3128}
3129
3130
3131
3132void MacroAssembler::print_CPU_state() {
3133  // %%%%% need to implement this
3134}
3135
3136void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3137  // %%%%% need to implement this
3138}
3139
3140void MacroAssembler::push_IU_state() {
3141  // %%%%% need to implement this
3142}
3143
3144
3145void MacroAssembler::pop_IU_state() {
3146  // %%%%% need to implement this
3147}
3148
3149
3150void MacroAssembler::push_FPU_state() {
3151  // %%%%% need to implement this
3152}
3153
3154
3155void MacroAssembler::pop_FPU_state() {
3156  // %%%%% need to implement this
3157}
3158
3159
3160void MacroAssembler::push_CPU_state() {
3161  // %%%%% need to implement this
3162}
3163
3164
3165void MacroAssembler::pop_CPU_state() {
3166  // %%%%% need to implement this
3167}
3168
3169
3170
3171void MacroAssembler::verify_tlab() {
3172#ifdef ASSERT
3173  if (UseTLAB && VerifyOops) {
3174    Label next, next2, ok;
3175    Register t1 = L0;
3176    Register t2 = L1;
3177    Register t3 = L2;
3178
3179    save_frame(0);
3180    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3181    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3182    or3(t1, t2, t3);
3183    cmp(t1, t2);
3184    br(Assembler::greaterEqual, false, Assembler::pn, next);
3185    delayed()->nop();
3186    stop("assert(top >= start)");
3187    should_not_reach_here();
3188
3189    bind(next);
3190    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3191    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3192    or3(t3, t2, t3);
3193    cmp(t1, t2);
3194    br(Assembler::lessEqual, false, Assembler::pn, next2);
3195    delayed()->nop();
3196    stop("assert(top <= end)");
3197    should_not_reach_here();
3198
3199    bind(next2);
3200    and3(t3, MinObjAlignmentInBytesMask, t3);
3201    cmp(t3, 0);
3202    br(Assembler::lessEqual, false, Assembler::pn, ok);
3203    delayed()->nop();
3204    stop("assert(aligned)");
3205    should_not_reach_here();
3206
3207    bind(ok);
3208    restore();
3209  }
3210#endif
3211}
3212
3213
3214void MacroAssembler::eden_allocate(
3215  Register obj,                        // result: pointer to object after successful allocation
3216  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3217  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3218  Register t1,                         // temp register
3219  Register t2,                         // temp register
3220  Label&   slow_case                   // continuation point if fast allocation fails
3221){
3222  // make sure arguments make sense
3223  assert_different_registers(obj, var_size_in_bytes, t1, t2);
3224  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3225  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3226
3227  // get eden boundaries
3228  // note: we need both top & top_addr!
3229  const Register top_addr = t1;
3230  const Register end      = t2;
3231
3232  CollectedHeap* ch = Universe::heap();
3233  set((intx)ch->top_addr(), top_addr);
3234  intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3235  ld_ptr(top_addr, delta, end);
3236  ld_ptr(top_addr, 0, obj);
3237
3238  // try to allocate
3239  Label retry;
3240  bind(retry);
3241#ifdef ASSERT
3242  // make sure eden top is properly aligned
3243  {
3244    Label L;
3245    btst(MinObjAlignmentInBytesMask, obj);
3246    br(Assembler::zero, false, Assembler::pt, L);
3247    delayed()->nop();
3248    stop("eden top is not properly aligned");
3249    bind(L);
3250  }
3251#endif // ASSERT
3252  const Register free = end;
3253  sub(end, obj, free);                                   // compute amount of free space
3254  if (var_size_in_bytes->is_valid()) {
3255    // size is unknown at compile time
3256    cmp(free, var_size_in_bytes);
3257    br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3258    delayed()->add(obj, var_size_in_bytes, end);
3259  } else {
3260    // size is known at compile time
3261    cmp(free, con_size_in_bytes);
3262    br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3263    delayed()->add(obj, con_size_in_bytes, end);
3264  }
3265  // Compare obj with the value at top_addr; if still equal, swap the value of
3266  // end with the value at top_addr. If not equal, read the value at top_addr
3267  // into end.
3268  casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3269  // if someone beat us on the allocation, try again, otherwise continue
3270  cmp(obj, end);
3271  brx(Assembler::notEqual, false, Assembler::pn, retry);
3272  delayed()->mov(end, obj);                              // nop if successfull since obj == end
3273
3274#ifdef ASSERT
3275  // make sure eden top is properly aligned
3276  {
3277    Label L;
3278    const Register top_addr = t1;
3279
3280    set((intx)ch->top_addr(), top_addr);
3281    ld_ptr(top_addr, 0, top_addr);
3282    btst(MinObjAlignmentInBytesMask, top_addr);
3283    br(Assembler::zero, false, Assembler::pt, L);
3284    delayed()->nop();
3285    stop("eden top is not properly aligned");
3286    bind(L);
3287  }
3288#endif // ASSERT
3289}
3290
3291
3292void MacroAssembler::tlab_allocate(
3293  Register obj,                        // result: pointer to object after successful allocation
3294  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3295  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3296  Register t1,                         // temp register
3297  Label&   slow_case                   // continuation point if fast allocation fails
3298){
3299  // make sure arguments make sense
3300  assert_different_registers(obj, var_size_in_bytes, t1);
3301  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3302  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3303
3304  const Register free  = t1;
3305
3306  verify_tlab();
3307
3308  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3309
3310  // calculate amount of free space
3311  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3312  sub(free, obj, free);
3313
3314  Label done;
3315  if (var_size_in_bytes == noreg) {
3316    cmp(free, con_size_in_bytes);
3317  } else {
3318    cmp(free, var_size_in_bytes);
3319  }
3320  br(Assembler::less, false, Assembler::pn, slow_case);
3321  // calculate the new top pointer
3322  if (var_size_in_bytes == noreg) {
3323    delayed()->add(obj, con_size_in_bytes, free);
3324  } else {
3325    delayed()->add(obj, var_size_in_bytes, free);
3326  }
3327
3328  bind(done);
3329
3330#ifdef ASSERT
3331  // make sure new free pointer is properly aligned
3332  {
3333    Label L;
3334    btst(MinObjAlignmentInBytesMask, free);
3335    br(Assembler::zero, false, Assembler::pt, L);
3336    delayed()->nop();
3337    stop("updated TLAB free is not properly aligned");
3338    bind(L);
3339  }
3340#endif // ASSERT
3341
3342  // update the tlab top pointer
3343  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3344  verify_tlab();
3345}
3346
3347
3348void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3349  Register top = O0;
3350  Register t1 = G1;
3351  Register t2 = G3;
3352  Register t3 = O1;
3353  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3354  Label do_refill, discard_tlab;
3355
3356  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3357    // No allocation in the shared eden.
3358    br(Assembler::always, false, Assembler::pt, slow_case);
3359    delayed()->nop();
3360  }
3361
3362  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3363  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3364  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3365
3366  // calculate amount of free space
3367  sub(t1, top, t1);
3368  srl_ptr(t1, LogHeapWordSize, t1);
3369
3370  // Retain tlab and allocate object in shared space if
3371  // the amount free in the tlab is too large to discard.
3372  cmp(t1, t2);
3373  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3374
3375  // increment waste limit to prevent getting stuck on this slow path
3376  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3377  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3378  if (TLABStats) {
3379    // increment number of slow_allocations
3380    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3381    add(t2, 1, t2);
3382    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3383  }
3384  br(Assembler::always, false, Assembler::pt, try_eden);
3385  delayed()->nop();
3386
3387  bind(discard_tlab);
3388  if (TLABStats) {
3389    // increment number of refills
3390    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3391    add(t2, 1, t2);
3392    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3393    // accumulate wastage
3394    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3395    add(t2, t1, t2);
3396    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3397  }
3398
3399  // if tlab is currently allocated (top or end != null) then
3400  // fill [top, end + alignment_reserve) with array object
3401  br_null(top, false, Assembler::pn, do_refill);
3402  delayed()->nop();
3403
3404  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3405  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3406  // set klass to intArrayKlass
3407  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3408  ld_ptr(t2, 0, t2);
3409  st_ptr(t2, top, oopDesc::klass_offset_in_bytes());
3410  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3411  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3412  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3413  st(t1, top, arrayOopDesc::length_offset_in_bytes());
3414  verify_oop(top);
3415
3416  // refill the tlab with an eden allocation
3417  bind(do_refill);
3418  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3419  sll_ptr(t1, LogHeapWordSize, t1);
3420  // add object_size ??
3421  eden_allocate(top, t1, 0, t2, t3, slow_case);
3422
3423  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3424  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3425#ifdef ASSERT
3426  // check that tlab_size (t1) is still valid
3427  {
3428    Label ok;
3429    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3430    sll_ptr(t2, LogHeapWordSize, t2);
3431    cmp(t1, t2);
3432    br(Assembler::equal, false, Assembler::pt, ok);
3433    delayed()->nop();
3434    stop("assert(t1 == tlab_size)");
3435    should_not_reach_here();
3436
3437    bind(ok);
3438  }
3439#endif // ASSERT
3440  add(top, t1, top); // t1 is tlab_size
3441  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3442  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3443  verify_tlab();
3444  br(Assembler::always, false, Assembler::pt, retry);
3445  delayed()->nop();
3446}
3447
3448Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3449  switch (cond) {
3450    // Note some conditions are synonyms for others
3451    case Assembler::never:                return Assembler::always;
3452    case Assembler::zero:                 return Assembler::notZero;
3453    case Assembler::lessEqual:            return Assembler::greater;
3454    case Assembler::less:                 return Assembler::greaterEqual;
3455    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3456    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3457    case Assembler::negative:             return Assembler::positive;
3458    case Assembler::overflowSet:          return Assembler::overflowClear;
3459    case Assembler::always:               return Assembler::never;
3460    case Assembler::notZero:              return Assembler::zero;
3461    case Assembler::greater:              return Assembler::lessEqual;
3462    case Assembler::greaterEqual:         return Assembler::less;
3463    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3464    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3465    case Assembler::positive:             return Assembler::negative;
3466    case Assembler::overflowClear:        return Assembler::overflowSet;
3467  }
3468
3469  ShouldNotReachHere(); return Assembler::overflowClear;
3470}
3471
3472void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3473                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3474  Condition negated_cond = negate_condition(cond);
3475  Label L;
3476  brx(negated_cond, false, Assembler::pt, L);
3477  delayed()->nop();
3478  inc_counter(counter_ptr, Rtmp1, Rtmp2);
3479  bind(L);
3480}
3481
3482void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
3483  Address counter_addr(Rtmp1, counter_ptr);
3484  load_contents(counter_addr, Rtmp2);
3485  inc(Rtmp2);
3486  store_contents(Rtmp2, counter_addr);
3487}
3488
3489SkipIfEqual::SkipIfEqual(
3490    MacroAssembler* masm, Register temp, const bool* flag_addr,
3491    Assembler::Condition condition) {
3492  _masm = masm;
3493  Address flag(temp, (address)flag_addr, relocInfo::none);
3494  _masm->sethi(flag);
3495  _masm->ldub(flag, temp);
3496  _masm->tst(temp);
3497  _masm->br(condition, false, Assembler::pt, _label);
3498  _masm->delayed()->nop();
3499}
3500
3501SkipIfEqual::~SkipIfEqual() {
3502  _masm->bind(_label);
3503}
3504
3505
3506// Writes to stack successive pages until offset reached to check for
3507// stack overflow + shadow pages.  This clobbers tsp and scratch.
3508void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3509                                     Register Rscratch) {
3510  // Use stack pointer in temp stack pointer
3511  mov(SP, Rtsp);
3512
3513  // Bang stack for total size given plus stack shadow page size.
3514  // Bang one page at a time because a large size can overflow yellow and
3515  // red zones (the bang will fail but stack overflow handling can't tell that
3516  // it was a stack overflow bang vs a regular segv).
3517  int offset = os::vm_page_size();
3518  Register Roffset = Rscratch;
3519
3520  Label loop;
3521  bind(loop);
3522  set((-offset)+STACK_BIAS, Rscratch);
3523  st(G0, Rtsp, Rscratch);
3524  set(offset, Roffset);
3525  sub(Rsize, Roffset, Rsize);
3526  cmp(Rsize, G0);
3527  br(Assembler::greater, false, Assembler::pn, loop);
3528  delayed()->sub(Rtsp, Roffset, Rtsp);
3529
3530  // Bang down shadow pages too.
3531  // The -1 because we already subtracted 1 page.
3532  for (int i = 0; i< StackShadowPages-1; i++) {
3533    set((-i*offset)+STACK_BIAS, Rscratch);
3534    st(G0, Rtsp, Rscratch);
3535  }
3536}
3537